EP3140852B1 - Multi-layer polishing pad for cmp - Google Patents

Multi-layer polishing pad for cmp Download PDF

Info

Publication number
EP3140852B1
EP3140852B1 EP15788762.1A EP15788762A EP3140852B1 EP 3140852 B1 EP3140852 B1 EP 3140852B1 EP 15788762 A EP15788762 A EP 15788762A EP 3140852 B1 EP3140852 B1 EP 3140852B1
Authority
EP
European Patent Office
Prior art keywords
layer
polishing pad
polishing
middle layer
top layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15788762.1A
Other languages
German (de)
French (fr)
Other versions
EP3140852A4 (en
EP3140852A1 (en
Inventor
Brian MRZYGLOD
Jayakrishnan NAIR
Garrett BLAKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMC Materials LLC
Original Assignee
CMC Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMC Materials LLC filed Critical CMC Materials LLC
Publication of EP3140852A1 publication Critical patent/EP3140852A1/en
Publication of EP3140852A4 publication Critical patent/EP3140852A4/en
Application granted granted Critical
Publication of EP3140852B1 publication Critical patent/EP3140852B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0045Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by stacking sheets of abrasive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • CMP Chemical-mechanical polishing
  • the manufacture of semiconductor devices generally involves the formation of various process layers, selective removal or patterning of portions of those layers, and deposition of yet additional process layers above the surface of a semiconducting substrate to form a semiconductor wafer.
  • the process layers can include, by way of example, insulation layers, gate oxide layers, conductive layers, and layers of metal or glass, etc. It is generally desirable in certain steps of the wafer process that the uppermost surface of the process layers be planar, i.e., flat, for the deposition of subsequent layers.
  • CMP is used to planarize process layers wherein a deposited material, such as a conductive or insulating material, is polished to planarize the wafer for subsequent process steps.
  • a wafer is mounted upside down on a carrier in a CMP tool.
  • a force pushes the carrier and the wafer downward toward a polishing pad.
  • the carrier and the wafer are rotated above the rotating polishing pad on the CMP tool's polishing table.
  • a polishing composition (also referred to as a polishing slurry) generally is introduced between the rotating wafer and the rotating polishing pad during the polishing process.
  • the polishing composition typically contains a chemical that interacts with or dissolves portions of the uppermost wafer layer(s) and an abrasive material that physically removes portions of the layer(s).
  • the wafer and the polishing pad can be rotated in the same direction or in opposite directions, whichever is desirable for the particular polishing process being carried out.
  • CMP polishing pads often comprise two or more layers, for example a polishing layer and a bottom (e.g., subpad) layer, which are joined together through the use of an adhesive, such as a hotmelt adhesive or a pressure-sensitive adhesive.
  • an adhesive such as a hotmelt adhesive or a pressure-sensitive adhesive.
  • Prior art polishing pads that rely on adhesives to join together polishing pad layers or to affix windows within the polishing pad have many disadvantages.
  • the adhesives often have harsh fumes associated with them and typically require curing over 24 hours or more.
  • the adhesive can be susceptible to chemical attack from the components of the polishing composition, and so the type of adhesive used in joining pad layers or attaching a window to the pad has to be selected on the basis of what type of polishing system will be used.
  • the bonding of the pad layers or windows to the polishing pad is sometimes imperfect or degrades over time. This can result in delamination and buckling of the pad layers and/or leakage of the polishing composition between the pad and the window.
  • the window can become dislodged from the polishing pad over time.
  • Methods for forming integrally molded polishing pad windows can be successful in avoiding at least some of these problems, but such methods are often costly and are limited in the type of pad materials that can be used and the type of pad construction that can be produced.
  • US 2004/259484 A1 discloses a multi-layer polishing pad for chemical-mechanical polishing comprising a polishing layer and a bottom layer, wherein the polishing layer and bottom layer are joined together without the use of an adhesive.
  • the invention provides a multi-layer polishing pad for use in chemical-mechanical polishing.
  • the polishing pad comprises a top layer, a middle layer and a bottom layer, wherein the top layer and the bottom layer are bonded together by the middle layer, wherein the middle layer comprises a thermoplastic polyurethane , the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), and wherein the layers are bonded without the use of an adhesive.
  • a multi-layer polishing pad comprising an optically transmissive region, the pad comprising a top layer, a middle layer and a bottom layer, and the layers are joined together without the use of an adhesive.
  • a first method comprises (i) joining together multiple layers of polymeric materials, wherein the multiple layers comprise a top layer, a middle layer and a bottom layer, wherein the middle layer comprises a thermoplastic polyurethane and the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), (ii) subjecting the multi-layer polymer sheet to a temperature that is above the Vicat softening temperature of the middle layer but below the Vicat softening temperature of the top layer and the bottom layer, and (iii) forming a bond between the middle layer and the top layer, and a bond between the middle layer and the bottom layer.
  • the invention further provides a chemical-mechanical polishing apparatus comprising: a platen that rotates, the polishing pad of the invention affixed to the rotating platen, and a carrier that holds a workpiece to be polished by contacting the rotating polishing pad.
  • the invention further provides methods for polishing a workpiece comprising (a) providing the polishing pad of the present invention, (b) contacting a workpiece with the polishing pad, and (c) moving the polishing pad relative to the workpiece to abrade the workpiece and thereby polishing the workpiece.
  • the invention is directed to a multi-layer polishing pad comprising a top layer, a middle layer and a bottom layer, wherein the top layer and the bottom layer are bonded together by the middle layer, wherein the middle layer comprises a thermoplastic polyurethane , the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), and wherein the layers are bonded without the use of an adhesive.
  • the multi-layer polishing pad material is used as a multi-layer polishing pad.
  • the multi-layer polishing pad material may be used as an optically transmissive region within a polishing pad.
  • the layers of the polishing pad material do not contain any adhesive between the layers.
  • Adhesive refers to any of the common adhesive materials known in the art, for example, hot melt adhesives, pressure sensitive adhesives, glues, and the like. Rather, the top layer and the bottom of the polishing pad are joined together by the middle layer. Desirably, the layers are substantially coextensive.
  • each of the layers can have different physical or chemical properties.
  • each of the layers may be desirable for each of the layers to have the same polymer composition but have different physical properties such as hardness, density, porosity, compressibility, rigidity, tensile modulus, bulk modulus, rheology, creep, glass transition temperature, melt temperature, viscosity, or transparency.
  • the polishing pad layers can have different chemical properties as well as different physical properties.
  • the layers of the polishing pad material will have at least one different chemical or physical property.
  • Another advantage of the multi-layer polishing pad of the present invention is that the bonding of the top layer with the bottom layer, via the middle layer, allows for a much stronger bond as compared to bonds using adhesives.
  • the present inventive pad is more resistant to failure from high temperatures, as compared to pads having their layers bonded together with the use of adhesives.
  • the top layer of the polishing pad material comprises a polymer resin.
  • the polymer resin can be any suitable polymer resin.
  • the polymer resin is selected from the group consisting of thermoplastic elastomers, thermoset polymers, polyurethanes (e.g., thermoplastic polyurethanes), polyolefins (e.g., thermoplastic polyolefins), polycarbonates, polyvinylalcohols, nylons, elastomeric rubbers, elastomeric polyethylenes, polytetrafluoroethylenes, polyethyleneterephthalates, polyimides, polyaramides, polyarylenes, polyacrylates, polystyrenes, polymethylmethacrylates, copolymers thereof, and mixtures thereof.
  • the polymer resin for the top layer comprises a thermoplastic polyurethane.
  • the top layer of the polishing pad can be hydrophilic, hydrophobic, or a combination thereof.
  • the hydrophilicity/hydrophobictiy of the top layer is determined largely by type of polymer resin used to make the layer. Polymer resins having a critical surface tension of about 34 milliNewtons per meter (mN/m) or greater generally are considered hydrophilic, while polymer resins having a critical surface tension of about 33 nM/m or less are generally considered hydrophobic.
  • the critical surface tension of some common polymer resins are as follows (value shown in parentheses): polytetrafluoroethylene (19), polydimethylsiloxane (24), silicone rubber (24), polybutadiene (31), polyethylene (31), polystyrene (33), polypropylene (34), polyester (39-42), polyacrylamide (35-40), polyvinyl alcohol (37), polymethyl methacrylate (39), polyvinyl chloride (39), polysulfone (41), nylon 6 (42), polyurethane (45), and polycarbonate (45).
  • the top layer of the polishing pad is hydrophilic.
  • the top layer is hydrophilic.
  • the top layer of the polishing pad can have any suitable hardness (e.g., about 30-50 Shore A or about 25-80 Shore D.
  • the top layer can have a hardness range from a Shore A hardness of 55 to a Shore D hardness of 72, both as measured according to ASTM D2240-10.
  • the top layer can have any suitable density and/or porosity.
  • the top layer can be nearly solid (e.g., having less than about 10% void volume), or porous, and can have a density of about 0.3 g/cm 3 or higher (e.g., about 0.5 g/cm 3 or higher, or about 0.7 g/cm 3 or higher) or even about 0.9 g/cm 3 (e.g., about 1.1 g/cm 3 , or up to about 99% of the theoretical density of the material).
  • grooves in various arrangements can optionally be included over portions or over the entire polishing surface of the top layer.
  • grooves of desired pattern and dimension can be cut, particularly on the polishing side of the top layer of the polishing pad at depth to facilitate the distribution of slurry during polishing on the polishing surface of the pad substrate, in some embodiments.
  • grooves can be crosshatched in an X-Y pattern, concentric, spiral, off-set concentric, etc. Other suitable surface groove patterns can be readily utilized.
  • grooves can be of any suitable dimensions.
  • the middle layer comprises a thermoplastic polyurethane having lower Vicat softening temperature as compared to the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F).
  • One preferred polishing pad material comprises a thermoplastic polyurethane having a melt temperature lower than the top layer and the bottom layer. Specifically, the preferred thermoplastic polyurethane will have a lower Vicat softening temperature as compared to the top layer and the bottom layer. The Vicat softening temperature can be determined according to the test described in ASTM D1525 (2006).
  • the Vicat softening temperature is the temperature at which a 1 mm 2 flat-ended needle penetrates a sample to a 1 mm depth under a specific load at a specific heating rate.
  • the Vicat softening temperature can be used to predict at what point a material will soften when exposed to high temperatures.
  • the Vicat softening temperature of the middle layer is preferably about 2.78 °C (5 °F) to about 8.33 °C (15 °F) below the Vicat softening temperature of the top layer and the bottom layer.
  • the middle layer can be of any suitable thickness.
  • the middle layer may have a thickness of about 0.076 mm (3 mil) or greater, such as 0.102 mm (4 mil) or greater.
  • the middle layer may not be too thin from a standpoint of not sufficiently bonding the top layer and the bottom layer together.
  • a middle layer of 0.051 mm (2 mil) or less would not be preferred.
  • the middle layer may have any suitable hardness.
  • the middle layer may have a Shore A hardness of 55 to a Shore D hardness of 40, both as measured according to ASTM D2240-10.
  • the middle layer has a Shore A hardness of from about 57 to about 90.
  • the bottom layer may comprise any suitable material. Suitable materials for the bottom layer include polyurethane foam (e.g., foam subpads from Rogers Corporation, Rogers, CT), impregnated felt, microporous polyurethane, or sintered urethane.
  • the bottom layer may be softer than the top layer of the invention, and therefore may be more compressible and have a lower Shore hardness value than the polishing pad of the invention.
  • the bottom layer can have a Shore A hardness of about 35 to about 50.
  • the bottom layer is harder, is less compressible, and has a higher Shore hardness than the top layer.
  • the bottom layer optionally comprises grooves, channels, hollow sections, windows, apertures, and the like.
  • the bottom layer preferably comprises a polycarbonate or thermoset polyurethane material.
  • One example of a preferred thermoset polyurethane is a porous thermoset polyurethane.
  • the top and bottom layers of the polishing pad can have any suitable thickness.
  • the thickness of each layer will depend in part on the total desired thickness of the polishing pad.
  • the top and bottom layers of the polishing pad can have the same thickness, or the layers can each have a different thickness.
  • the multi-layer polishing pad of the present invention When used in conjunction with an in situ endpoint detection system, it may be desirable for at least one layer of the multi-layer polishing pad to have a transmittance to light (e.g., laser light) of about 10% or more (e.g., about 20% or more, or about 30% or more) at at least one wavelength between about 200 nm and about 10,000 nm (e.g., about 200 nm to about 1,000 nm, or about 200 nm to about 800 nm).
  • the top layer and the middle layer can be substantially opaque and the bottom layer can be optically transmissive.
  • a portion of the polishing layer is removed to produce an aperture in the polishing layer which reveals a region of the substantially optically transmissive bottom layer.
  • the optically transmissive region of the bottom layer revealed by the aperture in the top layer is thus recessed from the polishing surface so as to protect the "window" from becoming scratched by the polishing composition during a polishing process.
  • a portion of the bottom layer is removed to produce an aperture in the bottom layer, which reveals a region of the substantially optically transmissive polishing layer.
  • the multi-layer polishing pad further comprises one or more optically transmissive windows that are inserted into an aperture cut into the polishing pad (e.g., in at least one of the top layer, middle layer, and bottom layer, but preferably all three layers).
  • the window is bonded to the polishing pad by a means other than the use of an adhesive.
  • the window may be attached to the polishing pad by a welding technique, for example, ultrasonic welding.
  • the multi-layer polishing pad of the first embodiment can have any suitable dimensions. Typically, the multi-layer polishing pad will have a thickness of about 500 ⁇ m or more (e.g., 750 ⁇ m or more, or about 1000 ⁇ m or more).
  • the multi-layer polishing pad desirably is circular in shape (as is used in rotary polishing tools) or is produced as a looped linear belt (as is used in linear polishing tools).
  • the polishing layer of the multi-layer polishing pad optionally further comprises grooves, perforations, channels, or other such patterns, which facilitate the flow of polishing composition across the surface of the polishing pad.
  • the grooves, channels, etc can be in the shape of concentric circles, spirals, XY crosshatch patterns, or any other suitable pattern.
  • the polishing pads of the invention are particularly suited for use in conjunction with a chemical-mechanical polishing (CMP) apparatus.
  • the apparatus comprises a platen, which, when in use, is in motion and has a velocity that results from orbital, linear, or circular motion, a polishing pad of the invention in contact with the platen and moving with the platen when in motion, and a carrier that holds a workpiece to be polished by contacting and moving relative to the surface of the polishing pad.
  • the polishing of the workpiece takes place by the workpiece being placed in contact with the polishing pad and then the polishing pad moving relative to the workpiece, typically with a polishing composition therebetween, so as to abrade at least a portion of the workpiece to polish the workpiece.
  • the polishing composition typically comprises a liquid carrier (e.g., an aqueous carrier), a pH adjustor, and optionally an abrasive.
  • the polishing composition optionally may further comprise oxidizing agents, organic acids, complexing agents, pH buffers, surfactants, corrosion inhibitors, anti-foaming agents, and the like.
  • the CMP apparatus can be any suitable CMP apparatus, many of which are known in the art.
  • the polishing pad of the invention also can be used with linear polishing tools.
  • the CMP apparatus further comprises an in situ polishing endpoint detection system, many of which are known in the art.
  • Techniques for inspecting and monitoring the polishing process by analyzing light or other radiation reflected from a surface of the workpiece are known in the art. Such methods are described, for example, in U.S. Patent 5,196,353 , U.S. Patent 5,433,651 , U.S. Patent 5,609,511 , U.S. Patent 5,643,046 , U.S. Patent 5,658,183 , U.S. Patent 5,730,642 , U.S. Patent 5,838,447 , U.S. Patent 5,872,633 , U.S. Patent 5,893,796 , U.S.
  • Patent 5,949,927 and U.S. Patent 5,964,643 .
  • the inspection or monitoring of the progress of the polishing process with respect to a workpiece being polished enables the determination of the polishing end-point, i.e., the determination of when to terminate the polishing process with respect to a particular workpiece.
  • the polishing pads comprising the multi-layer polishing pad material of the invention are suitable for use in polishing many types of workpieces (e.g., substrates or wafers) and workpiece materials.
  • the polishing pads can be used to polish workpieces including memory storage devices, semiconductor substrates, and glass substrates.
  • Suitable workpieces for polishing with the polishing pads include memory or rigid disks, magnetic heads, MEMS devices, semiconductor wafers, field emission displays, and other microelectronic substrates, especially microelectronic substrates comprising insulating layers (e.g., silicon dioxide, silicon nitride, or low dielectric materials) and/or metal-containing layers (e.g., copper, tantalum, tungsten, aluminum, nickel, titanium, platinum, ruthenium, rhodium, iridium or other noble metals).
  • insulating layers e.g., silicon dioxide, silicon nitride, or low dielectric materials
  • metal-containing layers e.g., copper, tantalum, tungsten, aluminum, nickel, titanium, platinum, ruthenium, rhodium, iridium or other noble metals.
  • the multi-layer polishing pad material of the invention can be prepared by any suitable method.
  • One suitable method involves joining together the layers of the polishing pad material by contacting the coextensive faces of the layers while at least the middle layer is above the Vicat softening temperature, and applying pressure.
  • the temperature of the layers can be increased by any suitable means.
  • the bonds between the polishing pad layers can be produced by welding (e.g., ultrasonic welding), thermal bonding, radiation-activated bonding, or lamination.
  • a preferred method is lamination. As used in the present invention, lamination involves the bonding of three or more layers using heat and pressure.
  • the lamination method of the present invention generally involves heating and pressing the top layer, the middle layer and the bottom layer together at a sufficient temperature (above the Vicat softening temperature of the middle layer) that causes the middle layer to soften and to form bonds with the top and bottom layers.
  • this method involves subjecting one or both faces of the middle layer polymer to a temperature above the T g of the polymer, such that the polymer begins to flow and fill in void spaces of the adjoining layers (i.e. the top layer and the bottom layer).
  • a three-layer polishing pads having a thin, solid middle layer, a porous top layer and a porous or non-porous bottom layer, can be produced.
  • the multi-layer polishing pad comprises a porous top layer of thermoplastic polyurethane, a middle layer of thermoplastic polyurethane, and a bottom layer comprising polycarbonate.
  • FIG. 1 depicts a process for producing the multi-layer polishing pad of the first embodiment.
  • a roll of polycarbonate (PC) material of is loaded on an upper un-wind station of a laminator.
  • a roll of thermoplastic polyurethane is loaded on the lower un-wind for the middle layer. Not shown in this figure is the un-wind station for the thermoplastic polyurethane (top layer). The three materials are joined together in the heated nip.
  • the top roller in the nip is heated to 82.22° C (180 °F).
  • the resulting stacked material is collected on a rear re-wind station (not shown) creating a roll of a laminated sheet with three layers, which will be used to form a multi-layer polishing pad.
  • the multi-layer polishing pad comprising a porous top layer of thermoplastic polyurethane, a middle layer of thermoplastic polyurethane, and a bottom layer comprising polycarbonate
  • FIG. 2a and FIG. 2b depict a two-step process for producing the inventive multi-layer polishing pad.
  • a roll of polycarbonate (PC) material is loaded on the upper un-wind station of a laminator.
  • a roll of the middle layer material is loaded on the lower un-wind. Both materials are joined together in the heated nip.
  • the top roller is heated to 82.22 C (180 °F) and the bottom roller is heated to 93.33 °C (200 °F).
  • the resulting stacked intermediate material is collected on the rear re-wind station creating a roll of polycarbonate material laminated with the middle layer material.
  • the intermediate material from step one is then loaded on the un-wind cart of the laminator.
  • the material is webbed such that the polycarbonate side is contacting the bottom roller and the intermediate layer will contact the top layer material under the nip.
  • the bottom roller is heated to 132.2 °C (270 °F), and heat is transferred through the polycarbonate, heating the intermediate layer causing it to flow.
  • the softened intermediate layer bonds the top layer material and the bottom layer polycarbonate material together.
  • a platen adhesive may be applied to the multi-layer pad material.
  • the platen adhesive may be a pressure sensitive adhesive (PSA) that provides a secure bond to the CMP pad but allows for easy removal from the polishing platen.
  • PSA pressure sensitive adhesive
  • FIG. 3 depicts a scanning electron microscopy (SEM) cross section of the interface of a multi-layered polishing pad of the present invention.
  • SEM scanning electron microscopy
  • This example illustrates a method of producing a multi-layer polishing pad of the invention using a two-step process.
  • a roll of polycarbonate (PC) material of 0.508 mm (20 mil) thickness is loaded on the upper un-wind station of a pilot scale laminator (AGL 6400 laminator, Advanced Greig Laminator, Inc., DeForest, Wisconsin).
  • a roll of thermoplastic polyurethane, 0.152 mm (6 mil) thickness, representing the middle layer, is loaded on the lower un-wind.
  • the top roller, comprising chrome, is heated to 82.22 °C (180 °F), while the bottom roller, comprising silicone, is heated to 93.33 °C (200 °F).
  • the resulting two-layer stacked intermediate material is collected on the rear re-wind station, creating a roll of the intermediate polycarbonate-polyurethane material.
  • This intermediate roll is then loaded on the un-wind cart of a HVM laminator (Black Brother Company, Mendota, IL).
  • the material is webbed such that the polycarbonate bottom layer is contacting the chrome 132.22 °C (270 °F) roller, and the polyurethane middle layer will contact the top layer (polyurethane) under the unheated nip. Heat is transferred through the polycarbonate, heating the middle layer above its Vicat softening temperature. As the pad top layer sheet is fed into the nip, the softened middle layer bonds with the top sheet, thereby bonding the bottom layer and the top layer together with the middle layer.
  • This example sets forth the T-peel strength analysis of the pad materials of the present invention, compared to identical pad materials bonded together with a pressure sensitive adhesive.
  • the pads from the previous example were placed in a die press and three strips measuring 2.54 cm (1 inch) by 30.48 mm (12 inches) were cut from each pad.
  • strips having the same dimension were prepared from pads comprising the identical top layer and bottom layer materials as the inventive pad, but having the layers bonded together using a pressure sensitive adhesive, were also tested.
  • the bottom layer i.e. the polycarbonate layer
  • the load cell apparatus Tenius Olsen model H10KT, Horsham, PA.
  • the top layer was then placed in the upper jaws and the load cell apparatus, whereby the apparatus pulls the two layers apart using a controlled speed and force, and the time and pressure (lbs.) at failure is recorded.
  • the results of the T-peel strength tests are shown in Figure 4 as a box plot.
  • the strips from the inventive pad show significantly stronger bond strength as compared to the control test strip having a pressure sensitive adhesive (PSA) bonding the top and bottom layers together.
  • PSA pressure sensitive adhesive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

    BACKGROUND OF THE INVENTION
  • Chemical-mechanical polishing ("CMP") processes are used in the manufacturing of microelectronic devices to form flat surfaces on semiconductor wafers, field emission displays, and many other microelectronic substrates. For example, the manufacture of semiconductor devices generally involves the formation of various process layers, selective removal or patterning of portions of those layers, and deposition of yet additional process layers above the surface of a semiconducting substrate to form a semiconductor wafer. The process layers can include, by way of example, insulation layers, gate oxide layers, conductive layers, and layers of metal or glass, etc. It is generally desirable in certain steps of the wafer process that the uppermost surface of the process layers be planar, i.e., flat, for the deposition of subsequent layers. CMP is used to planarize process layers wherein a deposited material, such as a conductive or insulating material, is polished to planarize the wafer for subsequent process steps.
  • In a typical CMP process, a wafer is mounted upside down on a carrier in a CMP tool. A force pushes the carrier and the wafer downward toward a polishing pad. The carrier and the wafer are rotated above the rotating polishing pad on the CMP tool's polishing table. A polishing composition (also referred to as a polishing slurry) generally is introduced between the rotating wafer and the rotating polishing pad during the polishing process. The polishing composition typically contains a chemical that interacts with or dissolves portions of the uppermost wafer layer(s) and an abrasive material that physically removes portions of the layer(s). The wafer and the polishing pad can be rotated in the same direction or in opposite directions, whichever is desirable for the particular polishing process being carried out. The carrier also can oscillate across the polishing pad on the polishing table. CMP polishing pads often comprise two or more layers, for example a polishing layer and a bottom (e.g., subpad) layer, which are joined together through the use of an adhesive, such as a hotmelt adhesive or a pressure-sensitive adhesive. Such a multi-layer polishing pad is disclosed, for example, in U.S. Patent 5,257,478 .
  • Prior art polishing pads that rely on adhesives to join together polishing pad layers or to affix windows within the polishing pad have many disadvantages. For example, the adhesives often have harsh fumes associated with them and typically require curing over 24 hours or more. Moreover, the adhesive can be susceptible to chemical attack from the components of the polishing composition, and so the type of adhesive used in joining pad layers or attaching a window to the pad has to be selected on the basis of what type of polishing system will be used. Furthermore, the bonding of the pad layers or windows to the polishing pad is sometimes imperfect or degrades over time. This can result in delamination and buckling of the pad layers and/or leakage of the polishing composition between the pad and the window. In some instances, the window can become dislodged from the polishing pad over time. Methods for forming integrally molded polishing pad windows can be successful in avoiding at least some of these problems, but such methods are often costly and are limited in the type of pad materials that can be used and the type of pad construction that can be produced. US 2004/259484 A1 discloses a multi-layer polishing pad for chemical-mechanical polishing comprising a polishing layer and a bottom layer, wherein the polishing layer and bottom layer are joined together without the use of an adhesive.
  • Thus, there remains a need for effective multi-layer polishing pads and polishing pads comprising translucent regions (e.g., windows) that can be produced using efficient and inexpensive methods without relying on the use of an adhesive. The invention provides such polishing pads, as well as methods of their use. These and other advantages of the present invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention provides a multi-layer polishing pad for use in chemical-mechanical polishing. The polishing pad comprises a top layer, a middle layer and a bottom layer, wherein the top layer and the bottom layer are bonded together by the middle layer, wherein the middle layer comprises a thermoplastic polyurethane , the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), and wherein the layers are bonded without the use of an adhesive.
  • Also disclosed is a multi-layer polishing pad comprising an optically transmissive region, the pad comprising a top layer, a middle layer and a bottom layer, and the layers are joined together without the use of an adhesive.
  • The invention further provides methods for producing a polishing pad of the invention. A first method comprises (i) joining together multiple layers of polymeric materials, wherein the multiple layers comprise a top layer, a middle layer and a bottom layer, wherein the middle layer comprises a thermoplastic polyurethane and the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), (ii) subjecting the multi-layer polymer sheet to a temperature that is above the Vicat softening temperature of the middle layer but below the Vicat softening temperature of the top layer and the bottom layer, and (iii) forming a bond between the middle layer and the top layer, and a bond between the middle layer and the bottom layer.
  • The invention further provides a chemical-mechanical polishing apparatus comprising: a platen that rotates, the polishing pad of the invention affixed to the rotating platen, and a carrier that holds a workpiece to be polished by contacting the rotating polishing pad.
  • The invention further provides methods for polishing a workpiece comprising (a) providing the polishing pad of the present invention, (b) contacting a workpiece with the polishing pad, and (c) moving the polishing pad relative to the workpiece to abrade the workpiece and thereby polishing the workpiece.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
    • FIG. 1 schematically depicts a lamination process for producing pads of the present invention.
    • FIG. 2a and FIG. 2b schematically depict a two-step lamination process for producing pads of the present invention.
    • FIG. 3 depicts an SEM cross sectional view of an inventive pad.
    • FIG. 4 depicts the results of a T-peel test for pad materials made from the inventive method compared to pad material made by bonding the layer together with an adhesive.
    DETAILED DESCRIPTION OF THE INVENTION
  • The invention is directed to a multi-layer polishing pad comprising a top layer, a middle layer and a bottom layer, wherein the top layer and the bottom layer are bonded together by the middle layer, wherein the middle layer comprises a thermoplastic polyurethane , the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), and wherein the layers are bonded without the use of an adhesive. The multi-layer polishing pad material is used as a multi-layer polishing pad. The multi-layer polishing pad material may be used as an optically transmissive region within a polishing pad.
  • The layers of the polishing pad material do not contain any adhesive between the layers. Adhesive refers to any of the common adhesive materials known in the art, for example, hot melt adhesives, pressure sensitive adhesives, glues, and the like. Rather, the top layer and the bottom of the polishing pad are joined together by the middle layer. Desirably, the layers are substantially coextensive.
  • The advantage of such multi-layer polishing pad material is that each of the layers can have different physical or chemical properties. For example, in some applications it may be desirable for each of the layers to have the same polymer composition but have different physical properties such as hardness, density, porosity, compressibility, rigidity, tensile modulus, bulk modulus, rheology, creep, glass transition temperature, melt temperature, viscosity, or transparency. Of course, the polishing pad layers can have different chemical properties as well as different physical properties. Preferably, the layers of the polishing pad material will have at least one different chemical or physical property.
  • Another advantage of the multi-layer polishing pad of the present invention is that the bonding of the top layer with the bottom layer, via the middle layer, allows for a much stronger bond as compared to bonds using adhesives. The present inventive pad is more resistant to failure from high temperatures, as compared to pads having their layers bonded together with the use of adhesives.
  • Desirably, the top layer of the polishing pad material comprises a polymer resin. The polymer resin can be any suitable polymer resin. Typically, the polymer resin is selected from the group consisting of thermoplastic elastomers, thermoset polymers, polyurethanes (e.g., thermoplastic polyurethanes), polyolefins (e.g., thermoplastic polyolefins), polycarbonates, polyvinylalcohols, nylons, elastomeric rubbers, elastomeric polyethylenes, polytetrafluoroethylenes, polyethyleneterephthalates, polyimides, polyaramides, polyarylenes, polyacrylates, polystyrenes, polymethylmethacrylates, copolymers thereof, and mixtures thereof. Preferably, the polymer resin for the top layer comprises a thermoplastic polyurethane.
  • The top layer of the polishing pad can be hydrophilic, hydrophobic, or a combination thereof. The hydrophilicity/hydrophobictiy of the top layer is determined largely by type of polymer resin used to make the layer. Polymer resins having a critical surface tension of about 34 milliNewtons per meter (mN/m) or greater generally are considered hydrophilic, while polymer resins having a critical surface tension of about 33 nM/m or less are generally considered hydrophobic. The critical surface tension of some common polymer resins are as follows (value shown in parentheses): polytetrafluoroethylene (19), polydimethylsiloxane (24), silicone rubber (24), polybutadiene (31), polyethylene (31), polystyrene (33), polypropylene (34), polyester (39-42), polyacrylamide (35-40), polyvinyl alcohol (37), polymethyl methacrylate (39), polyvinyl chloride (39), polysulfone (41), nylon 6 (42), polyurethane (45), and polycarbonate (45). Typically, the top layer of the polishing pad is hydrophilic. Preferably the top layer is hydrophilic.
  • The top layer of the polishing pad can have any suitable hardness (e.g., about 30-50 Shore A or about 25-80 Shore D. For example, the top layer can have a hardness range from a Shore A hardness of 55 to a Shore D hardness of 72, both as measured according to ASTM D2240-10. Similarly, the top layer can have any suitable density and/or porosity. For example, the top layer can be nearly solid (e.g., having less than about 10% void volume), or porous, and can have a density of about 0.3 g/cm3 or higher (e.g., about 0.5 g/cm3 or higher, or about 0.7 g/cm3 or higher) or even about 0.9 g/cm3 (e.g., about 1.1 g/cm3, or up to about 99% of the theoretical density of the material).
  • It will be understood that grooves in various arrangements can optionally be included over portions or over the entire polishing surface of the top layer. For example, grooves of desired pattern and dimension can be cut, particularly on the polishing side of the top layer of the polishing pad at depth to facilitate the distribution of slurry during polishing on the polishing surface of the pad substrate, in some embodiments. For example, grooves can be crosshatched in an X-Y pattern, concentric, spiral, off-set concentric, etc. Other suitable surface groove patterns can be readily utilized. Furthermore, grooves can be of any suitable dimensions.
  • The middle layer comprises a thermoplastic polyurethane having lower Vicat softening temperature as compared to the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F). One preferred polishing pad material comprises a thermoplastic polyurethane having a melt temperature lower than the top layer and the bottom layer. Specifically, the preferred thermoplastic polyurethane will have a lower Vicat softening temperature as compared to the top layer and the bottom layer. The Vicat softening temperature can be determined according to the test described in ASTM D1525 (2006). The Vicat softening temperature is the temperature at which a 1 mm2 flat-ended needle penetrates a sample to a 1 mm depth under a specific load at a specific heating rate. The Vicat softening temperature can be used to predict at what point a material will soften when exposed to high temperatures. The Vicat softening temperature of the middle layer is preferably about 2.78 °C (5 °F) to about 8.33 °C (15 °F) below the Vicat softening temperature of the top layer and the bottom layer.
  • The middle layer can be of any suitable thickness. For example, the middle layer may have a thickness of about 0.076 mm (3 mil) or greater, such as 0.102 mm (4 mil) or greater. The middle layer may not be too thin from a standpoint of not sufficiently bonding the top layer and the bottom layer together. For example, a middle layer of 0.051 mm (2 mil) or less would not be preferred.
  • The middle layer may have any suitable hardness. For example, the middle layer may have a Shore A hardness of 55 to a Shore D hardness of 40, both as measured according to ASTM D2240-10. In one embodiment, the middle layer has a Shore A hardness of from about 57 to about 90.
  • The bottom layer may comprise any suitable material. Suitable materials for the bottom layer include polyurethane foam (e.g., foam subpads from Rogers Corporation, Rogers, CT), impregnated felt, microporous polyurethane, or sintered urethane. The bottom layer may be softer than the top layer of the invention, and therefore may be more compressible and have a lower Shore hardness value than the polishing pad of the invention. For example, the bottom layer can have a Shore A hardness of about 35 to about 50. In some embodiments, the bottom layer is harder, is less compressible, and has a higher Shore hardness than the top layer. The bottom layer optionally comprises grooves, channels, hollow sections, windows, apertures, and the like. The bottom layer preferably comprises a polycarbonate or thermoset polyurethane material. One example of a preferred thermoset polyurethane is a porous thermoset polyurethane.
  • The top and bottom layers of the polishing pad can have any suitable thickness. The thickness of each layer will depend in part on the total desired thickness of the polishing pad. Moreover, the top and bottom layers of the polishing pad can have the same thickness, or the layers can each have a different thickness.
  • When the multi-layer polishing pad of the present invention is used in conjunction with an in situ endpoint detection system, it may be desirable for at least one layer of the multi-layer polishing pad to have a transmittance to light (e.g., laser light) of about 10% or more (e.g., about 20% or more, or about 30% or more) at at least one wavelength between about 200 nm and about 10,000 nm (e.g., about 200 nm to about 1,000 nm, or about 200 nm to about 800 nm). For example, the top layer and the middle layer can be substantially opaque and the bottom layer can be optically transmissive. In order to use such a polishing pad with an in situ endpoint detection system, a portion of the polishing layer is removed to produce an aperture in the polishing layer which reveals a region of the substantially optically transmissive bottom layer. The optically transmissive region of the bottom layer revealed by the aperture in the top layer is thus recessed from the polishing surface so as to protect the "window" from becoming scratched by the polishing composition during a polishing process. In the case of an optically transmissive polishing layer and a substantially opaque middle layer and bottom layer, a portion of the bottom layer is removed to produce an aperture in the bottom layer, which reveals a region of the substantially optically transmissive polishing layer. Other designs for an in situ endpoint detection system may be used, for example, where the "window" spans the three layers. In this embodiment, the multi-layer polishing pad further comprises one or more optically transmissive windows that are inserted into an aperture cut into the polishing pad (e.g., in at least one of the top layer, middle layer, and bottom layer, but preferably all three layers). Desirably, the window is bonded to the polishing pad by a means other than the use of an adhesive. For example, the window may be attached to the polishing pad by a welding technique, for example, ultrasonic welding.
  • The multi-layer polishing pad of the first embodiment can have any suitable dimensions. Typically, the multi-layer polishing pad will have a thickness of about 500 µm or more (e.g., 750 µm or more, or about 1000 µm or more). The multi-layer polishing pad desirably is circular in shape (as is used in rotary polishing tools) or is produced as a looped linear belt (as is used in linear polishing tools). The polishing layer of the multi-layer polishing pad optionally further comprises grooves, perforations, channels, or other such patterns, which facilitate the flow of polishing composition across the surface of the polishing pad. The grooves, channels, etc, can be in the shape of concentric circles, spirals, XY crosshatch patterns, or any other suitable pattern.
  • The polishing pads of the invention are particularly suited for use in conjunction with a chemical-mechanical polishing (CMP) apparatus. Typically, the apparatus comprises a platen, which, when in use, is in motion and has a velocity that results from orbital, linear, or circular motion, a polishing pad of the invention in contact with the platen and moving with the platen when in motion, and a carrier that holds a workpiece to be polished by contacting and moving relative to the surface of the polishing pad. The polishing of the workpiece takes place by the workpiece being placed in contact with the polishing pad and then the polishing pad moving relative to the workpiece, typically with a polishing composition therebetween, so as to abrade at least a portion of the workpiece to polish the workpiece. The polishing composition typically comprises a liquid carrier (e.g., an aqueous carrier), a pH adjustor, and optionally an abrasive. Depending on the type of workpiece being polished, the polishing composition optionally may further comprise oxidizing agents, organic acids, complexing agents, pH buffers, surfactants, corrosion inhibitors, anti-foaming agents, and the like. The CMP apparatus can be any suitable CMP apparatus, many of which are known in the art. The polishing pad of the invention also can be used with linear polishing tools.
  • Desirably, the CMP apparatus further comprises an in situ polishing endpoint detection system, many of which are known in the art. Techniques for inspecting and monitoring the polishing process by analyzing light or other radiation reflected from a surface of the workpiece are known in the art. Such methods are described, for example, in U.S. Patent 5,196,353 , U.S. Patent 5,433,651 , U.S. Patent 5,609,511 , U.S. Patent 5,643,046 , U.S. Patent 5,658,183 , U.S. Patent 5,730,642 , U.S. Patent 5,838,447 , U.S. Patent 5,872,633 , U.S. Patent 5,893,796 , U.S. Patent 5,949,927 , and U.S. Patent 5,964,643 . Desirably, the inspection or monitoring of the progress of the polishing process with respect to a workpiece being polished enables the determination of the polishing end-point, i.e., the determination of when to terminate the polishing process with respect to a particular workpiece.
  • The polishing pads comprising the multi-layer polishing pad material of the invention are suitable for use in polishing many types of workpieces (e.g., substrates or wafers) and workpiece materials. For example, the polishing pads can be used to polish workpieces including memory storage devices, semiconductor substrates, and glass substrates. Suitable workpieces for polishing with the polishing pads include memory or rigid disks, magnetic heads, MEMS devices, semiconductor wafers, field emission displays, and other microelectronic substrates, especially microelectronic substrates comprising insulating layers (e.g., silicon dioxide, silicon nitride, or low dielectric materials) and/or metal-containing layers (e.g., copper, tantalum, tungsten, aluminum, nickel, titanium, platinum, ruthenium, rhodium, iridium or other noble metals).
  • The multi-layer polishing pad material of the invention can be prepared by any suitable method. One suitable method involves joining together the layers of the polishing pad material by contacting the coextensive faces of the layers while at least the middle layer is above the Vicat softening temperature, and applying pressure. The temperature of the layers can be increased by any suitable means. For example, the bonds between the polishing pad layers can be produced by welding (e.g., ultrasonic welding), thermal bonding, radiation-activated bonding, or lamination. A preferred method is lamination. As used in the present invention, lamination involves the bonding of three or more layers using heat and pressure.
  • The lamination method of the present invention generally involves heating and pressing the top layer, the middle layer and the bottom layer together at a sufficient temperature (above the Vicat softening temperature of the middle layer) that causes the middle layer to soften and to form bonds with the top and bottom layers. In one embodiment, this method involves subjecting one or both faces of the middle layer polymer to a temperature above the Tg of the polymer, such that the polymer begins to flow and fill in void spaces of the adjoining layers (i.e. the top layer and the bottom layer). Using these techniques, a three-layer polishing pads having a thin, solid middle layer, a porous top layer and a porous or non-porous bottom layer, can be produced.
  • In one embodiment for preparing the inventive multi-layer polishing pad, the multi-layer polishing pad comprises a porous top layer of thermoplastic polyurethane, a middle layer of thermoplastic polyurethane, and a bottom layer comprising polycarbonate. FIG. 1 depicts a process for producing the multi-layer polishing pad of the first embodiment. In FIG. 1 a roll of polycarbonate (PC) material of is loaded on an upper un-wind station of a laminator. A roll of thermoplastic polyurethane is loaded on the lower un-wind for the middle layer. Not shown in this figure is the un-wind station for the thermoplastic polyurethane (top layer). The three materials are joined together in the heated nip. The top roller in the nip is heated to 82.22° C (180 °F). The resulting stacked material is collected on a rear re-wind station (not shown) creating a roll of a laminated sheet with three layers, which will be used to form a multi-layer polishing pad.
  • In a second embodiment, the multi-layer polishing pad comprising a porous top layer of thermoplastic polyurethane, a middle layer of thermoplastic polyurethane, and a bottom layer comprising polycarbonate, is produced in a two-step process. FIG. 2a and FIG. 2b depict a two-step process for producing the inventive multi-layer polishing pad. In FIG 2a, a roll of polycarbonate (PC) material is loaded on the upper un-wind station of a laminator. A roll of the middle layer material is loaded on the lower un-wind. Both materials are joined together in the heated nip. The top roller is heated to 82.22 C (180 °F) and the bottom roller is heated to 93.33 °C (200 °F). The resulting stacked intermediate material is collected on the rear re-wind station creating a roll of polycarbonate material laminated with the middle layer material. In FIG. 2b the intermediate material from step one is then loaded on the un-wind cart of the laminator. The material is webbed such that the polycarbonate side is contacting the bottom roller and the intermediate layer will contact the top layer material under the nip. The bottom roller is heated to 132.2 °C (270 °F), and heat is transferred through the polycarbonate, heating the intermediate layer causing it to flow. As the top layer material is fed into the nip the softened intermediate layer bonds the top layer material and the bottom layer polycarbonate material together.
  • Once the layers are joined together by either a one step process or two-step process, as shown in FIG 1 or FIG 2a and 2b, a platen adhesive may be applied to the multi-layer pad material. The platen adhesive may be a pressure sensitive adhesive (PSA) that provides a secure bond to the CMP pad but allows for easy removal from the polishing platen. The resulting multi-layer pad material, made by either method, is then collected and cut into sheets.
  • FIG. 3 depicts a scanning electron microscopy (SEM) cross section of the interface of a multi-layered polishing pad of the present invention. In FIG. 3 the top layer, middle layer and bottom layer are bonded together without any breakage or free space between the layers.
  • The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
  • EXAMPLE 1
  • This example illustrates a method of producing a multi-layer polishing pad of the invention using a two-step process.
  • A roll of polycarbonate (PC) material of 0.508 mm (20 mil) thickness is loaded on the upper un-wind station of a pilot scale laminator (AGL 6400 laminator, Advanced Greig Laminator, Inc., DeForest, Wisconsin). A roll of thermoplastic polyurethane, 0.152 mm (6 mil) thickness, representing the middle layer, is loaded on the lower un-wind. The polycarbonate sheet and the polyurethane sheet fed into the laminator and are joined together in the heated nip. The top roller, comprising chrome, is heated to 82.22 °C (180 °F), while the bottom roller, comprising silicone, is heated to 93.33 °C (200 °F). The resulting two-layer stacked intermediate material is collected on the rear re-wind station, creating a roll of the intermediate polycarbonate-polyurethane material. This intermediate roll is then loaded on the un-wind cart of a HVM laminator (Black Brother Company, Mendota, IL). The material is webbed such that the polycarbonate bottom layer is contacting the chrome 132.22 °C (270 °F) roller, and the polyurethane middle layer will contact the top layer (polyurethane) under the unheated nip. Heat is transferred through the polycarbonate, heating the middle layer above its Vicat softening temperature. As the pad top layer sheet is fed into the nip, the softened middle layer bonds with the top sheet, thereby bonding the bottom layer and the top layer together with the middle layer.
  • EXAMPLE 2
  • This example sets forth the T-peel strength analysis of the pad materials of the present invention, compared to identical pad materials bonded together with a pressure sensitive adhesive.
  • The pads from the previous example were placed in a die press and three strips measuring 2.54 cm (1 inch) by 30.48 mm (12 inches) were cut from each pad. As a control, strips having the same dimension were prepared from pads comprising the identical top layer and bottom layer materials as the inventive pad, but having the layers bonded together using a pressure sensitive adhesive, were also tested. For each test strip, the bottom layer (i.e. the polycarbonate layer) was placed in the lower locking jaws of the load cell apparatus (Tinius Olsen model H10KT, Horsham, PA). The top layer was then placed in the upper jaws and the load cell apparatus, whereby the apparatus pulls the two layers apart using a controlled speed and force, and the time and pressure (lbs.) at failure is recorded.
  • The results of the T-peel strength tests are shown in Figure 4 as a box plot. The strips from the inventive pad (Direct Bond) show significantly stronger bond strength as compared to the control test strip having a pressure sensitive adhesive (PSA) bonding the top and bottom layers together.
  • The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

Claims (11)

  1. A multi-layer polishing pad for chemical-mechanical polishing comprising a top layer, a middle layer and a bottom layer,
    wherein the top layer and the bottom layer are bonded together by the middle layer, wherein the layers are bonded without the use of an adhesive, and
    wherein the middle layer comprises a thermoplastic polyurethane, characterised in that the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F).
  2. The polishing pad of claim 1, wherein the top layer comprises a polishing surface.
  3. The polishing pad of claim 1 or 2, wherein the bottom layer comprises a polycarbonate material.
  4. The polishing pad of any one of claims 1-3, wherein the top layer comprises a polymer resin selected from the group consisting of a thermoplastic polyurethane, polycarbonates, nylons, polyolefins, polyvinylalcohols, polyacrylates, polytetrafluoroethylene, polyethyleneterephthalate, polyimides, polyaramides, polyarylenes, polyacrylates, polystyrenes, polymethylmethacrylates, copolymers thereof, and mixtures thereof,
    wherein optionally the polymer resin is a thermoplastic polyurethane.
  5. The polishing pad of any one of claims 1-4, wherein the thickness of the middle layer is from about 0.076 mm (3 mil) to about 0.127 mm (5 mil).
  6. The polishing pad of any one of claims 1-5, wherein the top layer and the bottom layer are porous.
  7. A method of producing a multi-layer polishing pad comprising the steps of (i) joining together multiple layers of polymer sheets comprising a top layer, a middle layer and a bottom layer, wherein the middle layer comprises a thermoplastic polyurethane and the thermoplastic polyurethane of the middle layer has a lower Vicat softening temperature than the top layer and/or the bottom layer and the middle layer has a Vicat softening temperature between about 126.67 °C (260 °F) and about 148.89 °C (300 °F), (ii) subjecting the multi-layer polymer sheet to a temperature that is above the Vicat softening temperature of the middle layer but below the Vicat softening temperature of the top layer and the bottom layer, and (iii) forming a bond between the middle layer and the top layer, and a bond between the middle layer and the bottom layer.
  8. The method of claim 7, wherein any one or more of the following applies,
    a) the top layer comprises a polishing surface;
    b) the bottom layer comprises a polycarbonate material;
    c) the top layer comprises a polymer resin selected from the group consisting of a thermoplastic polyurethane, polycarbonates, nylons, polyolefins, polyvinylalcohols, polyacrylates, polytetrafluoroethylene, polyethyleneterephthalate, polyimides, polyaramides, polyarylenes, polyacrylates, polystyrenes, polymethylmethacrylates, copolymers thereof, and mixtures thereof,
    wherein optionally the polymer resin is a thermoplastic polyurethane;
    d) wherein the thickness of the middle layer is from about 0.076 mm (3 mil) to about 0.127 mm (5 mil); and
    e) the top layer and the bottom layer are porous.
  9. A chemical-mechanical polishing apparatus comprising:
    a platen that rotates,
    the polishing pad of any one of claims 1-6 affixed to the rotating platen, and
    a carrier that holds a workpiece to be polished by contacting the rotating polishing pad.
  10. The chemical-mechanical polishing apparatus of claim 9, further comprising an in situ endpoint detection system.
  11. A method of polishing a workpiece comprising
    (i) providing the polishing pad of any one of claims 1-6,
    (ii) contacting a workpiece with the polishing pad, and
    (iii) moving the polishing pad relative to the workpiece to abrade the workpiece and thereby polish the workpiece.
EP15788762.1A 2014-05-07 2015-04-30 Multi-layer polishing pad for cmp Active EP3140852B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461989669P 2014-05-07 2014-05-07
US201462022770P 2014-07-10 2014-07-10
PCT/US2015/028503 WO2015171419A1 (en) 2014-05-07 2015-04-30 Multi-layer polishing pad for cmp

Publications (3)

Publication Number Publication Date
EP3140852A1 EP3140852A1 (en) 2017-03-15
EP3140852A4 EP3140852A4 (en) 2018-01-10
EP3140852B1 true EP3140852B1 (en) 2021-07-28

Family

ID=54368476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15788762.1A Active EP3140852B1 (en) 2014-05-07 2015-04-30 Multi-layer polishing pad for cmp

Country Status (7)

Country Link
US (1) US9818618B2 (en)
EP (1) EP3140852B1 (en)
JP (1) JP6574244B2 (en)
KR (1) KR102440303B1 (en)
CN (1) CN106575613B (en)
TW (1) TWI626118B (en)
WO (1) WO2015171419A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220023991A1 (en) * 2018-11-27 2022-01-27 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
CN112238670B (en) * 2020-10-16 2022-11-15 上海江丰平芯电子科技有限公司 Preparation method of grinding pad
CN116847948A (en) * 2020-12-22 2023-10-03 Cmc材料有限责任公司 Chemical-mechanical polishing subpad with porogen having polymeric shell

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257478A (en) 1990-03-22 1993-11-02 Rodel, Inc. Apparatus for interlayer planarization of semiconductor material
US5196353A (en) 1992-01-03 1993-03-23 Micron Technology, Inc. Method for controlling a semiconductor (CMP) process by measuring a surface temperature and developing a thermal image of the wafer
US6614529B1 (en) 1992-12-28 2003-09-02 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US5658183A (en) 1993-08-25 1997-08-19 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing including optical monitoring
US5433651A (en) 1993-12-22 1995-07-18 International Business Machines Corporation In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing
JP3270282B2 (en) 1994-02-21 2002-04-02 株式会社東芝 Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3313505B2 (en) 1994-04-14 2002-08-12 株式会社日立製作所 Polishing method
US5964643A (en) 1995-03-28 1999-10-12 Applied Materials, Inc. Apparatus and method for in-situ monitoring of chemical mechanical polishing operations
US5893796A (en) 1995-03-28 1999-04-13 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
US5838447A (en) 1995-07-20 1998-11-17 Ebara Corporation Polishing apparatus including thickness or flatness detector
US5872633A (en) 1996-07-26 1999-02-16 Speedfam Corporation Methods and apparatus for detecting removal of thin film layers during planarization
JP2002303727A (en) * 2001-04-06 2002-10-18 Nitto Denko Corp Method for manufacturing polarizing film
US20050276967A1 (en) * 2002-05-23 2005-12-15 Cabot Microelectronics Corporation Surface textured microporous polishing pads
US6884156B2 (en) * 2003-06-17 2005-04-26 Cabot Microelectronics Corporation Multi-layer polishing pad material for CMP
US20070015448A1 (en) * 2003-08-07 2007-01-18 Ppg Industries Ohio, Inc. Polishing pad having edge surface treatment
WO2008124449A2 (en) * 2007-04-03 2008-10-16 Dow Global Technologies Inc. Hot film lamination (vacuum assisted) for carpet backing applications
US20080274674A1 (en) * 2007-05-03 2008-11-06 Cabot Microelectronics Corporation Stacked polishing pad for high temperature applications
CN102026775A (en) * 2008-05-16 2011-04-20 东丽株式会社 Polishing pad
KR20110120893A (en) * 2009-01-16 2011-11-04 어플라이드 머티어리얼스, 인코포레이티드 Polishing pad and system with window support
SG181678A1 (en) * 2009-12-30 2012-07-30 3M Innovative Properties Co Polishing pads including phase-separated polymer blend and method of making and using the same
KR20120112662A (en) * 2009-12-30 2012-10-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Organic particulate loaded polishing pads and method of making and using the same
US9067297B2 (en) * 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with foundation layer and polishing surface layer
JP5893413B2 (en) * 2012-01-17 2016-03-23 東洋ゴム工業株式会社 Manufacturing method of laminated polishing pad
US9597769B2 (en) * 2012-06-04 2017-03-21 Nexplanar Corporation Polishing pad with polishing surface layer having an aperture or opening above a transparent foundation layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3140852A4 (en) 2018-01-10
TW201542317A (en) 2015-11-16
TWI626118B (en) 2018-06-11
JP2017514718A (en) 2017-06-08
WO2015171419A1 (en) 2015-11-12
US9818618B2 (en) 2017-11-14
KR102440303B1 (en) 2022-09-05
CN106575613B (en) 2019-12-17
CN106575613A (en) 2017-04-19
JP6574244B2 (en) 2019-09-11
EP3140852A1 (en) 2017-03-15
KR20170015907A (en) 2017-02-10
US20150325451A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
EP2025469B1 (en) Multi-layer polishing pad material for CMP
KR100936594B1 (en) Polishing pad with recessed window
EP1879720B1 (en) Multi-layer polishing pad material for cmp
EP2177315B1 (en) Chemical mechanical polishing pad having sealed window
US9017140B2 (en) CMP pad with local area transparency
US20080274674A1 (en) Stacked polishing pad for high temperature applications
JP2014172169A (en) Multilayer chemical mechanical polishing pad
EP3140852B1 (en) Multi-layer polishing pad for cmp
WO2020223455A1 (en) Chemical-mechanical polishing pad with textured platen adhesive
JP5478030B2 (en) Polishing pad and cushion body for polishing pad
JP5695176B2 (en) Polishing pad and cushion body for polishing pad

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABOT MICROELECTRONICS CORPORATION

A4 Supplementary search report drawn up and despatched

Effective date: 20171208

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 21/304 20060101AFI20171204BHEP

Ipc: B24B 37/22 20120101ALI20171204BHEP

Ipc: B24B 37/24 20120101ALI20171204BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200519

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015071739

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0021304000

Ipc: B24B0037220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B24B 37/22 20120101AFI20210222BHEP

Ipc: B24D 11/00 20060101ALI20210222BHEP

Ipc: B24B 37/24 20120101ALI20210222BHEP

Ipc: B24B 37/04 20120101ALI20210222BHEP

Ipc: B24D 18/00 20060101ALI20210222BHEP

Ipc: H01L 21/304 20060101ALI20210222BHEP

INTG Intention to grant announced

Effective date: 20210312

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CMC MATERIALS, INC.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1414291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015071739

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210728

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1414291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211028

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015071739

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230320

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 10