EP3129419A1 - Process for the production of polyoxymethylene block copolymers - Google Patents
Process for the production of polyoxymethylene block copolymersInfo
- Publication number
- EP3129419A1 EP3129419A1 EP15712975.0A EP15712975A EP3129419A1 EP 3129419 A1 EP3129419 A1 EP 3129419A1 EP 15712975 A EP15712975 A EP 15712975A EP 3129419 A1 EP3129419 A1 EP 3129419A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polyoxymethylene
- alkylene oxides
- formaldehyde
- starter compound
- polymeric formaldehyde
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229930040373 Paraformaldehyde Natural products 0.000 title claims abstract description 98
- -1 polyoxymethylene Polymers 0.000 title claims abstract description 93
- 229920006324 polyoxymethylene Polymers 0.000 title claims abstract description 80
- 229920001400 block copolymer Polymers 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 76
- 230000008569 process Effects 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 316
- 150000001875 compounds Chemical class 0.000 claims abstract description 105
- 239000007858 starting material Substances 0.000 claims abstract description 97
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 77
- 239000003054 catalyst Substances 0.000 claims abstract description 70
- 229920000642 polymer Polymers 0.000 claims abstract description 35
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 23
- 229920002635 polyurethane Polymers 0.000 claims abstract description 21
- 239000004814 polyurethane Substances 0.000 claims abstract description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 76
- 230000004913 activation Effects 0.000 claims description 43
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 41
- 239000001569 carbon dioxide Substances 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 40
- 238000006243 chemical reaction Methods 0.000 claims description 39
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 29
- 239000000375 suspending agent Substances 0.000 claims description 29
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 21
- 229920002866 paraformaldehyde Polymers 0.000 claims description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 14
- 239000003999 initiator Substances 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 claims description 7
- 239000011496 polyurethane foam Substances 0.000 claims description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 238000009472 formulation Methods 0.000 claims description 6
- 125000005842 heteroatom Chemical group 0.000 claims description 6
- 229920001228 polyisocyanate Polymers 0.000 claims description 6
- 239000005056 polyisocyanate Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 4
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000002537 cosmetic Substances 0.000 claims description 3
- 229940117389 dichlorobenzene Drugs 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 3
- 239000002816 fuel additive Substances 0.000 claims description 3
- 239000002563 ionic surfactant Substances 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 239000002736 nonionic surfactant Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 claims description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 claims description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 2
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 claims description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 2
- 239000003599 detergent Substances 0.000 claims 1
- 230000003213 activating effect Effects 0.000 abstract description 5
- 235000019256 formaldehyde Nutrition 0.000 description 92
- 238000007792 addition Methods 0.000 description 31
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 24
- 239000000047 product Substances 0.000 description 24
- 229920005862 polyol Polymers 0.000 description 16
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 16
- 239000000725 suspension Substances 0.000 description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000006227 byproduct Substances 0.000 description 11
- 238000005227 gel permeation chromatography Methods 0.000 description 11
- 150000003077 polyols Chemical class 0.000 description 11
- 239000000178 monomer Substances 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 150000002118 epoxides Chemical class 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- BCJPEZMFAKOJPM-UHFFFAOYSA-N 2-ethyl-3-methyloxirane Chemical compound CCC1OC1C BCJPEZMFAKOJPM-UHFFFAOYSA-N 0.000 description 3
- 229920012196 Polyoxymethylene Copolymer Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 2
- 229920009382 Polyoxymethylene Homopolymer Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000005840 aryl radicals Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 150000002373 hemiacetals Chemical group 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- CKFGINPQOCXMAZ-UHFFFAOYSA-N methanediol Chemical compound OCO CKFGINPQOCXMAZ-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- CZLMRJZAHXYRIX-UHFFFAOYSA-N 1,3-dioxepane Chemical compound C1CCOCOC1 CZLMRJZAHXYRIX-UHFFFAOYSA-N 0.000 description 1
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical compound CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- NQFUSWIGRKFAHK-UHFFFAOYSA-N 2,3-epoxypinane Chemical compound CC12OC1CC1C(C)(C)C2C1 NQFUSWIGRKFAHK-UHFFFAOYSA-N 0.000 description 1
- BBBUAWSVILPJLL-UHFFFAOYSA-N 2-(2-ethylhexoxymethyl)oxirane Chemical compound CCCCC(CC)COCC1CO1 BBBUAWSVILPJLL-UHFFFAOYSA-N 0.000 description 1
- WAVKEPUFQMUGBP-UHFFFAOYSA-N 2-(3-nitrophenyl)acetonitrile Chemical compound [O-][N+](=O)C1=CC=CC(CC#N)=C1 WAVKEPUFQMUGBP-UHFFFAOYSA-N 0.000 description 1
- LKMJVFRMDSNFRT-UHFFFAOYSA-N 2-(methoxymethyl)oxirane Chemical compound COCC1CO1 LKMJVFRMDSNFRT-UHFFFAOYSA-N 0.000 description 1
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 1
- MPGABYXKKCLIRW-UHFFFAOYSA-N 2-decyloxirane Chemical compound CCCCCCCCCCC1CO1 MPGABYXKKCLIRW-UHFFFAOYSA-N 0.000 description 1
- GXOYTMXAKFMIRK-UHFFFAOYSA-N 2-heptyloxirane Chemical compound CCCCCCCC1CO1 GXOYTMXAKFMIRK-UHFFFAOYSA-N 0.000 description 1
- NJWSNNWLBMSXQR-UHFFFAOYSA-N 2-hexyloxirane Chemical compound CCCCCCC1CO1 NJWSNNWLBMSXQR-UHFFFAOYSA-N 0.000 description 1
- YVCOJTATJWDGEU-UHFFFAOYSA-N 2-methyl-3-phenyloxirane Chemical compound CC1OC1C1=CC=CC=C1 YVCOJTATJWDGEU-UHFFFAOYSA-N 0.000 description 1
- LXVAZSIZYQIZCR-UHFFFAOYSA-N 2-nonyloxirane Chemical compound CCCCCCCCCC1CO1 LXVAZSIZYQIZCR-UHFFFAOYSA-N 0.000 description 1
- AAMHBRRZYSORSH-UHFFFAOYSA-N 2-octyloxirane Chemical compound CCCCCCCCC1CO1 AAMHBRRZYSORSH-UHFFFAOYSA-N 0.000 description 1
- DAJFVZRDKCROQC-UHFFFAOYSA-N 3-(oxiran-2-ylmethoxy)propyl-tripropoxysilane Chemical compound CCCO[Si](OCCC)(OCCC)CCCOCC1CO1 DAJFVZRDKCROQC-UHFFFAOYSA-N 0.000 description 1
- ZQDPJFUHLCOCRG-UHFFFAOYSA-N 3-hexene Chemical compound CCC=CCC ZQDPJFUHLCOCRG-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- GJEZBVHHZQAEDB-UHFFFAOYSA-N 6-oxabicyclo[3.1.0]hexane Chemical compound C1CCC2OC21 GJEZBVHHZQAEDB-UHFFFAOYSA-N 0.000 description 1
- MLOZFLXCWGERSM-UHFFFAOYSA-N 8-oxabicyclo[5.1.0]octane Chemical compound C1CCCCC2OC21 MLOZFLXCWGERSM-UHFFFAOYSA-N 0.000 description 1
- MELPJGOMEMRMPL-UHFFFAOYSA-N 9-oxabicyclo[6.1.0]nonane Chemical compound C1CCCCCC2OC21 MELPJGOMEMRMPL-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 235000003846 Ricinus Nutrition 0.000 description 1
- 241000322381 Ricinus <louse> Species 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000004651 carbonic acid esters Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- SZAVHWMCBDFDCM-KTTJZPQESA-N cobalt-60(3+);hexacyanide Chemical compound [60Co+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] SZAVHWMCBDFDCM-KTTJZPQESA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohexene oxide Natural products O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 1
- ODADONMDNZJQMW-UHFFFAOYSA-N diethoxy-ethyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](CC)(OCC)CCCOCC1CO1 ODADONMDNZJQMW-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 235000019960 monoglycerides of fatty acid Nutrition 0.000 description 1
- UCAOGXRUJFKQAP-UHFFFAOYSA-N n,n-dimethyl-5-nitropyridin-2-amine Chemical compound CN(C)C1=CC=C([N+]([O-])=O)C=N1 UCAOGXRUJFKQAP-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000582 polyisocyanurate Polymers 0.000 description 1
- 239000011527 polyurethane coating Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ADXGNEYLLLSOAR-UHFFFAOYSA-N tasosartan Chemical compound C12=NC(C)=NC(C)=C2CCC(=O)N1CC(C=C1)=CC=C1C1=CC=CC=C1C=1N=NNN=1 ADXGNEYLLLSOAR-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/86—Polyethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/14—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4866—Polyethers having a low unsaturation value
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/56—Polyacetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2/00—Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
- C08G2/38—Block or graft polymers prepared by polymerisation of aldehydes or ketones on to macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/18—Block or graft polymers
- C08G64/183—Block or graft polymers containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/32—General preparatory processes using carbon dioxide
- C08G64/34—General preparatory processes using carbon dioxide and cyclic ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2663—Metal cyanide catalysts, i.e. DMC's
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/035—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2381—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds polyamides; polyamide-esters; polyurethane, polyureas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/12—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/14—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
- C10M149/20—Polyureas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/10—General cosmetic use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2650/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G2650/28—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
- C08G2650/58—Ethylene oxide or propylene oxide copolymers, e.g. pluronics
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/02—Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
- C10L2200/0259—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/045—Polyureas; Polyurethanes
Definitions
- the present invention describes a process for the preparation of polyoxymethylene block copolymers. It further relates to polyoxymethylene block copolymers obtainable by such a process and to their use.
- Block copolymers comprising polyoxymethylene units in addition to other polymer and polycondensate units are disclosed, for example, in JP 2007 211082 A, WO 2004/096746 Al, GB 807589, EP 1 418 190 A1, US Pat. No. 3,754,053, US Pat. No. 3,575,930, US 2002/0016395, and JP 04 -306215.
- JP 2007 211082 A describes the reaction of polyoxyalkylene polyols having an equivalent weight of> 2500 with formaldehyde, formaldehyde oligomers or formaldehyde polymers to polyoxymethylene-polyoxyalkylene block copolymers using anionic or cationic polymerization catalysts.
- the high molecular weight low polydispersity polyoxyalkylene polyol starters used are prepared via double metal cyanide (DMC) catalysis.
- DMC double metal cyanide
- the resulting polyoxymethylene-polyoxyalkylene block copolymers Due to the high molecular weight of the polyoxyalkylene polyols, the resulting polyoxymethylene-polyoxyalkylene block copolymers have a molecular weight of at least> 5000 g / mol and are therefore less widely usable as a polyurethane building block.
- the direct reaction of the polyoxyalkylene polyols with the polyoxymethylene polymers via a melt-kneading process makes the use of high temperatures and corresponding specific high-viscosity apparatuses (extruders, kneaders, etc.) necessary.
- No. 3,754,053 describes polyoxymethylene-polyoxyalkylene block copolymers having a molecular weight> 10,000 g / mol.
- trioxane is converted to a polyoxymethylene prepolymer and this is then reacted in the presence of e.g. NaOH reacted as a polymerization catalyst with alkylene oxides.
- the polymers described are less suitable for use as polyurethane building blocks.
- WO 2004/096746 Al and US 2006/0205915 Al disclose the reaction of formaldehyde oligomers with alkylene oxides and / or isocyanates.
- the described use of formaldehyde oligomers HO- (CH 2 O) n -H Polyoxymethylen- Blockcopolymere obtained with a relatively narrow molecular weight distribution of n 2-19, wherein for "
- EP 1 870 425 A1 discloses a process for the preparation of polyoxyalkylene-containing polyols by condensation of substituted or unsubstituted phenol structures with formaldehydes and / or other substituted alkanal structures.
- the resulting phenol-formaldehyde condensates are used here as polyol starters for the alkoxylation, wherein no oxymethylene repeat units are formed within these starter compounds.
- the resulting properties of the alkoxylated, aromatic-containing polyols fundamentally differ from aliphatic polyol structures.
- WO2012 / 091968 A1 claims a process for the preparation of polyetherols by polymerization of alkylene oxides on starter compounds with the aid of DMC catalysts.
- oligomeric phenol-formaldehyde condensates are disclosed as corresponding starter, which differs structurally fundamentally from the polyoxymethylene starter structure.
- the cleavage of the formaldehyde starter compounds used in smaller polymers, oligomers and monomers, the formation of by-products and decomposition products should be avoided as much as possible and the process safety can be increased.
- stable low-molecular weight polyoxymethylene block copolymers should be available which have hydroxy-functionalized end groups and are suitable for the reaction with di- or polyisocyanates for the preparation of polyurethanes.
- the process according to the invention should preferably also be suitable, polyoxymethylene-polyoxyalkylene carbonate Block copolymers accessible, with a high content of incorporated CO 2 is achieved.
- this object is achieved by a process for the preparation of polyoxymethylene block copolymers by catalytic addition of alkylene oxides and optionally further comonomers to at least one polymeric formaldehyde polymer.
- a starter compound having at least one terminal hydroxyl group in the presence of a double metal cyanide (DMC) catalyst wherein
- the DMC catalyst in a first step, is activated in the presence of the polymeric formaldehyde starter compound, wherein for activating the DMC catalyst, a partial amount (based on the total amount of used in the activation and polymerization of alkylene oxides) of one or more Alkylene oxides is added (“activation"),
- step (Ii) in a second step one or more alkylene oxides and optionally further comonomers are added to the mixture resulting from step (i), wherein the alkylene oxides used in step (ii) may be the same or different from the alkylene oxides used in step (i) ("Polymerization"), and wherein the activation of the DMC catalyst in the first step (i) takes place at an activation temperature (T act ) of 20 to 120 ° C.
- T act activation temperature
- polyoxymethylene block copolymers obtainable by the process according to the invention, their use and polyurethane polymers comprising the polyoxymethylene block copolymers according to the invention.
- Formaldehyde starter compounds, etc. are used.
- Polyoxymethylene block copolymers in the context of the invention are polymeric compounds which contain at least one polyoxymethylene block and at least one additional oligomer ⁇
- Block e.g., polyoxyalkylene or polyoxyalkylene carbonate blocks
- Block preferably does not exceed a four-figure molecular weight.
- the resulting polyoxymethylene block copolymers offer a number of advantages over existing polymers.
- certain physical properties such as glass transition temperatures, melting ranges, viscosities and solubilities, etc., can be specifically controlled over the length of the polyoxymethylene blocks in relation to the other oligomeric blocks.
- the partial crystallinity in the polyoxymethylene block copolymers according to the invention is typically reduced, which likewise usually leads to a reduction in glass transition temperatures, melting points and viscosities, etc.
- the presence of additional polyoxyalkylene b also typically results in a significant increase in chemical and thermal stability.
- the resulting polyoxymethylene block copolymers generally have good solubilities in various solvents, are usually melted easily and without mass loss, or are already present at low temperatures in the liquid state.
- Polyoxymethylene homopolymers thus show the polyoxymethylene block copolymers a significantly better processability.
- the proportion of polyoxyalkylene units which are prepared from the corresponding alkylene oxides is reduced by the proportion of polyoxymethylene, which contributes to an advantageous economy of the product.
- Various physical properties such as glass transition temperatures, melting ranges, viscosities, solubility, etc. can be determined for a given molecular weight over the length of the polyoxymethylene blocks in relation to the polyoxyalkylene blocks, and via the molecular weight of the polymeric formaldehyde starter compound (polyoxymethylene block) used, be targeted.
- the synthetic variable molecular structure of the resulting polyoxymethylene block copolymers also allows tailor-made "hard-soft" segments to be formed at the molecular level advantageous physical properties, in particular of secondary products of these
- Suitable polymeric formaldehyde starter compounds for the process according to the invention are in principle those oligomeric and polymeric forms of formaldehyde which have at least one terminal hydroxyl group for reaction with the alkylene oxides and optionally have further comonomers.
- terminal hydroxyl group is understood to mean in particular a terminal hemiacetal functionality which results as a structural feature via the polymerization of the formaldehyde
- the starter compounds may be oligomers and polymers of formaldehyde of the general formula HO- (CH 2 O) n -H, where n is an integer> 2 and wherein polymeric formaldehyde typically has n> 8 repeating units.
- suitable polymeric formaldehyde starter compounds generally have molecular weights of 62 to 30,000 g / mol, preferably from 62 to 12,000 g / mol, more preferably from 242 to 6000 g / mol and most preferably from 242 to 3000 g / mol and include from 2 to 1000, preferably from 2 to 400, more preferably from 8 to 200 and most preferably from 8 to 100 oxymethylene repeating units.
- the starter compounds used in the process according to the invention typically have a functionality (F) of 1 to 3, but in certain cases they may also be more highly functional, ie have a functionality> 3.
- the formaldehyde starter compounds can in principle also be used in the form of a copolymer in the process according to the invention, 1,4-dioxane or 1,3-dioxolane being copolymerized in addition to formaldehyde as comonomers.
- Further suitable formaldehyde copolymers for the process according to the invention are copolymers of formaldehyde and of trioxane with cyclic and / or linear formals, such as butanediol formal, or epoxides.
- H-functional starter substance can be used compounds having active for the alkoxylation H atoms having a molecular weight of 18 to 4500 g / mol, preferably from 62 to 2500 g / mol and particularly preferably from 62 to 1000
- active groups having active H atoms are, for example, -OH, -NH 2 (primary amines), -NH- (secondary amines), -SH and -CO 2 H, preferred are -OH and -NH 2, especially
- the H-functional starter substance is, for example, one or more compounds selected from the group consisting of mono- or polyhydric alcohols, polyhydric amines, polyhydric thiols, amino alcohols, thioalcohols, hydroxyesters, polyetherpolyols, polyesterpolyols, polyesteretherpol
- An advantage of the method according to the invention is in particular that polymeric formaldehyde or so-called paraformaldehyde, which is commercially available and inexpensive, can be used directly as a starter compound, without the need for additional preparatory steps.
- paraformaldehyde is therefore used as starter compound.
- polyoxymethylene B curls having a defined molecular weight and functionality can be introduced into the product via the molecular weight and end-group functionality of the polymeric formaldehyde starter compound.
- the length of the polyoxymethylene block can be controlled simply by the molecular weight of the formaldehyde starter compound used.
- mixtures of polymeric formaldehyde compounds of the formula HO- (CH 2 O) n -H, each having different values of n can also be used as starter compound.
- the mixtures used of polymeric formaldehyde starter compounds of the formula HO- (CH 2 O) n H contain at least 1% by weight, preferably at least 5% by weight and particularly preferably at least 10% by weight of polymeric formaldehyde compounds with n > 20.
- polyoxymethylene block copolymers having an ABA block structure comprising an inner polyoxymethylene block (B) and outer oligomeric blocks (A) can be obtained by the method of the present invention.
- formaldehyde starter compounds having a hydroxyl end group functionality F> 2 which therefore have homologous block structures B (-A) y with a number y> 2 of outer oligomeric blocks (A) corresponding to resulting from the functionality of the formaldehyde starter compound used, can represent.
- a polyoxymethylene block in the meaning of the invention denotes a polymeric structural unit - (CH 2 -) - x wherein x is an integer> 2, which contains at least one CFh group bound to two oxygen atoms, which contains at least one of the oxygen atoms Methylene groups or other polymeric structures is connected.
- Polyoxymethylene blocks preferably contain - (CH 2 O-) x on average x> 2 to x ⁇ 1000, more preferably on average x> 2 to x ⁇ 400 and particularly preferably on average x> 8 to x ⁇ 100 oxymethylene units.
- a polyoxymethylene block is also understood as meaning those blocks which contain small amounts of further monomeric and / or oligomeric units, generally less than 25 mol%, based on the total amount of monomer units present in the block.
- the outer oligomeric blocks (A) preferably represent polyoxyalkylene or polyoxyalkylene carbonate blocks, and polyoxyalkylene or polyoxyalkylene carbonate blocks within the meaning of the invention are also understood as meaning those blocks in which (small) fractions of further comonomers, generally less than 50 mol -%, preferably less than 25 mol%, based on the total amount of all repeating units present in the oligomeric block, are polymerized.
- a polyoxyalkylene carbonate block in the context of the invention denotes a polymeric structural unit -O [(C 2 R 1 R 2 R 3 R 4 O) x (CO 2 ) (C 2 R 1 R 2 R 3 R 4 O) y ] z -, with x> 1, y> 0 and z> 1, where R 1 , R 2 , R 3 and R 4 independently of one another are hydrogen, an optionally additional heteroatom such as nitrogen, oxygen, silicon, sulfur or phosphorus containing alkyl or aryl radical and may differ in different repeating units.
- alkyl generally in the context of the entire invention comprises substituents from the group n-alkyl such as methyl, ethyl or propyl, branched alkyl and / or cycloalkyl.
- aryl generally in the context of the entire invention substituents from the group mononuclear carbo- or heteroaryl substituents such as phenyl and / or polynuclear carbo- or heteroaryl substituents, optionally with other alkyl groups and / or heteroatoms such as nitrogen, oxygen, silicon, sulfur or Phosphorus may be substituted.
- the radicals R 1, R 2, R 3 and / or R 4 may be linked within a repeating unit together so that they form cyclic structures, such as a cycloalkyl residue, which is installed on two adjacent carbon atoms in the polymer chain.
- formaldehyde starter compounds which are present as a mixture of different polymer chain lengths, such as paraformaldehyde, polyoxymethylene copolymers having a low content of by-products and decomposition products and a narrow molecular weight distribution.
- formaldehyde starter compounds which are present as a mixture of different polymer chain lengths, such as paraformaldehyde, polyoxymethylene copolymers having a low content of by-products and decomposition products and a narrow molecular weight distribution.
- conditioning of the formaldehyde initiator compound also takes place during the activation step of the DMC catalyst, formation of by-products and decomposition products (such as formates, methoxy derivatives, monomeric formaldehyde). , as well as the defragmentation of the polymeric formaldehyde to shorter chain lengths prevented and at the same time a sufficient activity and selectivity of the catalyst is achieved.
- the formaldehyde starter compound which is present in thermally and chemically labile and mostly insoluble hemiacetal form is converted by the reaction with the alkylene oxide in a thermally and chemically stable form.
- the step of activating the DMC catalyst can be combined with the conditioning of the polymeric formaldehyde initiator and perform particularly advantageous at unexpectedly mild temperatures. The same was not to be expected since DMC catalysts typically require much higher temperatures, for example of 130 ° C, for activation.
- the conditioning of the formaldehyde starter compound in the presence of the DMC catalyst allows the initiator in the subsequent polymerization step can be reacted at higher reaction temperatures with alkylene oxides and optionally further comonomers, without causing further defragmentation and / or the formation of By-products and decomposition products.
- Another advantage is that the conditioned formaldehyde starter compound usually has a much higher solubility after conditioning, so that only small amounts or no further solvents and / or suspending agents are needed.
- an active DMC catalyst system for the polymerization is present and a steadily progressing polymerization with continuous addition of the comonomers ensures a safe process and high product quality.
- the activation of the DMC catalyst therefore takes place in the presence of the polymeric formaldehyde starter compound.
- the initiator compound and the DMC catalyst may optionally be suspended in a suspending agent.
- a further liquid starter compound (“co-tarter”) in the mixture, wherein the DMC catalyst and the polymeric formaldehyde starter compound are suspended in the latter
- the activation of the DMC catalyst takes place according to the invention at an activation temperature Tact in the region of 20 to 120 ° C, preferably at 30 to 120 ° C, more preferably at 40 to 100 ° C and most preferably at 60 to 100 ° C.
- Activation of the DMC catalyst is understood to mean a step in which a portion of alkylene oxide is added to the DMC catalyst suspension at the specific activation temperature and then the addition of the alkylene oxide is interrupted, resulting in heat generation due to a subsequent exothermic chemical reaction, which can lead to a temperature peak ("hotspot”), and due to the reaction of alkylene oxide, a pressure drop is observed in the reactor.
- hotspot temperature peak
- DMC catalysts suitable for use in the homopolymerization of alkylene oxides are known in principle from the prior art (see, for example, US Pat. A 5 158 922).
- DMC catalysts e.g. in US Pat. No. 5,470,813, EP-A 700 949, EP-A 743 093, EP-A 761 708, WO 97/40086, WO 98/16310 and WO 00/47649 have very high activity in the Polymerization of alkylene oxides and optionally the copolymerization of alkylene oxides with suitable comonomers and allow the preparation of polyoxymethylene copolymers at very low catalyst concentrations, so that a separation of the catalyst from the finished product i. a. is no longer necessary.
- a typical example is the highly active DMC catalysts described in EP-A 700 949 which, in addition to a double metal cyanide compound (eg zinc hexacyanocobaltate (III)) and an organic complex ligand (eg tert.-butanol), have a polyether with a number average molecular weight greater than 500 g / mol.
- a double metal cyanide compound eg zinc hexacyanocobaltate (III)
- an organic complex ligand eg tert.-butanol
- the concentration of DMC catalyst used is 10 to 10,000 ppm, more preferably 20 to 5,000 ppm, and most preferably 50 to 2,000 ppm, based on the mass of the produced polyoxymethylene block copolymer.
- the DMC catalyst may be left in the product or (partially) be separated.
- the (partial) separation of the DMC catalyst can be carried out, for example, by treatment with adsorbents and / or filtration.
- the epoxide (alkylene oxide) used for the preparation of the polyoxymethylene block copolymers are compounds of the general formula (I):
- R 1 , R 2 , R 3 and R 4 are independently hydrogen or an optionally additional heteroatoms such as nitrogen, oxygen, silicon, sulfur or phosphorus-containing alkyl or aryl radical and may optionally be linked together such that they form cyclic structures, such as a cycloalkylene oxide.
- alkylene oxides which are suitable for the polymerization in the presence of a DMC catalyst. If different alkylene oxides are used, they can be added either as a mixture or in succession. In the case of the latter metering method, the polyether chains of the polyoxymethylene-polyoxyalkylene block copolymer obtained therefrom can likewise have a block structure.
- alkylene oxides (epoxides) having 2-24 carbon atoms can be used for the process according to the invention.
- the alkylene oxides having 2-24 carbon atoms are, for example, one or more compounds selected from the group consisting of ethylene oxide, propylene oxide, 1-butene oxide, 2,3-butene oxide, 2-methyl-1,2-propene oxide (isobutene oxide), 1-pentoxide, 2,3-pentenoxide, 2-methyl-l, 2-butene oxide, 3-methyl-1,2-butene oxide, 1-hexene oxide, 2,3-hexene oxide, 3,4-hexene oxide, 2-methyl- 1, 2-pentenoxide, 4-methyl-l, 2-pentenoxide, 2-ethyl-l, 2-butene oxide, 1-epoxide, 1-octene oxide, 1-nonene oxide, 1-decene oxide, 1-undecenoxide, 1-dodecene oxide, 4-methyl-l, 2-pentenoxide, butad
- the epoxide of the general formula (I) is a terminal epoxide, wherein R 1 , R 2 and R 3 are hydrogen, and R 4 is hydrogen, an optionally additional heteroatoms such as nitrogen, oxygen, silicon, sulfur or phosphorus-containing alkyl or Aryl may be and may differ in different repeating units.
- the alkylene oxides used are preferably ethylene oxide and / or propylene oxide, in particular propylene oxide.
- the process according to the invention is preferably carried out in such a way that the activation of the catalyst and the conditioning of the polymeric formaldehyde initiator compound in step ( ⁇ ) are followed by a polymerization step ( ⁇ ) with metered addition of one or more alkylene oxides.
- the process can also be terminated after step ( ⁇ ), so that the conditioned polymeric formaldehyde starter compound is then the end product of the process.
- This generally has a high stability by the conditioning according to the invention and, analogously to the polyoxymethylene block copolymer obtained from step ( ⁇ ), if desired, can be used as an OH-functional building block for various subsequent reactions.
- the polymerization of the alkylene oxides takes place in the presence of a further comonomer.
- a further comonomer for example, all oxygen-containing cyclic compounds, in particular cyclic ethers, such as e.g. Oxetane, THF, dioxane or cyclic acetals such as e.g. 1,3-dioxolane or 1,3-dioxepane, cyclic esters such as e.g. ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, or cyclic acid anhydrides, e.g. Maleic anhydride, glutaric anhydride or phthalic anhydride and carbon dioxide are used.
- carbon dioxide is used as comonomer.
- the dosage of other co-monomers can be carried out in pure substance, in solution or as a mixture with one or more alkylene oxides.
- the dosage of other co-monomers can also be done in parallel with the dosage or following the dosage of the alkylene oxides.
- Polyoxymethylene-polyoxyalkylene carbonate block copolymers in the context of the invention refer to polymeric compounds which contain at least one polyoxymethylene block and at least one polyoxyalkylene carbonate block.
- Polyoxymethylene-polyoxyalkylene carbonate block copolymers are of particular interest as feedstocks in the polyurethane sector, as well as for applications in the polyoxymethylene (POM) sector.
- POM polyoxymethylene
- polyoxymethylene-polyoxyalkylene carbonate copolymers can be provided via the process according to the invention, a high content of incorporated CO 2 being achieved, the products having a comparatively low polydispersity and containing very few by-products and decomposition products of the polymeric formaldehyde.
- European Patent Application EP13171772.0 discloses a process for the preparation of polyoxyalkylene carbonate-polyoxymethylene block copolymers wherein polyoxyalkylene carbonates having Zerewitinoff-active H atoms are reacted as starter compounds with gaseous monomeric formaldehyde being polymerized.
- polyoxymethylene-polyoxyalkylene carbonate block copolymers having internal polyoxymethylene blocks can not be built by this process, and the products obtained from the polymerization with monomeric formaldehyde must be reacted in an additional step with epoxides, cyclic carboxylic or carbonic acid esters to form stable products with terminal functionalities to obtain.
- the method according to the invention is characterized in that in the first step (i)
- a suspension agent or a polymeric formaldehyde starter compound is initially charged and optionally water and / or other readily volatile compounds are removed by increased temperature and / or reduced pressure ("drying"), the DMC Catalyst is added to the polymeric formaldehyde starter compound or the suspending agent before or after drying,
- Alkylene oxides are added to the mixture resulting from step (a), wherein this addition of a partial amount of alkylene oxide may optionally be carried out in the presence of further comonomers, such as in particular CO2, and then occurring due to the following exothermic chemical reaction temperature peak ("hotspot” ) and / or a pressure drop in the reactor is respectively awaited, and wherein the step (ß) for
- step ( ⁇ ) one or more alkylene oxides and optionally further comonomers, in particular carbon dioxide, are added to the mixture resulting from step ( ⁇ ), wherein the alkylene oxides used in step ( ⁇ ) may be the same or different from those of
- Step (ß) alkylene oxides used (“polymerization"), wherein at least one of the steps in step (a) and (ß) at least one polymeric formaldehyde starter compound is added.
- the polymeric formaldehyde starter compound may in this case be introduced together with the DMC catalyst and the suspending agent in step (a), or preferably after drying, at the latest in step ( ⁇ ).
- suspending agents optionally used generally contain no H-functional groups. Suitable suspending agents are all polar aprotic, weakly polar aprotic and nonpolar aprotic solvents, each of which is not H-functional
- suspending agent it is also possible to use a mixture of two or more of these suspending agents.
- the following polar aprotic suspending agents may be mentioned at this point: 4-methyl-2-oxo-1,3-dioxolane (also referred to below as cyclic propylene carbonate or cPC), 1,3-dioxolan-2-one (hereinafter also as cyclic ethylene carbonate or cEC), acetone, methyl ethyl ketone, acetonitrile, nitromethane,
- Dimethylsulfoxide sulfolane, dimethylformamide, dimethylacetamide and N-methylpyrrolidone.
- ethers such as dioxane, diethyl ether, methyl tert-butyl ether and tetrahydrofuran, esters such as ⁇
- Ethyl acetate and butyl acetate hydrocarbons, e.g. Pentane, n-hexane, benzene and alkylated benzene derivatives (e.g., toluene, xylene, ethylbenzene) and chlorinated hydrocarbons such as, chloroform, chlorobenzene, dichlorobenzene and carbon tetrachloride.
- hydrocarbons e.g. Pentane, n-hexane, benzene and alkylated benzene derivatives (e.g., toluene, xylene, ethylbenzene) and chlorinated hydrocarbons such as, chloroform, chlorobenzene, dichlorobenzene and carbon tetrachloride.
- Preferred suspending agents are 4-methyl-2-oxo-1,3-dioxolane, 1,3-dioxolan-2-one, toluene, xylene, ethylbenzene, chlorobenzene and dichlorobenzene, and mixtures of two or more of these suspending agents, more preferably 4 Methyl 2-oxo-1,3-dioxolane and 1,3-dioxolan-2-one and toluene or a mixture of 4-methyl-2-oxo-1,3-dioxolane and 1,3-dioxolane-2 on and / or toluene. It is also possible as suspending agent to use a further starter compound which is in liquid form under the reaction conditions in admixture with the polymeric formaldehyde starter compound.
- step (a) The addition of the individual components in step (a) can take place simultaneously or successively in any order.
- step (a) preference is given to initially charging a suspending agent which does not contain any H-functional groups in the reactor. Subsequently, the amount of DMC catalyst required for the polymerization, which is preferably not activated, is added to the reactor. The order of addition is not critical. It is also possible first to fill the DMC catalyst and then the suspending agent into the reactor. Alternatively, it is also possible for the DMC catalyst to be suspended in the suspending agent first and then the suspension to be filled into the reactor. By means of the suspending agent, a sufficient heat exchange surface with the reactor wall or cooling elements installed in the reactor is made available, so that the released heat of reaction can be dissipated very well.
- the suspension agent provides heat capacity in the event of a cooling failure, so that the temperature in this case can be kept below the decomposition temperature of the reaction mixture.
- a suspension agent containing no H-functional groups, and additionally a portion of the polymeric formaldehyde starter compound and optionally DMC catalyst may be presented in the reactor, or it may also in step (a) a subset of polymeric formaldehyde starter compound and optionally DMC catalyst are introduced into the reactor.
- the total amount of the polymeric formaldehyde starter compound and optionally DMC catalyst can be initially charged in the reactor.
- the polymeric formaldehyde starter compound can in principle be presented as a mixture with further polymeric formaldehyde starter compounds or other H-functional starter compounds.
- the process may be carried out by initially introducing in step (a) a suspending agent, the polymeric formaldehyde initiator compound and the DMC catalyst, and optionally removing water and / or other volatile compounds by elevated temperature and / or reduced pressure (" Drying ") or in an alternative embodiment, the step (a) is carried out such that in a step (al) a suspending agent and the DMC catalyst and optionally water and / or other volatile compounds by increased temperature and / or reduced pressure are removed (“drying") and in a subsequent step (a2) to the mixture of step (al), the formaldehyde-initiator compound is added.
- the addition of the polymeric formaldehyde starter compound can be carried out after cooling the reaction mixture from step (a1), in particular at room temperature, or the reaction mixture can already be brought to the temperature prevailing in the subsequent step (.beta.) And the addition carried out at this temperature.
- the addition of the formaldehyde starter compound is generally carried out under inert conditions.
- the DMC catalyst is preferably used in an amount such that the content of DMC catalyst in the resulting reaction product is 10 to 10,000 ppm, more preferably 20 to 5,000 ppm, and most preferably 50 to 2,000 ppm.
- inert gas for example, argon or nitrogen
- the resulting mixture of DMC catalyst with suspending agent and / or the polymeric formaldehyde starter compound at a temperature of 90 to 150 ° C, more preferably from 100 to 140 ° C at least once, preferably three times with 1 bar 100 bar (absolute), more preferably 3 bar to 50 bar (absolute) of an inert gas (for example, argon or nitrogen), an inert gas-carbon dioxide mixture or carbon dioxide applied and then the overpressure to about 1 bar to 20 bar (absolute) reduced.
- an inert gas for example, argon or nitrogen
- the DMC catalyst can be added, for example, in solid form or as a suspension in one or more suspension media or, if the polymeric formaldehyde starter compound is in a liquid state, as a suspension in a polymeric formaldehyde initiator compound.
- Step ( ⁇ ) serves to activate the DMC catalyst.
- This step may optionally be carried out under an inert gas atmosphere, under an inert gas-carbon dioxide mixture atmosphere or under a carbon dioxide atmosphere.
- Activation for the purposes of this invention is a step in which a portion of alkylene oxide at temperatures of 20 to 120 ° C ("activation temperature") is added to the DMC catalyst suspension and then the addition of the alkylene oxide is interrupted, due to a following exothermal chemical reaction heat generation, which can lead to a temperature spike (“hotspot”), as well as due to the reaction of alkylene oxide and optionally CO2 a pressure drop is observed in the reactor.
- activation temperature a portion of alkylene oxide at temperatures of 20 to 120 ° C
- the amount of one or more alkylene oxides used in the activation in step ( ⁇ ) is 2 to 100 molar equivalents, preferably 4 to 50 molar equivalents, more preferably 4.5 to 25 molar equivalents based on the molar amount of polymeric formaldehyde starter compound , wherein the number average molecular weight (M n ) of the formaldehyde starter compound or the mixtures used is based.
- the alkylene oxide can be added in one step or in stages in several aliquots. Preferably, after the addition of a partial amount of alkylene oxide, the addition of the alkylene oxide is interrupted until the evolution of heat has occurred and only then is the next portion of alkylene oxide added.
- step (ß)) in the presence of the polymeric formaldehyde starter compound for the preparation of the polyoxymethylene block copolymers advantageously at an activation temperature T act of 20 to 120 ° C, preferably at 30 to 120 ° C, more preferably at 40 to 100 ° C and most preferably at 60 to 100 ° C is performed.
- T act activation temperature
- the heat development by the chemical reaction in the activation of the DMC catalyst according to the invention preferably does not lead to exceeding a temperature of 120 ° C in the reaction vessel. Below 20 ° C, the reaction proceeds only very slowly and activation of the DMC catalyst takes a disproportionately long time or may not take place to the desired extent.
- the step of activation is the period from the addition of the subset of alkylene oxide, optionally in the presence of CO2, to the reaction mixture comprising a suspending agent, DMC catalyst and the formaldehyde starter compound until the evolution of heat (exotherm) occurs.
- the partial amount of the alkylene oxide can be added to the reaction mixture in several individual steps, if appropriate in the presence of CO 2 , and the addition of the alkylene oxide can then be interrupted in each case.
- the activation step comprises the period from the addition of the first aliquot of alkylene oxide, optionally in the presence of CO 2, to the reaction mixture until the evolution of heat after the addition of the last aliquot of alkylene oxide has occurred.
- the activating step may be preceded by a step of drying the DMC catalyst and optionally the polymeric formaldehyde initiator compound at elevated temperature and / or reduced pressure, optionally passing an inert gas through the reaction mixture, which drying step is not part of the reaction Activation step in the context of the present invention.
- the metering of one or more alkylene oxides (and optionally the further comonomers, in particular carbon dioxide) can in principle be carried out in different ways.
- the start of dosing can be carried out from the negative pressure or at a previously selected form.
- the admission pressure is preferably set by introducing an inert gas (such as nitrogen or argon) or carbon dioxide, the pressure being (absolute) 5 mbar to 100 bar, preferably 10 mbar to 50 bar and preferably 20 mbar to 50 bar.
- an inert gas such as nitrogen or argon
- carbon dioxide the pressure being (absolute) 5 mbar to 100 bar, preferably 10 mbar to 50 bar and preferably 20 mbar to 50 bar.
- An alternative embodiment is also a two-stage activation (step ⁇ ), wherein
- the dosage of one or more alkylene oxides can be carried out simultaneously or sequentially via separate dosages (additions) or via one or more dosages. If several alkylene oxides are used for the synthesis of the polyoxymethylene block copolymers, the alkylene oxides can be metered individually or as a mixture.
- the polymerization for preparing the polyether block in the polyoxymethylene-polyoxyalkylene block copolymers is advantageously at 50 to 150 ° C., preferably at 60 to 145 ° C., particularly preferably at 70 to 140 ° C and most preferably at 90 to 130 ° C is performed. If temperatures below 50 ° C are set, the reaction proceeds disproportionately slowly. At temperatures above 150 ° C, the amount of unwanted by-products increases sharply.
- the polymerization is carried out in the presence of at least one comonomer.
- the dosage of the other comonomers can be carried out in pure substance, in solution or else in any technically realizable forms.
- the dosage of one or more alkylene oxides and the co-monomers may be simultaneous or sequential, wherein the total amount of co-monomer may be added all at once or metered over the reaction time.
- carbon dioxide is metered in as comonomer. The metering of one or more alkylene oxides takes place simultaneously or sequentially to the carbon dioxide metering.
- alkylene oxides and the comonomers preferably carbon dioxide
- an excess of carbon dioxide is preferably used based on the expected or estimated amount of incorporated carbon dioxide in the polyoxyalkylene carbonate block, since an excess of carbon dioxide is advantageous due to the inertness of carbon dioxide is.
- the amount of carbon dioxide can be set by the total pressure at the respective reaction conditions. As total pressure (absolute), the range of 0.01 to 120 bar, preferably 0.1 to 110 bar, more preferably from 1 to 100 bar for the copolymerization for the preparation of the Polyoxyalkylencarbonatblockes has proven to be advantageous.
- the copolymerization for the preparation of the polyoxyalkylene carbonate block is advantageously at 50 to 150.degree. C., preferably at 60 to 145.degree. C., particularly preferably at 70 to 140.degree. C. and very particularly preferably at 90 to 130.degree is carried out. If temperatures below 50 ° C are set, the reaction proceeds disproportionately slowly. At temperatures above 150 ° C, the amount of unwanted by-products increases sharply. Furthermore, it should be noted that the CO 2 passes in the choice of pressure and temperature from the gaseous state as possible in the liquid and / or supercritical fluid state.
- CO 2 may also be added to the reactor as a solid and then converted to the liquid and / or supercritical fluid state under the chosen reaction conditions.
- Carbon dioxide can be used in gaseous, solid, liquid or supercritical state, preferably in gaseous or solid, more preferably in the gaseous state.
- a carbon dioxide partial pressure of 1 to 73.8 bar, preferably from 1 to 60 bar, more preferably selected from 5 to 50 bar.
- the combination of pressure and temperature is selected when using gaseous carbon dioxide such that carbon dioxide is in the gaseous state as a pure substance under the selected reaction conditions.
- the corresponding conditions can be derived from the phase diagram. After introducing gaseous carbon dioxide into the reactor, this partially or completely dissolves in the reaction mixture.
- the three steps (a), ( ⁇ ) and ( ⁇ ) can be carried out in the same reactor or separately in different reactors.
- Particularly preferred reactor types for the process according to the invention are stirred tank, tubular reactor, and loop reactor.
- extruders, kneaders, etc. can also be used as preferred reactors for the process according to the invention. If the reaction steps ⁇ , ⁇ and ⁇ are carried out in different reactors, a different type of reactor can be used for each step.
- the individual steps or steps (a) and ( ⁇ ) of ( ⁇ ) are preferably spatially separated from one another, so that a separate temperature control and a suitable gas supply and application of reduced pressure, addition of polymeric formaldehyde and metering of monomers in the individual steps according to the invention is possible.
- the polyoxymethylene block copolymers according to the invention or the product mixtures obtained from the process can be worked up, in particular by distillation.
- thermal distillative workup can be carried out continuously or discontinuously as well as in parallel or following the reaction.
- Another object of the present invention are polyoxymethylene block copolymers, obtainable by the inventive method.
- the molecular weight of the polyoxymethylene block copolymers according to the invention results additively from the molecular weight of the polymeric formaldehyde starter compound and the grafted-on blocks.
- the polyoxymethylene block copolymers have a number average molecular weight of ⁇ 15,000 g / mol, preferably ⁇ 9500 g / mol, more preferably ⁇ 6000 g / mol, very particularly preferably ⁇ 5000 g / mol, in particular from 200 g / mol to 9500 g / mol, preferably from 500 g / mol to 5000 g / mol.
- the number average molecular weight can be determined, for example, by gel permeation chromatography (GPC) against, for example, polystyrene standards and / or experimentally determined hydroxyl numbers (OH #).
- the polyoxymethylene block copolymers obtainable by the process according to the invention have a block structure comprising an internal polyoxymethylene block (B) comprising at least two and at most 1000 oxymethylene units, preferably at least 2 and at most 400 oxymethylene units, more preferably from 8 to 200, and most preferably at least 8 and at most 100 Oxymethylenem felt, and at least one outer oligomeric block (A), which preferably comprises a proportion of at least 25 mol%, particularly preferably at least 50 mol% of polyoxyalkylene units, based on the total amount of all oligomer units in this block.
- outer oligomeric blocks (A) results accordingly from the functionality of the formaldehyde starter compound used.
- the polyoxymethylene-polyoxyalkylene block copolymer consists exclusively of blocks A and B.
- the outer oligomeric block is a polyoxyalkylene block, more preferably a polyoxyalkylene carbonate block.
- the polyoxymethylene block copolymers according to the invention preferably have terminal hydroxy groups and preferably have a functionality F> 2 (number of hydroxyl groups per molecule). In a further embodiment of the polyoxymethylene block copolymers, these have a monomodal molecular weight distribution and a polydispersity index (PDI) of ⁇ 2.5, preferably ⁇ 2.2.
- PDI polydispersity index
- the polyoxymethylene block copolymers obtainable by the process according to the invention preferably contain less than 2% by weight, in particular less than 1% by weight, based on the total mass of the resulting polyoxymethylene block copolymer, formate and / or methoxy impurities.
- the invention likewise provides a polyoxymethylene-polyoxyalkylene carbonate block copolymer comprising an inner polyoxymethylene block (“starter”) and at least one outer polyoxyalkylene carbonate block of the formula (II)
- R is an organic radical such as alkyl, alkylaryl, arylalkyl or aryl, which may each contain heteroatoms such as O, S, Si, etc., and wherein a, b, and c are an integer number and R are in different
- the structural unit "starter” represents a polyoxymethylene block resulting from the polymeric formaldehyde starter compound, and wherein the product for the polyoxymethylene-polyoxyalkylene carbonate block copolymer shown here in the formula (II) is to be understood merely as that blocks having the structure shown can in principle be found in the obtained polyoxymethylene-polyoxyalkylene carbonate block copolymer, but the order, number and length of the blocks and the OH functionality of the "starter” can vary and not to that shown in scheme (II) Polyoxymethylene polyoxyalkylene carbonate block copolymer is limited.
- polyoxymethylene block copolymers generally have a low content of by-products and decomposition products, such as formate, methoxy, monomeric and oligomeric formaldehyde, residual monomers and can be easily processed, in particular by reaction with di-, tri and or polyisocyanates to polyurethanes, isocyanate-functionalized polyurethane prepolymers or polyisocyanurates, in particular polyurethane thermoplastics, polyurethane coatings, fibers, elastomers, adhesives and in particular also polyurethane foams including soft (such as polyurethane soft block foams and polyurethane Soft foam) and rigid foams.
- by-products and decomposition products such as formate, methoxy, monomeric and oligomeric formaldehyde, residual monomers and can be easily processed, in particular by reaction with di-, tri and or polyisocyanates to polyurethanes, isocyanate-functionalized polyurethane prepolymers or polyisocyanurates
- polyoxymethylene block copolymers having a functionality of at least 2 are preferably used.
- the polyoxymethylene block copolymers obtainable by the process according to the invention can be used in applications such as washing and cleaning agent formulations, adhesives, paints, varnishes, functional fluids, drilling fluids, fuel additives, ionic and nonionic surfactants, lubricants, process chemicals for the paper or textile production or cosmetic / medical formulations are used.
- the polymers to be used have to fulfill certain material properties such as molecular weight, viscosity, polydispersity, functionality and / or hydroxyl number (number of terminal hydroxyl groups per molecule).
- the invention therefore also relates to the use of polyoxymethylene block copolymers according to the invention for the preparation of polyurethane polymers.
- polyoxymethylene block copolymers according to the invention for the preparation of polyurethane polymers.
- polyurethane polymers polyurethane foams or rigid polyurethane foams.
- polyurethane polymers are thermoplastic polyurethane polymers.
- the invention therefore likewise provides a polyurethane polymer obtainable by reacting a di-, tri- and / or polyisocyanate with at least one polyoxymethylene block copolymer according to the invention.
- the invention likewise provides a flexible polyurethane foam or a rigid polyurethane foam obtainable by reacting a di-, tri- and / or polyisocyanate with at least one polyoxymethylene block copolymer according to the invention.
- the invention also includes the use of polyoxymethylene block copolymers according to the present invention for the preparation of polyurethanes, washing and cleaning agent formulations, drilling fluids, fuel additives, ionic and nonionic surfactants, lubricants, process chemicals for the paper or textile production or cosmetic formulations.
- DMC catalyst was prepared in all examples according to Example 6 in WO 01/80994 Al, containing
- Example 1 Preparation of a polyoxymethylene-polyoxyalkylene carbonate block copolymer
- a pressure reactor with gas and diesstechniksdostechniks gave 65 mg of unactivated DMC catalyst were suspended in 30 g of toluene.
- the suspension was heated with stirring to 130 ° C, 40 bar N 2 pressed and then the N 2 pressure lowered to 15 bar.
- the pressing and discharging of N 2 was carried out twice in the same manner.
- the suspension thus obtained was cooled to room temperature and the N 2 pressure was released.
- the pressure reactor was then opened and 15 g of paraformaldehyde (pFA) added to the present suspension. After the reactor was closed and heated to 40 ° C.
- pFA paraformaldehyde
- composition of the polymer was determined by means of 1 H-NMR (Broker, DPX 400, 400 MHz, pulse program zg30, waiting time DI: 10 s, 64 scans). Each sample was dissolved in deuterated chloroform.
- PPO polypropylene oxide
- the thus determined composition of the reaction mixture is then converted into parts by weight and normalized to 100.
- the polymer composition is calculated and normalized by means of the proportions IPC, PPO and pFA that here too, the information in parts by weight of 100 (wt .-%) takes place.
- the CO2 content of the polymer structure is additionally reported in% by weight: IPC ⁇ (44 / (44 + 58)), the factors in each case being the molar masses of CO.sub.2 (molar mass 44 g / mol) and that of propylene oxide (Molecular weight 58 g / mol). ⁇
- the weight and number average molecular weight of the resulting polymers was determined by gel permeation chromatography (GPC). The procedure followed was based on DIN 55672-1: "Gel permeation chromatography, Part 1 - tetrahydrofuran as eluent". In this case, polystyrene samples of known molecular weight were used for calibration.
- the molecular weight of the pFA block in the product polymer was calculated according to the following formula:
- MW (PFA) M n (GPC) ⁇ (pFA fraction in the polymer, NMR) / 100, where M n (GPC) is the determined by GPC number average M n.
- the polydispersity PDI is given for the molecular weight distribution M w / M n .
- Example 2 Preparation of a polyoxymethylene-polyoxyalkylene carbonate block copolymer
- Example 1 a polyoxymethylene-polyoxyalkylene carbonate polyol was prepared, wherein the temperature of the catalyst activation at 60 ° C (T act ) was set. The results are shown in Table 1.
- Example 3 Preparation of a polyoxymethylene-polyoxyalkylene carbonate block copolymer
- Example 1 a polyoxymethylene-polyoxyalkylene carbonate polyol was prepared, wherein the temperature of the catalyst activation at 80 ° C (T act ) was set. The results are shown in Table 1.
- Example 4 Preparation of a polyoxymethylene-polyoxyalkylene carbonate block copolymer
- a polyoxymethylene-polyoxyalkylene carbonate polyol was prepared according to Example 1 with the catalyst activation temperature set at 100 ° C (Tact). The results are shown in Table 1.
- a polyoxymethylene-polyoxyalkylene carbonate polyol was prepared according to Example 1 with the catalyst activation temperature set at 130 ° C (Tact). The results are shown in Table 1.
- Table 1 summarizes the results for the preparation of the polyoxymethylene block copolymers.
- products having a defined polyoxymethylene block (pFA block) and a low polydispersity can be obtained without a decomposition or defragmentation of the paraformaldehyde used as initiator compound being observed in smaller oligomers or monomers.
- polyoxymethylene-polyoxyalkylene carbonate block copolymers can be obtained by the process according to the invention by copolymerization, almost complete conversions of the alkylene oxide being achieved with simultaneously high CO 2 incorporation rates.
- Comparative Examples 5 and 6 show that at higher temperatures, which are in the range of usually set activation temperatures for DMC catalysts, defragmentation of the polymeric formaldehyde initiator takes place and secondary products are formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Dermatology (AREA)
- Materials Engineering (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Polyethers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14163744 | 2014-04-07 | ||
EP15156102 | 2015-02-23 | ||
PCT/EP2015/057209 WO2015155094A1 (en) | 2014-04-07 | 2015-04-01 | Process for the production of polyoxymethylene block copolymers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3129419A1 true EP3129419A1 (en) | 2017-02-15 |
EP3129419B1 EP3129419B1 (en) | 2018-09-19 |
Family
ID=52774266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15712975.0A Active EP3129419B1 (en) | 2014-04-07 | 2015-04-01 | Method for the preparation of polyoxymethylene block copolymers |
Country Status (7)
Country | Link |
---|---|
US (2) | US10093772B2 (en) |
EP (1) | EP3129419B1 (en) |
JP (1) | JP6518691B2 (en) |
CN (1) | CN106414532B (en) |
ES (1) | ES2702327T3 (en) |
SG (1) | SG11201608076RA (en) |
WO (1) | WO2015155094A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109890869A (en) * | 2016-08-12 | 2019-06-14 | 科思创德国股份有限公司 | The method of preparation polymerization open-loop products |
EP3533815A1 (en) * | 2018-02-28 | 2019-09-04 | Covestro Deutschland AG | Flexible polyurethane foams based on polyoxymethylene polyoxyalkylene block copolymers |
EP3643730A1 (en) | 2018-10-26 | 2020-04-29 | Covestro Deutschland AG | Method for the preparation of polyoxymethylene polyoxyalkylene block copolymers |
EP3653657A1 (en) | 2018-11-16 | 2020-05-20 | Covestro Deutschland AG | Method for the preparation of prepolymers comprising a polyoxymethylene block |
EP3656797A1 (en) | 2018-11-22 | 2020-05-27 | Covestro Deutschland AG | Method for the preparation of polyoxymethylene polyoxyalkylene block copolymers |
EP3656796A1 (en) | 2018-11-22 | 2020-05-27 | Covestro Deutschland AG | Method for the preparation of polyoxymethylene polymers with medium chain length |
WO2020173568A1 (en) * | 2019-02-28 | 2020-09-03 | Covestro Intellectual Property Gmbh & Co. Kg | Isocyanate-terminated prepolymers for the production of integral polyurethane foams |
CN110643006B (en) * | 2019-09-24 | 2022-07-26 | 开滦能源化工股份有限公司 | High-melt-strength copolyformaldehyde and preparation method thereof |
EP3838938A1 (en) | 2019-12-18 | 2021-06-23 | Covestro Deutschland AG | Method for the preparation of polyoxymethylene polyoxyalkylene copolymers |
EP3922661A1 (en) | 2020-06-12 | 2021-12-15 | Covestro Deutschland AG | Method for the preparation of polyoxymethylene polyoxyalkylene copolymers |
EP4015555A1 (en) | 2020-12-18 | 2022-06-22 | Covestro Deutschland AG | Method for preparing a monol or polyol comprising a polyoxymethylene block |
WO2022258570A1 (en) | 2021-06-10 | 2022-12-15 | Covestro Deutschland Ag | Process for producing polyoxymethylene-polyoxyalkylene copolymers |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL109080C (en) | 1955-11-30 | |||
GB1063525A (en) | 1963-02-14 | 1967-03-30 | Gen Tire & Rubber Co | Organic cyclic oxide polymers, their preparation and tires prepared therefrom |
US3754053A (en) | 1964-05-15 | 1973-08-21 | Celanese Corp | Polyoxymethylene-oxyalkylene block polymers |
US3436375A (en) | 1965-12-14 | 1969-04-01 | Celanese Corp | Preparation of oxymethylene polymers in the presence of polyhydric compounds |
US3575930A (en) | 1968-12-12 | 1971-04-20 | Goodrich Co B F | Polyoxymethylene glycol polymers |
US3829505A (en) | 1970-02-24 | 1974-08-13 | Gen Tire & Rubber Co | Polyethers and method for making the same |
US3941849A (en) | 1972-07-07 | 1976-03-02 | The General Tire & Rubber Company | Polyethers and method for making the same |
DE3050137C1 (en) | 1979-12-17 | 1985-11-14 | Asahi Kasei Kogyo K.K., Osaka | Process for the preparation of polyoxymethylenes |
CA1155871A (en) | 1980-10-16 | 1983-10-25 | Gencorp Inc. | Method for treating polypropylene ether and poly-1,2- butylene ether polyols |
US4721818A (en) | 1987-03-20 | 1988-01-26 | Atlantic Richfield Company | Purification of polyols prepared using double metal cyanide complex catalysts |
US4877906A (en) | 1988-11-25 | 1989-10-31 | Arco Chemical Technology, Inc. | Purification of polyols prepared using double metal cyanide complex catalysts |
WO1990007537A1 (en) | 1989-01-06 | 1990-07-12 | Asahi Glass Company Ltd. | Production of polyether |
US4987271A (en) | 1989-02-17 | 1991-01-22 | Asahi Glass Company, Ltd. | Method for purifying a polyoxyalkylene alcohol |
US5010047A (en) | 1989-02-27 | 1991-04-23 | Arco Chemical Technology, Inc. | Recovery of double metal cyanide complex catalyst from a polymer |
JP2928823B2 (en) | 1990-03-14 | 1999-08-03 | 旭化成工業株式会社 | Polyoxymethylene composition |
US5391722A (en) | 1990-03-30 | 1995-02-21 | Olin Corporation | Acid-catalyzed fabrication of precursors for use in making polyols using double metal cyanide catalysts |
US5099075A (en) | 1990-11-02 | 1992-03-24 | Olin Corporation | Process for removing double metal cyanide catalyst residues from a polyol |
JP3110788B2 (en) | 1991-04-03 | 2000-11-20 | 旭化成工業株式会社 | Polyacetal block copolymer excellent in lubricating properties and method for producing the same |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5712216A (en) | 1995-05-15 | 1998-01-27 | Arco Chemical Technology, L.P. | Highly active double metal cyanide complex catalysts |
US5470813A (en) | 1993-11-23 | 1995-11-28 | Arco Chemical Technology, L.P. | Double metal cyanide complex catalysts |
US5482908A (en) | 1994-09-08 | 1996-01-09 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
US5545601A (en) | 1995-08-22 | 1996-08-13 | Arco Chemical Technology, L.P. | Polyether-containing double metal cyanide catalysts |
US5627120A (en) | 1996-04-19 | 1997-05-06 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
US5714428A (en) | 1996-10-16 | 1998-02-03 | Arco Chemical Technology, L.P. | Double metal cyanide catalysts containing functionalized polymers |
DE19905611A1 (en) | 1999-02-11 | 2000-08-17 | Bayer Ag | Double metal cyanide catalysts for the production of polyether polyols |
JP4560261B2 (en) | 1999-07-30 | 2010-10-13 | 旭化成ケミカルズ株式会社 | Polyacetal block copolymer |
ATE270148T1 (en) | 2000-04-20 | 2004-07-15 | Bayer Materialscience Ag | METHOD FOR PRODUCING DMC CATALYSTS |
DE10251332B4 (en) | 2002-11-05 | 2006-07-27 | Ticona Gmbh | Polyoxymethylene copolymers, their preparation and use |
DE10319242A1 (en) * | 2003-04-28 | 2004-11-18 | Basf Ag | Starting compounds for the production of polyurethanes |
US7705106B2 (en) | 2003-04-28 | 2010-04-27 | Basf Aktiengesellschaft | Initial compounds for producing polyurethanes |
JP2007211082A (en) | 2006-02-08 | 2007-08-23 | Asahi Glass Co Ltd | Method for producing polyoxymethylene-polyoxyalkylene block copolymer |
US7538162B2 (en) | 2006-06-23 | 2009-05-26 | Bayer Materialscience Llc | Process for the production of polyoxyalkylene containing polyols from phenol condensation products |
WO2011089120A1 (en) * | 2010-01-20 | 2011-07-28 | Bayer Materialscience Ag | Method for activating double metal cyanide catalysts for producing polyether carbonate polyols |
JP6060092B2 (en) | 2010-12-27 | 2017-01-11 | ダウ グローバル テクノロジーズ エルエルシー | Alkylene oxide polymerization using double metal cyanide catalyst complex and magnesium, Group 3-15 metal or lanthanide series metal compound |
EP2530101A1 (en) * | 2011-06-01 | 2012-12-05 | Bayer MaterialScience AG | Method for manufacturing polyether polyols |
CN105408377B (en) | 2013-06-13 | 2018-06-22 | 科思创德国股份公司 | Polyether carbonate-polyformaldehyde block copolymer |
-
2015
- 2015-04-01 WO PCT/EP2015/057209 patent/WO2015155094A1/en active Application Filing
- 2015-04-01 SG SG11201608076RA patent/SG11201608076RA/en unknown
- 2015-04-01 EP EP15712975.0A patent/EP3129419B1/en active Active
- 2015-04-01 ES ES15712975T patent/ES2702327T3/en active Active
- 2015-04-01 US US15/129,209 patent/US10093772B2/en active Active
- 2015-04-01 CN CN201580018600.3A patent/CN106414532B/en not_active Expired - Fee Related
- 2015-04-01 JP JP2016561346A patent/JP6518691B2/en not_active Expired - Fee Related
-
2018
- 2018-09-04 US US16/120,566 patent/US10759902B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10759902B2 (en) | 2020-09-01 |
US10093772B2 (en) | 2018-10-09 |
SG11201608076RA (en) | 2016-11-29 |
WO2015155094A1 (en) | 2015-10-15 |
US20170096526A1 (en) | 2017-04-06 |
CN106414532A (en) | 2017-02-15 |
JP6518691B2 (en) | 2019-05-22 |
ES2702327T3 (en) | 2019-02-28 |
EP3129419B1 (en) | 2018-09-19 |
JP2017510686A (en) | 2017-04-13 |
US20180371159A1 (en) | 2018-12-27 |
CN106414532B (en) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3129419B1 (en) | Method for the preparation of polyoxymethylene block copolymers | |
EP2739667B1 (en) | Method for producing branched polyethercarbonates and use thereof | |
EP2614102B1 (en) | Method for producing polyether carbonate polyols | |
EP3008100B1 (en) | Polyether carbonate polyoxymethylene block copolymers | |
EP3430071A1 (en) | Method for producing polyether carbonate polyols | |
WO2013017365A1 (en) | Method for producing polyether siloxanes containing polyethercarbonate unit structures | |
EP2845872A1 (en) | Low viscosity polyether carbonate polyols with side chains | |
WO2020083814A1 (en) | Method for producing polyoxymethylene polyoxyalkylene block copolymers | |
WO2020114751A1 (en) | Process for producing polyoxymethylene-polyalkylene oxide block copolymers | |
EP3649166B1 (en) | Method for manufacturing functionalised polyoxyalkylene polyoles | |
EP4077435B1 (en) | Method for the preparation of polyoxymethylene polyoxyalkylene copolymers | |
WO2022258570A1 (en) | Process for producing polyoxymethylene-polyoxyalkylene copolymers | |
EP3980480B1 (en) | Method for continuous production of polyoxyalkylenpolyols | |
EP3455277B1 (en) | Processes for producing polyoxyalkylene polyols | |
EP4165104A1 (en) | Process for producing polyoxymethylene-polyoxyalkylene copolymers | |
EP3750940A1 (en) | Method for manufacturing polyether carbonate polyols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180216 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180606 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1043161 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015005973 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181220 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2702327 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190119 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190119 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015005973 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
26N | No opposition filed |
Effective date: 20190620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190401 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1043161 Country of ref document: AT Kind code of ref document: T Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150401 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200401 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220330 Year of fee payment: 8 Ref country code: BE Payment date: 20220330 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180919 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220505 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230321 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230501 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230402 |