EP3127137B1 - Method and device for generating a microwave plasma in the field of electronic cyclotronic resonance - Google Patents

Method and device for generating a microwave plasma in the field of electronic cyclotronic resonance Download PDF

Info

Publication number
EP3127137B1
EP3127137B1 EP15725704.9A EP15725704A EP3127137B1 EP 3127137 B1 EP3127137 B1 EP 3127137B1 EP 15725704 A EP15725704 A EP 15725704A EP 3127137 B1 EP3127137 B1 EP 3127137B1
Authority
EP
European Patent Office
Prior art keywords
plasma
annular magnets
tube
magnets
filiform element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15725704.9A
Other languages
German (de)
French (fr)
Other versions
EP3127137A1 (en
Inventor
Olivier Blandenet
Thierry Léon LAGARDE
Patrick Choquet
David Duday
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydromecanique et Frottement SAS
Luxembourg Institute of Science and Technology LIST
Original Assignee
HEF SAS
Hydromecanique et Frottement SAS
Luxembourg Institute of Science and Technology LIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEF SAS, Hydromecanique et Frottement SAS, Luxembourg Institute of Science and Technology LIST filed Critical HEF SAS
Publication of EP3127137A1 publication Critical patent/EP3127137A1/en
Application granted granted Critical
Publication of EP3127137B1 publication Critical patent/EP3127137B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32403Treating multiple sides of workpieces, e.g. 3D workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32678Electron cyclotron resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Definitions

  • the invention relates to the technical sector of the production of plasma by electron cyclotron resonance (ECR) from a gaseous medium.
  • ECR electron cyclotron resonance
  • the invention relates to the surface treatment under vacuum by plasma of any type of filiform elements such as threads, tubes, fibers and more generally of any product whose length is very large compared to the diameter.
  • the filiform element being continuously linearly driven.
  • plasma vacuum surface treatment is meant cleaning, pickling, activation, grafting of functions or coating of the surface, for example by PECVD (plasma-assisted physical vapor deposition) of the filiform element.
  • PECVD plasma-assisted physical vapor deposition
  • the plasma is generated at the end of each magnet creating a dense zone of plasma. It is also known that in order to generate a microwave plasma at low pressure, the effect of electron cyclotron resonance is used. The probability of high speed shocks is greatly increased which creates a dense plasma in the RCE zone.
  • the RCE zone is located at the level of the magnetic field lines at 875 Gauss (G). This 875 Gauss (G) area is around the magnet.
  • This plasma applicator technology is not suitable for the continuous treatment of a wire (or other filiform element) requiring several applicators placed radially and repeated several times along the axis of travel of the wire to be treated to obtain a speed of scrolling.
  • a PECVD coating for example a carbonaceous coating
  • a surface microwave plasma wave to generate the plasma.
  • this solution is very limited in application given that it can only operate on dielectrics and only for producing electrical insulating deposits. In other words, it is not possible to coat conductive fibers.
  • the frequency of the generator must be adapted to the dielectric constant of each material constituting the fiber. The process is therefore not easily transferable when passing from one material to another.
  • the process is difficult to master because as the deposition takes place, the dielectric constant of the material changes. This modification has a retroactive effect on the coupling of the surface wave with the plasma.
  • magnets are arranged in an enclosure filled with gas at a pressure below atmospheric pressure.
  • a thread-like element is fixedly supported in the tube, which is movable relative to the magnets.
  • a microwave energy source is mounted outside the enclosure. Plasma rings are created around the magnets, making it difficult to cool them. This device does not make it possible to generate a linear plasma confined around the filiform element in the treatment chamber formed by the tube.
  • the aim of the invention is to remedy these drawbacks in a simple, safe, efficient and rational manner.
  • the problem which the invention proposes to solve is to allow the generation of a linear plasma confined around any type of filiform element as defined, in order to minimize the volume of the chamber and, consequently, the investment of consumption of precursor gas and of the necessary energy with the aim of generating axisymmetric plasma in order to guarantee the homogeneity of the treatment on the part, in particular by PECVD.
  • the invention also relates to a device according to claim 4.
  • the dimensioning of the ring magnets must be such that the magnetic field in the center of the system between two magnets must be equal to the magnetic field at electronic cyclotron resonance.
  • m is the mass of electrons, e their charge and ⁇ the pulsation of the microwave wave.
  • the device comprises several modules mounted in series in linear alignment and interconnected by a sealing ring.
  • Each ring acts either as a pumping zone by being connected to a gas pumping connector or as a gas injection zone being connected to gas supply devices.
  • the filiform element can be electrically polarized in order to allow bombardment by ions from the plasma.
  • the filiform element is polarized, it is possible to carry out an ion implantation of a gas on said element.
  • the invention finds a particularly advantageous application for generating a plasma with a view to the surface treatment of any type of filiform element, including a conductor, of the type of wires, fibers, tubes, sheaths, etc. and more generally any element.
  • (F) having a significant length compared to its diameter.
  • the object sought according to the invention is to continuously treat the element (F) in the “parade”, in other words, by linear driving of the wire.
  • the device or reactor comprises at least one module composed of two magnetic dipoles (1) and (2) arranged opposite and preferably mounted around a tube (3), constituting a treatment chamber.
  • Each magnetic dipole (1) and (2) is for example constituted by an annular magnet arranged concentrically to the tube (3).
  • This assembly facilitates in particular the cooling of the magnets.
  • the magnets are not under vacuum.
  • the element (F) is engaged coaxially with the tube (3) and continuously linearly driven by any known and appropriate means.
  • a microwave applicator (4) is mounted between the two magnets (1) and (2).
  • the microwave applicator (4) is arranged perpendicular to the axis of the tube (3).
  • the opposite polarities are opposite so that the field lines are parallel to the element F.
  • the figure 2 which shows that the plasma at the RCE zone is on the wire.
  • the tube (3) constitutes a T whose middle branch (3a) receives the microwave applicator (4) in particular, its coaxial guide. (4a).
  • the other two branches (3b) and (3c) of the tee receive the magnets (1) and (2) on either side of the middle branch (3a).
  • the pumping is distributed between the center of the reactor and the right and left ends of the latter.
  • the filiform element (F) is introduced linearly into the treatment chamber resulting from the tube constituted by a linear alignment and the series assembly of the various branches (3b), (3c) of the tubes and the rings (5). To increase the running speed of the threadlike element (F), it suffices to multiply the number of modules.
  • Tests were carried out with Cobalt samarium magnets (Sm 2 Co 17 ) without excluding any other material to generate a magnetic field of 875 G such as neodymium iron boron.
  • the deposition rate is measured on a silicon wafer placed in the center of the reactor.

Description

L'invention se rattache au secteur technique de la production de plasma par résonance cyclotronique électronique (RCE) à partir d'un milieu gazeux.The invention relates to the technical sector of the production of plasma by electron cyclotron resonance (ECR) from a gaseous medium.

Plus particulièrement, l'invention concerne le traitement de surface sous vide par plasma de tout type d'éléments filiformes tels que fils, tubes, fibres et plus généralement de tout produit dont la longueur est très importante par rapport au diamètre. L'élément filiforme étant entraîné linéairement en continu.More particularly, the invention relates to the surface treatment under vacuum by plasma of any type of filiform elements such as threads, tubes, fibers and more generally of any product whose length is very large compared to the diameter. The filiform element being continuously linearly driven.

Par traitement de surface sous vide par plasma on entend nettoyage, décapage, activation greffage de fonctions ou revêtement de la surface par exemple par PECVD (dépôt physique en phase vapeur assisté par plasma) de l'élément filiforme.By plasma vacuum surface treatment is meant cleaning, pickling, activation, grafting of functions or coating of the surface, for example by PECVD (plasma-assisted physical vapor deposition) of the filiform element.

On connaît de nombreuses solutions techniques pour réaliser des applicateurs micro-ondes pour le traitement de différents types de pièces. On peut citer par exemple, à titre indicatif et non limitatif, l'enseignement du brevet EP 1075168 qui concerne un procédé et un dispositif de production de plasmas élémentaires en vue de créer un plasma uniforme pour une surface d'utilisation. On peut citer également l'enseignement du brevet FR 2 922 358 qui concerne un procédé de traitement de surface d'au moins une pièce au moyen de sources élémentaires de plasma par résonance cyclotronique électronique. Les différentes solutions relevant de ces brevets sont particulièrement adaptées pour le traitement de grande surface ou de lots de pièces placées les unes à côté des autres et présentant généralement de multiples faces à traiter.Numerous technical solutions are known for producing microwave applicators for treating different types of parts. We can cite for example, by way of indication and without limitation, the teaching of the patent EP 1075168 which relates to a method and a device for producing elementary plasmas with a view to creating a uniform plasma for a surface of use. We can also cite the teaching of the patent FR 2 922 358 which relates to a method of surface treatment of at least one part by means of elementary sources of plasma by electron cyclotron resonance. The various solutions covered by these patents are particularly suitable for the treatment of large surfaces or batches of parts placed one beside the other and generally having multiple faces to be treated.

Selon l'état antérieur de la technique en utilisant un applicateur micro-onde avec embout magnétique, il apparait que le plasma est généré en bout de chaque aimant créant une zone dense de plasma. Il est connu également que pour générer un plasma micro-onde à basse pression, on utilise l'effet de la résonance cyclotronique électronique. La probabilité de chocs à haute vitesse est considérablement accrue ce qui créé un plasma dense dans la zone RCE. Ainsi, pour une fréquence de 2,45 GHz , la zone RCE se trouve au niveau des lignes de champ magnétique à 875 Gauss (G). Cette zone à 875 Gauss (G) se trouve autour de l'aimant.According to the prior state of the art, using a microwave applicator with a magnetic tip, it appears that the plasma is generated at the end of each magnet creating a dense zone of plasma. It is also known that in order to generate a microwave plasma at low pressure, the effect of electron cyclotron resonance is used. The probability of high speed shocks is greatly increased which creates a dense plasma in the RCE zone. Thus, for a frequency of 2.45 GHz, the RCE zone is located at the level of the magnetic field lines at 875 Gauss (G). This 875 Gauss (G) area is around the magnet.

Cette technologie d'applicateur plasma n'est pas adaptée pour le traitement en continu d'un fil (ou autre élément filiforme) nécessitant plusieurs applicateurs placés radialement et répétés plusieurs fois selon l'axe de défilement du fil à traiter pour obtenir une vitesse de défilement.This plasma applicator technology is not suitable for the continuous treatment of a wire (or other filiform element) requiring several applicators placed radially and repeated several times along the axis of travel of the wire to be treated to obtain a speed of scrolling.

En effet le volume de plasma étant localisé ponctuellement en bout des applicateurs, il est nécessaire d'utiliser plusieurs applicateurs tout autour du fil (ou autre élément filiforme) pour garantir un dépôt uniforme axisymétrique. Une telle configuration nécessite une grande chambre de dépôt ce qui est consommateur de gaz et d'énergie. La multiplication des applicateurs et le manque de compacité rend ce système cher à la construction.In fact, the volume of plasma being localized punctually at the end of the applicators, it is necessary to use several applicators all around the wire (or other filiform element) to guarantee uniform axisymmetric deposition. Such a configuration requires a large deposition chamber, which consumes gas and energy. The multiplication of applicators and the lack of compactness make this system expensive to build.

Il apparait donc que la juxtaposition de sources RCE classiques ne permet pas d'obtenir une configuration plasma favorable au dépôt sur un élément filiforme.It therefore appears that the juxtaposition of conventional RCE sources does not make it possible to obtain a plasma configuration favorable to deposition on a filiform element.

Pour le traitement de fils sous vide, selon l'état de la technique, on a proposé des traitements du type PVD (dépôt physique par phase vapeur), dépôt physique par phase vapeur comme il ressort par exemple de l'enseignement des documents WO 2005/095078 , WO 2006/002673 , FR 2667616 et EP 1231292 , EP 1277874 .For the treatment of son under vacuum, according to the state of the art, treatments of the PVD type (physical vapor deposition), physical vapor deposition, as is apparent for example from the teaching of documents have been proposed. WO 2005/095078 , WO 2006/002673 , FR 2667616 and EP 1231292 , EP 1277874 .

On connait également le brevet US 6,638,569 selon lequel on utilise une enceinte à vide classique et on soumet le fil à de multiples allers retours dans ladite enceinte de façon à exposer le maximum de surface du fil au plasma. Cette solution est peu efficace car la surface du fil est négligeable par rapport à la taille de l'enceinte et relève d'une relative complexité en mettant en œuvre des systèmes de renvoi fonctionnant sous vide.We also know the patent US 6,638,569 according to which a conventional vacuum chamber is used and the wire is subjected to multiple round trips in said chamber so as to expose the maximum surface area of the wire to the plasma. This solution is not very effective because the surface of the wire is negligible compared to the size of the enclosure and is relatively complex by implementing return systems operating under vacuum.

A partir de cet état de la technique, le but recherché est de pouvoir réaliser sur tout type d'élément filiforme un traitement de surface sous vide par plasma tel que défini précédemment. Selon l'enseignement du brevet US 5,595,793 , on dépose un revêtement par PECVD, par exemple un revêtement carboné, sur une fibre en utilisant une onde de plasma micro-onde de surface pour générer le plasma. Toutefois, cette solution est très limitée en application étant donné qu'elle ne peut fonctionner que sur des diélectriques et uniquement pour réaliser des dépôts isolants électriques. Autrement dit, il n'est pas possible de revêtir des fibres conductrices. Par ailleurs la fréquence du générateur doit être adaptée à la constante diélectrique de chaque matériau constituant la fibre. Le procédé n'est donc pas facilement transférable en passant d'un matériau à l'autre. Enfin le procédé est difficile à maitriser car au fur et à mesure que le dépôt se réalise, la constante diélectrique du matériau se modifie. Cette modification a un effet rétroactif sur le couplage de l'onde de surface avec le plasma.From this state of the art, the desired aim is to be able to carry out on any type of filiform element a plasma vacuum surface treatment as defined above. According to the teaching of the patent US 5,595,793 , a PECVD coating, for example a carbonaceous coating, is deposited on a fiber using a surface microwave plasma wave to generate the plasma. However, this solution is very limited in application given that it can only operate on dielectrics and only for producing electrical insulating deposits. In other words, it is not possible to coat conductive fibers. Furthermore, the frequency of the generator must be adapted to the dielectric constant of each material constituting the fiber. The process is therefore not easily transferable when passing from one material to another. Finally, the process is difficult to master because as the deposition takes place, the dielectric constant of the material changes. This modification has a retroactive effect on the coupling of the surface wave with the plasma.

Il ressort donc de cette analyse de l'état de la technique que la génération de plasma en utilisant les applicateurs, n'est pas adaptée pour le traitement en continu d'éléments filiformes, le volume de l'enceinte étant surdimensionné par rapport à la taille de l'élément, le gaz précurseur et l'énergie nécessaire étant important tandis que le plasma n'est pas généré à proximité du fil à revêtir. Il ressort également que les techniques de plasma micro-onde alternatives basées sur des ondes de surface sont limitées dans leurs applications et difficiles à mettre en œuvre.It therefore emerges from this analysis of the state of the art that the generation of plasma using the applicators is not suitable for the continuous treatment of filiform elements, the volume of the enclosure being oversized with respect to the size of the element, the precursor gas and the energy required being large while the plasma is not generated near the wire to be coated. It also emerges that alternative microwave plasma techniques based on surface waves are limited in their applications and difficult to implement.

On connait également le document US 2011/079582 , dans lequel des aimants sont disposés dans une enceinte remplie de gaz à une pression inférieure à la pression atmosphérique. Un élément filiforme est supporté de manière fixe dans le tube, qui est mobile par rapport aux aimants. Une source d'énergie micro-onde est montée à l'extérieure de l'enceinte. Des anneaux de plasma sont créés autour des aimants, ce qui complique leur refroidissement. Ce dispositif ne permet pas de générer un plasma linéaire confiné autour de l'élément filiforme dans la chambre de traitement constitué par le tube.We also know the document US 2011/079582 , in which magnets are arranged in an enclosure filled with gas at a pressure below atmospheric pressure. A thread-like element is fixedly supported in the tube, which is movable relative to the magnets. A microwave energy source is mounted outside the enclosure. Plasma rings are created around the magnets, making it difficult to cool them. This device does not make it possible to generate a linear plasma confined around the filiform element in the treatment chamber formed by the tube.

On connait enfin le document US 2002/172780 , dans lequel des aimants non-annulaires sont montés de part et d'autre d'une chambre de traitement. Le déplacement de l'élément filiforme est effectué selon une direction parallèle aux lignes de champs magnétique, ce qui correspond à l'état de la technique montré à la figure 1 de la présente demande. Ce dispositif ne permet pas de garantir l'homogénéité du traitement sur l'élément filiforme.We finally know the document US 2002/172780 , in which non-annular magnets are mounted on either side of a treatment chamber. The displacement of the filiform element is carried out in a direction parallel to the lines of magnetic fields, which corresponds to the state of the art shown in figure 1 of the present application. This device does not make it possible to guarantee the homogeneity of the treatment on the filiform element.

L'invention s'est fixée pour but de remédier à ces inconvénients de manière simple, sure, efficace et rationnelle.The aim of the invention is to remedy these drawbacks in a simple, safe, efficient and rational manner.

Le problème que se propose de résoudre l'invention est de permettre la génération d'un plasma linéaire confiné autour de tout type d'élément filiforme tel que défini, afin de minimiser le volume de la chambre et, par conséquent, l'investissement de consommation de gaz précurseur et de l'énergie nécessaire avec, pour objectif, de générer du plasma axisymétrique afin de garantir l'homogénéité du traitement sur la pièce, notamment par PECVD.The problem which the invention proposes to solve is to allow the generation of a linear plasma confined around any type of filiform element as defined, in order to minimize the volume of the chamber and, consequently, the investment of consumption of precursor gas and of the necessary energy with the aim of generating axisymmetric plasma in order to guarantee the homogeneity of the treatment on the part, in particular by PECVD.

Pour résoudre un tel problème il a été conçu et mis au point un procédé conforme à la revendication 1.To solve such a problem, a method according to claim 1 has been designed and developed.

L'invention concerne également un dispositif conforme à la revendication 4.The invention also relates to a device according to claim 4.

Il résulte de ces caractéristiques que la taille du dispositif (réacteur) est diminuée réduisant, par conséquent, les investissements permettant une diminution des consommations de gaz. On observe également que le plasma le plus dense se trouve sur le fil et non plus à proximité de ce dernier comme il ressort des solutions relevant de l'état antérieur de la technique, permettant ainsi une augmentation de vitesse de dépôt. Ces caractéristiques permettent également d'obtenir un dépôt homogène sur le fil compte tenu de l'axisymétrie des lignes de champ magnétique. A noter également, en ce qui concerne un traitement plasma afin de réaliser un dépôt chimique, que l'on obtient une meilleure utilisation du monomère et un encrassement moins rapide des parois du réacteur.It results from these characteristics that the size of the device (reactor) is reduced, consequently reducing the investments allowing a reduction in gas consumption. It is also observed that the densest plasma is found on the wire and no longer close to the latter as is apparent from the solutions relating to the prior state of the art, thus allowing an increase in the deposition rate. These characteristics also make it possible to obtain a homogeneous deposit on the wire taking into account the axisymmetry of the magnetic field lines. It should also be noted, as regards a plasma treatment in order to carry out a chemical deposition, that better use of the monomer is obtained and less rapid fouling of the walls of the reactor.

Selon d'autres caractéristiques :

  • Les aimants annulaires peuvent être des aimants permanents, des bobines électromagnétiques, ou tout autre moyen permettant de créer un champ magnétique.
  • L'applicateur micro-onde est disposé perpendiculairement à l'axe du tube.
  • Le tube constitue un Té dont la branche médiane reçoit l'applicateur micro-onde tandis que les deux autres branches reçoivent les aimants de part et d'autre de ladite branche médiane.
According to other characteristics:
  • The ring magnets can be permanent magnets, electromagnetic coils, or any other means making it possible to create a magnetic field.
  • The microwave applicator is placed perpendicular to the axis of the tube.
  • The tube constitutes a T whose middle branch receives the microwave applicator while the two other branches receive the magnets on either side of said middle branch.

Le dimensionnement des aimants annulaires doit être tel que le champ magnétique au centre du système entre deux aimants doit être égal au champ magnétique à la résonance cyclotronique électronique.The dimensioning of the ring magnets must be such that the magnetic field in the center of the system between two magnets must be equal to the magnetic field at electronic cyclotron resonance.

Par exemple si les aimants annulaires sont des bobines de rayon R comprenant n spires parcourues par un courant d'ampérage I, la distance D qui sépare ces deux bobines doit être telle que : m . ω e = μ 0 . n . I R R 2 R 2 + D 2 2 3 2

Figure imgb0001
For example if the annular magnets are coils of radius R comprising n turns traversed by a current of amperage I, the distance D which separates these two coils must be such that: m . ω e = μ 0 . not . I R R 2 R 2 + D 2 2 3 2
Figure imgb0001

Où m est la masse des électrons, e leur charge et ω la pulsation de l'onde micro-onde.Where m is the mass of electrons, e their charge and ω the pulsation of the microwave wave.

On reconnaît dans le terme à droite de cette équation, l'équation de Biot et Savart.We recognize in the term to the right of this equation, the Biot and Savart equation.

Dans une forme de réalisation, le dispositif comprend plusieurs modules montés en série en alignement linéaire et reliés entre eux par une bague d'étanchéité. Chaque bague fait office soit de zone de pompage en étant reliée à un connecteur de pompage de gaz soit de zone de d'injection de gaz étant reliée à des dispositifs d'alimentation en gaz.In one embodiment, the device comprises several modules mounted in series in linear alignment and interconnected by a sealing ring. Each ring acts either as a pumping zone by being connected to a gas pumping connector or as a gas injection zone being connected to gas supply devices.

A noter que l'élément filiforme peut être électriquement polarisé afin de permettre un bombardement par les ions du plasma. Lorsque l'élément filiforme est polarisé, on peut réaliser une implantation ionique d'un gaz sur ledit élément.Note that the filiform element can be electrically polarized in order to allow bombardment by ions from the plasma. When the filiform element is polarized, it is possible to carry out an ion implantation of a gas on said element.

L'invention est exposée ci-après plus en détail à l'aide des figures des dessins annexés dans lesquels :

  • La fig. 1 montre un schéma de principe d'un réacteur selon l'état antérieur de la technique pour générer un dépôt sur un fil à revêtir ;
  • La fig. 2 est une vue correspondant à la figure 1 montrant le principe du dispositif selon l'invention ;
  • La fig. 3 est une vue en perspective d'un module de base du dispositif selon l'invention ;
  • La fig. 4 est une vue en perspective montrant le montage de plusieurs modules du dispositif pour augmenter la vitesse de traitement,
  • La fig. 5 est une courbe des analyses FITR montrant de façon très classique que le dépôt s'approche d'autant plus du SiO2 que la ration O2/HMDSO est élevé.
The invention is explained below in more detail with the aid of the figures of the appended drawings in which:
  • The fig. 1 shows a block diagram of a reactor according to the prior state of the art for generating a deposit on a wire to be coated;
  • The fig. 2 is a view corresponding to the figure 1 showing the principle of the device according to the invention;
  • The fig. 3 is a perspective view of a basic module of the device according to the invention;
  • The fig. 4 is a perspective view showing the mounting of several modules of the device to increase the processing speed,
  • The fig. 5 is a curve of the FITR analyzes showing in a very classic way that the deposit approaches the SiO 2 all the more as the O 2 / HMDSO ration is high.

Comme indiqué, l'invention trouve une application particulièrement avantageuse pour générer un plasma en vue du traitement de surface de tout type d'élément filiforme, y compris conducteur, du type fils, fibres, tubes, gaines... et plus généralement tout élément (F) présentant une longueur importante par rapport à son diamètre. Le but recherché selon l'invention est de traiter en continu l'élément (F) au « défilé », autrement dit, par entrainement linéaire du fil.As indicated, the invention finds a particularly advantageous application for generating a plasma with a view to the surface treatment of any type of filiform element, including a conductor, of the type of wires, fibers, tubes, sheaths, etc. and more generally any element. (F) having a significant length compared to its diameter. The object sought according to the invention is to continuously treat the element (F) in the “parade”, in other words, by linear driving of the wire.

Selon l'invention, le dispositif ou réacteur comprend, au moins un module composé de deux dipôles magnétiques (1) et (2) disposés en regard et montés de préférence autour d'un tube (3), constituant une chambre de traitement. Chaque dipôle magnétique (1) et (2) est par exemple constitué par un aimant annulaire disposé concentriquement au tube (3). Ce montage facilite en particulier le refroidissement des aimants. En effet, contrairement aux applicateurs RCE décrits dans l'état de l'art, les aimants ne sont pas sous vide. L'élément (F) est engagé coaxialement au tube (3) et entraîné linéairement en continu par tout moyen connu et approprié. Un applicateur micro-onde (4), de tout type connu et approprié, est monté entre les deux aimants (1) et (2). L'applicateur micro-onde (4) est disposé perpendiculairement à l'axe du tube (3). De préférence les polarités en regard sont opposées afin que les lignes de champs soient parallèles à l'élément F. On renvoie à la figure 2 qui montre que le plasma au niveau de la zone RCE se trouve sur le fil. On observe également une axisymétrie des lignes de champ magnétiques (C) permettant de réaliser un dépôt homogène sur l'élément (F).According to the invention, the device or reactor comprises at least one module composed of two magnetic dipoles (1) and (2) arranged opposite and preferably mounted around a tube (3), constituting a treatment chamber. Each magnetic dipole (1) and (2) is for example constituted by an annular magnet arranged concentrically to the tube (3). This assembly facilitates in particular the cooling of the magnets. In fact, unlike the RCE applicators described in the state of the art, the magnets are not under vacuum. The element (F) is engaged coaxially with the tube (3) and continuously linearly driven by any known and appropriate means. A microwave applicator (4), of any known and appropriate type, is mounted between the two magnets (1) and (2). The microwave applicator (4) is arranged perpendicular to the axis of the tube (3). Preferably the opposite polarities are opposite so that the field lines are parallel to the element F. We refer to the figure 2 which shows that the plasma at the RCE zone is on the wire. There is also an axisymmetry of the magnetic field lines (C) making it possible to achieve a homogeneous deposit on the element (F).

Dans une forme de réalisation, le tube (3) constitue un Té dont la branche médiane (3a) reçoit l'applicateur micro-onde (4) notamment, son guide coaxial (4a). Les deux autres branches (3b) et (3c) du Té reçoivent les aimants (1) et (2) de part et d'autre de la branche médiane (3a).In one embodiment, the tube (3) constitutes a T whose middle branch (3a) receives the microwave applicator (4) in particular, its coaxial guide. (4a). The other two branches (3b) and (3c) of the tee receive the magnets (1) and (2) on either side of the middle branch (3a).

A partir de cette conception de base du dispositif, il est possible de monter en série et en alignement linéaire plusieurs modules comme le montre la figure (4). Dans cette configuration, la liaison entre les modules est assurée par une bague d'étanchéité (5) qui fait également office de zone de pompage en étant raccordée à un connecteur (6) de pompage de gaz. Dans cette configuration les gaz plasmagènes et éventuellement réactifs sont préférentiellement injectés en vis-à-vis des applicateurs micro-onde (injection non représentée sur la figure). Une configuration alternative à celle représentée consiste à ce que les bagues d'étanchéité font alternativement office de zone de pompage et de zone d'injection de gaz.From this basic design of the device, it is possible to mount in series and in linear alignment several modules as shown in figure (4 ). In this configuration, the connection between the modules is ensured by a sealing ring (5) which also acts as a pumping zone by being connected to a gas pumping connector (6). In this configuration, the plasma and possibly reactive gases are preferentially injected opposite the microwave applicators (injection not shown in the figure). An alternative configuration to that shown consists in having the sealing rings alternately act as a pumping zone and a gas injection zone.

Le pompage est réparti entre le centre du réacteur et les extrémités droite et gauche de ce dernier. L'élément filiforme (F) est introduit linéairement dans la chambre de traitement résultant du tube constitué par un alignement linéaire et le montage en série des différentes branches (3b), (3c) des tubes et des bagues (5). Pour augmenter la vitesse de défilement de l'élément filiforme (F), il suffit de multiplier le nombre de modules.The pumping is distributed between the center of the reactor and the right and left ends of the latter. The filiform element (F) is introduced linearly into the treatment chamber resulting from the tube constituted by a linear alignment and the series assembly of the various branches (3b), (3c) of the tubes and the rings (5). To increase the running speed of the threadlike element (F), it suffices to multiply the number of modules.

A noter qu'il est possible d'injecter, dans chaque module, un précurseur adapté et de laminer les circuits de pompage pour régler les pressions de travail de chaque module.Note that it is possible to inject, into each module, a suitable precursor and to laminate the pumping circuits to adjust the working pressures of each module.

Des essais ont été effectués avec des aimants en samarium Cobalt (Sm2Co17) sans pour cela exclure tout autre matériau pour engendrer un champ magnétique de 875 G tel que le Néodyme Fer Bore.Tests were carried out with Cobalt samarium magnets (Sm 2 Co 17 ) without excluding any other material to generate a magnetic field of 875 G such as neodymium iron boron.

Ces essais ont été effectués selon deux configurations.These tests were carried out according to two configurations.

Première configuration : First configuration :

Les aimants ont les dimensions suivantes :

  • diamètre interne 20 mm,
  • diamètre externe 28 mm,
  • épaisseur 20 mm, polarisation suivant l'épaisseur,
  • distance entre les aimants 31, 5 mm
  • polarités opposées entre les aimants.
The magnets have the following dimensions:
  • internal diameter 20 mm,
  • external diameter 28 mm,
  • thickness 20 mm, polarization according to the thickness,
  • distance between magnets 31.5 mm
  • opposite polarities between the magnets.

Deuxième configuration : Second configuration :

Les aimants ont les dimensions suivantes :

  • diamètre interne 33,8 mm,
  • diamètre externe 50 mm,
  • épaisseur 25 mm, polarisation suivant l'épaisseur,
  • distance entre les aimants 46 mm
  • caractéristique du tube servant de chambre de traitement : DN25 soit 33,7 mm de diamètre extérieur
  • polarités opposées entre les aimants.
The magnets have the following dimensions:
  • internal diameter 33.8 mm,
  • external diameter 50 mm,
  • thickness 25 mm, polarization according to the thickness,
  • distance between magnets 46 mm
  • characteristic of the tube serving as treatment chamber: DN25, i.e. 33.7 mm outside diameter
  • opposite polarities between the magnets.

Dans ces deux configurations :

  • Les micro-ondes sont injectées au centre de l'espace entre les deux aimants. La profondeur de pénétration de l'injecteur micro-onde doit être optimisée pour faciliter l'amorçage et le fonctionnement du plasma.
  • Les aimants sont à la pression atmosphérique. Les aimants sont refroidis par contact avec une enveloppe externe dans laquelle circule un fluide par exemple de l'eau. Les zones de pompage et les zones d'injection de gaz ont été alternées.
  • Les aimants sont maintenus dans le système par trois vis de pression pour éviter qu'ils ne s'attirent.
In these two configurations:
  • The microwaves are injected into the center of the space between the two magnets. The penetration depth of the microwave injector must be optimized to facilitate the initiation and operation of the plasma.
  • The magnets are at atmospheric pressure. The magnets are cooled by contact with an external envelope in which circulates a fluid, for example water. The pumping zones and the gas injection zones have been alternated.
  • The magnets are held in the system by three set screws to prevent them from attracting each other.

Les avantages ressortent bien de la description, en particulier, on souligne et on rappelle :

  • la génération d'un plasma linéaire confiné autour de l'élément à traiter afin de minimiser le volume de la chambre et par conséquent diminuer les investissements et la consommation du gaz précurseur et de l'énergie,
  • la génération d'un plasma axisymétrique afin de garantir l'homogénéité du dépôt sur l'élément à traiter,
  • la possibilité de traiter tout type d'éléments filiformes y compris conducteur du type fils, tubes, fibres et plus généralement tout produit dont la longueur est importante par rapport à son diamètre.
The advantages emerge clearly from the description, in particular, we underline and recall:
  • the generation of a linear plasma confined around the element to be treated in order to minimize the volume of the chamber and consequently reduce the investments and the consumption of the precursor gas and of the energy,
  • the generation of an axisymmetric plasma in order to guarantee the homogeneity of the deposit on the element to be treated,
  • the possibility of treating any type of filiform element including conductor of the type son, tubes, fibers and more generally any product whose length is important compared to its diameter.

L'invention est définie par les revendications.The invention is defined by the claims.

A titre d'exemple, on décrit ci-dessous des essais de dépôt de SiOx par PECVD ECR dans un réacteur selon la deuxième configurationBy way of example, there is described below tests for depositing SiO x by PECVD ECR in a reactor according to the second configuration.

Premier procédé PECVD

  • Débit de TMS (Tétraméthyl Silane) : 5 sccm
  • Débit de d'O2 (dioxygène) : 18 sccm
  • Pression : 1,3.10-2 mbar
  • Puissance d'injection des micro-ondes : 100 W
First PECVD process
  • TMS (Tetramethyl Silane) flow rate: 5 sccm
  • O 2 (oxygen) flow rate: 18 sccm
  • Pressure: 1.3.10 -2 mbar
  • Microwave injection power: 100 W

Avec ce ratio O2/TMS de 3,6 la vitesse de dépôt constatée entre les deux aimants au milieu de la chambre est de 250 nm/min.With this O 2 / TMS ratio of 3.6, the deposition rate observed between the two magnets in the middle of the chamber is 250 nm / min.

La vitesse de dépôt est mesurée sur une plaque de silicium posée au centre du réacteur.The deposition rate is measured on a silicon wafer placed in the center of the reactor.

Deuxième procédé PECVD

  • Pression : 1.10-2 mbar
  • Puissance d'injection des micro-ondes : 50 W
Second PECVD process
  • Pressure: 1.10 -2 mbar
  • Microwave injection power: 50 W

Utilisation d'un mélange O2/HMDSO Ratio O2/HMDSO Vitesse de dépôt nm/min 9 530 3 875 1,7 1100 Using an O 2 / HMDSO mixture O 2 / HMDSO ratio Deposition rate nm / min 9 530 3 875 1.7 1100

Claims (12)

  1. Process to generate a plasma excited by microwave energy in the field of electron cyclotron resonance, ECR, to execute a surface treatment or coating around a filiform element (F), according to which:
    - at least two annular magnets (1, 2), each constituting a magnetic dipole, are arranged at atmospheric pressure, facing each other, and around a tube (3) constituting a treatment chamber,
    - the filiform element (F) is linearly and continuously moved through the at least two annular magnets (1, 2) and through the tube (3) forming the treatment chamber,
    - microwave energy is introduced between the at least two annular magnets (1, 2) via a microwave applicator (4) mounted between the at least two annular magnets (1,2),
    - a confined linear plasma is generated around the filiform element (F) in the treatment chamber.
  2. Process according to claim 1, wherein the surface treatment is a cleaning, a scouring, a functionalisation, or a grafting.
  3. Process according to claim 1, wherein the coating is obtained by PECVD (plasma-enhanced chemical vapour deposition).
  4. Device to generate a plasma around a filiform element (F) driven linearly and continuously and comprising means of production of a microwave energy in the field of electron cyclotron resonance, ECR, and a microwave applicator (4), the device further comprising a tube (3) constituting a treatment chamber, at least one module composed of two annular magnets (1, 2), each constituting a magnetic dipole, arranged at atmospheric pressure, facing each other and mounted around the tube (3) ; device in which the tube (3) and the two annular magnets (1, 2) are configured in such a way that the filiform element (F) to be treated is linearly movable through the two annular magnets (1, 2) and through the tube (3) constituting the treatment chamber, and the microwave applicator (4) is mounted between the two annular magnets (1, 2) to introduce microwave energy between the two annular magnets (1, 2), thereby generating, when the device is in use, a linear plasma confined around the filiform element (F) in the treatment chamber.
  5. Device according to claim 4, wherein the annular magnets are permanent magnets.
  6. Device according to claim 4, wherein the annular magnets are electromagnet coils.
  7. Device according to claim 4, wherein the microwave applicator (4) is arranged perpendicularly to the axis of the tube (3).
  8. Device according to claim 4, wherein the tube (3) constitutes a Tee whose median branch (3a) receives the microwave applicator whereas the other two branches (3b, 3c) receive the annular magnets (1, 2) on each side of said median branch (3a).
  9. Device according to any one of claims 4 to 8, comprising several modules mounted in series and in linear alignment and connected together by a sealing ring (5).
  10. Device according to claim 9, wherein each sealing ring (5) is connected to a gas pumping connector such that each sealing ring acts as a pumping zone, when the device is in use.
  11. Device according to claim 9, wherein the sealing rings (5) are arranged so as to act alternately as a gas pumping zone and injection zone when the device is in use.
  12. Device according to any one of claims 4 to 11, wherein the filiform element (F) is electrically polarised to allow a bombardment from the plasma ions.
EP15725704.9A 2014-04-04 2015-03-26 Method and device for generating a microwave plasma in the field of electronic cyclotronic resonance Active EP3127137B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1453000A FR3019708B1 (en) 2014-04-04 2014-04-04 CIPO - Patent
PCT/FR2015/050765 WO2015150665A1 (en) 2014-04-04 2015-03-26 Method and device for generating a plasma excited by microwave energy in the electron cyclotron resonance (ecr) domain, in order to carry out a surface treatment or produce a coating around a filiform element

Publications (2)

Publication Number Publication Date
EP3127137A1 EP3127137A1 (en) 2017-02-08
EP3127137B1 true EP3127137B1 (en) 2020-08-12

Family

ID=51014483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15725704.9A Active EP3127137B1 (en) 2014-04-04 2015-03-26 Method and device for generating a microwave plasma in the field of electronic cyclotronic resonance

Country Status (12)

Country Link
US (1) US10283322B2 (en)
EP (1) EP3127137B1 (en)
JP (2) JP2017517638A (en)
KR (1) KR102270445B1 (en)
CN (1) CN106416430B (en)
BR (1) BR112016023061B1 (en)
CA (1) CA2944274C (en)
FR (1) FR3019708B1 (en)
MX (1) MX360902B (en)
RU (1) RU2663211C2 (en)
TW (1) TWI646572B (en)
WO (1) WO2015150665A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037764B2 (en) * 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
US10504699B2 (en) 2018-04-20 2019-12-10 Applied Materials, Inc. Phased array modular high-frequency source
KR102164479B1 (en) * 2019-02-14 2020-10-13 주식회사 쌤빛 Linear ecr plasma generating apparatus with two independent power generator
CN112063996B (en) * 2020-09-18 2021-04-20 上海征世科技有限公司 Microwave plasma reaction chamber and accommodating base thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283469A (en) * 1985-10-08 1987-04-16 Sumitomo Heavy Ind Ltd Continuous plasma irradiation device for strip
US5053244A (en) * 1987-02-21 1991-10-01 Leybold Aktiengesellschaft Process for depositing silicon oxide on a substrate
DE3843098A1 (en) * 1988-12-21 1990-06-28 Technics Plasma Gmbh METHOD AND DEVICE FOR PLASTIC COATING OF STRING PROFILES
DE4003904A1 (en) * 1990-02-09 1991-08-14 Bosch Gmbh Robert DEVICE FOR TREATING SUBSTRATES IN A GAS-BASED PLASMA PRODUCED BY MICROWAVES
FR2667616B1 (en) 1990-10-05 1993-01-15 Aerospatiale METHOD AND INSTALLATION FOR THE CONTINUOUS METALLIZATION OF A SPREADED WICK OF FIBERS.
JP2714247B2 (en) * 1990-10-29 1998-02-16 キヤノン株式会社 Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD
RU2078847C1 (en) * 1993-07-22 1997-05-10 Николай Васильевич Плешивцев Method and apparatus for ionic treatment of machines pieces and tools
US5595793A (en) 1995-04-24 1997-01-21 Ceram Optec Industries, Inc. Surface-plasma-wave coating technique for dielectric filaments
DE19600223A1 (en) * 1996-01-05 1997-07-17 Ralf Dr Dipl Phys Spitzl Device for generating plasmas using microwaves
JP2000064047A (en) 1998-06-26 2000-02-29 James A Mclaughlin Device and method for coating substrate with diamond- like carbon(dlc) or other vacuum deposition film
FR2797372B1 (en) 1999-08-04 2002-10-25 Metal Process METHOD FOR PRODUCING ELEMENTARY PLASMAS WITH A VIEW TO CREATING A UNIFORM PLASMA FOR A USING SURFACE AND DEVICE FOR PRODUCING SUCH A PLASMA
WO2001083874A1 (en) 2000-04-28 2001-11-08 Bridgestone Corporation Rubber-reinforcing fiber, process for producing the same, and rubber product and pneumatic tire each made with the same
JP4822378B2 (en) 2001-02-06 2011-11-24 株式会社ブリヂストン Film forming apparatus and film forming method
KR100399019B1 (en) * 2001-04-23 2003-09-19 한국과학기술연구원 Chemical Vapor Deposition System at Ambient Temperature And The Preparation Method for Metal Composite Film Using The Same
US20020172780A1 (en) * 2001-05-04 2002-11-21 Halverson Ward Dean Method and apparatus for treating surfaces with a plasma generated by electron cyclotron resonance
DE602004009108T2 (en) 2004-03-31 2008-06-19 Pirelli Tyre S.P.A. METHOD FOR PRODUCING A METAL WIRE COATED BY A PLASMA DISTINCTION TECHNIQUE
WO2006002673A1 (en) 2004-06-30 2006-01-12 Pirelli Tyre S.P.A. Method for producing a metal wire coated with a layer of brass
FR2904178B1 (en) * 2006-07-21 2008-11-07 Centre Nat Rech Scient DEVICE AND METHOD FOR PRODUCTION AND / OR CONTAINMENT OF PLASMA
EP1923483A1 (en) * 2006-11-02 2008-05-21 Dow Corning Corporation Deposition of amorphous silicon films by electron cyclotron resonance
JP4214213B1 (en) * 2007-08-03 2009-01-28 国立大学法人佐賀大学 Plasma sterilization apparatus and method
FR2922358B1 (en) 2007-10-16 2013-02-01 Hydromecanique & Frottement PROCESS FOR THE SURFACE TREATMENT OF AT LEAST ONE PIECE USING ELEMENTARY ELECTRONIC CYCLOTRON RESONANCE PLASMA SOURCES
JP5463573B2 (en) * 2008-03-31 2014-04-09 国立大学法人 琉球大学 Plasma generating apparatus and method
US8317970B2 (en) * 2008-06-03 2012-11-27 Applied Materials, Inc. Ceiling electrode with process gas dispersers housing plural inductive RF power applicators extending into the plasma
US20100174245A1 (en) * 2009-01-08 2010-07-08 Ward Dean Halverson System for pretreating the lumen of a catheter
US7999479B2 (en) * 2009-04-16 2011-08-16 Varian Semiconductor Equipment Associates, Inc. Conjugated ICP and ECR plasma sources for wide ribbon ion beam generation and control
TWI434624B (en) * 2010-07-02 2014-04-11 Ind Tech Res Inst Magnetic modue of electron cyclotron resonance and electron cyclotron resonance apparatus using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106416430A (en) 2017-02-15
TW201601189A (en) 2016-01-01
MX2016012991A (en) 2017-05-01
CA2944274C (en) 2022-10-18
US20170032939A1 (en) 2017-02-02
RU2016138745A3 (en) 2018-06-25
EP3127137A1 (en) 2017-02-08
BR112016023061A2 (en) 2021-08-24
JP2019135327A (en) 2019-08-15
FR3019708A1 (en) 2015-10-09
WO2015150665A1 (en) 2015-10-08
CA2944274A1 (en) 2015-10-08
RU2663211C2 (en) 2018-08-02
JP2017517638A (en) 2017-06-29
BR112016023061B1 (en) 2022-08-16
CN106416430B (en) 2020-03-06
MX360902B (en) 2018-11-21
KR102270445B1 (en) 2021-06-29
US10283322B2 (en) 2019-05-07
KR20160147798A (en) 2016-12-23
RU2016138745A (en) 2018-04-02
JP6771064B2 (en) 2020-10-21
TWI646572B (en) 2019-01-01
FR3019708B1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
EP3127137B1 (en) Method and device for generating a microwave plasma in the field of electronic cyclotronic resonance
EP2201593B1 (en) Method of treating a surface of at least one part by means of individual sources of an electron cyclotron resonance plasma
EP1075168B1 (en) Method for generating an elementary plasma in order to produce a uniform plasma for a target surface and device for generating such a plasma
EP0711100B1 (en) Plasma production device, allowing a dissociation between microwave propagation and absorption zones
EP0613329A1 (en) Device for the ECR plasma heating by means of a wire applicatior of a microwave field and a static magnetic field
EP1518256B1 (en) Device for production of a plasma sheet
EP2896278B1 (en) Device for generating plasma having a high range along an axis by electron cyclotron resonance (ecr) from a gaseous medium
EP3225083B1 (en) Method and device for generating a plurality of cold-plasma jets at atmospheric pressure
WO2008009558A1 (en) Device and method for producing and confining a plasma
KR101310093B1 (en) Method and apparatus for creating a plasma
FR2833935A1 (en) Manufacture of a nanotube between two electrical conductors on a substrate is carried out in a deposition chamber, a power microwave, a magnetic field, a cyclotronic resonance zone with ionization and/or dissociation of a carbonated gas
EP0701392B1 (en) Cylindrical antenna usable for generating a plasma under electron cyclotron resonance conditions
FR2689143A1 (en) Sputtering device using a plasma generated by microwaves.
EP0734048B1 (en) Procedure and device for coating or cleaning a substrate
KR20090107017A (en) Deposition of amorphous silicon films by electron cyclotron resonance
FR2658025A1 (en) Method and device for plasma treatment of articles of varied shape

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015057322

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1302374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1302374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015057322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210326

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230111

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230511

Year of fee payment: 9