EP3129518A1 - Process for producing a graphene film - Google Patents

Process for producing a graphene film

Info

Publication number
EP3129518A1
EP3129518A1 EP15714579.8A EP15714579A EP3129518A1 EP 3129518 A1 EP3129518 A1 EP 3129518A1 EP 15714579 A EP15714579 A EP 15714579A EP 3129518 A1 EP3129518 A1 EP 3129518A1
Authority
EP
European Patent Office
Prior art keywords
substrate
carbon source
solid carbon
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15714579.8A
Other languages
German (de)
French (fr)
Inventor
Jean Dijon
Anastasia TYURNINA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3129518A1 publication Critical patent/EP3129518A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Definitions

  • the invention relates to a method of producing a graphene film and also relates to a device configured to produce a graphene film.
  • graphene has generated a growing interest in the scientific and industrial sectors.
  • Graphene is indeed a promising candidate for many applications: energy storage, elaboration of transparent electrodes, super capacitors, etc.
  • One of the current challenges is to produce good quality graphene, ie a continuous film with low defect densities and uniform thickness, at low cost, reproducibly and on a large scale.
  • CVD chemical vapor deposition
  • CVD processes are very attractive because they make it possible to obtain thin carbonaceous layers of high quality.
  • the process of forming graphene on a substrate by CVD takes place in two stages.
  • pyrolysis is carried out on a gas containing carbon atoms, generally it is a hydrocarbon. Pyrolysis dissociates the gas and forms carbon radicals.
  • the graphene film is formed on the substrate from the carbon radicals.
  • Many hydrocarbons can be used to synthesize graphene.
  • the article by K. Wassei et al. (Small 8 (2012), No. 9, 1415-1422) describes, for example, the use of methane, ethane or propane.
  • the substrate is copper, it has a thickness of 25 ⁇ .
  • the temperature used during the deposition process is 1000 ° C and the pressures are between 250 and 1000mTorr.
  • Methane is most often used because it allows to form graphene films of better qualities.
  • Graphene can also be deposited on ruthenium crystals Ru (00001) and iridium Ir (1 1 1) using as a carbon source of ethylene gas (New Journal of Physics 1 1 (2009) 063046), or on platinum substrates 200 ⁇ m thick from methane, the substrate being heated to above 1000 ° C (Nature Communications 3: 699, DOI 10.1038).
  • CVD deposits are made at high temperatures (1000-1100 ° C) to dissociate hydrocarbons and form graphene.
  • the object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a production method for depositing a graphene film on thin metallic layers.
  • FIG. 1 to 4 show, schematically, in section, the device of the method of producing a graphene film according to different embodiments
  • FIG. 5 represents a photograph obtained by transmission electron microscopy of a graphene film produced according to the production method
  • FIG. 6 represents a Raman spectrum of 1 st and 2 nd orders of the graphene film of FIG. . Description of a preferred embodiment of the invention
  • the process for producing a graphene film comprises the following successive steps:
  • the carbon source 2 is a source of solid carbon.
  • the gas is hydrocarbon-free.
  • the carbon source 2 is formed of at least one carbon filament.
  • the filament is disposed between the substrate and the gas inlet.
  • Filament means an element of fine and elongated shape, such as a wire.
  • the filament is electrically conductive.
  • the carbon source 2 can comprise several filaments.
  • the filaments advantageously form a plane parallel to the surface of the substrate.
  • filaments are, advantageously, both all arranged at the same distance from the surface of the substrate and parallel to each other, so as to form a homogeneous deposit.
  • the filaments are shown in section.
  • the filaments are equidistant from one another.
  • the filaments are crisscrossed and parallel to the surface of the substrate so as to form a grid.
  • the surface of the substrate is covered more evenly by the filaments.
  • the grid preferably defines a plane parallel to the surface of the substrate.
  • the heating of the carbon source 2 is achieved by passing a current in said source. It could also be heated by induction heating, by laser.
  • the filaments are heated by Joule effect.
  • the carbon filaments form carbon radicals, necessary for the formation of graphene.
  • the amount of carbon radicals formed is relatively small, which makes it possible to form a graphene film in a controlled manner.
  • the carbon source 2 is a solid element comprising at least 98% by mass of carbon.
  • the carbon source 2 is, preferably, graphite.
  • graphite is meant that the carbon source comprises at least 98% by weight of graphite, and preferably at least 99.5% by mass of graphite.
  • the carbon source 2 may be further formed of carbon nanotubes.
  • the filaments are often made of tungsten.
  • the carbon of the hydrocarbons reacts with the tungsten, forming parasitic tungsten carbide, which contaminates the reaction chamber.
  • JP2003206196 also discloses a CVD device not using tungsten.
  • the filaments are carbon based.
  • the CVD device is used to obtain high quality diamonds on silicon wafers.
  • the filaments are produced from a resin and a powder of carbonaceous particles.
  • the filaments are heated to a temperature of 2050 ° C under a methanol-charged atmosphere.
  • the methanol is then decomposed, carbon radicals are produced and diamond particles are formed.
  • the temperature of the substrate is 900 ° C.
  • the temperature of the substrate is nevertheless still too high.
  • the process, even if it is adapted to form diamond particles, does not make it possible to form graphene on thin layers. Unlike conventional methods, the process for forming the graphene film does not require the use of high temperatures because the carbon radicals come from the graphite filaments and not the gas.
  • the high temperature of the process is limited to the carbon source.
  • the temperature of the substrate is less than or equal to 800 ° C, and preferably less than or equal to 700 ° C.
  • the method enables graphene to be deposited on substrates that can not be used with conventional CVD processes: substrates with thin metal layers, substrates that deteriorate at high temperatures.
  • the gas introduced into the reaction chamber 3 via the gas inlet 4, to form the gas flow, is hydrocarbon-free.
  • the gas is devoid of organic carbon molecules.
  • carbon organic molecule is meant an organic molecule having a carbon chain comprising at least one carbon atom.
  • Alcohols and hydrocarbons are, for example, organic carbon molecules.
  • the gas contains less than a few parts per million (ppm) of hydrocarbons and / or carbon species.
  • the gas used is dihydrogen H 2 .
  • East of dihydrogen is meant that the gas comprises at least 90% by volume of dihydrogen, and preferably at least 98% of dihydrogen.
  • a mixture of H 2 + H 2 O with a low water concentration could be used.
  • the presence of dihydrogen may allow, in the graphene growth process, to partially etch the carbonaceous deposit and / or to help remove any impurities present on the surface of the substrate.
  • the increase in temperature would create hydrogen radicals favoring the formation and / or growth of the graphene film.
  • the hydrogen pressure in the reaction chamber 3 is between 10 Torr and 10 Torr, and preferably between 6 Torr and 8 Torr.
  • a rise in pressure, up to ambient pressure, for example, would speed up the growth process but would also lead to the formation of several graphene monolayers that can be superimposed on each other.
  • the substrate is heated to a maximum temperature of 800 ° C, and preferably at a maximum temperature of 700 ° C.
  • the maximum temperature is maintained for a period ranging from 5 minutes to 5 hours.
  • the duration of the temperature step is between 5 minutes and 180 minutes, and even more preferably between 60 minutes and 120 minutes.
  • the duration of the bearing makes it possible to control the size of the graphene grains composing the continuous film of graphene which can vary from 1 -2 nm to several tens of micrometers. Whatever the duration of the plateau, it has been observed that the graphene film is always continuous, uniform without defects.
  • the substrate is heated solely by the carbon source: the substrate 1 is heated solely by virtue of the heat radiated by the filaments.
  • the carbon source 2 forms a first source of heat for the substrate 1.
  • the filaments When the filaments are heated, they radiate a lot of heat and help to increase the surface temperature of the substrate.
  • the filaments can be heated at temperatures up to 1700-1800 ° C: the temperature of the surface of the substrate 1, where the formation of graphene takes place, can rise to temperatures up to 700 ° C.
  • surface of the substrate is meant a thickness of several tens of nanometers from the free face of the substrate, exposed to the carbon source, towards the interior of the substrate, perpendicular to the free face of the substrate.
  • the temperature of the substrate 1, at the surface and at depth is lower than the temperature of the carbon source 2 during the heating step.
  • the temperature of the substrate is, for example, less than 400 ° C., or even lower than 800 ° C., at the temperature of the carbon source 2.
  • the substrate does not need to be heated to very high temperature, which makes it possible to use a wide range of equipment for heating the device.
  • the reaction chamber is less polluted and many materials can be used as a substrate.
  • the substrate 1 is heated both by the filaments and both via a second heat source 6.
  • the second heat source 6 is disposed under the substrate, at the same time. opposite of the carbon source 2, which is disposed above the substrate 1.
  • the second heat source 6 may be, for example, by a radio frequency power supply (RF) connected to the support 5 of the substrate 1.
  • RF radio frequency power supply
  • the support 5 of the substrate 1 is also called a sample holder.
  • the second heat source 6 may be a heating plate or the reaction chamber may be arranged in an oven. Those skilled in the art will be able to choose any second heat source 6 adapted to the process.
  • the heat radiated by the filaments can be increased by increasing the power used to heat the filaments.
  • the power of the power unit can be increased up to 1000W, which reduces the temperature at which the substrate 1 is heated by the second heat source 6 to a value below 450 ° C.
  • the diameter of the filaments can also be increased to intensify the heat emitted by irradiation.
  • the filaments have a diameter ranging from 0.2 mm to 0.8 mm, and preferably a diameter of 0.5 mm ⁇ 1 mm.
  • a vacuuming step is performed.
  • the evacuation step is, for example, carried out at 5 ⁇ 10 -6 Torr.
  • Degassing occurs at the carbon source when the filaments are energized.
  • Substrate 1 can be contaminated by stray carbon particles leading to the formation of an amorphous carbon film. A decrease in the surface of the carbon source makes it possible to limit this phenomenon.
  • the carbon source 2 is disposed above the surface of the substrate 1, at a distance of between 0.5 cm and 2.5 cm, and preferably between 0.8 cm and 1.2 cm. Preferably, the carbon source is at a distance greater than or equal to the distance between the filaments to have a uniform heating.
  • the distance between the filaments and the surface of the substrate 1 can also be configured to play on the life of the radical species.
  • the substrate may be cooled to stabilize the temperature or to make a graphene film with small grains.
  • a metal gate 7 is disposed between the substrate 1 and the carbon source 2.
  • the gate 7 makes it possible to reduce the number of parasitic particles reaching the sample during degassing.
  • the parasitic carbon species, arriving at the level of the grid 7, will be absorbed by the metal of the grid.
  • the metal grid 7 is, for example, nickel.
  • the dissolution of carbon in nickel is relatively high: a nickel grid forms an effective trap for carbonaceous particles.
  • the metal grid 7 also makes it possible to control the rate of formation of the graphene film. By playing on the dimensions of the openings of the grid 7, it It is possible to increase or decrease the amount of carbon radicals arriving at the substrate 1.
  • the grid 7 could be formed of an optically transparent material, such as for example quartz.
  • a shutter 8 is disposed between the substrate 1 and the carbon source 2.
  • the shutter 8 is produced from an optically transparent material. It is for example, made of quartz.
  • the shutter 8 is closed during the rise in temperature. Even if the shutter 8 is closed, the heat emitted by the filaments is transmitted to the surface of the substrate 1 by irradiation through the shutter transparent to the wavelength of the irradiation.
  • the shutter 8 makes it possible to heat the sample, while avoiding the deposit of parasitic carbon on the sample during the pumping and the rise in temperature.
  • the shutter 8 is open when the maximum temperature is reached and during the temperature plateau.
  • the shutter 8 is disposed between the substrate 1 and the carbon source 2 and is closed during the rise in temperature and during the temperature step. It is kept closed when the maximum temperature is reached.
  • the shutter 8 is held in the same position throughout the process.
  • the shutter 8 may be a full screen.
  • the formation speed of the graphene film is thus reduced and the film is more homogeneous.
  • the use of a gate 7 and / or a shutter 8 have a filtering role and allow precise control of the amount of carbon species arriving on the substrate 1, thus improving the quality of the graphene film.
  • the substrate 1 is formed of a solid material covered with a thin metal layer.
  • the metal is a transition metal, such as Cu, Pt, Fe, Ni, Au, Ir, Ru, etc.
  • the transition metals have a catalytic effect during the formation of graphene.
  • the thin metal layer has a thickness between 100 nm and 400 nm, and preferably between 100 nm and 300 nm.
  • the thin layer is a transition metal selected from platinum, copper, titanium or nickel. It may also be an alloy of these metals, such as, for example, a platinum alloy containing from 0.5% to 10% iridium. Even more preferentially:
  • the solid material is made of silicon
  • the thin metallic layer is platinum
  • a chromium layer having a thickness of 20 nm ⁇ 5 nm, is disposed between the silicon and the thin metal layer.
  • the solid silicon material may be formed of a silicon film coated with a thin layer of SiO 2 silicon oxide.
  • Platinum has several advantages for uniform graphene film growth. Platinum has a very high melting temperature (1768 ° C) and a relatively low coefficient of thermal expansion (less than 9 ym / mK). During the process of forming the graphene film, and in particular during heat treatment, the platinum thin film will be less subject to mechanical stress than another metal layer. Graphene film will have fewer defects.
  • the platinum is very difficult, or not at all oxidized, even during climbs / descents in temperature.
  • the roughness of the surface of the platinum thin layer remains low.
  • platinum also makes it possible, subsequently, to easily transfer the graphene film to another medium, for example by electrochemistry.
  • the substrate can be used for another deposit.
  • the presence of the chromium layer allows better adhesion between platinum and silicon.
  • the process is not limited to thin substrates, and especially wafers.
  • the substrate could be a solid substrate, for example a platinum strip.
  • the device configured to produce a graphene film on a substrate 1 comprises:
  • reaction chamber 3 provided with a carbon source 2 and a support 5, said support 5 being intended to maintain a substrate 1,
  • a gas inlet 4 configured to form a flow of gas directed from the gas inlet 4 to the carbon source 2,
  • the carbon source is a source of solid carbon.
  • the gas flowing into the reaction chamber is hydrocarbon-free.
  • the gas arriving in the reaction chamber is devoid of organic carbon molecules.
  • the carbon source 2 is preferably formed of at least one filament.
  • the carbon source 2 comprises several filaments parallel to the surface of the substrate.
  • the gas flow is perpendicular to the surface of the substrate 1 and the plane formed by the carbon filaments.
  • the carbon source 2 is graphite.
  • the carbon source is disposed in the reaction chamber so as to be above the surface of the substrate, at a distance of between 0.5 cm and 1.5 cm, and preferably between 0.8 cm and 1.2 cm.
  • the carbon source 2 Since a tiny portion of the carbon source 2 is used for each graphene deposit, the carbon source 2 has a relatively long life.
  • Figure 4 shows schematically and in section the device configured to develop a graphene film.
  • the various elements of the device are not to scale.
  • the device makes it possible to grow graphene by CVD at low temperature.
  • the reaction chamber 3 is a quartz bell.
  • the lower part of the reaction chamber 3 comprises the sample holder 5.
  • the reaction chamber 3 can be arranged in a closed chamber 9.
  • the walls between the inside of the enclosure and the outside of the enclosure 9 are double walls 10 in which a cooling liquid circulates.
  • the chamber 9 is provided with a gas inlet 1 1 and a gas outlet 12.
  • the device comprises a pumping system for putting the reaction chamber under vacuum.
  • the pumping system is arranged, for example, at the gas inlet 1 1 of the chamber 9.
  • the reaction chamber 3 can be heated by means of heating coils 13.
  • the coils are arranged against the outer walls of the reaction chamber 3.
  • Thermal screens 14 may also be arranged outside the reaction chamber 3, between the heating coils 13 and the inside of the chamber 1 1, to thermally isolate the reaction chamber 3 of the chamber 1 1 .
  • Thermal screens 10 are thermal insulators.
  • the sample holder 5 may also be heated by heating coils 13 '.
  • the filaments are graphite. They have a length of 1 10mm long and a diameter of 0.5mm.
  • the filaments are 1 cm from the substrate 1. They are parallel to the surface of the substrate 1. The space between each filament is 1 cm.
  • the filaments cover the substrate on a surface of 10cmx10cm.
  • the sample holder 5 is made of silicon.
  • the substrate 1 is formed of a stack comprising successively:
  • the thin layer of SiO 2 has a thickness of 500 nm
  • the platinum thin film was deposited by electron beam evaporation on the silicon wafer.
  • the platinum thin film thus produced is polycrystalline.
  • the reaction chamber 3 is, initially, cleaned with an oxygen plasma so as to remove any carbon parasitic element.
  • the filaments are then placed in the reaction chamber.
  • the filaments are heated by a power supply delivering a power of 800W, under a stream of hydrogen, which allows them to be cleaned and degassed.
  • the substrate 1 is placed in the reaction chamber 3, on the sample holder 5.
  • the sample holder 5 is heated to 700 ° C.
  • the rise in temperature from room temperature to 700 ° C lasts 10 minutes.
  • the hydrogen pressure is 7 Torr for a flow of 100cm 3 / min (or 100 sccm for standard cubic centimeter per minute).
  • the temperature plateau is maintained for a period ranging from 5 minutes to 60 minutes, this stage allows the synthesis of graphene.
  • reaction chamber 3 is cooled to room temperature.
  • the pressure of hydrogen can be identical during the rise in temperature and during the temperature step.
  • a first pressure can be used during the rise in temperature and a second pressure can be used during the temperature step.
  • the film is uniform with very few defects.
  • the process, described above, is carried out at a sufficiently high temperature to activate the hydrogen, but low enough to avoid both dewetting phenomena.
  • a small amount of carbon radicals is generated, promoting the formation of a homogeneous and continuous graphene film.
  • the thermal gradient allows activation of the carbon while ensuring a good physicochemical behavior of the graphene layer.
  • the method makes it possible to form a graphene film formed of a carbon monolayer at low temperature on thin metal films.
  • the size of graphite crystallites is continuously monitored. Continuous graphene films without holes are obtained irrespective of the size of the crystallites.
  • Graphene films are particularly interesting for many applications, and particularly for microelectronics, spin electronics, or for applications requiring transparent conductive films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A process for producing a graphene film, comprising the following successive steps: - placing a substrate (1) and a solid carbon source (2) in a reaction chamber (3), which has a gas inlet (4), - heating the solid carbon source (2) by passing a current through said source, under a gas stream, the gas being free of hydrocarbon, so as to convert at least one part of the solid carbon source (2) into a graphene film on the substrate (1).

Description

Procédé d'élaboration d'un film de graphène.  Process for producing a graphene film
Domaine technique de l'invention Technical field of the invention
L'invention est relative à un procédé d'élaboration d'un film de graphène et est également relative à un dispositif configuré pour élaborer un film de graphène. The invention relates to a method of producing a graphene film and also relates to a device configured to produce a graphene film.
État de la technique State of the art
Grâce à ses propriétés exceptionnelles, le graphène a généré un intérêt croissant dans les secteurs scientifiques et industriels. Le graphène est, en effet, un candidat prometteur pour de nombreuses applications : stockage de l'énergie, élaboration d'électrodes transparentes, super condensateurs, etc. Un des enjeux actuels est de produire du graphène de bonne qualité, i.e. un film continu présentant de faibles densités de défauts et d'épaisseur uniforme, à faible coût, de manière reproductible et à grande échelle. Parmi les procédés permettant de former des films de graphène, le dépôt chimique en phase vapeur (CVD) est une des techniques les plus prometteuses. Les procédés CVD sont très attractifs car ils permettent d'obtenir des couches minces carbonées de grandes qualités. Le processus de formation du graphène sur un substrat par CVD se déroule en deux étapes. Tout d'abord, une pyrolyse est réalisée sur un gaz contenant des atomes de carbone, généralement il s'agit d'un hydrocarbure. La pyrolyse permet de dissocier le gaz et de former des radicaux carbonés. Dans une seconde étape, le film de graphène est formé sur le substrat à partir des radicaux carbonés. De nombreux hydrocarbures peuvent servir pour synthétiser du graphène. L'article de K. Wassei et al. (Small 8 (2012), n°9, 1415-1422) décrit, par exemple, l'utilisation de méthane, d'éthane ou encore de propane. Le substrat est en cuivre, il a une épaisseur de 25μιη. La température utilisée lors du procédé de dépôt est de 1000°C et les pressions sont comprises entre 250 et l OOOmTorr. Thanks to its exceptional properties, graphene has generated a growing interest in the scientific and industrial sectors. Graphene is indeed a promising candidate for many applications: energy storage, elaboration of transparent electrodes, super capacitors, etc. One of the current challenges is to produce good quality graphene, ie a continuous film with low defect densities and uniform thickness, at low cost, reproducibly and on a large scale. Of the methods for forming graphene films, chemical vapor deposition (CVD) is one of the most promising techniques. CVD processes are very attractive because they make it possible to obtain thin carbonaceous layers of high quality. The process of forming graphene on a substrate by CVD takes place in two stages. Firstly, pyrolysis is carried out on a gas containing carbon atoms, generally it is a hydrocarbon. Pyrolysis dissociates the gas and forms carbon radicals. In a second step, the graphene film is formed on the substrate from the carbon radicals. Many hydrocarbons can be used to synthesize graphene. The article by K. Wassei et al. (Small 8 (2012), No. 9, 1415-1422) describes, for example, the use of methane, ethane or propane. The substrate is copper, it has a thickness of 25μιη. The temperature used during the deposition process is 1000 ° C and the pressures are between 250 and 1000mTorr.
Le méthane est le plus souvent utilisé car il permet de former des films de graphène de meilleures qualités.  Methane is most often used because it allows to form graphene films of better qualities.
L'article « A review of chemical vapour déposition of graphène on copper » (J. Mater. Chem. 21 (201 1 ), 3324-3334) recense différentes valeurs de paramètres, décrits dans la littérature, pour synthétiser du graphène par CVD sur des substrats en cuivre avec méthane. La plupart des feuilles de cuivre ont une épaisseur de l'ordre de 25-50 ym. Les températures sont généralement de l'ordre de 1000°C.  The article "A review of chemical vapor deposition of graphene on copper" (J. Mater Chem 21 (201 1), 3324-3334) lists various parameter values, described in the literature, for synthesizing graphene by CVD on copper substrates with methane. Most copper foils have a thickness in the order of 25-50 μm. The temperatures are generally of the order of 1000 ° C.
Le graphène peut également être déposé sur des cristaux de ruthénium Ru(00001 ) et d'iridium lr(1 1 1 ) en utilisant comme source de carbone de Péthylène gazeux (New Journal of Physics 1 1 (2009) 063046), ou encore sur des substrats en platine de 200 ym d'épaisseur à partir de méthane, le substrat étant chauffé à plus de 1000°C (Nature Communications 3:699, DOI 10.1038). Graphene can also be deposited on ruthenium crystals Ru (00001) and iridium Ir (1 1 1) using as a carbon source of ethylene gas (New Journal of Physics 1 1 (2009) 063046), or on platinum substrates 200 μm thick from methane, the substrate being heated to above 1000 ° C (Nature Communications 3: 699, DOI 10.1038).
La plupart des dépôts par technique CVD sont réalisés à hautes températures (1000-1 100°C) pour pouvoir dissocier les hydrocarbures et former du graphène. Most CVD deposits are made at high temperatures (1000-1100 ° C) to dissociate hydrocarbons and form graphene.
Néanmoins, de telles températures demeurent incompatibles avec des procédés utilisant des couches minces métalliques comme substrat. En effet, lorsque les couches minces métalliques sont chauffées à haute température, des phénomènes de démouillage peuvent apparaître. Le phénomène est d'autant plus marqué que l'épaisseur de métal est fine. Récemment, une étude a montré que la température de synthèse de graphène sur un substrat de nickel de 25μιη d'épaisseur, en présence de C2H2, pouvait être diminuée jusqu'à 700°C en utilisant une lampe infra-rouge (Carbon, 50 (2012), pages 668-673). La pression est de 10"2Torr. Cependant, le film de graphène ainsi obtenu n'est pas uniforme : il est composé de plusieurs films de graphène se recouvrant en certains endroits. Nevertheless, such temperatures remain incompatible with processes using metal thin films as the substrate. Indeed, when the thin metallic layers are heated at high temperature, dewetting phenomena may appear. The phenomenon is all the more marked as the thickness of metal is fine. Recently, a study has shown that the graphene synthesis temperature on a nickel substrate 25μιη thick, in the presence of C 2 H 2 , could to be reduced to 700 ° C using an infra-red lamp (Carbon, 50 (2012), pages 668-673). The pressure is 10 "2 Torr However, graphene film thus obtained is not uniform. It is composed of several graphene films overlapping in places.
Objet de l'invention Object of the invention
L'invention a pour but de remédier aux inconvénients de l'art antérieur et, en particulier, de proposer un procédé d'élaboration permettant de déposer un film de graphène sur des couches minces métalliques. The object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a production method for depositing a graphene film on thin metallic layers.
On tend vers cet objet par les revendications annexées. This object is approached by the appended claims.
Description sommaire des dessins Brief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
- les figures 1 à 4 représentent, de manière schématique, en coupe, le dispositif du procédé d'élaboration d'un film de graphène selon différents modes de réalisation,  - Figures 1 to 4 show, schematically, in section, the device of the method of producing a graphene film according to different embodiments,
- la figure 5 représente un cliché obtenu par microscopie électronique en transmission d'un film de graphène élaboré selon le procédé d'élaboration, - la figure 6 représente un spectre Raman de 1 er et 2eme ordres du film de graphène de la figure 4. Description d'un mode de réalisation préférentiel de l'invention FIG. 5 represents a photograph obtained by transmission electron microscopy of a graphene film produced according to the production method; FIG. 6 represents a Raman spectrum of 1 st and 2 nd orders of the graphene film of FIG. . Description of a preferred embodiment of the invention
Le procédé d'élaboration d'un film de graphène comporte les étapes successives suivantes : The process for producing a graphene film comprises the following successive steps:
- placer un substrat 1 et une source de carbone 2 dans une chambre de réaction 3, munie d'une entrée de gaz 4, placing a substrate 1 and a carbon source 2 in a reaction chamber 3, provided with a gas inlet 4,
- chauffer la source de carbone 2, sous un flux de gaz, de manière à convertir au moins une partie de la source de carbone 2 en un film de graphène sur le substrat.  heating the carbon source 2, under a stream of gas, so as to convert at least a portion of the carbon source 2 into a graphene film on the substrate.
La source de carbone 2 est une source de carbone solide. The carbon source 2 is a source of solid carbon.
Le gaz est dépourvu d'hydrocarbure. The gas is hydrocarbon-free.
Préférentiellement, la source de carbone 2 est formée d'au moins un filament en carbone. Le filament est disposé entre le substrat et l'entrée de gaz. Preferably, the carbon source 2 is formed of at least one carbon filament. The filament is disposed between the substrate and the gas inlet.
Par filament, on entend un élément de forme fine et allongée, comme un fil. Le filament est conducteur électriquement.  Filament means an element of fine and elongated shape, such as a wire. The filament is electrically conductive.
Comme représenté sur la figure 1 , la source de carbone 2 peut comprendre plusieurs filaments. Les filaments forment, avantageusement, un plan parallèle à la surface du substrat. As shown in FIG. 1, the carbon source 2 can comprise several filaments. The filaments advantageously form a plane parallel to the surface of the substrate.
Ils sont, avantageusement, à la fois tous disposés à la même distance de la surface du substrat et parallèles les uns aux autres, de manière à former un dépôt homogène. Sur la figure 2, les filaments sont représentés en coupe.  They are, advantageously, both all arranged at the same distance from the surface of the substrate and parallel to each other, so as to form a homogeneous deposit. In Figure 2, the filaments are shown in section.
Préférentiellement, les filaments sont équidistants les uns des autres. Preferably, the filaments are equidistant from one another.
Selon un mode de réalisation préférentiel, les filaments sont entrecroisés et parallèles à la surface du substrat de manière à former une grille. La surface du substrat est recouverte de façon plus régulière par les filaments. La grille définit, de préférence, un plan parallèle à la surface du substrat. Préférentiellement, le chauffage de la source de carbone 2 est réalisé par passage d'un courant dans ladite source. Elle pourrait également être chauffée par un chauffage à induction, par laser. According to a preferred embodiment, the filaments are crisscrossed and parallel to the surface of the substrate so as to form a grid. The surface of the substrate is covered more evenly by the filaments. The grid preferably defines a plane parallel to the surface of the substrate. Preferably, the heating of the carbon source 2 is achieved by passing a current in said source. It could also be heated by induction heating, by laser.
De préférence, les filaments sont chauffés par effet Joule. Lorsqu'ils sont chauffés, les filaments de carbone forment des radicaux de carbone, nécessaire à la formation du graphène. La quantité de radicaux de carbone formés est relativement faible, ce qui permet de former un film de graphène de manière contrôlée. La source de carbone 2 est un élément solide comprenant au moins 98% massique de carbone.  Preferably, the filaments are heated by Joule effect. When heated, the carbon filaments form carbon radicals, necessary for the formation of graphene. The amount of carbon radicals formed is relatively small, which makes it possible to form a graphene film in a controlled manner. The carbon source 2 is a solid element comprising at least 98% by mass of carbon.
La source de carbone 2 est, préférentiellement, en graphite. Par « en graphite », on entend que la source de carbone comporte au moins 98% massique de graphite, et de préférence au moins 99,5% massique de graphite. Selon un autre mode de réalisation, la source de carbone 2 peut encore être formée de nanotubes de carbone.  The carbon source 2 is, preferably, graphite. By "graphite" is meant that the carbon source comprises at least 98% by weight of graphite, and preferably at least 99.5% by mass of graphite. According to another embodiment, the carbon source 2 may be further formed of carbon nanotubes.
Dans les procédés de CVD classiques, les filaments sont souvent en tungstène. Cependant, le carbone des hydrocarbures réagit avec le tungstène, formant du carbure de tungstène parasite, ce qui contamine la chambre de réaction. In conventional CVD processes, the filaments are often made of tungsten. However, the carbon of the hydrocarbons reacts with the tungsten, forming parasitic tungsten carbide, which contaminates the reaction chamber.
L'utilisation de filaments en carbone, et notamment en graphite, permet d'éviter cette pollution.  The use of carbon filaments, and in particular graphite, avoids this pollution.
Le brevet JP2003206196 décrit également un dispositif CVD n'utilisant pas de tungstène. Les filaments sont à base de carbone. Le dispositif CVD est utilisé pour obtenir des diamants de grande qualité sur des wafers de silicium. JP2003206196 also discloses a CVD device not using tungsten. The filaments are carbon based. The CVD device is used to obtain high quality diamonds on silicon wafers.
Les filaments sont produits à partir d'une résine et d'une poudre de particules carbonées. Les filaments sont chauffés à une température de 2050°C sous une atmosphère chargée en méthanol. Le méthanol est alors décomposé, des radicaux carbonés sont produits et des particules de diamants sont formées. La température du substrat est de 900°C. La température du substrat est néanmoins toujours trop élevée. Le procédé, même s'il est adapté pour former des particules de diamant ne permet pas de former du graphène sur des couches minces. Contrairement aux procédés classiques, le procédé pour former le film de graphène ne nécessite pas d'utiliser des températures élevées car les radicaux de carbone proviennent des filaments en graphite et non pas du gaz. The filaments are produced from a resin and a powder of carbonaceous particles. The filaments are heated to a temperature of 2050 ° C under a methanol-charged atmosphere. The methanol is then decomposed, carbon radicals are produced and diamond particles are formed. The temperature of the substrate is 900 ° C. The temperature of the substrate is nevertheless still too high. The process, even if it is adapted to form diamond particles, does not make it possible to form graphene on thin layers. Unlike conventional methods, the process for forming the graphene film does not require the use of high temperatures because the carbon radicals come from the graphite filaments and not the gas.
La température élevée du procédé est limitée à la source de carbone. The high temperature of the process is limited to the carbon source.
Durant le procédé, et plus particulièrement, pendant l'étape de chauffage, la température du substrat est inférieure ou égale à 800°C, et de préférence inférieure ou égale à 700°C. During the process, and more particularly, during the heating step, the temperature of the substrate is less than or equal to 800 ° C, and preferably less than or equal to 700 ° C.
Le procédé permet de déposer du graphène sur des substrats qui ne peuvent pas être utilisés avec les procédés de dépôt chimique en phase vapeur (CVD) classiques : des substrats avec des couches minces métalliques, des substrats se détériorant à des températures élevées.  The method enables graphene to be deposited on substrates that can not be used with conventional CVD processes: substrates with thin metal layers, substrates that deteriorate at high temperatures.
Le gaz introduit dans la chambre de réaction 3 via l'entrée de gaz 4, pour former le flux de gaz, est dépourvu d'hydrocarbure. The gas introduced into the reaction chamber 3 via the gas inlet 4, to form the gas flow, is hydrocarbon-free.
Plus particulièrement, le gaz est dépourvu de molécules organiques carbonées. Par molécule organique carbonée, on entend une molécule organique ayant une chaîne carbonée comprenant au moins un atome de carbone. Les alcools et les hydrocarbures sont, par exemple, des molécules organiques carbonées.  More particularly, the gas is devoid of organic carbon molecules. By carbon organic molecule is meant an organic molecule having a carbon chain comprising at least one carbon atom. Alcohols and hydrocarbons are, for example, organic carbon molecules.
Par dépourvu, on entend que le gaz contient moins de quelques parties par million (ppm) d'hydrocarbures et/ou d'espèces carbonées. By no means is meant that the gas contains less than a few parts per million (ppm) of hydrocarbons and / or carbon species.
Préférentiellement, le gaz utilisé est du dihydrogène H2. Preferably, the gas used is dihydrogen H 2 .
Par « est du dihydrogène », on entend que le gaz comporte au moins 90% volumique de dihydrogène, et de préférence au moins 98% de dihydrogène. Selon une autre alternative, un mélange de H2 + H2O avec une faible concentration en eau pourrait être utilisé. La présence de dihydrogène peut permettre, dans le processus de croissance du graphène, de graver partiellement le dépôt carboné et/ou d'aider à retirer d'éventuelles impuretés présentes à la surface du substrat. By "East of dihydrogen" is meant that the gas comprises at least 90% by volume of dihydrogen, and preferably at least 98% of dihydrogen. According to another alternative, a mixture of H 2 + H 2 O with a low water concentration could be used. The presence of dihydrogen may allow, in the graphene growth process, to partially etch the carbonaceous deposit and / or to help remove any impurities present on the surface of the substrate.
L'augmentation de la température permettrait de créer des radicaux d'hydrogène favorisant la formation et/ou croissance du film de graphène. The increase in temperature would create hydrogen radicals favoring the formation and / or growth of the graphene film.
Avantageusement, le chauffage d'un filament en carbone en présence de dihydrogène permet de créer du graphène de très bonne qualité. La pression de dihydrogène dans la chambre de réaction 3 est comprise entre O.I Torr et 10Torr, et de préférence entre 6Torr et 8Torr. Advantageously, heating a carbon filament in the presence of dihydrogen makes it possible to create graphene of very good quality. The hydrogen pressure in the reaction chamber 3 is between 10 Torr and 10 Torr, and preferably between 6 Torr and 8 Torr.
L'utilisation d'une telle pression permet de minimiser la quantité de radicaux de carbone formés. Le graphène croît lentement et peu de sites de nucléation sont formés. Comme il y a peu de sites de nucléations, les monocouches de graphène formées ont des tailles plus grandes et le film de graphène est plus homogène. The use of such a pressure makes it possible to minimize the amount of carbon radicals formed. Graphene grows slowly and few nucleation sites are formed. Since there are few nucleation sites, the graphene monolayers formed have larger sizes and the graphene film is more homogeneous.
Une élévation de la pression, jusqu'à la pression ambiante par exemple, accélérerait le processus de croissance mais conduirait également à la formation de plusieurs monocouches de graphène pouvant être superposées les unes aux autres.  A rise in pressure, up to ambient pressure, for example, would speed up the growth process but would also lead to the formation of several graphene monolayers that can be superimposed on each other.
Plus la pression est proche de la pression ambiante, plus la croissance du graphène est rapide et plus il est difficile de contrôler le nombre de couches de graphène déposées et l'uniformité du film. Lors du procédé, le substrat est chauffé à une température maximale de 800°C, et de préférence, à une température maximale de 700°C.  The closer the pressure is to ambient pressure, the faster the growth of graphene and the more difficult it is to control the number of graphene layers deposited and the uniformity of the film. In the process, the substrate is heated to a maximum temperature of 800 ° C, and preferably at a maximum temperature of 700 ° C.
La température maximale est maintenue pendant une durée allant de 5 minutes à 5 heures. De préférence, la durée du palier en température est comprise entre 5 minutes et 180 minutes, et encore plus préférentiellement entre 60 minutes et 120 minutes. La durée du palier permet de contrôler la taille des grains de graphène composant le film continu de graphène qui peut varier de 1 -2nm à plusieurs dizaines de micromètres. Quelque soit la durée du palier, il a été observé que le film de graphène est toujours continu, uniforme sans défaut. The maximum temperature is maintained for a period ranging from 5 minutes to 5 hours. Preferably, the duration of the temperature step is between 5 minutes and 180 minutes, and even more preferably between 60 minutes and 120 minutes. The duration of the bearing makes it possible to control the size of the graphene grains composing the continuous film of graphene which can vary from 1 -2 nm to several tens of micrometers. Whatever the duration of the plateau, it has been observed that the graphene film is always continuous, uniform without defects.
Selon un mode de réalisation, le substrat est chauffé uniquement par la source de carbone : le substrat 1 est chauffé uniquement grâce à la chaleur irradiée par les filaments. La source de carbone 2 forme une première source de chaleur pour le substrat 1 . According to one embodiment, the substrate is heated solely by the carbon source: the substrate 1 is heated solely by virtue of the heat radiated by the filaments. The carbon source 2 forms a first source of heat for the substrate 1.
Lorsque les filaments sont chauffés, ils irradient beaucoup de chaleur et contribuent à augmenter la température de la surface du substrat. When the filaments are heated, they radiate a lot of heat and help to increase the surface temperature of the substrate.
Les filaments peuvent être chauffés à des températures allant jusqu'à 1700- 1800°C : la température de la surface du substrat 1 , où a lieu la formation de graphène, peut monter à des températures allant jusqu'à 700°C. Par surface du substrat, on entend une épaisseur de plusieurs dizaines de nanomètres allant de la face libre du substrat, exposée à la source de carbone, vers l'intérieur du substrat, perpendiculairement à la face libre du substrat.  The filaments can be heated at temperatures up to 1700-1800 ° C: the temperature of the surface of the substrate 1, where the formation of graphene takes place, can rise to temperatures up to 700 ° C. By surface of the substrate is meant a thickness of several tens of nanometers from the free face of the substrate, exposed to the carbon source, towards the interior of the substrate, perpendicular to the free face of the substrate.
D'une manière générale, la température du substrat 1 , en surface et en profondeur, est inférieure à la température de la source de carbone 2 durant l'étape de chauffage. In general, the temperature of the substrate 1, at the surface and at depth, is lower than the temperature of the carbon source 2 during the heating step.
La température du substrat est, par exemple, inférieure de 400°C, voire inférieure de 800°C, à la température de la source de carbone 2.  The temperature of the substrate is, for example, less than 400 ° C., or even lower than 800 ° C., at the temperature of the carbon source 2.
Le substrat n'a pas besoin d'être chauffé à très haute température, ce qui permet d'utiliser un large choix d'équipements pour chauffer le dispositif. La chambre de réaction est moins polluée et de nombreux matériaux peuvent être utilisés comme substrat. The substrate does not need to be heated to very high temperature, which makes it possible to use a wide range of equipment for heating the device. The reaction chamber is less polluted and many materials can be used as a substrate.
Selon un autre mode de réalisation, le substrat 1 est chauffé à la fois par les filaments et à la fois par l'intermédiaire d'une deuxième source de chaleur 6. La deuxième source de chaleur 6 est disposée sous le substrat, à l'opposé de la source de carbone 2, qui est disposée au-dessus du substrat 1 . La deuxième source de chaleur 6 peut être, par exemple, par une alimentation de puissance radiofréquences (RF) connectée au support 5 du substrat 1 . Le support 5 du substrat 1 est aussi appelé porte-échantillon. According to another embodiment, the substrate 1 is heated both by the filaments and both via a second heat source 6. The second heat source 6 is disposed under the substrate, at the same time. opposite of the carbon source 2, which is disposed above the substrate 1. The second heat source 6 may be, for example, by a radio frequency power supply (RF) connected to the support 5 of the substrate 1. The support 5 of the substrate 1 is also called a sample holder.
La deuxième source de chaleur 6 peut être une plaque chauffante ou encore la chambre de réaction peut être disposée dans un four. L'homme du métier saura choisir toute deuxième source 6 de chaleur adaptée au procédé. The second heat source 6 may be a heating plate or the reaction chamber may be arranged in an oven. Those skilled in the art will be able to choose any second heat source 6 adapted to the process.
Augmenter la chaleur émise par les filaments permet de diminuer la température à laquelle est chauffé le substrat 1 , par la deuxième source de chaleur, tout en maintenant la température de la surface du substrat 1 constante. Increasing the heat emitted by the filaments makes it possible to reduce the temperature at which the substrate 1 is heated by the second heat source while maintaining the temperature of the surface of the substrate 1 constant.
La chaleur irradiée par les filaments peut être augmentée en augmentant la puissance utilisée pour chauffer les filaments. La puissance de l'unité d'alimentation peut être augmentée jusqu'à 1000W, ce qui permet de réduire la température à laquelle est chauffé le substrat 1 par la deuxième source de chaleur 6 à une valeur inférieure à 450°C.  The heat radiated by the filaments can be increased by increasing the power used to heat the filaments. The power of the power unit can be increased up to 1000W, which reduces the temperature at which the substrate 1 is heated by the second heat source 6 to a value below 450 ° C.
En modulant les calories émises par la source de carbone et les calories émises par la deuxième source de chaleur, il est possible de maîtriser la température de la surface du substrat dans une gamme de température prédéfinie.  By modulating the calories emitted by the carbon source and the calories emitted by the second heat source, it is possible to control the temperature of the substrate surface within a predefined temperature range.
Le diamètre des filaments peut également être augmenté pour intensifier la chaleur émise par irradiation. The diameter of the filaments can also be increased to intensify the heat emitted by irradiation.
Les filaments ont un diamètre allant de 0,2mm à 0,8mm, et de préférence un diamètre de 0,5mm ± 1 mm.  The filaments have a diameter ranging from 0.2 mm to 0.8 mm, and preferably a diameter of 0.5 mm ± 1 mm.
Ces dimensions permettant à la fois de chauffer suffisamment le substrat 1 , par irradiation, et en même temps de limiter le dégazage d'espèces parasites lors de la mise sous vide de la chambre de réaction 3.  These dimensions make it possible both to sufficiently heat the substrate 1, by irradiation, and at the same time to limit the degassing of parasitic species during the evacuation of the reaction chamber 3.
Avantageusement, une étape de mise sous vide est réalisée. L'étape de mise sous vide est, par exemple, réalisée à 5.10"6Torr. Un dégazage se produit au niveau de la source de carbone au moment de la mise sous tension des filaments. Le substrat 1 peut être contaminé par des particules de carbone parasites conduisant à la formation d'un film de carbone amorphe. Une diminution de la surface de la source de carbone permet de limiter ce phénomène. Advantageously, a vacuuming step is performed. The evacuation step is, for example, carried out at 5 × 10 -6 Torr. Degassing occurs at the carbon source when the filaments are energized. Substrate 1 can be contaminated by stray carbon particles leading to the formation of an amorphous carbon film. A decrease in the surface of the carbon source makes it possible to limit this phenomenon.
Il a été observé que, pour des filaments ayant un diamètre inférieur ou égal à 0.4mm, la contamination en carbone parasite est négligeable. Le nombre de filaments utilisés peut également être diminué. La source de carbone 2 est disposée au-dessus de la surface du substrat 1 , à une distance comprise entre 0,5cm et 2,5cm, et de préférence entre 0,8cm et 1 ,2cm. Préférentiellement, la source de carbone est à une distance supérieure ou égale à la distance entre les filaments pour avoir un échauffement uniforme. La distance entre les filaments et la surface du substrat 1 peut également être configurée pour jouer sur la durée de vie des espèces radicalaires.  It has been observed that for filaments having a diameter of less than or equal to 0.4 mm, the parasitic carbon contamination is negligible. The number of filaments used can also be decreased. The carbon source 2 is disposed above the surface of the substrate 1, at a distance of between 0.5 cm and 2.5 cm, and preferably between 0.8 cm and 1.2 cm. Preferably, the carbon source is at a distance greater than or equal to the distance between the filaments to have a uniform heating. The distance between the filaments and the surface of the substrate 1 can also be configured to play on the life of the radical species.
Selon un autre mode de réalisation, le substrat peut être refroidi pour stabiliser la température ou pour réaliser un film graphène avec des petits grains. In another embodiment, the substrate may be cooled to stabilize the temperature or to make a graphene film with small grains.
Selon un mode de réalisation particulier, comme représenté sur la figure 2, une grille 7 métallique est disposée entre le substrat 1 et la source de carbone 2. La grille 7 permet de diminuer le nombre de particules parasites atteignant l'échantillon lors du dégazage. Les espèces carbonées parasites, en arrivant au niveau de la grille 7, vont être absorbées par le métal de la grille. According to a particular embodiment, as represented in FIG. 2, a metal gate 7 is disposed between the substrate 1 and the carbon source 2. The gate 7 makes it possible to reduce the number of parasitic particles reaching the sample during degassing. The parasitic carbon species, arriving at the level of the grid 7, will be absorbed by the metal of the grid.
La grille 7 métallique est, par exemple, en nickel. La dissolution du carbone dans le nickel est relativement élevée : une grille en nickel forme un piège efficace pour les particules carbonées.  The metal grid 7 is, for example, nickel. The dissolution of carbon in nickel is relatively high: a nickel grid forms an effective trap for carbonaceous particles.
La grille 7 métallique permet également de contrôler la vitesse de formation du film de graphène. En jouant sur les dimensions des ouvertures de la grille 7, il est possible d'augmenter ou de diminuer la quantité de radicaux carbonés arrivant le substrat 1 . The metal grid 7 also makes it possible to control the rate of formation of the graphene film. By playing on the dimensions of the openings of the grid 7, it It is possible to increase or decrease the amount of carbon radicals arriving at the substrate 1.
Selon un autre mode de réalisation, la grille 7 pourrait être formée d'un matériau transparent optiquement, comme par exemple du quartz. According to another embodiment, the grid 7 could be formed of an optically transparent material, such as for example quartz.
Selon un autre mode de réalisation particulier, comme représenté sur la figure 3, un obturateur 8 est disposé entre le substrat 1 et la source de carbone 2. L'obturateur 8 est élaboré à partir d'un matériau transparent optiquement. Il est par exemple, réalisé en quartz. According to another particular embodiment, as shown in Figure 3, a shutter 8 is disposed between the substrate 1 and the carbon source 2. The shutter 8 is produced from an optically transparent material. It is for example, made of quartz.
L'obturateur 8 est fermé lors de la montée en température. Même si l'obturateur 8 est fermé, la chaleur émise par les filaments est transmise à la surface du substrat 1 par irradiation à travers l'obturateur transparent à la longueur d'onde de l'irradiation. The shutter 8 is closed during the rise in temperature. Even if the shutter 8 is closed, the heat emitted by the filaments is transmitted to the surface of the substrate 1 by irradiation through the shutter transparent to the wavelength of the irradiation.
L'obturateur 8 permet de chauffer l'échantillon, tout en évitant le dépôt de carbone parasite sur l'échantillon pendant le pompage et la montée en température. L'obturateur 8 est ouvert lorsque la température maximale est atteinte et pendant le palier en température.  The shutter 8 makes it possible to heat the sample, while avoiding the deposit of parasitic carbon on the sample during the pumping and the rise in temperature. The shutter 8 is open when the maximum temperature is reached and during the temperature plateau.
A ce moment, l'énergie cinétique des espèces carbonées sera suffisante pour former une unique couche de graphène bien structurée. At this time, the kinetic energy of the carbon species will be sufficient to form a single layer of well-structured graphene.
Selon un autre mode de réalisation, l'obturateur 8 est disposé entre le substrat 1 et la source de carbone 2 et il est fermé lors de la montée en température et lors du palier en température. Il est maintenu fermé lorsque la température maximale est atteinte. L'obturateur 8 est maintenu dans la même position tout au long du procédé. L'obturateur 8 peut être un écran plein. La vitesse de formation du film de graphène est ainsi réduite et le film est plus homogène. L'utilisation d'une grille 7 et/ou d'un obturateur 8 ont un rôle de filtre et permettent un contrôle précis de la quantité d'espèces carbonées arrivant sur le substrat 1 , améliorant ainsi la qualité du film de graphène. Les différents modes de réalisation décrits ci-dessus peuvent être réalisés seuls ou en combinaison les uns avec les autres. According to another embodiment, the shutter 8 is disposed between the substrate 1 and the carbon source 2 and is closed during the rise in temperature and during the temperature step. It is kept closed when the maximum temperature is reached. The shutter 8 is held in the same position throughout the process. The shutter 8 may be a full screen. The formation speed of the graphene film is thus reduced and the film is more homogeneous. The use of a gate 7 and / or a shutter 8 have a filtering role and allow precise control of the amount of carbon species arriving on the substrate 1, thus improving the quality of the graphene film. The various embodiments described above can be carried out alone or in combination with each other.
Préférentiellement, le substrat 1 est formé d'un matériau massif recouvert d'une couche mince métallique. Préférentiellement, le métal est un métal de transition, tel que Cu, Pt, Fe, Ni, Au, Ir, Ru, etc. Preferably, the substrate 1 is formed of a solid material covered with a thin metal layer. Preferably, the metal is a transition metal, such as Cu, Pt, Fe, Ni, Au, Ir, Ru, etc.
Avantageusement, les métaux de transition ont un effet catalytique lors de la formation du graphène.  Advantageously, the transition metals have a catalytic effect during the formation of graphene.
La couche mince métallique a une épaisseur comprise entre 100nm et 400nm, et de préférence entre 100nm et 300nm.  The thin metal layer has a thickness between 100 nm and 400 nm, and preferably between 100 nm and 300 nm.
Préférentiellement, la couche mince est en un métal de transition choisi parmi le platine, le cuivre, le titane ou le nickel. Il peut aussi s'agir d'un alliage de ces métaux, comme par exemple, d'un alliage de platine contenant de 0,5% à 10% d'iridium. Encore plus préférentiellement : Preferably, the thin layer is a transition metal selected from platinum, copper, titanium or nickel. It may also be an alloy of these metals, such as, for example, a platinum alloy containing from 0.5% to 10% iridium. Even more preferentially:
- le matériau massif est en silicium,  the solid material is made of silicon,
- la couche mince métallique est en platine,  the thin metallic layer is platinum,
- une couche de chrome, ayant une épaisseur de 20nm ± 5nm, est disposée entre le silicium et la couche mince métallique.  - A chromium layer, having a thickness of 20 nm ± 5 nm, is disposed between the silicon and the thin metal layer.
Le matériau massif en silicium peut être formé d'un film de silicium recouvert d'une fine couche d'oxyde de silicium SiO2. The solid silicon material may be formed of a silicon film coated with a thin layer of SiO 2 silicon oxide.
Le platine présente plusieurs avantages pour la croissance de film de graphène uniforme. Le platine a une température de fusion très élevée (1768°C) et un coefficient de dilatation thermique relativement faible (inférieur à 9 ym/mK). Durant le procédé de formation du film de graphène, et en particulier durant le traitement thermique, la couche mince de platine sera moins soumise aux contraintes mécaniques qu'une autre couche métallique. Le film de graphène présentera moins de défauts. Platinum has several advantages for uniform graphene film growth. Platinum has a very high melting temperature (1768 ° C) and a relatively low coefficient of thermal expansion (less than 9 ym / mK). During the process of forming the graphene film, and in particular during heat treatment, the platinum thin film will be less subject to mechanical stress than another metal layer. Graphene film will have fewer defects.
De plus, le platine est très difficilement, voire pas du tout oxydé, même lors des montées/descentes en température. La rugosité de la surface de la couche mince en platine reste faible.  In addition, the platinum is very difficult, or not at all oxidized, even during climbs / descents in temperature. The roughness of the surface of the platinum thin layer remains low.
L'utilisation de platine permet également, ultérieurement, de transférer facilement le film de graphène, sur un autre support, par électrochimie par exemple. The use of platinum also makes it possible, subsequently, to easily transfer the graphene film to another medium, for example by electrochemistry.
Une fois le film de graphène retiré, le substrat peut servir à un autre dépôt. La présence de la couche de chrome permet une meilleure adhérence entre le platine et le silicium.  Once the graphene film is removed, the substrate can be used for another deposit. The presence of the chromium layer allows better adhesion between platinum and silicon.
Le procédé n'est pas limité à des substrats minces, et notamment à des wafers. Selon d'autres modes de réalisation, le substrat pourrait être un substrat massif, par exemple un feuillard de platine.  The process is not limited to thin substrates, and especially wafers. According to other embodiments, the substrate could be a solid substrate, for example a platinum strip.
Le dispositif configuré pour élaborer un film de graphène sur un substrat 1 comprend : The device configured to produce a graphene film on a substrate 1 comprises:
- une chambre de réaction 3 munie d'une source de carbone 2 et d'un support 5, ledit support 5 étant destiné à maintenir un substrat 1 ,  a reaction chamber 3 provided with a carbon source 2 and a support 5, said support 5 being intended to maintain a substrate 1,
- une entrée de gaz 4 configurée pour former un flux de gaz dirigé depuis l'entrée de gaz 4 vers la source de carbone 2, a gas inlet 4 configured to form a flow of gas directed from the gas inlet 4 to the carbon source 2,
- un dispositif de chauffage configuré pour chauffer la source de carbone solide, La source de carbone est une source de carbone solide. Le gaz arrivant dans la chambre de réaction est dépourvu d'hydrocarbure. Le gaz arrivant dans la chambre de réaction est dépourvu de molécules organiques carbonées. La source de carbone 2 est, de préférence, formée d'au moins un filament. Préférentiellement, la source de carbone 2 comprend plusieurs filaments, parallèles à la surface du substrat. a heating device configured to heat the solid carbon source; the carbon source is a source of solid carbon. The gas flowing into the reaction chamber is hydrocarbon-free. The gas arriving in the reaction chamber is devoid of organic carbon molecules. The carbon source 2 is preferably formed of at least one filament. Preferably, the carbon source 2 comprises several filaments parallel to the surface of the substrate.
De préférence, le flux de gaz est perpendiculaire à la surface du substrat 1 et au plan formé par les filaments de carbone.  Preferably, the gas flow is perpendicular to the surface of the substrate 1 and the plane formed by the carbon filaments.
Préférentiellement, la source de carbone 2 est du graphite. Preferably, the carbon source 2 is graphite.
La source de carbone est disposée dans la chambre de réaction de manière à être au-dessus de la surface du substrat, à une distance comprise entre 0,5cm et 1 ,5cm, et de préférence entre 0,8cm et 1 ,2cm. The carbon source is disposed in the reaction chamber so as to be above the surface of the substrate, at a distance of between 0.5 cm and 1.5 cm, and preferably between 0.8 cm and 1.2 cm.
Comme une infime partie de la source de carbone 2 est utilisée pour chaque dépôt de graphène, la source de carbone 2 a une durée de vie relativement longue. Since a tiny portion of the carbon source 2 is used for each graphene deposit, the carbon source 2 has a relatively long life.
Le procédé va maintenant être décrit au moyen de l'exemple suivant, donné, bien entendu, à titre illustratif et non limitatif. La figure 4 représente de manière schématique et en coupe le dispositif configuré pour élaborer un film de graphène. Pour une meilleure visualisation, les différents éléments du dispositif ne sont pas à l'échelle. The process will now be described by means of the following example, given, of course, by way of illustration and not limitation. Figure 4 shows schematically and in section the device configured to develop a graphene film. For a better visualization, the various elements of the device are not to scale.
Le dispositif permet de faire croître du graphène par CVD à basse température. La chambre de réaction 3 est une cloche en quartz. La partie inférieure de la chambre de réaction 3 comporte le porte-échantillon 5. The device makes it possible to grow graphene by CVD at low temperature. The reaction chamber 3 is a quartz bell. The lower part of the reaction chamber 3 comprises the sample holder 5.
La chambre de réaction 3 peut être disposée dans une enceinte fermée 9. The reaction chamber 3 can be arranged in a closed chamber 9.
Les parois entre l'intérieur de l'enceinte et l'extérieur de l'enceinte 9 sont des doubles parois 10 dans lesquelles circule un liquide de refroidissement. The walls between the inside of the enclosure and the outside of the enclosure 9 are double walls 10 in which a cooling liquid circulates.
L'enceinte 9 est munie d'une entrée de gaz 1 1 et d'une sortie de gaz 12. Le dispositif comprend un système de pompage permettant de mettre la chambre de réaction sous vide. Le système de pompage est disposé, par exemple, au niveau de l'entrée de gaz 1 1 de l'enceinte 9. La chambre de réaction 3 peut être chauffée grâce à des serpentins de chauffage 13. The chamber 9 is provided with a gas inlet 1 1 and a gas outlet 12. The device comprises a pumping system for putting the reaction chamber under vacuum. The pumping system is arranged, for example, at the gas inlet 1 1 of the chamber 9. The reaction chamber 3 can be heated by means of heating coils 13.
Les serpentins sont disposés contre les parois extérieures de la chambre de réaction 3.  The coils are arranged against the outer walls of the reaction chamber 3.
Des écrans thermiques 14 peuvent également être disposés à l'extérieur de la chambre de réaction 3, entre les serpentins de chauffage 13 et l'intérieur de l'enceinte 1 1 , pour isoler thermiquement la chambre de réaction 3 de l'enceinte 1 1 .  Thermal screens 14 may also be arranged outside the reaction chamber 3, between the heating coils 13 and the inside of the chamber 1 1, to thermally isolate the reaction chamber 3 of the chamber 1 1 .
Les écrans thermiques 10 sont des isolants thermiques. Le porte-échantillon 5 peut également être chauffé par des serpentins de chauffage 13'.  Thermal screens 10 are thermal insulators. The sample holder 5 may also be heated by heating coils 13 '.
Dans cet exemple, les filaments sont en graphite. Ils ont une longueur de 1 10mm de long et un diamètre de 0,5mm. In this example, the filaments are graphite. They have a length of 1 10mm long and a diameter of 0.5mm.
Les filaments sont situés à 1 cm du substrat 1. Ils sont parallèles à la surface du substrat 1 . L'espace entre chaque filament est de 1 cm. The filaments are 1 cm from the substrate 1. They are parallel to the surface of the substrate 1. The space between each filament is 1 cm.
Les filaments recouvrent le substrat sur une surface de 10cmx10cm. The filaments cover the substrate on a surface of 10cmx10cm.
Le porte-échantillon 5, est en silicium. Le substrat 1 est formé d'un empilement comprenant successivement : The sample holder 5 is made of silicon. The substrate 1 is formed of a stack comprising successively:
- un wafer en silicium de 0,5mm d'épaisseur,  - a silicon wafer 0.5mm thick,
- une couche mince en SiO2 recouvrant le wafer en silicium, la couche mince de SiO2 a une épaisseur de 500nm, a thin layer of SiO 2 covering the silicon wafer, the thin layer of SiO 2 has a thickness of 500 nm,
- une couche mince en chrome de 20nm d'épaisseur,  a thin chromium layer 20 nm thick,
- une couche mince en platine, ayant une épaisseur de 200nm. La couche mince en platine a été déposée par évaporation par faisceau d'électrons sur le wafer en silicium. La couche mince en platine ainsi élaborée est polycristalline. a thin layer made of platinum having a thickness of 200 nm. The platinum thin film was deposited by electron beam evaporation on the silicon wafer. The platinum thin film thus produced is polycrystalline.
La chambre de réaction 3 est, dans un premier temps, nettoyée avec un plasma à oxygène de manière à supprimer tout élément parasite en carbone. Les filaments sont ensuite disposés dans la chambre de réaction. The reaction chamber 3 is, initially, cleaned with an oxygen plasma so as to remove any carbon parasitic element. The filaments are then placed in the reaction chamber.
Les filaments sont chauffés par une alimentation délivrant une puissance de 800W, sous un flux de dihydrogène, ce qui permet de les nettoyer et de les dégazer. The filaments are heated by a power supply delivering a power of 800W, under a stream of hydrogen, which allows them to be cleaned and degassed.
Le substrat 1 est placé dans la chambre de réaction 3, sur le porte-échantillon 5. The substrate 1 is placed in the reaction chamber 3, on the sample holder 5.
Le porte-échantillon 5 est chauffé jusqu'à 700°C. La montée en température depuis la température ambiante jusqu'à 700°C dure 10 minutes. The sample holder 5 is heated to 700 ° C. The rise in temperature from room temperature to 700 ° C lasts 10 minutes.
La pression d'hydrogène est de 7 Torr pour un flux de 100cm3/min (ou 100 sccm pour standard cubic centimeter per minute). The hydrogen pressure is 7 Torr for a flow of 100cm 3 / min (or 100 sccm for standard cubic centimeter per minute).
Le palier en température est maintenu pendant une durée allant de 5 minutes à 60 minutes, ce palier permet la synthèse du graphène.  The temperature plateau is maintained for a period ranging from 5 minutes to 60 minutes, this stage allows the synthesis of graphene.
Puis la chambre de réaction 3 est refroidie jusqu'à la température ambiante.  Then the reaction chamber 3 is cooled to room temperature.
La pression de dihydrogène peut être identique durant la montée en température et pendant le palier en température. The pressure of hydrogen can be identical during the rise in temperature and during the temperature step.
Alternativement, une première pression peut être utilisée lors de la montée en température et une deuxième pression peut être utilisée lors du palier en température. Alternatively, a first pressure can be used during the rise in temperature and a second pressure can be used during the temperature step.
Le spectre Raman et le cliché obtenu par Microscopie Electronique à Transmission, réalisés sur l'échantillon de graphène obtenu, et représentés, respectivement, sur les figures 5 et 6, confirment que l'échantillon de graphène est bien sous la forme d'un unique film de graphène (ou SLG pour Single Layer Graphene). Le film est uniforme avec très peu de défauts. The Raman spectrum and the image obtained by Transmission Electron Microscopy, made on the obtained graphene sample, and represented respectively in FIGS. 5 and 6, confirm that the graphene sample is in the form of a single graphene film (or SLG for Single Layer Graphene). The film is uniform with very few defects.
Le procédé, décrit ci-dessus, est réalisé à une température suffisamment élevée pour activer l'hydrogène, mais suffisamment faible pour éviter à la fois les phénomènes de démouillage. De plus, avec une telle température, une faible quantité de radicaux de carbone est engendrée, favorisant la formation d'un film de graphène homogène et continu. The process, described above, is carried out at a sufficiently high temperature to activate the hydrogen, but low enough to avoid both dewetting phenomena. In addition, with such a temperature, a small amount of carbon radicals is generated, promoting the formation of a homogeneous and continuous graphene film.
Le gradient thermique permet l'activation du carbone tout en assurant une bonne tenue physico-chimique de la couche de graphène.  The thermal gradient allows activation of the carbon while ensuring a good physicochemical behavior of the graphene layer.
Le procédé permet de former un film de graphène formé d'une monocouche de carbone à basse température sur des films minces métalliques. En particulier, la taille des cristallites de graphène est contrôlée de façon continue. Des films de graphène continus, sans trou, sont obtenus quelle que soit la taille des cristallites. The method makes it possible to form a graphene film formed of a carbon monolayer at low temperature on thin metal films. In particular, the size of graphite crystallites is continuously monitored. Continuous graphene films without holes are obtained irrespective of the size of the crystallites.
Les films de graphène sont particulièrement intéressants pour de nombreuses applications, et notamment pour la microélectronique, l'électronique de spin, ou encore pour des applications nécessitant des films transparents conducteurs. Graphene films are particularly interesting for many applications, and particularly for microelectronics, spin electronics, or for applications requiring transparent conductive films.

Claims

Revendications claims
1. Procédé d'élaboration d'un film de graphène comportant les étapes successives suivantes : 1. A process for producing a graphene film comprising the following successive steps:
- placer un substrat (1 ) et une source de carbone solide (2) dans une chambre de réaction (3), munie d'une entrée de gaz (4),  placing a substrate (1) and a source of solid carbon (2) in a reaction chamber (3) provided with a gas inlet (4),
- chauffer la source de carbone solide (2), par passage d'un courant dans ladite source, sous un flux de gaz, le gaz étant dépourvu d'hydrocarbure, de manière à convertir au moins une partie de la source de carbone solide (2) en un film de graphène sur le substrat (1 ).  - heating the solid carbon source (2), by passing a current in said source, under a gas flow, the gas being free of hydrocarbon, so as to convert at least a portion of the solid carbon source ( 2) in a graphene film on the substrate (1).
2. Procédé selon la revendication 1 , caractérisé en ce que pendant l'étape de chauffage, la température du substrat (1 ) est inférieure ou égale à 800°C, et de préférence, inférieure ou égale à 700°C. 2. Method according to claim 1, characterized in that during the heating step, the temperature of the substrate (1) is less than or equal to 800 ° C, and preferably less than or equal to 700 ° C.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le gaz est du dihydrogène. 3. Method according to one of claims 1 and 2, characterized in that the gas is dihydrogen.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le substrat est chauffé uniquement par la source de carbone. 4. Method according to any one of claims 1 to 3, characterized in that the substrate is heated only by the carbon source.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, la source de carbone solide (2) est formée d'au moins un filament, le filament étant disposé entre le substrat (1 ) et l'entrée de gaz (4). 5. Method according to any one of claims 1 to 4, characterized in that the solid carbon source (2) is formed of at least one filament, the filament being disposed between the substrate (1) and the inlet of gas (4).
6. Procédé selon la revendication 5, caractérisé en ce que la source de carbone solide (2) comprend plusieurs filaments formant un plan parallèle à la surface du substrat. 6. Method according to claim 5, characterized in that the solid carbon source (2) comprises a plurality of filaments forming a plane parallel to the surface of the substrate.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la source de carbone solide (2) est en graphite. 7. Method according to any one of claims 1 to 6, characterized in that the solid carbon source (2) is graphite.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la source de carbone solide (2) est disposée au-dessus de la surface du substrat (1 ), à une distance comprise entre 0,5cm et 2,5cm, et de préférence entre 0,8cm et 1 ,2cm. 8. Method according to any one of claims 1 to 7, characterized in that the solid carbon source (2) is disposed above the surface of the substrate (1) at a distance of between 0.5 cm and 2 cm. , 5cm, and preferably between 0.8cm and 1.2cm.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le substrat (1 ) est formé d'un matériau massif recouvert d'une couche mince métallique, ladite couche mince métallique ayant une épaisseur comprise entre 100nm et 400nm. 9. Method according to any one of claims 1 to 8, characterized in that the substrate (1) is formed of a solid material covered with a thin metal layer, said thin metal layer having a thickness between 100nm and 400nm .
10. Procédé selon la revendication 9, caractérisé en ce que la couche mince métallique est en platine, cuivre, titane ou nickel ou encore formée d'un alliage de platine contenant de 0,5% à 10% d'iridium. 10. The method of claim 9, characterized in that the thin metal layer is platinum, copper, titanium or nickel or formed of a platinum alloy containing from 0.5% to 10% iridium.
11. Procédé selon les revendications 9 et 10, caractérisé en ce que : 11. Process according to claims 9 and 10, characterized in that:
- le matériau massif est en silicium,  the solid material is made of silicon,
- la couche mince métallique est en platine,  the thin metallic layer is platinum,
- une couche de chrome, ayant une épaisseur de 20nm ± 5nm, est disposée entre le silicium et la couche mince métallique.  - A chromium layer, having a thickness of 20 nm ± 5 nm, is disposed between the silicon and the thin metal layer.
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce qu'une grille (7) est disposée entre le substrat (1 ) et la source de carbone solide (2). 12. Method according to any one of claims 1 to 1 1, characterized in that a grid (7) is disposed between the substrate (1) and the solid carbon source (2).
13. Procédé selon la revendication 12, caractérisé en ce que la grille (7) est en nickel. 13. The method of claim 12, characterized in that the gate (7) is nickel.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'un obturateur (8) est disposé entre le substrat (1 ) et la source de carbone solide (2), l'obturateur (8) étant fermé lors de la montée en température et l'obturateur (8) étant ouvert lors du palier en température. 14. Method according to any one of claims 1 to 13, characterized in that a shutter (8) is disposed between the substrate (1) and the source of solid carbon (2), the shutter (8) being closed during the rise in temperature and the shutter (8) being open during the temperature step.
15. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'un obturateur (8) est disposé entre le substrat (1 ) et la source de carbone solide (2), l'obturateur (8) étant fermé lors de la montée en température et lors du palier en température. 15. Method according to any one of claims 1 to 13, characterized in that a shutter (8) is disposed between the substrate (1) and the solid carbon source (2), the shutter (8) being closed during the rise in temperature and during the temperature step.
16. Dispositif configuré pour élaborer un film de graphène sur un substrat (1 ) comprenant : A device configured to develop a graphene film on a substrate (1) comprising:
- une chambre de réaction (3) munie :  a reaction chamber (3) provided with:
o d'une source de carbone solide (2), la source de carbone solide o a solid carbon source (2), the solid carbon source
(2) étant formée d'au moins un filament, et (2) being formed of at least one filament, and
o d'un support (5), ledit support (5) étant destiné à maintenir un substrat (1 ),  a support (5), said support (5) being intended to hold a substrate (1),
- une entrée de gaz (4) configurée pour former un flux de gaz dirigé depuis l'entrée de gaz (4) vers la source de carbone solide (2), le gaz étant dépourvu d'hydrocarbure,  a gas inlet (4) configured to form a flow of gas directed from the gas inlet (4) to the solid carbon source (2), the gas being free of hydrocarbon,
- un dispositif de chauffage configuré pour chauffer la source de carbone solide.  a heating device configured to heat the solid carbon source.
17. Dispositif selon la revendication 16, caractérisé en ce que le gaz est du dihydrogène. 17. Device according to claim 16, characterized in that the gas is dihydrogen.
18. Dispositif selon l'une des revendications 16 à 17, caractérisé en ce que la source de carbone solide (2) est en graphite. 18. Device according to one of claims 16 to 17, characterized in that the solid carbon source (2) is graphite.
EP15714579.8A 2014-03-07 2015-03-06 Process for producing a graphene film Withdrawn EP3129518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400560A FR3018282A1 (en) 2014-03-07 2014-03-07 METHOD FOR PRODUCING A GRAPHENE FILM
PCT/FR2015/050551 WO2015132537A1 (en) 2014-03-07 2015-03-06 Process for producing a graphene film

Publications (1)

Publication Number Publication Date
EP3129518A1 true EP3129518A1 (en) 2017-02-15

Family

ID=51260905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15714579.8A Withdrawn EP3129518A1 (en) 2014-03-07 2015-03-06 Process for producing a graphene film

Country Status (5)

Country Link
US (1) US10337102B2 (en)
EP (1) EP3129518A1 (en)
KR (1) KR20160130485A (en)
FR (1) FR3018282A1 (en)
WO (1) WO2015132537A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938874B1 (en) * 2016-07-20 2019-01-15 주식회사 참트론 The heat-treatment device for synthesis of high quality graphene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400109A (en) * 2011-11-11 2012-04-04 南京航空航天大学 Method for growing large area of layer-number-controllable graphene at low temperature through chemical vapor deposition (CVD) method by using polystyrene solid state carbon source
WO2014137985A1 (en) * 2013-03-05 2014-09-12 Lockheed Martin Corporation Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206196A (en) 2002-01-09 2003-07-22 Mitsubishi Pencil Co Ltd Hot-filament cvd apparatus
US20030230238A1 (en) * 2002-06-03 2003-12-18 Fotios Papadimitrakopoulos Single-pass growth of multilayer patterned electronic and photonic devices using a scanning localized evaporation methodology (SLEM)
CN101913598B (en) * 2010-08-06 2012-11-21 浙江大学 Method for preparing graphene membrane
US20140120270A1 (en) * 2011-04-25 2014-05-01 James M. Tour Direct growth of graphene films on non-catalyst surfaces
JP5862080B2 (en) * 2011-07-06 2016-02-16 ソニー株式会社 Graphene production method and graphene production apparatus
CN102505114A (en) * 2012-01-03 2012-06-20 西安电子科技大学 Preparation method of graphene on SiC substrate based on Ni film-aided annealing
US20130337195A1 (en) * 2012-06-18 2013-12-19 The Trustees Of Columbia University In The City Of New York Method of growing graphene nanocrystalline layers
US20140170317A1 (en) * 2012-12-17 2014-06-19 Bluestone Global Tech Limited Chemical vapor deposition of graphene using a solid carbon source
US9593019B2 (en) * 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
US20140352618A1 (en) * 2013-06-04 2014-12-04 Xuesong Li System for forming graphene on substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400109A (en) * 2011-11-11 2012-04-04 南京航空航天大学 Method for growing large area of layer-number-controllable graphene at low temperature through chemical vapor deposition (CVD) method by using polystyrene solid state carbon source
WO2014137985A1 (en) * 2013-03-05 2014-09-12 Lockheed Martin Corporation Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HENGXING JI ET AL: "Graphene Growth Using a Solid Carbon Feedstock and Hydrogen", ACS NANO, vol. 5, no. 9, 27 September 2011 (2011-09-27), US, pages 7656 - 7661, XP055560163, ISSN: 1936-0851, DOI: 10.1021/nn202802x *
See also references of WO2015132537A1 *

Also Published As

Publication number Publication date
US10337102B2 (en) 2019-07-02
KR20160130485A (en) 2016-11-11
FR3018282A1 (en) 2015-09-11
US20170016111A1 (en) 2017-01-19
WO2015132537A1 (en) 2015-09-11

Similar Documents

Publication Publication Date Title
EP2233435B1 (en) Method for producing graphene
EP1614765B1 (en) Low temperature growth of oriented carbon nanotubes
US7988941B2 (en) Graphene sheet and method of preparing the same
JP5066651B2 (en) Epitaxial diamond film base substrate manufacturing method and epitaxial diamond film manufacturing method using this base substrate
EP0005442B1 (en) Process and apparatus for producing aluminium nitride useful for electronic applications
EP2782870A1 (en) Method for producing a graphene film
EP2376671B1 (en) Method for making diamond composite materials
EP0001373B1 (en) Method of forming smooth and pinhole-free silicon carbide films on a silicon substrate
FR3031345A1 (en) PROCESS FOR THE SYNTHESIS OF CARBON MATERIALS FROM CARBONIC AGGLOMERATES CONTAINING CARBYN / CARBYNOID CHAINS
EP3129518A1 (en) Process for producing a graphene film
WO2014174133A1 (en) Method for the controlled production of graphene under very low pressure and device for carrying out said method
FR2664389A1 (en) RADIATION - RESISTANT OPTICAL ARTICLES MADE OF A HIGH ISOTOPIC PURITY MONOCRYSTALLINE DIAMOND.
FR2995618A1 (en) PROCESS FOR SURFACE TREATMENT OF MONOCRYSTALS OF MATERIALS
WO2017037396A1 (en) Method for recrystallisation of a carbonaceous material, such as graphene or carbon nanotubes
FR2471671A1 (en) AMORPHOUS SILICON PHOTOVOLTAIC DEVICE PRODUCING HIGH VOLTAGE IN OPEN CIRCUIT
EP3632845A1 (en) Multilayer stack for cvd growth of carbon nanotubes
JP2015147706A (en) Method of manufacturing single crystal graphene using plastic waste and the like as raw material, and touch panel using single crystal graphene
JP2013237575A (en) Method for forming graphene film
WO2010010176A1 (en) Process for microstructuring a diamond film
JP5666984B2 (en) Preparation method of carbon thin film
Panwar et al. Synthesis of multilayer graphene by filtered cathodic vacuum arc technique
WO2009068784A1 (en) Method and device for producing a homogeneous discharge on non-insulating substrates
Michniak et al. Characterisation of boron doped diamond thin films
FR2811686A1 (en) PROCESS FOR THE MANUFACTURE OF CARBON LAYERS CAPABLE OF EMITTING ELECTRONS, BY CHEMICAL VAPOR DEPOSITION
EP1411143A1 (en) Process for producing tubular pieces with an internal diamond coating

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191209

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603