EP3149796A2 - Fuel cell housing - Google Patents

Fuel cell housing

Info

Publication number
EP3149796A2
EP3149796A2 EP15722354.6A EP15722354A EP3149796A2 EP 3149796 A2 EP3149796 A2 EP 3149796A2 EP 15722354 A EP15722354 A EP 15722354A EP 3149796 A2 EP3149796 A2 EP 3149796A2
Authority
EP
European Patent Office
Prior art keywords
layer
fuel cell
cell housing
housing according
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15722354.6A
Other languages
German (de)
French (fr)
Inventor
Andreas Buchner
Johannes Schmid
Lukas WITTCHEN
Maximilian Zettl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP3149796A2 publication Critical patent/EP3149796A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a highly functional, space-optimized and weight-reduced fuel cell housing.
  • a fuel cell housing is used in a fuel cell system to accommodate fuel cells combined to form a stack. Due to safety considerations, the enclosure must be designed to prevent the escape of reactant gases and not crack or otherwise suffer damage under mechanical stress, such as impact or impact, which compromises the functionality or safety of the fuel cell system. As described for example in DE 1 496 1 10, the fuel cell housing is therefore usually formed of metal. Also, a construction of ceramic is possible, which thus additionally acts electrically insulating, so that can be dispensed with a separate layer for electrical insulation, which is achieved in metal housings by providing a large air gap between the fuel cell and the housing. A disadvantage of conventional fuel cell housings is their high weight and a space inefficient design.
  • a fuel cell housing in that it comprises at least one section which is multi-layered and has at least three layers.
  • a section for example, a side surface or a bottom surface is in question, which has the specific multi-layer structure according to the invention.
  • the multilayer structure according to the invention it is also possible to characterize a plurality of surfaces of the fuel cell housing or also the entire fuel cell housing by the multilayer structure according to the invention.
  • at least one section has a layer structure comprising at least three layers, namely, a first outward-facing layer, a second layer, and a third layer, the second layer and the third layer being arranged in relation to the first Layer can vary.
  • the layers fulfill different functions and can each be configured as a single layer or even as a multilayer arrangement.
  • the first so the outermost layer of the fuel cell housing, which communicates with an environment of the fuel cell housing is formed as an electrically conductive layer and is used to ground the fuel cell and as electromagnetic compatibility shielding or as a way to detect in case of insulation failure. An intervention in the interior of the fuel cell housing is thereby prevented and errors can be detected.
  • the second layer serves to absorb mechanical forces, for example by deformation, and as penetration protection. The provision of the penetration protection prevents the penetration of objects or other components by manipulation or in the event of a crash, and the formation of a leakage point. The fuel cells thus remain unaffected in form, arrangement and function and the safety of the system is guaranteed.
  • the third layer is designed as a high-voltage insulating and hydrogen-insulating layer.
  • the requirements for electrical safety in particular a dielectric strength and creepage distance guaranteed.
  • the individual fuel cells are also insulated from each other and it is also an insulation compared to the housing achieved, so that on insulating air gaps in favor of the smallest possible volume of the fuel cell housing can be dispensed with.
  • the provision of both functionalities in the third layer can be done very well by different, in particular polymeric coatings.
  • the required, very complex functionality of the housing is divided into several individual layers, so that an individual adaptation of the layers in shape and function, taking into account a space-saving design and thus a reduced volume of space as possible low weight, takes place.
  • the combination of differently structured functional layers thus also combines the advantageous properties of the individual layers and exploits synergies with each other.
  • the requirements for contact protection, such as e.g. according to ISO 20654, are thus very well met.
  • the multi-layer structure fulfills the requirements placed on a housing with high-voltage insulating layer, namely protection against breakdown of e.g.
  • the fuel cell housing offers not least because of its acting as ground first layer high contact protection, protection in case of failure and thus high application security, but is characterized by the hydrogen-insulating function and mechanical stability of the second and third layer generally in the event of a crash by a high reliability ,
  • the first layer comprises nets and / or fibers and / or films of conductive materials, such as aluminum or steel or conductive polymers. Due to the very high stability even against corrosion, the use of a copper mesh is particularly preferred. Since connections or transitions should be provided on a housing, which allows an electrical or other connection of the fuel cell housing or the components contained therein, it is further advantageously provided with regard to a further weight reduction and space savings that the first layer and / or the second Layer connections and / or fittings for fixing the fuel cell housing or for fastening other components or components or for media management includes. This is particularly well implemented due to the electrical conductivity of the first layer.
  • connections and the like can be taken into account, for example, even in the manufacturing process of the fuel cell housing, for example by providing feedthroughs sealed by injection molding or media guides that are integrated directly into the first layer of the housing.
  • an external manifold can also be imaged by the housing itself via the media tightness.
  • the housing according to the invention takes on an additional, media-feeding or laxative function and thus increases the overall functionality of the housing with further weight savings for separate components.
  • the electrically conductive first layer is present on the outside of the housing, a simple contact, for example, be made by screwing.
  • sockets may be integrated into the first layer or connected to the first layer.
  • the fuel cell housing according to the invention is simple and stable installable.
  • the second layer is formed of at least two individual layers, namely a reinforcing layer for receiving mechanical forces and a penetration protection layer for providing the penetration protection.
  • the second layer would have to be very solid, for example made of a metal sheet, whereby a high weight is introduced into the fuel cell system. This can be prevented by the splitting of the second layer into two individual layers with different functional emphasis.
  • the reinforcing layer is preferably formed from a fiber composite material.
  • the fiber composite material comprises at least one fiber material and at least one matrix material, it also being possible for mixtures of different fiber materials and also matrix materials to be used.
  • the fibrous material is preferably present as a textile semifinished product, that is to say in particular as a woven fabric, scrim, knitted fabric, knitted fabric, braid and the like.
  • the use of a fiber composite material also has the advantage that due to the manufacturing process of the fiber composite material, the first layer can be partially integrated with the matrix material of the fiber composite material. If, for example, a copper mesh is used in the first layer, the matrix material of the reinforcing layer can flow around the same and stably bind it after curing.
  • the use of carbon fiber material in the fiber composite material has been found to be particularly advantageous in view of a high stability with minimized weight.
  • the penetration-resistant layer is preferably formed of Kevlar or metal. Kevlar is particularly well-suited for the production of the penetration protection layer because of its own weight, which is many times lower than that of metal.
  • the third layer is formed from at least two individual layers, a high-voltage insulation layer and a hydrogen insulation layer. The provision of a high-voltage insulation layer makes it possible to arrange the fuel cell housing directly around the fuel cell stack without providing, as is conventional in the art, an air-isolated space which prevents electrical attack from the fuel cells to the housing. Since hydrogen is a small molecule that penetrates many materials unhindered, the provision of a hydrogen isolation layer separately is advantageous from the standpoint of maximum hydrogen retention capacity with minimal weight input.
  • the high-voltage insulation layer preferably contains non-conductive polymers and / or glass fibers for reasons of weight reduction.
  • the hydrogen insulation layer advantageously comprises a metal layer and / or a polymer layer.
  • the polymer layer may consist exclusively of one or more polymers or further contain a fibrous material. These materials are characterized by a high density against hydrogen. For reasons of weight and also for reasons of cost, a polymer layer is preferred over a metal layer. On the other hand, metal layers for hydrogen insulation can be easily produced by electroplating.
  • the hydrogen insulation layer lies in the housing structure, the fewer layers must be protected against the influence of hydrogen, and here in particular against embrittlement.
  • the hydrogen insulation layer is therefore preferably an innermost layer or a second innermost layer.
  • the high-voltage insulation layer is preferably a layer which points into the interior of the housing, since a necessary distance between the electrical components and the housing can be further reduced as a result. moreover It is thus very easy to provide connections and / or screw connections for fastening the components of the fuel cell housing or for fastening further components or for guiding the media.
  • the high-voltage insulation layer is preferably formed from a glass fiber layer and / or from a polymer layer.
  • the second layer contains conductive materials, in particular conductive polymers, carbon fibers, carbon nanotubes, metal fibers and mixtures thereof, the second layer can support a current dissipation of the first layer, especially in fault currents.
  • this advantageously comprises at least one further hydrogen-absorbing or hydrogen-converting layer.
  • This further layer can bind hydrogen either physically or chemically or convert it by means of a catalyst.
  • a surface of the innermost layer is modified so as to substantially prevent dripping of condensed water. This is possible, for example, by hydrophilizing the inner surface. A contact angle of a water droplet formed by condensation is smaller due to the increased hydrophilicity, so that a thin film of water instead of water droplets is formed whose layer thickness is so low that an electric spark skip is prevented. Due to the solutions according to the invention and their developments, the following advantages result:
  • the fuel cell housing meets with reduced weight all the requirements for a reliable housing.
  • the fuel cell housing is space-saving. - Tying functions, connections and transitions can be integrated into the fuel line housing.
  • FIG. 1 shows a multilayered section of a fuel cell housing according to a first development of the invention
  • FIG. 2 shows a multilayer section of a fuel cell housing according to a second development of the invention
  • FIG. 3 shows a multilayer section of a fuel cell housing according to a third development of the invention.
  • FIG. 4 shows a multilayer section of a fuel cell housing according to a fourth development of the invention.
  • FIG. 5 shows a multilayer section of a fuel line housing according to a fifth development of the invention.
  • FIG. 1 schematically shows a three-layer structure of a section of a fuel cell housing 10.
  • This layer structure thus comprises a minimum number of individual layers.
  • a first, outwardly facing layer 1 is formed as an electrically conductive layer, the grounding of the Fuel cell serves and thus is able to implement also a touch protection and an electromagnetic compatibility shielding.
  • the first layer 1 preferably comprises nets and / or fibers and / or films of conductive materials, and in particular a copper mesh.
  • the first layer may comprise connections and screw connections for fastening the fuel cell housing or for fastening further components.
  • a second layer 2 shown in FIG. 1 as a middle layer is designed for receiving mechanical forces and as penetration protection and acts as a reinforcing or supporting layer that can absorb tensioning forces, discharge operating loads or crash loads and implement tertiary explosion protection.
  • the second layer 2 advantageously comprises conductive materials, e.g. conductive polymers, carbon fibers, carbon nanotubes, metal fibers, and mixtures thereof.
  • the section of the fuel cell housing 10 according to the invention shown in FIG. 1 comprises a third layer 3, which points into the interior of the housing 10 and is designed as a high-voltage insulating layer that is insulated from hydrogen.
  • a surface of the third layer 3 pointing into the interior of the housing 10 is modified in such a way that it essentially does not permit the formation of droplets of condensed water and is in particular hydrophilized for this purpose.
  • FIG. 2 shows a second embodiment of the fuel cell housing 20 according to the invention.
  • the third layer is split into two individual layers 3a, 3b.
  • Single layer 3a is formed as a hydrogen insulating layer and is in particular made of a metal layer and / or a polymer layer.
  • the inwardly facing single layer 3b is formed as a high-voltage insulation layer and preferably contains non-conductive polymers and / or glass fibers.
  • FIG. 3 shows a third embodiment of the invention.
  • the multi-layered section of the fuel cell housing 30 shown in FIG. 3 differs from that of FIG. 1 in that the second layer is split into two individual layers 2 a, 2 b.
  • Single layer 2a is formed as a penetration protection layer and contains in particular Kevlar or metal.
  • Single layer 2b is formed as a reinforcing layer for receiving mechanical forces and in particular comprises at least one fiber material and at least one matrix material.
  • the fiber material is preferably a carbon fiber material and is present in particular in the form of a textile semi-finished fiber product.
  • Figures 4 and 5 show further preferred embodiments of a multilayer portion of the invention
  • Fuel cell housing 40, 50 Here, in each case a first layer 1 by a copper mesh, so a mesh-like or reticulated copper layer is formed. Due to the high conductivity of copper, the first layer 1 is very suitable for earthing the housing.
  • the copper mesh is integrated into a reinforcing layer 2b formed in the form of a carbon fiber reinforced plastic (CFRP).
  • CFRP carbon fiber reinforced plastic
  • the copper mesh has entered into an intimate, cohesive connection with the resin material of the CFRP. This contributes to the stabilization of the reinforcing layer 2b and thus to the reinforcement of the housing.
  • the second layer 2 further comprises a penetration protection layer 2a formed of Kevlar.
  • the Keviar layer is adjoined by a hydrogen insulation layer 3a formed as a polymer layer, which is surrounded on its exposed side by glass fibers as a high-voltage insulation layer 3b. Due to their liquid-crystal structure, the glass fibers provide a good high-voltage insulation which, depending on the polymer used in the polymer layer, can still be improved.
  • FIG. 5 differs in the third layer 3 from FIG. 4. According to FIG. 5, this comprises only a polymer layer as the third layer 3, which is designed to be insulating both as a high-voltage insulation layer and against hydrogen.
  • the high-voltage insulation can be improved by increasing the layer thickness of the polymer layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a fuel cell housing. Said fuel cell housing comprises at least one portion that has at least three layers, including a first, outward-facing layer designed as an electrically conductive layer, a second layer for absorbing mechanical forces and as a penetration shield, and a third layer designed as a high voltage-insulating, hydrogen-insulating layer.

Description

Brennstoffzellengehäuse  fuel cell case
Beschreibung description
Die vorliegende Erfindung betrifft ein hoch funktionales, Bauraum optimiertes und Gewicht reduziertes Brennstoffzellengehäuse. The present invention relates to a highly functional, space-optimized and weight-reduced fuel cell housing.
Ein Brennstoffzellengehäuse dient in einem Brennstoffzellensystem der Aufnahme von zu einem Stapel zusammengefassten Brennstoffzellen. Aufgrund sicherheitsrelevanter Aspekte muss das Gehäuse so konzipiert sein, dass es einen Austritt von Reaktionsgasen verhindert und selbst bei mechanischer Beanspruchung, wie beispielsweise bei einem Schlag oder Stoß, keine Rissbildung oder anderweitige Zerstörung erleidet, die die Funktionalität oder die Sicherheit des Brennstoffzellensystems beeinträchtigt. Wie beispielsweise in DE 1 496 1 10 beschrieben, wird das Brennstoffzellengehäuse daher meist aus Metall gebildet. Auch eine Bauweise aus Keramik ist möglich, die somit zusätzlich elektrisch isolierend wirkt, so dass auf eine separate Schicht zur elektrischen Isolierung verzichtet werden kann, die bei metallenen Gehäusen durch Bereitstellung eines großen Luftspalts zwischen den Brennstoffzellen und dem Gehäuse erzielt wird. Nachteilig an herkömmlichen Brennstoffzellengehäusen ist ihr hohes Gewicht und eine Bauraum ineffiziente Bauweise. A fuel cell housing is used in a fuel cell system to accommodate fuel cells combined to form a stack. Due to safety considerations, the enclosure must be designed to prevent the escape of reactant gases and not crack or otherwise suffer damage under mechanical stress, such as impact or impact, which compromises the functionality or safety of the fuel cell system. As described for example in DE 1 496 1 10, the fuel cell housing is therefore usually formed of metal. Also, a construction of ceramic is possible, which thus additionally acts electrically insulating, so that can be dispensed with a separate layer for electrical insulation, which is achieved in metal housings by providing a large air gap between the fuel cell and the housing. A disadvantage of conventional fuel cell housings is their high weight and a space inefficient design.
Ausgehend von diesem Stand der Technik ist es daher Aufgabe der vorliegenden Erfindung ein Brennstoffzellengehäuse bereitzustellen, das sich durch eine hohe Funktionalität bei reduziertem Eigengewicht und Bauraum optimierter Bauweise auszeichnet. Based on this prior art, it is therefore an object of the present invention to provide a fuel cell housing, which is characterized by high functionality with reduced weight and space optimized design.
Die Aufgabe wird bei einem Brennstoffzellengehäuse erfindungsgemäß dadurch gelöst, dass dieses mindestens einen Abschnitt umfasst, der mehrlagig aufgebaut ist und mindestens drei Schichten aufweist. Als ein solcher Abschnitt kommt beispielsweise eine Seitenfläche oder eine Bodenfläche in Frage, die den erfindungsgemäßen, spezifischen Mehrschichtaufbau hat. Es können aber auch mehrere Flächen des Brennstoffzellengehäuses oder auch das gesamte Brennstoffzellengehäuse durch den erfindungsgemäßen Mehrschichtaufbau charakterisiert sein. In jedem Fall weist mindesten ein Abschnitt einen Schichtaufbau auf, der mindestens drei Schichten umfasst, nämlich eine erste, nach außen weisende Schicht, eine zweite Schicht und eine dritten Schicht, wobei die zweite Schicht und die dritte Schicht in ihrer Anordnung in Bezug auf die erste Schicht variieren können. Die Schichten erfüllen unterschiedliche Funktionen und können jeweils als Einzelschicht oder selbst als mehrschichtige Anordnung ausgebildet sein. The object is achieved in a fuel cell housing according to the invention in that it comprises at least one section which is multi-layered and has at least three layers. As such a section, for example, a side surface or a bottom surface is in question, which has the specific multi-layer structure according to the invention. However, it is also possible to characterize a plurality of surfaces of the fuel cell housing or also the entire fuel cell housing by the multilayer structure according to the invention. In any case, at least one section has a layer structure comprising at least three layers, namely, a first outward-facing layer, a second layer, and a third layer, the second layer and the third layer being arranged in relation to the first Layer can vary. The layers fulfill different functions and can each be configured as a single layer or even as a multilayer arrangement.
Die erste, also die äußerste Schicht des Brennstoffzellengehäuses, die mit einer Umgebung des Brennstoffzellengehäuses in Verbindung steht, ist als elektrisch leitfähige Schicht ausgebildet und dient der Erdung der Brennstoffzelle und als elektromagnetische Verträglichkeits-Schirmung bzw. als Möglichkeit zur Detektion im Isolationsfehlerfall. Ein Eingreifen in das Innere des Brennstoffzellengehäuses wird dadurch verhindert und Fehlerfälle können detektiert werden. Die zweite Schicht dient zur Aufnahme von mechanischen Kräften, beispielsweise durch Verformung, und als Durchdringungsschutz. Durch die Bereitstellung des Durchdringungsschutzes werden ein Eindringen von Gegenständen oder anderen Bauteilen durch Manipulation oder im Crashfall, und eine Bildung einer Leckagestelle verhindert. Die Brennstoffzellen bleiben damit in Form, Anordnung und Funktion unberührt und die Sicherheit des Systems ist gewährleistet. Die dritte Schicht ist als Hochvolt-isolierende und gegenüber Wasserstoff isolierende Schicht ausgebildet. Weitestgehend durch sie werden die Anforderungen an eine elektrische Sicherheit, insbesondere eine Durchschlagfestigkeit und Kriechstrecke, gewährleistet. Durch die Hochvoltisolation werden die einzelnen Brennstoffzellen zudem untereinander isoliert und es wird auch eine Isolation gegenüber dem Gehäuse erzielt, so dass auf isolierende Luftspalte zu Gunsten eines möglichst kleinen Volumens des Brennstoffzellengehäuses, verzichtet werden kann. Durch die zusätzliche, gegenüber Wasserstoff isolierende Funktion der dritten Schicht, wird die Betriebssicherheit der Brennstoffzellen erhöht. Die Bereitstellung beider Funktionalitäten in der dritten Schicht kann sehr gut durch unterschiedliche, insbesondere polymere Beschichtungen erfolgen. The first, so the outermost layer of the fuel cell housing, which communicates with an environment of the fuel cell housing is formed as an electrically conductive layer and is used to ground the fuel cell and as electromagnetic compatibility shielding or as a way to detect in case of insulation failure. An intervention in the interior of the fuel cell housing is thereby prevented and errors can be detected. The second layer serves to absorb mechanical forces, for example by deformation, and as penetration protection. The provision of the penetration protection prevents the penetration of objects or other components by manipulation or in the event of a crash, and the formation of a leakage point. The fuel cells thus remain unaffected in form, arrangement and function and the safety of the system is guaranteed. The third layer is designed as a high-voltage insulating and hydrogen-insulating layer. Largely by them, the requirements for electrical safety, in particular a dielectric strength and creepage distance guaranteed. Due to the high-voltage insulation, the individual fuel cells are also insulated from each other and it is also an insulation compared to the housing achieved, so that on insulating air gaps in favor of the smallest possible volume of the fuel cell housing can be dispensed with. The additional, compared to hydrogen insulating function of the third layer, the reliability of the fuel cell is increased. The provision of both functionalities in the third layer can be done very well by different, in particular polymeric coatings.
Aufgrund des oben dargelegten mehrlagigen Schichtaufbaus mindestens eines Abschnitts des erfindungsgemäßen Brennstoffzellengehäuses wird die erforderliche, sehr komplexe Funktionalität des Gehäuses auf mehrere Einzelschichten aufgeteilt, so dass eine individuelle Anpassung der Schichten in Form und Funktion unter Berücksichtigung einer möglichst platzsparenden Bauweise und damit einem reduzierten Raumvolumen bei möglichst geringem Gewicht, erfolgt. Die Kombination unterschiedlich strukturierter funktionaler Schichten kombiniert damit auch die vorteilhaften Eigenschaften der jeweiligen Einzelschichten und nutzt Synergien zueinander. Die Anforderungen an einen Berührungsschutz, wie sie z.B. gemäß ISO 20654 gegeben sein müssen, werden somit sehr gut erfüllt. Ebenso erfüllt die Mehrschichtstruktur die Voraussetzungen, die an ein Gehäuse mit Hochvolt- isolierender Schicht gestellt werden, nämlich einen Schutz vor Durchschlag von z.B. 2500V und damit insbesondere auch eine ausreichende Kriechstrecke (siehe DIN 60644), eine Luftstrecke (siehe DIN 60664) und eine Leitfähigkeit von etwa 50 ΜΩ. Das Brennstoffzellengehäuse bietet damit nicht zuletzt aufgrund seiner als Erdung wirkenden ersten Schicht einen hohen Berührungsschutz, Schutz im Fehlerfall und damit eine hohe Anwendungssicherheit, sondern zeichnet sich durch die Wasserstoffisolierende Funktion und mechanische Stabilität der zweiten und dritten Schicht allgemein auch im Crashfall durch eine hohe Betriebssicherheit aus. Due to the multilayer layer structure of at least a portion of the fuel cell housing according to the invention, the required, very complex functionality of the housing is divided into several individual layers, so that an individual adaptation of the layers in shape and function, taking into account a space-saving design and thus a reduced volume of space as possible low weight, takes place. The combination of differently structured functional layers thus also combines the advantageous properties of the individual layers and exploits synergies with each other. The requirements for contact protection, such as e.g. according to ISO 20654, are thus very well met. Likewise, the multi-layer structure fulfills the requirements placed on a housing with high-voltage insulating layer, namely protection against breakdown of e.g. 2500V and thus in particular a sufficient creepage distance (see DIN 60644), an air gap (see DIN 60664) and a conductivity of about 50 Ω. The fuel cell housing offers not least because of its acting as ground first layer high contact protection, protection in case of failure and thus high application security, but is characterized by the hydrogen-insulating function and mechanical stability of the second and third layer generally in the event of a crash by a high reliability ,
Die Unteransprüche beinhalten vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung. Zur weiteren Gewichtsreduktion bei gleichzeitig sehr gut elektrisch isolierenden Eigenschaften umfasst die erste Schicht Netze und/oder Fasern und/oder Folien aus leitfähigen Materialien, wie z.B. aus Aluminium oder Stahl oder leitfähigen Polymeren. Aufgrund der sehr hohen Stabilität auch gegenüber Korrosion, ist die Verwendung eines Kupfermesh besonders bevorzugt. Da an einem Gehäuse Anschlüsse bzw. Übergänge vorgesehen sein sollten, die eine elektrische oder anderweitige Anbindung des Brennstoffzellengehäuses bzw. der darin enthaltenen Komponenten ermöglicht, ist im Hinblick auf eine weitere Gewichtsreduzierung und Bauraumersparnis ferner vorteilhaft vorgesehen, dass die erste Schicht und/oder die zweite Schicht Anschlüsse und/oder Verschraubungen zur Befestigung des Brennstoffzellengehäuses bzw. zur Befestigung weiterer Bauteile bzw. Komponenten oder zur Medienführung, umfasst. Dies ist aufgrund der elektrischen Leitfähigkeit der ersten Schicht besonders gut umsetzbar. Anschlüsse und dergleichen können dabei z.B. schon im Fertigungsprozess des Brennstoffzellengehäuses berücksichtigt werden, beispielsweise durch die Bereitstellung von mittels Spritzgusstechnik abgedichteter Durchführungen oder Medienführungen, die direkt in die erste Schicht des Gehäuses integriert werden. Über die Mediendichtheit kann insbesondere auch ein externes Manifold durch das Gehäuse selbst abgebildet werden. Somit übernimmt mindestens ein Teil des erfindungsgemäßen Gehäuses eine zusätzliche, Medien zuführende bzw. abführende Funktion und erhöht damit die allgemeine Funktionalität des Gehäuses bei weiterer Gewichtseinsparung für separate Bauteile. Weiter vorteilhaft kann dadurch, dass die elektrisch leitfähige erste Schicht an der Außenseite des Gehäuses vorhanden ist, eine einfache Kontaktierung z.B. über Verschraubungen hergestellt werden. Auch Buchsen können in die erste Schicht integriert oder mit der ersten Schicht verbunden sein. Dadurch ist das erfindungsgemäße Brennstoffzellengehäuse einfach und stabil einbaubar. The dependent claims contain advantageous developments and refinements of the invention. For further weight reduction with at the same time very good electrical insulating properties, the first layer comprises nets and / or fibers and / or films of conductive materials, such as aluminum or steel or conductive polymers. Due to the very high stability even against corrosion, the use of a copper mesh is particularly preferred. Since connections or transitions should be provided on a housing, which allows an electrical or other connection of the fuel cell housing or the components contained therein, it is further advantageously provided with regard to a further weight reduction and space savings that the first layer and / or the second Layer connections and / or fittings for fixing the fuel cell housing or for fastening other components or components or for media management includes. This is particularly well implemented due to the electrical conductivity of the first layer. Connections and the like can be taken into account, for example, even in the manufacturing process of the fuel cell housing, for example by providing feedthroughs sealed by injection molding or media guides that are integrated directly into the first layer of the housing. In particular, an external manifold can also be imaged by the housing itself via the media tightness. Thus, at least a portion of the housing according to the invention takes on an additional, media-feeding or laxative function and thus increases the overall functionality of the housing with further weight savings for separate components. Further advantageously, the fact that the electrically conductive first layer is present on the outside of the housing, a simple contact, for example, be made by screwing. Also sockets may be integrated into the first layer or connected to the first layer. As a result, the fuel cell housing according to the invention is simple and stable installable.
Um eine noch bessere Stabilität gegenüber mechanischer Einwirkung und insbesondere gegenüber Verspannkräften, wie sie z.B. bei der Verspannung des Brennstoffzellenstapels mit dem Gehäuse einwirken, Betriebslasten oder Crashlasten, und auch zur Implementierung eines tertiären Explosionsschutzes, ist die zweite Schicht aus mindestens zwei Einzelschichten gebildet, nämlich einer Verstärkungsschicht zur Aufnahme von mechanischen Kräften und einer Durchdringungsschutzschicht zur Bereitstellung des Durchdringungsschutzes. Um beide Funktionen in einer Schicht abzubilden, müsste die zweite Schicht sehr massiv, beispielsweise aus einem Metallblech, ausgebildet sein, wodurch ein hohes Gewicht in das Brennstoffzellensystem eingetragen wird. Dies kann durch die Aufspaltung der zweiten Schicht in zwei Einzelschichten mit unterschiedlichem Funktionsschwerpunkt verhindert werden. Aufgrund der sehr guten mechanischen Stabilität bei geringem Eigengewicht ist die Verstärkungsschicht vorzugsweise aus einem Faserverbundmaterial gebildet. Erfindungsgemäß umfasst das Faserverbundmaterial mindestens ein Fasermateriai und mindestens ein Matrixmaterial, wobei auch Mischungen unterschiedlicher Fasermaterialien und auch Matrixmaterialien zur Anwendung kommen können. Das Fasermateriai liegt dabei vorzugsweise als textiles Halbzeug, also insbesondere als Gewebe, Gelege, Gestricke, Gewirk, Geflecht und dergleichen, vor. Die Verwendung eines Faserverbundmaterials hat ferner den Vorteil, dass bedingt durch den Herstellprozess des Faserverbundmaterials, die erste Schicht teilweise mit in das Matrixmaterial des Faserverbundmaterials integriert werden kann. Wird z.B. ein Kupfermesh in der ersten Schicht verwendet, so kann das Matrixmaterial der Verstärkungsschicht dasselbe umfließen und dieses nach Aushärten stabil binden. Die Verwendung von Kohlenstofffasermaterial im Faserverbundmaterial hat sich im Hinblick auf eine hohe Stabilität bei minimiertem Eigengewicht als besonders vorteilhaft herausgestellt. To an even better stability against mechanical action and in particular against clamping forces, such as those acting in the tension of the fuel cell stack with the housing, operating loads or crash loads, and also to implement a tertiary Explosion protection, the second layer is formed of at least two individual layers, namely a reinforcing layer for receiving mechanical forces and a penetration protection layer for providing the penetration protection. In order to image both functions in one layer, the second layer would have to be very solid, for example made of a metal sheet, whereby a high weight is introduced into the fuel cell system. This can be prevented by the splitting of the second layer into two individual layers with different functional emphasis. Due to the very good mechanical stability with low weight, the reinforcing layer is preferably formed from a fiber composite material. According to the invention, the fiber composite material comprises at least one fiber material and at least one matrix material, it also being possible for mixtures of different fiber materials and also matrix materials to be used. The fibrous material is preferably present as a textile semifinished product, that is to say in particular as a woven fabric, scrim, knitted fabric, knitted fabric, braid and the like. The use of a fiber composite material also has the advantage that due to the manufacturing process of the fiber composite material, the first layer can be partially integrated with the matrix material of the fiber composite material. If, for example, a copper mesh is used in the first layer, the matrix material of the reinforcing layer can flow around the same and stably bind it after curing. The use of carbon fiber material in the fiber composite material has been found to be particularly advantageous in view of a high stability with minimized weight.
Aufgrund der herausragenden Resistenz gegenüber Rissbildung bei Einwirkung von Gegenständen ist die Durchdringungsschutzschicht vorzugsweise aus Kevlar oder Metall gebildet. Aufgrund des gegenüber Metall um ein Vielfaches reduzierten Eigengewichts ist Kevlar für die Herstellung der Durchdringungsschutzschicht besonders gut geeignet. Zur weiteren Reduzierung des Bauraums des Brennstoffzellengehäuses ist die dritte Schicht aus mindestens zwei Einzelschichten gebildet, einer Hochvoltisolationsschicht und einer Wasserstoffisolationsschicht. Die Bereitstellung einer Hochvoltisolationsschicht ermöglicht es, das Brennstoffzellengehäuse direkt um den Brennstoffzellenstapel anzuordnen, ohne, wie es im Stand der Technik üblich ist, einen durch Luft isolierten Zwischenraum vorzusehen, der einen elektrischen Übergriff von den Brennstoffzellen auf das Gehäuse verhindert. Da Wasserstoff ein kleines Molekül ist, das viele Materialien ungehindert penetriert, ist die separate Bereitstellung einer Wasserstoffisolationsschicht unter dem Gesichtspunkt einer maximalen Rückhaltekapazität für Wasserstoff bei minimalem Gewichtseintrag vorteilhaft. Due to the excellent resistance to cracking when exposed to articles, the penetration-resistant layer is preferably formed of Kevlar or metal. Kevlar is particularly well-suited for the production of the penetration protection layer because of its own weight, which is many times lower than that of metal. To further reduce the installation space of the fuel cell housing, the third layer is formed from at least two individual layers, a high-voltage insulation layer and a hydrogen insulation layer. The provision of a high-voltage insulation layer makes it possible to arrange the fuel cell housing directly around the fuel cell stack without providing, as is conventional in the art, an air-isolated space which prevents electrical attack from the fuel cells to the housing. Since hydrogen is a small molecule that penetrates many materials unhindered, the provision of a hydrogen isolation layer separately is advantageous from the standpoint of maximum hydrogen retention capacity with minimal weight input.
Die Hochvoltisolationsschicht enthält aus Gründen der Gewichtsreduktion vorzugsweise nicht-leitende Polymere und/oder Glasfasern. Die Wasserstoffisolationsschicht umfasst vorteilhaft eine Metallschicht und/oder eine Polymerschicht. Die Polymerschicht kann dabei ausschließlich aus einem oder mehreren Polymeren bestehen oder ferner ein faserhaltiges Material enthalten. Diese Materialien zeichnen sich durch eine hohe Dichtheit gegenüber Wasserstoff aus. Aus Gewichtsgründen und auch aus Kostengründen ist eine Polymerschicht gegenüber einer Metallschicht bevorzugt. Metallschichten für die Wasserstoffisolation lassen sich hingegen einfach durch galvanisches Beschichten herstellen. The high-voltage insulation layer preferably contains non-conductive polymers and / or glass fibers for reasons of weight reduction. The hydrogen insulation layer advantageously comprises a metal layer and / or a polymer layer. The polymer layer may consist exclusively of one or more polymers or further contain a fibrous material. These materials are characterized by a high density against hydrogen. For reasons of weight and also for reasons of cost, a polymer layer is preferred over a metal layer. On the other hand, metal layers for hydrogen insulation can be easily produced by electroplating.
Je weiter innen die Wasserstoffisolationsschicht in der Gehäusestruktur liegt, desto weniger Schichten müssen gegen Wasserstoffeinfluss, und hier insbesondere gegenüber Versprödung, geschützt sein. Die Wasserstoffisolationsschicht ist also vorzugsweise eine innerste Schicht oder eine zweit innerste Schicht. The further inside the hydrogen insulation layer lies in the housing structure, the fewer layers must be protected against the influence of hydrogen, and here in particular against embrittlement. The hydrogen insulation layer is therefore preferably an innermost layer or a second innermost layer.
Alternativ dazu ist die Hochvoltisolationsschicht vorzugsweise eine in das Innere des Gehäuses weisende Schicht, da dadurch ein notwendiger Abstand der elektrischen Bauteile zum Gehäuse weiter verringert werden kann. Zudem können so sehr leicht Anschlüsse und/oder Verschraubungen zur Befestigung der Komponenten des Brennstoffzellengehäuses bzw. zur Befestigung weiterer Komponenten oder zur Medienführung vorgesehen werden. Vorzugsweise ist die Hochvoltisolationsschicht aus einer Glasfaserschicht und/oder aus einer Polymerschicht gebildet. Alternatively, the high-voltage insulation layer is preferably a layer which points into the interior of the housing, since a necessary distance between the electrical components and the housing can be further reduced as a result. moreover It is thus very easy to provide connections and / or screw connections for fastening the components of the fuel cell housing or for fastening further components or for guiding the media. The high-voltage insulation layer is preferably formed from a glass fiber layer and / or from a polymer layer.
Durch die vorteilhafte Weiterbildung, dass die zweite Schicht leitfähige Materialien enthält, insbesondere leitfähige Polymere, Kohlenstofffasern, Kohlenstoffnanoröhren, Metallfasern und Mischungen daraus, kann die zweite Schicht gerade bei Fehlerströmen eine Stromableitung der ersten Schicht unterstützen. Due to the advantageous development that the second layer contains conductive materials, in particular conductive polymers, carbon fibers, carbon nanotubes, metal fibers and mixtures thereof, the second layer can support a current dissipation of the first layer, especially in fault currents.
Zur Erhöhung der Betriebssicherheit des Brennstoffzellengehäuses umfasst dieses vorteilhaft mindestens eine weitere Wasserstoff absorbierende oder Wasserstoff umwandelnde Schicht. Diese weitere Schicht kann Wasserstoff entweder physikalisch oder chemisch binden oder aber mittels eines Katalysators umwandeln. To increase the operational safety of the fuel cell housing, this advantageously comprises at least one further hydrogen-absorbing or hydrogen-converting layer. This further layer can bind hydrogen either physically or chemically or convert it by means of a catalyst.
Um Kurzschlüsse im Inneren des Brennstoffzellengehäuses durch Wasser- Kondensationstropfenbildung zu vermeiden, ist eine Oberfläche der innersten Schicht so modifiziert, dass sie im Wesentlichen keine Tropfenbildung von Kondenswasser erlaubt. Dies ist beispielsweise durch Hydrophilierung der innen liegenden Oberfläche möglich. Ein Kontaktwinkel eines sich durch Kondensation bildenden Wassertropfens fällt aufgrund der erhöhten Hydrophilie kleiner aus, so dass vielmehr ein dünner Wasserfilm anstelle von Wassertropfen gebildet wird, dessen Schichtdicke so gering ist, dass ein Überspringen eines elektrischen Funkens unterbunden wird. Aufgrund der erfindungsgemäßen Lösungen sowie deren Weiterbildungen ergeben sich folgende Vorteile: In order to avoid short circuits inside the fuel cell housing by water condensation drop formation, a surface of the innermost layer is modified so as to substantially prevent dripping of condensed water. This is possible, for example, by hydrophilizing the inner surface. A contact angle of a water droplet formed by condensation is smaller due to the increased hydrophilicity, so that a thin film of water instead of water droplets is formed whose layer thickness is so low that an electric spark skip is prevented. Due to the solutions according to the invention and their developments, the following advantages result:
Das Brennstoffzellengehäuse erfüllt bei reduziertem Eigengewicht alle Anforderungen an ein betriebssicheres Gehäuse. The fuel cell housing meets with reduced weight all the requirements for a reliable housing.
- Das Brennstoffzellengehäuse ist bauraumsparend. - Anbindefunktionen, Anschlüsse und Übergänge können in das Brennstoffzeilengehäuse integriert werden. - The fuel cell housing is space-saving. - Tying functions, connections and transitions can be integrated into the fuel line housing.
- Elektrische Kurzschlüsse werden verhindert. - Electrical short circuits are prevented.
- Ein Wasserstoffaustritt wird effektiv verhindert. - Hydrogen leakage is effectively prevented.
- Explosionsschutz kann integriert werden. - Explosion protection can be integrated.
Wettere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und den Figuren. Es zeigen: Weather details, features and advantages of the invention will become apparent from the following description and the figures. Show it:
Figur 1 einen mehrschichtigen Abschnitt eines Brennstoffzellengehäuses gemäß einer ersten Weiterbildung der Erfindung, FIG. 1 shows a multilayered section of a fuel cell housing according to a first development of the invention,
Figur 2 einen mehrschichtigen Abschnitt eines Brennstoffzellengehäuses gemäß einer zweiten Weiterbildung der Erfindung, FIG. 2 shows a multilayer section of a fuel cell housing according to a second development of the invention,
Figur 3 einen mehrschichtigen Abschnitt eines Brennstoffzellengehäuses gemäß einer dritten Weiterbildung der Erfindung. FIG. 3 shows a multilayer section of a fuel cell housing according to a third development of the invention.
Figur 4 einen mehrschichtigen Abschnitt eines Brennstoffzellengehäuses gemäß einer vierten Weiterbildung der Erfindung. FIG. 4 shows a multilayer section of a fuel cell housing according to a fourth development of the invention.
Figur 5 einen mehrschichtigen Abschnitt eines Brennstoffzeilengehäuses gemäß einer fünften Weiterbildung der Erfindung. FIG. 5 shows a multilayer section of a fuel line housing according to a fifth development of the invention.
Die vorliegende Erfindung wird anhand von Ausführungsbeispielen im Detail veranschaulicht. Dabei sind nur die hier interessierenden Bereiche des erfindungsgemäßen Brennstoffzellengehäuses dargestellt. Alle übrigen Bauteile sind der Übersichtlichkeit halber weggelassen, tn den Figuren beziffern gleiche Bezugszeichen gleiche Schichten/Bauteile. The present invention will be illustrated in detail by way of embodiments. Only the areas of interest of the fuel cell housing according to the invention are shown here. All other components are omitted for clarity, tn the figures number the same reference numerals like layers / components.
Figur 1 zeigt schematisch einen Dreischichtaufbau eines Abschnitts eines Brennstoffzellengehäuses 10. Dieser Schichtaufbau umfasst damit eine Minimalanzahl an Einzelschichten. Eine erste, nach außen weisende Schicht 1 , ist als elektrisch leitfähige Schicht ausgebildet, die einer Erdung der Brennstoffzellen dient und somit in der Lage ist, auch einen Berührungsschutz und eine elektromagnetische Verträglichkeits-Schirmung zu implementieren. Die erste Schicht 1 umfasst vorzugsweise Netze und/oder Fasern und/oder Folien aus leitfähigen Materialien, und insbesondere ein Kupfermesh. Vorteilhafterweise kann die erste Schicht Anschlüsse und Verschraubungen zur Befestigung des Brennstoffzellengehäuses bzw. zur Befestigung weiterer Komponenten, umfassen. FIG. 1 schematically shows a three-layer structure of a section of a fuel cell housing 10. This layer structure thus comprises a minimum number of individual layers. A first, outwardly facing layer 1, is formed as an electrically conductive layer, the grounding of the Fuel cell serves and thus is able to implement also a touch protection and an electromagnetic compatibility shielding. The first layer 1 preferably comprises nets and / or fibers and / or films of conductive materials, and in particular a copper mesh. Advantageously, the first layer may comprise connections and screw connections for fastening the fuel cell housing or for fastening further components.
Eine in Figur 1 als mittlere Schicht dargestellte zweite Schicht 2 ist zur Aufnahme von mechanischen Kräften und als Durchdringungsschutz ausgebildet und fungiert als verstärkende bzw. tragende Schicht, die Verspannkräfte aufnehmen, Betriebslasten oder Crashlasten ableiten und einen tertiären Explosionsschutzes implementieren kann. Die zweite Schicht 2 umfasst vorteilhafterweise leitfähige Materialien, wie z.B. leitfähige Polymere, Kohlenstofffasern, Kohlenstoffnanoröhren, Metallfasern und Mischungen daraus. A second layer 2 shown in FIG. 1 as a middle layer is designed for receiving mechanical forces and as penetration protection and acts as a reinforcing or supporting layer that can absorb tensioning forces, discharge operating loads or crash loads and implement tertiary explosion protection. The second layer 2 advantageously comprises conductive materials, e.g. conductive polymers, carbon fibers, carbon nanotubes, metal fibers, and mixtures thereof.
Ferner umfasst der in Figur 1 gezeigte Abschnitt des erfindungsgemäßen Brennstoffzellengehäuses 10 eine in das Innere des Gehäuses 10 weisende dritte Schicht 3, die als Hochvolt-isolierende und gegenüber Wasserstoff isolierende Schicht ausgebildet ist. Furthermore, the section of the fuel cell housing 10 according to the invention shown in FIG. 1 comprises a third layer 3, which points into the interior of the housing 10 and is designed as a high-voltage insulating layer that is insulated from hydrogen.
Insbesondere ist eine in das Innere des Gehäuses 10 weisende Oberfläche der dritten Schicht 3 so modifiziert, dass sie im Wesentlichen keine Tropfenbildung von Kondenswasser erlaubt und ist hierzu insbesondere hydrophiliert. In particular, a surface of the third layer 3 pointing into the interior of the housing 10 is modified in such a way that it essentially does not permit the formation of droplets of condensed water and is in particular hydrophilized for this purpose.
Figur 2 zeigt eine zweite Ausgestaltung des erfindungsgemäßen Brennstoffzellengehäuses 20. Im Unterschied zu Figur 1 ist die dritte Schicht in zwei Einzelschichten 3a, 3b, aufgespaltet. Einzelschicht 3a ist dabei als Wasserstoffisolationsschicht ausgebildet und ist insbesondere aus einer Metallschicht und/oder einer Polymerschicht hergestellt. Die nach innen weisende Einzelschicht 3b ist als Hochvoltisolationsschicht ausgebildet und enthält vorzugsweise nicht-leitende Polymere und/oder Glasfasern. FIG. 2 shows a second embodiment of the fuel cell housing 20 according to the invention. In contrast to FIG. 1, the third layer is split into two individual layers 3a, 3b. Single layer 3a is formed as a hydrogen insulating layer and is in particular made of a metal layer and / or a polymer layer. The inwardly facing single layer 3b is formed as a high-voltage insulation layer and preferably contains non-conductive polymers and / or glass fibers.
Figur 3 zeigt eine dritte Ausgestaltung der Erfindung. Der in Figur 3 gezeigte mehrschichtige Abschnitt des Brennstoffzellengehäuses 30 unterscheidet sich von demjenigen aus Figur 1 dadurch, dass die zweite Schicht in zwei Einzelschichten 2a, 2b, aufgespaltet ist. Einzelschicht 2a ist als Durchdringungsschutzschicht gebildet und enthält insbesondere Kevlar oder Metall. Einzelschicht 2b ist als Verstärkungsschicht zur Aufnahme von mechanischen Kräften ausgebildet und umfasst insbesondere mindestens ein Fasermaterial und mindestens ein Matrixmaterial. Das Fasermaterial ist vorzugsweise ein Kohlenstofffasermaterial und liegt insbesondere in Form eines textilen Faserhalbzeugs vor. FIG. 3 shows a third embodiment of the invention. The multi-layered section of the fuel cell housing 30 shown in FIG. 3 differs from that of FIG. 1 in that the second layer is split into two individual layers 2 a, 2 b. Single layer 2a is formed as a penetration protection layer and contains in particular Kevlar or metal. Single layer 2b is formed as a reinforcing layer for receiving mechanical forces and in particular comprises at least one fiber material and at least one matrix material. The fiber material is preferably a carbon fiber material and is present in particular in the form of a textile semi-finished fiber product.
Weitere Schichten, wie beispielsweise eine Wasserstoff absorbierende oder Wasserstoff umwandelnde Schicht können die in den Figuren 1 bis 3 gezeigten Brennstoffzellengehäusestrukturen ergänzen. Other layers, such as a hydrogen-absorbing or hydrogen-converting layer, may supplement the fuel cell housing structures shown in FIGS. 1 to 3.
Figuren 4 und 5 zeigen weiter bevorzugte Ausgestaltungen eines mehrschichtigen Abschnitts des erfindungsgemäßenFigures 4 and 5 show further preferred embodiments of a multilayer portion of the invention
Brennstoffzellengehäuses 40, 50. Hier ist jeweils eine erste Schicht 1 durch ein Kupfer-Mesh, also eine maschenartige oder netzartige Kupferschicht, gebildet. Aufgrund der hohen Leitfähigkeit von Kupfer ist die erste Schicht 1 sehr gut zur Erdung des Gehäuses geeignet. Das Kupfermesh ist in eine, in Form eines Kohlenstofffaser verstärkten Kunststoffes (CFK) ausgebildete, Verstärkungsschicht 2b integriert. Das Kupfermesh ist mit dem Harzmaterial des CFK eine innige, stoffschlüssige Verbindung eingegangen. Dies trägt zur Stabilisierung der Verstärkungsschicht 2b und damit zur Verstärkung des Gehäuses bei. Fuel cell housing 40, 50. Here, in each case a first layer 1 by a copper mesh, so a mesh-like or reticulated copper layer is formed. Due to the high conductivity of copper, the first layer 1 is very suitable for earthing the housing. The copper mesh is integrated into a reinforcing layer 2b formed in the form of a carbon fiber reinforced plastic (CFRP). The copper mesh has entered into an intimate, cohesive connection with the resin material of the CFRP. This contributes to the stabilization of the reinforcing layer 2b and thus to the reinforcement of the housing.
Die zweite Schicht 2 umfasst ferner eine Durchdringungsschutzschicht 2a, die aus Kevlar gebildet ist. Gemäß Figur 4 schließt sich an die Keviarschicht eine als Polymerschicht ausgebildete Wasserstoffisolationsschicht 3a an, die an ihrer freiliegenden Seite von Glasfasern als Hochvoltisolationsschicht 3b umgeben ist. Die Glasfasern stellen aufgrund ihrer Flüssigkristallstruktur eine gute Hochvoltisolation bereit, die, je nach in der Polymerschicht verwendetem Polymer, noch verbessert werden kann. The second layer 2 further comprises a penetration protection layer 2a formed of Kevlar. According to FIG. 4, the Keviar layer is adjoined by a hydrogen insulation layer 3a formed as a polymer layer, which is surrounded on its exposed side by glass fibers as a high-voltage insulation layer 3b. Due to their liquid-crystal structure, the glass fibers provide a good high-voltage insulation which, depending on the polymer used in the polymer layer, can still be improved.
Figur 5 unterscheidet sich in der dritten Schicht 3 zu Figur 4. Diese umfasst gemäß Figur 5 lediglich eine Polymerschicht als dritte Schicht 3, die sowohl als Hochvoltisolationsschicht als auch gegenüber Wasserstoff isolierend ausgebildet ist. Die Hochvoltisolation kann durch Erhöhung der Schichtdicke der Polymerschicht verbessert werden. FIG. 5 differs in the third layer 3 from FIG. 4. According to FIG. 5, this comprises only a polymer layer as the third layer 3, which is designed to be insulating both as a high-voltage insulation layer and against hydrogen. The high-voltage insulation can be improved by increasing the layer thickness of the polymer layer.
Die vorhergehende Beschreibung der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihrer Äquivalente zu verlassen. The foregoing description of the present invention is for illustrative purposes only, and not for the purpose of limiting the invention. Various changes and modifications are possible within the scope of the invention without departing from the scope of the invention and its equivalents.
Bezugszeichenliste: LIST OF REFERENCE NUMBERS
1 erste Schicht 1 first shift
2 zweite Schicht  2 second layer
3 dritte Schicht  3 third layer
2a Durchdringungsschutzschicht 2a penetration protection layer
2b Verstärkungsschicht2b reinforcement layer
3a Wasserstoffisolationsschicht3a hydrogen isolation layer
3b Hochvoltisolationsschicht3b high-voltage insulation layer
10 Brennstoffzellengehäuse10 fuel cell housing
20 Brennstoffzellengehäuse20 fuel cell housing
30 Brennstoffzellengehäuse30 fuel cell housing
40 Brennstoffzellengehäuse40 fuel cell housing
50 Brennstoffzellengehäuse 50 fuel cell housing

Claims

Patentansprüche: claims:
1. Brennstoffzellengehäuse umfassend mindestens einen mindestens dreischichtigen Abschnitt mit einer ersten, nach außen weisenden Schicht (1), die als elektrisch leitfähige Schicht ausgebildet ist, einer zweiten Schicht (2) zur Aufnahme von mechanischen Kräften und als Durchdringungsschutz und einer dritten Schicht (3), die als Hochvolt- isolierende und gegenüber Wasserstoff isolierende Schicht ausgebildet ist. 1. A fuel cell housing comprising at least one at least three-layer section with a first, outwardly facing layer (1), which is formed as an electrically conductive layer, a second layer (2) for receiving mechanical forces and as a penetration protection and a third layer (3) , which is designed as a high-voltage insulating and hydrogen-insulating layer.
2. Brennstoffzellengehäuse nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Schicht (1) Netze und/oder Fasern und/oder Folien aus leitfähigen Materialien, und insbesondere ein Kupfermesh, umfasst. 2. Fuel cell housing according to claim 1, characterized in that the first layer (1) nets and / or fibers and / or films of conductive materials, and in particular a Kupfermesh comprises.
3. Brennstoffzellengehäuse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Schicht (1) und/oder die zweite Schicht (2) Anschlüsse und/oder Verschraubungen zur Befestigung des Brennstoffzellengehäuses (10, 20, 30, 40, 50) bzw. zur Befestigung weiterer Komponenten oder zur Medienführung, umfasst. 3. Fuel cell housing according to claim 1 or 2, characterized in that the first layer (1) and / or the second layer (2) connections and / or fittings for fixing the fuel cell housing (10, 20, 30, 40, 50) and for attachment of other components or for media management includes.
4. Brennstoffzellengehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Schicht (2) aus mindestens zwei Einzelschichten gebildet ist, einer Verstärkungsschicht (2b) zur Aufnahme von mechanischen Kräften und einer Durchdringungsschutzschicht (2a) zur Bereitstellung des Durchdringungsschutzes. 4. Fuel cell housing according to one of the preceding claims, characterized in that the second layer (2) is formed from at least two individual layers, a reinforcing layer (2b) for receiving mechanical forces and a penetration protection layer (2a) for providing the penetration protection.
5. Brennstoffzellengehäuse nach Anspruch 4, dadurch gekennzeichnet, dass die Verstärkungsschicht (2b) ein Faserverbundmaterial, umfassend mindestens ein Fasermaterial und mindestens ein Matrixmaterial, aufweist, wobei das Fasermaterial insbesondere ein Kohlenstofffasermaterial ist und/oder wobei das Fasermaterial insbesondere als textiles Halbzeug vorliegt. 5. Fuel cell housing according to claim 4, characterized in that the reinforcing layer (2b) comprises a fiber composite material, comprising at least one fiber material and at least one matrix material, wherein the fiber material in particular a Carbon fiber material and / or wherein the fiber material is present in particular as a textile semifinished product.
6. Brennstoffzellengehäuse nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Durchdringungsschutzschicht (2a) aus Kevlar oder Metall, insbesondere aus Kevlar, gebildet ist. 6. Fuel cell housing according to claim 4 or 5, characterized in that the penetration-protection layer (2a) made of Kevlar or metal, in particular Kevlar, is formed.
7. Brennstoffzellengehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dritte Schicht (3) aus mindestens zwei Einzelschichten gebildet ist, einer Hochvoltisolationsschicht (3b) und einer Wasserstoffisolationsschicht (3a). 7. Fuel cell housing according to one of the preceding claims, characterized in that the third layer (3) is formed from at least two individual layers, a high-voltage insulation layer (3b) and a hydrogen insulation layer (3a).
8. Brennstoffzellengehäuse nach Anspruch 7, dadurch gekennzeichnet, dass die Wasserstoffisolationsschicht (3a) durch eine Metallschicht und/oder eine Polymerschicht gebildet ist. 8. Fuel cell housing according to claim 7, characterized in that the hydrogen insulation layer (3a) is formed by a metal layer and / or a polymer layer.
9. Brennstoffzellengehäuse nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Hochvoltisolationsschicht (3b) nicht-leitende Polymere und/oder Glasfasern enthält. 9. Fuel cell housing according to claim 7 or 8, characterized in that the high-voltage insulation layer (3b) contains non-conductive polymers and / or glass fibers.
10. Brennstoffzellengehäuse nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Hochvoltisolationsschicht (3b) eine in das Innere des Gehäuses weisende Schicht ist. 10. Fuel cell housing according to one of claims 7 to 9, characterized in that the high-voltage insulation layer (3b) is a pointing into the interior of the housing layer.
11. Brennstoffzeilengehäuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Schicht (2) ieitfähige11. Fuel cell housing according to one of the preceding claims, characterized in that the second layer (2) is capable of conductivity
Materialien enthält, insbesondere leitfähige Polymere, Kohlenstofffasern, Kohlenstoffnanoröhren, Metallfasern und Mischungen daraus und/oder dadurch gekennzeichnet, dass das Brennstoffzellengehäuse mindestens eine weitere Wasserstoff absorbierende oder Wasserstoff umwandelnde Schicht umfasst und/oder dadurch gekennzeichnet, dass eineContains materials, in particular conductive polymers, carbon fibers, carbon nanotubes, metal fibers and mixtures thereof and / or characterized in that the fuel cell housing comprises at least one further hydrogen-absorbing or hydrogen-converting layer and / or characterized in that a
Oberfläche der innersten Schicht so modifiziert ist, dass sie im Wesentlichen keine Tropfenbildung von Kondenswasser erlaubt. Surface of the innermost layer is modified so that it allows essentially no dripping of condensation.
EP15722354.6A 2014-05-28 2015-04-28 Fuel cell housing Withdrawn EP3149796A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210262.6A DE102014210262A1 (en) 2014-05-28 2014-05-28 fuel cell case
PCT/EP2015/059163 WO2015180914A2 (en) 2014-05-28 2015-04-28 Fuel cell housing

Publications (1)

Publication Number Publication Date
EP3149796A2 true EP3149796A2 (en) 2017-04-05

Family

ID=53177326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15722354.6A Withdrawn EP3149796A2 (en) 2014-05-28 2015-04-28 Fuel cell housing

Country Status (5)

Country Link
US (1) US20170077542A1 (en)
EP (1) EP3149796A2 (en)
CN (1) CN106104893B (en)
DE (1) DE102014210262A1 (en)
WO (1) WO2015180914A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017213434A1 (en) * 2017-08-02 2019-02-07 Volkswagen Aktiengesellschaft Battery component and method of making the same
CN114156517B (en) * 2021-11-26 2023-07-21 中汽创智科技有限公司 Packaging shell and fuel cell system
CN115295934B (en) * 2022-08-08 2024-04-26 常州长盈精密技术有限公司 Cylindrical battery shell, cylindrical battery and manufacturing process of cylindrical battery
DE102022125748A1 (en) 2022-10-06 2024-04-11 Bayerische Motoren Werke Aktiengesellschaft Fuel cell housing component with electromechanical shielding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112412A1 (en) * 2007-01-16 2010-05-06 Akira Aoto Fuel cell module for vehicles

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1037666A (en) 1962-03-30 1966-08-03 Gen Electric Fuel cell
US6372983B1 (en) * 1999-04-14 2002-04-16 Ballard Generation Systems Inc. Enclosure for electrical components installed in locations where a flammable gas or vapor is expected to be present
JP4322107B2 (en) * 2003-12-17 2009-08-26 本田技研工業株式会社 Fuel cell system
US7364815B2 (en) * 2004-03-09 2008-04-29 Matsushita Electric Industrial Co., Ltd. Method of preserving fuel cell membrane electrode assembly
JP4822552B2 (en) * 2005-02-22 2011-11-24 株式会社クレハ Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using the same
CA2618131A1 (en) * 2005-08-17 2007-02-22 Utc Fuel Cells, Llc Solid oxide fuel cell stack for portable power generation
CN101292387B (en) * 2005-10-20 2010-12-01 丰田自动车株式会社 Fuel cell stack case
US8268505B2 (en) * 2007-01-25 2012-09-18 Honda Motor Co., Ltd. Fuel cell system
KR20120052990A (en) * 2009-08-18 2012-05-24 바젤 폴리올레핀 게엠베하 Housing for electrical power cells in electrically driven automotive vehicles
US9577284B2 (en) * 2010-02-26 2017-02-21 GM Global Technology Operations LLC Fuel cell stack enclosure
CN103443978A (en) * 2011-03-24 2013-12-11 株式会社村田制作所 Bonding material for solid oxide fuel cell, solid oxide fuel cell and solid oxide fuel cell module
WO2013110468A2 (en) * 2012-01-26 2013-08-01 Li-Tec Battery Gmbh Electrochemical energy conversion device comprising a cell housing, battery comprising at least two of said electrochemical energy conversion devices, and method for the production of an electrochemical energy conversion device
DE102012214964A1 (en) * 2012-08-23 2014-03-20 Robert Bosch Gmbh Electrical conductive battery cell for lithium ion battery of e.g. electrical motor car, has electrical isolating insulation layer adhering at outer side of battery cell housing and comprising matrix directly adhering to cell housing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112412A1 (en) * 2007-01-16 2010-05-06 Akira Aoto Fuel cell module for vehicles

Also Published As

Publication number Publication date
CN106104893B (en) 2019-04-23
WO2015180914A2 (en) 2015-12-03
WO2015180914A3 (en) 2016-02-25
DE102014210262A1 (en) 2015-12-03
CN106104893A (en) 2016-11-09
US20170077542A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015180914A2 (en) Fuel cell housing
DE102011089268B4 (en) DEVICE FOR PROTECTING A BATTERY PACK AND BATTERY ASSEMBLY
EP3652801B1 (en) Fuel cell device
DE112006002637T5 (en) Fuel cell stack casing
DE102012214964A1 (en) Electrical conductive battery cell for lithium ion battery of e.g. electrical motor car, has electrical isolating insulation layer adhering at outer side of battery cell housing and comprising matrix directly adhering to cell housing
DE102018207409A1 (en) Lid for a battery case of a high voltage vehicle battery and battery case
DE102013201007A1 (en) Battery module for battery system of motor car, has module housing that encapsulates the two battery units
DE102012024964A1 (en) Housing for a fuel cell stack
WO2023186836A1 (en) Housing part, battery housing, and traction battery
DE102012223551A1 (en) Multilayer housing for lithium-ion-cell used as energy storage for e.g. hybrid vehicle, has housing body designed in rigid manner with first, second and third material layers, where third layer is arranged between first and second layers
DE10117753C2 (en) Multi-layer line
DE102011008454A1 (en) Isolation arrangement for a HVDC component with wall-like solid barriers
EP2250687A1 (en) Degassing system for an accumulator, and accumulator having a degassing system
DE102019209448A1 (en) Battery module
WO2022128121A1 (en) Device for the electrolytic generation of hydrogen
DE102021121397A1 (en) battery arrangement
DE102017127459A1 (en) Inductive charging arrangement
DE102017106192A1 (en) A structural capacitor, a process for producing a fiber-matrix material, and a process for producing a fiber-reinforced structural component
DE102015012866A1 (en) Fuel cell stack and fuel cell device
EP2515313A1 (en) High voltage feed-through
DE102007003503A1 (en) Safety device for fuel cells
DE102019105452A1 (en) Cylindrical capacitor can and electrical capacitor with a cylindrical capacitor can
DE102012000265A1 (en) Fuel cell stack for vehicle, has stack end element comprising metal portion and reinforcing portion, which is formed as one-piece metal plastic hybrid component by plastic injection molding process
DE202011106189U1 (en) Switch panel with improved visibility
WO2013087335A1 (en) Battery module and motor vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160713

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191008

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210113