EP3126549A1 - Crucible, process for manufacturing the crucible, and process for manufacturing a crystalline material by means of such a crucible - Google Patents

Crucible, process for manufacturing the crucible, and process for manufacturing a crystalline material by means of such a crucible

Info

Publication number
EP3126549A1
EP3126549A1 EP15717572.0A EP15717572A EP3126549A1 EP 3126549 A1 EP3126549 A1 EP 3126549A1 EP 15717572 A EP15717572 A EP 15717572A EP 3126549 A1 EP3126549 A1 EP 3126549A1
Authority
EP
European Patent Office
Prior art keywords
crucible
marks
side wall
seed
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15717572.0A
Other languages
German (de)
French (fr)
Inventor
Denis CHAVRIER
Jean-Paul Garandet
Etienne Pihan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3126549A1 publication Critical patent/EP3126549A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to a crucible for the manufacture of a crystalline material by solidification and in particular by directed crystallization.
  • the invention also relates to the method of manufacturing such a crucible, and the method of manufacturing a crystalline material from such a crucible.
  • the invention relates primarily to the growth of silicon ingots for photovoltaic applications, but it can also potentially be applicable to any type of material to be cut according to precise ribs after a solidification process.
  • the ingot In the case of a directed growth from a tiling of monocrystalline seeds deposited at the bottom of the crucible, the crystalline material is melted above the seeds which will impose the crystalline orientation during the solidification.
  • the ingot In order to guarantee the good electrical and mechanical quality of the crystalline bricks, the ingot should advantageously be cut off at the level of the monocrystalline seed joints, so as to relegate the defects induced at these seals of seeds at the periphery of the bricks. This cutting phase of the brick ingot is delicate because the molten material has flowed throughout the crucible and monocrystalline seed seals are no longer visible.
  • An object of the invention is to provide a crucible for the manufacture of a crystalline material by solidification by germ recovery having good electrical and mechanical properties.
  • the crucible comprises a bottom and at least one orthogonal lateral wall at the bottom of the crucible, and means for materializing the position of at least one seed intended to be positioned at the bottom of the crucible, said seed comprising at least first and second orthogonal faces at the bottom of the crucible.
  • the materialization means advantageously comprise at least two marks extending on the internal face of the at least one side wall along an orthogonal axis at the bottom of the crucible.
  • the respective positions of at least two of the marks on at least one of the lateral walls define, in the crystalline material, a first cutting plane tangential to the first face of said seed and a second cutting plane tangential to the second face of said seed.
  • a crucible comprising at least one bottom and at least one orthogonal lateral wall at the bottom of the crucible,
  • the invention finally relates to the method of producing a crystalline material brick by solidification using such a crucible, the method comprising the following steps:
  • Performing a directed crystallization operation comprising placing at least one monocrystalline seed at the bottom of the crucible using at least two markers, to form an ingot of crystalline material in the crucible,
  • FIG. 1 is a perspective view of a crucible according to a particular embodiment of the invention
  • FIGS. 2 and 3 represent two different embodiments of the crucible of FIG. 1,
  • FIG. 4 is a top view of the way in which monocrystalline seeds are positioned in the crucible
  • FIG. 5 shows the cutting of the ingot after removal of the crucible.
  • a crucible 1 is conventionally used to form an ingot of crystalline material by solidification by resumption on seed, and in particular by directed crystallization.
  • the crystalline material may for example be a semiconductor material such as silicon or germanium. It can also be an oxide, for example aluminum oxide (sapphire).
  • the crucible 1 advantageously comprises a bottom 2 and at least one side wall 3 orthogonal to the bottom 2. According to a particular embodiment illustrated in the figures, the crucible 1 may for example comprise four side walls 3, so as to form a crystalline ingot parallelepiped, and preferably having a rectangular parallelepiped shape or cube.
  • the shape of the crucible 1 facilitates the cutting of the ingot brick as will be seen later. But it is for example quite possible to use a crucible of any shape, for example a cylindrical crucible.
  • the crucible 1 is advantageously provided with means for materializing the position of at least one seed intended to be positioned at the bottom of the crucible before the formation of the crystalline material by solidification by resumption on seed.
  • the means of materialization may comprise at least two marks 4 on the internal face of the side wall 3 of the crucible 1, advantageously positioned along an orthogonal axis at the bottom 2 of the crucible 1.
  • the positions of at least two of these pins 4 are chosen so as to define first and second cutting planes of the crystalline ingot obtained by solidification by resumption on seed. Indeed, once solidified, the ingot has the imprint of the marks 4 on its side walls, so that the determination of the cutting planes is facilitated.
  • Each cutting plane is advantageously tangential to one of the faces of a seed positioned at the bottom of the crucible before the directed crystallization, and passes through one of the marks 4.
  • the first mark 4 may be positioned so that the first cutting plane is orthogonal to a plane tangential to the internal face of the side wall 3.
  • the second cutting plane is itself orthogonal to the first plane of cutting and passes through a second marker 4.
  • the crucible 1 has two adjacent perpendicular side walls, at least two of the marks 4 can be positioned respectively on two adjacent side walls 3.
  • the first cutting plane can then be advantageously parallel to a first side wall 3, and the second cutting plane parallel to a second side wall 3 adjacent to the first side wall.
  • This configuration of the crucible 1 is particularly advantageous for forming ingots of parallelepipedal shape, rectangular parallelepiped shape or cubic shape.
  • the crucible 1 may comprise at least one additional mark, advantageously positioned opposite one of the markers 4, for example on a side wall 3 opposite to the side wall having the mark 4 when the crucible 1 is parallelepipedic.
  • the fact of positioning two pins 4 facing each other makes it possible to determine the position of the cutting plane of the ingot after crystallization with increased precision.
  • the crucible 1 may include positioning means (not shown) at the bottom of the crucible 1. Their role is to allow the placement of the seeds in predefined positions relative to the pins 4. These positioning means are for example those described in the international application WO 2013/034819, that is to say, holes for positioning the seeds. . They can also take the form of markers such as grooves, ribs, or studs facilitating the placement of germs.
  • the marks 4 advantageously extend over the entire height of the internal faces of the side walls 3 along an axis orthogonal to the bottom 2 of the crucible 1.
  • each reference 4 may extend only over part of the height of the internal faces of the side walls 3, for example from the bottom 2 of the crucible, or from the upper edge of the side walls 3.
  • the length of each marker 4 is greater than 10% of the height of the side walls 3, preferably greater than 30% of the height of the side walls 3, and preferably greater than 50% of the height of the side walls 3.
  • the marks 4 may also be continuous or discontinuous, and present different heights.
  • Each reference 4 of the crucible 1 may therefore have characteristics of its own, for example when the crucible 1 is intended for the crystallization of several types of crystalline materials whose properties differ, thus leading to different possible cuts of the ingot.
  • the position of each marker 4 can be judiciously chosen depending on the type of crystallization performed, and depending on the type of material to be crystallized. 4 marks can be placed a few centimeters from the ends of the side walls 3 to keep only the central portion of the ingot during cutting. Indeed, the edges of the ingots are generally contaminated by elements from the crucible 1 and are therefore of lower quality of use. This phenomenon is particularly well known in the case of silicon for photovoltaic applications where the edges of the ingot are qualified under the name red zone in English.
  • the marks 4 make it possible to ensure the centering of the crystalline bricks which are cut in the ingot in order to ensure the quality thereof, and to ensure the reproducibility of the positioning of the ingot during the cutting of the latter.
  • the ingot should be advantageously cut at the monocrystalline seed seals, so as to relegate the defects induced at these seals seeds at the periphery of the bricks.
  • the directed crystallization is carried out by resumption on seeds, it may be useful to place the markers 4 at the edges of the monocrystalline seeds, so as to relegate the defects induced in the crystal at these seals of seeds at the periphery of the bricks and improve their mechanical and electrical quality.
  • the defects are eliminated without the user needing to look for signs of solidification on the upper and lower faces of the ingot.
  • the bricks used advantageously have a rectangular parallelepiped shape or cube, whose sides have dimensions generally between 50 and 200 mm.
  • Photovoltaic panels comprise for example cells whose standard size is equal to 156 mm side.
  • the crucible 1 may advantageously comprise pins 4 placed on its inner side wall 3 so that two consecutive marks of the same side wall 3 are spaced 50 to 200 mm, and preferably distant of 156 mm.
  • pins 4 placed on its inner side wall 3 so that two consecutive marks of the same side wall 3 are spaced 50 to 200 mm, and preferably distant of 156 mm.
  • the marks 4 may be ribs, that is to say reliefs formed in over-thickness, or grooves, that is to say, reliefs formed in under-thickness on the side walls 3 of the crucible 1.
  • ribs are preferred especially when the crucible is silicon oxide, and the crystalline material is silicon.
  • the pins 4 are ribs
  • the indentations left on the crystalline ingot are then grooves, that is to say reliefs in sub-thickness.
  • the marks 4 are grooves
  • the impressions left on the ingot are ribs, that is to say reliefs in over-thickness.
  • the grooves may for example be formed by machining the internal faces of the side walls 3, or by etching through a mask according to any conventional lithography technique.
  • machining is meant a mechanical removal of the material forming the crucible.
  • etching is meant a chemical elimination, for example an HF solution for a silica crucible.
  • the grooves preferably have a depth of less than 2 mm.
  • the pins 4 are ribs, they can be made by means of a template (not shown) to give a homogeneous shape over the entire length of the marks 4. An input material is then made on one side internal side wall 3 of the crucible 1. The ribs protrude over a thickness preferably less than 2 mm.
  • the marks 4 may advantageously have a triangular shape, and in particular an isosceles triangular shape. This triangular shape is visible in a plane parallel to the bottom 2 of the crucible 1.
  • a template of suitable size and shape may, for example, enable the production of ribs advantageously having a section whose base, ie the width of the rib, measures between 100 ⁇ m and 6 mm, preferably between 500 ⁇ m and 2 mm, and whose apex angle is between 30 ° and 120 °, preferably between 45 ° and 90 °. These dimensions form a good compromise between the constraints of realization of the ribs, and the accuracy of the positioning of the cutting axis of the ingot.
  • the ribs may for example be made by a localized deposit of a solution containing a powder compatible with the material to be crystallized, and a heat treatment allowing the sintering of the powder.
  • a solution containing a powder compatible with the material to be crystallized for example if the material to be crystallized is Si If the powder can be Si 3 N 4 .
  • the crucible 1 may advantageously be used in a crystallization furnace (not shown) in which a thermal gradient of crystallization is applied during the directional crystallization operation, in order to achieve the growth of the crystalline material.
  • This thermal gradient is advantageously applied along an orthogonal axis to the bottom 2 of the crucible, the temperature being all the colder as one approaches the bottom 2 of the crucible 1.
  • the invention also relates to the method of producing a crucible 1.
  • This can be implemented from a crucible of any shape and size. It may for example be silica or graphite (crystallization of semiconductors) or precious metals (crystallization of oxides). Whether the crucible is reusable or not, it deforms during the melting and solidification phases of the material.
  • the resultant forces exerted by the molten material on the side faces 3 deforms the corners of the crucible 1 which become more pointed, and push the lateral faces 3 towards the outside of the crucible 1. Then, as the temperature decreases, the volume of the crystalline ingot decreases by crystallizing.
  • the silica crucibles undergo a glass transition and crystallization during the crystalline growth of the material. These phase changes generate variations of about 2% between the initial and final dimensions of the crucible, these variations being dependent on the exact composition of the crucible. It is therefore impossible to make an abacus deformation of the crucible during the crystalline growth of the material.
  • the presence of the marks 4 makes it possible to precisely define the position of the cutout independently of the deformation of the ingot.
  • the dimensions of the marks 4 are small enough not to have any influence on the variations in size of the crucible during its phase changes.
  • Another role played by the marks 4 is to keep the memory of the position of the seeds after the crystallization cycle.
  • the marks 4 on the lateral faces 3 may be judicious to form the marks 4 in zones of the lateral faces 3 which deform little, for example in the vicinity of the center of the latter if the crucible 1 has a parallelepipedic shape.
  • a crucible 1 As described above, use is made of a crucible comprising at least one bottom 2 and at least one side wall 3 orthogonal to the bottom 2, and at least two orthogonal markers 4 are formed at the bottom 2 on the internal faces. at least one of the side walls 3.
  • the marks 4 may be made continuously from the bottom 2 or the upper edge of the side walls 3, or discontinuously on the side walls 3. Their lengths may be greater than at least 10% of the total height of the side walls. 3, preferentially over lengths greater than 30%, even more preferably over lengths greater than 50%, and advantageously the entire height of the side walls 3.
  • the marks 4 may advantageously have a triangular section, so as to be able to pinpoint the cutting axis of the ingot.
  • the base of the triangular section may for example be between 100 ⁇ and 6 mm, and the apex angle may be between 45 ° and 90 °.
  • At least one of the marks 4 may be a groove formed for example by machining at least one of the internal faces of the side walls 3, or by engraving according to conventional lithography techniques.
  • the marks 4 may advantageously be ribs manufactured using a template.
  • the crucible 1 is made of silicon oxide and the material to be crystallized is silicon
  • the marks 4 may advantageously be made using a material comprising a powder of Si 3 N 4 .
  • 35% to 55% of powder of Si 3 N 4 , 1% to 4% of polyvinyl alcohol, and deionized water are advantageously mixed. This mixture is applied locally on the inner faces of the side walls 3 of the crucible 1 using the template to form the marks 4.
  • This mixture must be sufficiently viscous not to sink or spread during application to the walls.
  • the assembly is then annealed in a heated oven at a temperature between 900 ° and 1200 ° C, preferably between 1000 ° C and 1100 ° C.
  • the annealing time is between 30 min and 4 h, preferably between 1 h and 3 h.
  • the marks 4 are ribs comprising 43% of powder of Si 3 N 4 , 2.3% of polyvinyl alcohol, and deionized water.
  • the crucible 1 is annealed in an oven at 1050 ° C for 2 hours. Si 3 N 4 having anti-adhesive properties, this makes it easier to demold the ingot after crystallization.
  • the material is introduced into the crucible 1, for example silicon, and then the assembly is placed in a crystallization furnace such as the one mentioned above.
  • a thermal gradient is applied in the crystallization furnace, and this gradient is advantageously directed along an orthogonal axis to the bottom 2 of the crucible 1.
  • the material goes through a melting phase, then solidification.
  • the ingot is then demolded when the material is completely crystallized. Traces due to the marks 4 appear on the side walls of the ingot.
  • the traces are used to correctly position cutting wires or blades 6 along the first and second cutting axes, so as to obtain crystalline bricks, for example bricks of crystalline silicon. This step of manufacturing the bricks 5 is illustrated in FIG.
  • germ-directed growth can be used.
  • at least one monocrystalline seed is deposited on the bottom 2 of the crucible 1, advantageously using the means for positioning the seeds on the bottom 2 of the crucible 1.
  • the positioning means may for example be pins 4 whose positions on the side walls 3 of the crucible 1 are chosen to be adapted to the dimensions of the seeds.
  • the traces left by the marks 4 advantageously make it possible to make the cutting planes coincide with the planes of the joints of the monocrystalline seeds.
  • additional cutting planes may be chosen in order to perform one or more additional cutting steps.
  • Two additional cutting planes may for example be used, these two additional planes being advantageously parallel to the first and second cutting planes.
  • the Additional cutting planes can be positioned for example by means of additional marks 4 placed on the side walls 3 of the crucible 1. They can also be determined from the position of the first and second cutting planes.
  • five square shaped seeds and four rectangular shaped seeds are used to form the crystalline material by directed crystallization.
  • the seeds are arranged to occupy the entire bottom 2 of the crucible 1, and eight pins 4 have advantageously been placed on the side walls 3 of the crucible 1 at the junctions between the seeds.
  • the latter is demolded and cut into bricks according to four parallel cutting planes in pairs, the cutting planes coinciding with the planes of the seed joints.
  • Crystalline bricks without grain boundaries or having grain boundaries relegated to the periphery of the crystalline bricks are thus obtained.
  • the latter thus have a high electrical and mechanical quality, and meet the requirements in the field of photovoltaics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention relates to a crucible (1) for the formation of a crystalline material by solidification by growth on seed, comprising a base (2), at least one side wall (3) orthogonal to the base (2) of the crucible (1), and means for representing the position of at least one seed intended to be positioned at the base of the crucible, said seed comprising at least first and second faces orthogonal to the base of the crucible. The representation means comprise at least two markers (4) that extend over the inner face of the at least one side wall (3) along an axis orthogonal to the base of the crucible (1). The respective positions of at least two of the markers on at least one of the side walls (3) define, in the crystalline material, a first cutting plane tangent to the first face of said seed and a second cutting plane tangent to the second face of said seed.

Description

Creuset, procédé de fabrication du creuset, et procédé de fabrication d'un matériau cristallin au moyen d'un tel creuset  Crucible, method of manufacturing the crucible, and method of manufacturing a crystalline material using such a crucible
Domaine technique de l'invention Technical field of the invention
L'invention est relative à un creuset pour la fabrication d'un matériau cristallin par solidification et en particulier par cristallisation dirigée. L'invention concerne également le procédé de fabrication d'un tel creuset, et le procédé de fabrication d'un matériau cristallin à partir d'un tel creuset. Ainsi, l'invention concerne principalement la croissance de lingots de silicium pour des applications photovoltaïques, mais elle peut aussi être applicable potentiellement à tout type de matériau devant être découpé selon des côtes précises à l'issue d'un procédé de solidification. The invention relates to a crucible for the manufacture of a crystalline material by solidification and in particular by directed crystallization. The invention also relates to the method of manufacturing such a crucible, and the method of manufacturing a crystalline material from such a crucible. Thus, the invention relates primarily to the growth of silicon ingots for photovoltaic applications, but it can also potentially be applicable to any type of material to be cut according to precise ribs after a solidification process.
État de la technique Dans la pratique industrielle, la croissance d'un matériau cristallin peut être réalisée par cristallisation dirigée. Une fois la solidification terminée, le matériau ainsi cristallisé est enlevé du creuset et forme un lingot qu'il faut découper sous forme de briques. Les bords du lingot sont généralement contaminés par des éléments en provenance du creuset. Il est donc judicieux d'ôter les bords lors de la découpe en briques cristallines, afin de ne garder que le centre du lingot qui est de bonne qualité. STATE OF THE ART In industrial practice, growth of a crystalline material can be achieved by directed crystallization. Once the solidification is complete, the material thus crystallized is removed from the crucible and forms an ingot that must be cut into the form of bricks. The edges of the ingot are generally contaminated by elements from the crucible. It is therefore advisable to remove the edges when cutting into crystalline bricks, in order to keep only the center of the ingot which is of good quality.
Dans le cas d'une croissance dirigée à partir d'un pavage de germes monocristallins déposés au fond du creuset, le matériau cristallin est fondu au-dessus des germes qui vont imposer l'orientation cristalline lors de la solidification. Pour garantir la bonne qualité électrique et mécanique des briques cristallines, le lingot devrait être avantageusement découpé au niveau des joints de germes monocristallins, de façon à reléguer les défauts induits au niveau de ces joints de germes en périphérie des briques. Cette phase de découpe du lingot en briques est délicate car le matériau en fusion s'est écoulé dans l'ensemble du creuset et les joints de germes monocristallins ne sont plus visibles. In the case of a directed growth from a tiling of monocrystalline seeds deposited at the bottom of the crucible, the crystalline material is melted above the seeds which will impose the crystalline orientation during the solidification. In order to guarantee the good electrical and mechanical quality of the crystalline bricks, the ingot should advantageously be cut off at the level of the monocrystalline seed joints, so as to relegate the defects induced at these seals of seeds at the periphery of the bricks. This cutting phase of the brick ingot is delicate because the molten material has flowed throughout the crucible and monocrystalline seed seals are no longer visible.
Objet de l'invention Object of the invention
Un objet de l'invention est de réaliser un creuset pour la fabrication d'un matériau cristallin par solidification par reprise sur germe ayant de bonnes qualités électriques et mécaniques. An object of the invention is to provide a crucible for the manufacture of a crystalline material by solidification by germ recovery having good electrical and mechanical properties.
A cet effet, le creuset comporte un fond et au moins une paroi latérale orthogonale au fond du creuset, et des moyens de matérialisation de la position d'au moins un germe destiné à être positionné au fond du creuset, ledit germe comportant au moins des première et deuxième faces orthogonales au fond du creuset. For this purpose, the crucible comprises a bottom and at least one orthogonal lateral wall at the bottom of the crucible, and means for materializing the position of at least one seed intended to be positioned at the bottom of the crucible, said seed comprising at least first and second orthogonal faces at the bottom of the crucible.
Les moyens de matérialisation comprennent avantageusement au moins deux repères s'étendant sur la face interne de la au moins une paroi latérale suivant un axe orthogonal au fond du creuset. The materialization means advantageously comprise at least two marks extending on the internal face of the at least one side wall along an orthogonal axis at the bottom of the crucible.
Par ailleurs, les positions respectives de deux au moins des repères sur l'une au moins des parois latérales définissent, dans le matériau cristallin, un premier plan de découpe tangent à la première face dudit germe et un deuxième plan de découpe tangent à la deuxième face dudit germe. L'invention concerne également un procédé de réalisation d'un tel creuset, le procédé comportant les étapes suivantes : Furthermore, the respective positions of at least two of the marks on at least one of the lateral walls define, in the crystalline material, a first cutting plane tangential to the first face of said seed and a second cutting plane tangential to the second face of said seed. The invention also relates to a method for producing such a crucible, the method comprising the following steps:
• fournir un creuset comportant au moins un fond et au moins une paroi latérale orthogonale au fond du creuset,  Provide a crucible comprising at least one bottom and at least one orthogonal lateral wall at the bottom of the crucible,
· former au moins deux repères suivant un axe orthogonal au fond du creuset sur la face interne de l'une au moins des parois latérales du creuset.  · Forming at least two pins along an orthogonal axis at the bottom of the crucible on the internal face of at least one of the sidewalls of the crucible.
L'invention se rapporte enfin au procédé de réalisation d'une brique de matériau cristallin par solidification à l'aide d'un tel creuset, le procédé comportant les étapes suivantes : The invention finally relates to the method of producing a crystalline material brick by solidification using such a crucible, the method comprising the following steps:
• disposer d'un creuset comportant les caractéristiques précitées, • have a crucible with the above characteristics,
• réaliser une opération de cristallisation dirigée comportant le placement d'au moins un germe monocristallin au fond du creuset à l'aide de deux au moins des repères, pour former un lingot en matériau cristallin dans le creuset, Performing a directed crystallization operation comprising placing at least one monocrystalline seed at the bottom of the crucible using at least two markers, to form an ingot of crystalline material in the crucible,
• extraire le lingot du creuset,  • extract the ingot from the crucible,
• découper le lingot de matériau cristallin selon le premier plan de découpe et selon le deuxième plan de découpe, les premier et deuxième plans de découpe coïncidant avec les plans des joints de germes monocristallins, de sorte à obtenir au moins une brique.  • cutting the crystalline material ingot according to the first cutting plane and the second cutting plane, the first and second cutting planes coinciding with the planes of monocrystalline seed seals, so as to obtain at least one brick.
Description sommaire des dessins Brief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : - la figure 1 est une vue en perspective d'un creuset selon un mode de réalisation particulier de l'invention, Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which: FIG. 1 is a perspective view of a crucible according to a particular embodiment of the invention,
- les figures 2 et 3 représentent deux modes de réalisation différents du creuset de la figure 1 ,  FIGS. 2 and 3 represent two different embodiments of the crucible of FIG. 1,
- la figure 4 illustre en vue de dessus la manière dont les germes monocristallins sont positionnés dans le creuset, FIG. 4 is a top view of the way in which monocrystalline seeds are positioned in the crucible,
- la figure 5 représente la découpe du lingot après démoulage du creuset.  - Figure 5 shows the cutting of the ingot after removal of the crucible.
Description détaillée detailed description
Un creuset 1 est classiquement utilisé pour former un lingot de matériau cristallin par solidification par reprise sur germe, et en particulier par cristallisation dirigée. Le matériau cristallin peut par exemple être un matériau semi-conducteur tel que du silicium ou du germanium. Il peut également être un oxyde, par exemple l'oxyde d'aluminium (saphir). Le creuset 1 comporte avantageusement un fond 2 et au moins une paroi latérale 3 orthogonale au fond 2. Selon un mode de réalisation particulier illustré sur les figures, le creuset 1 peut par exemple comporter quatre parois latérales 3, de sorte à former un lingot cristallin parallélépipédique, et ayant avantageusement une forme de parallélépipède rectangle ou de cube. La forme du creuset 1 facilite la découpe du lingot en briques comme on le verra plus loin. Mais il est par exemple tout à fait envisageable d'utiliser un creuset de forme quelconque, par exemple un creuset cylindrique. A crucible 1 is conventionally used to form an ingot of crystalline material by solidification by resumption on seed, and in particular by directed crystallization. The crystalline material may for example be a semiconductor material such as silicon or germanium. It can also be an oxide, for example aluminum oxide (sapphire). The crucible 1 advantageously comprises a bottom 2 and at least one side wall 3 orthogonal to the bottom 2. According to a particular embodiment illustrated in the figures, the crucible 1 may for example comprise four side walls 3, so as to form a crystalline ingot parallelepiped, and preferably having a rectangular parallelepiped shape or cube. The shape of the crucible 1 facilitates the cutting of the ingot brick as will be seen later. But it is for example quite possible to use a crucible of any shape, for example a cylindrical crucible.
Le creuset 1 est avantageusement doté de moyens de matérialisation de la position d'au moins un germe destiné à être positionné au fond du creuset avant la formation du matériau cristallin par solidification par reprise sur germe. Les moyens de matérialisation peuvent comprendre au moins deux repères 4 sur la face interne de la paroi latérale 3 du creuset 1 , avantageusement positionnés suivant un axe orthogonal au fond 2 du creuset 1 . Les positions de deux au moins de ces repères 4 sont choisies de manière à définir des premier et deuxième plans de découpe du lingot cristallin obtenu par solidification par reprise sur germe. En effet, une fois solidifié, le lingot comporte l'empreinte des repères 4 sur ses parois latérales, de sorte que la détermination des plans de découpe est facilitée. The crucible 1 is advantageously provided with means for materializing the position of at least one seed intended to be positioned at the bottom of the crucible before the formation of the crystalline material by solidification by resumption on seed. The means of materialization may comprise at least two marks 4 on the internal face of the side wall 3 of the crucible 1, advantageously positioned along an orthogonal axis at the bottom 2 of the crucible 1. The positions of at least two of these pins 4 are chosen so as to define first and second cutting planes of the crystalline ingot obtained by solidification by resumption on seed. Indeed, once solidified, the ingot has the imprint of the marks 4 on its side walls, so that the determination of the cutting planes is facilitated.
Chaque plan de découpe est avantageusement tangent à l'une des faces d'un germe positionné au fond du creuset avant la cristallisation dirigée, et passe par l'un des repères 4. Each cutting plane is advantageously tangential to one of the faces of a seed positioned at the bottom of the crucible before the directed crystallization, and passes through one of the marks 4.
Avantageusement, le premier repère 4 peut être positionné de sorte que le premier plan de découpe soit orthogonal à un plan tangent à la face interne de la paroi latérale 3. Lorsque le germe a la forme d'un parallélépipède rectangle, le deuxième plan de découpe est quant à lui orthogonal au premier plan de découpe et passe par un deuxième repère 4. Advantageously, the first mark 4 may be positioned so that the first cutting plane is orthogonal to a plane tangential to the internal face of the side wall 3. When the seed has the shape of a rectangular parallelepiped, the second cutting plane is itself orthogonal to the first plane of cutting and passes through a second marker 4.
Si le creuset 1 comporte deux parois latérales adjacentes perpendiculaires, deux au moins des repères 4 peuvent être positionnés respectivement sur deux parois latérales 3 adjacentes. Dans ce cas, le premier plan de découpe peut alors être avantageusement parallèle à une première paroi latérale 3, et le deuxième plan de découpe parallèle à une deuxième paroi latérale 3 adjacente à la première paroi latérale. Cette configuration du creuset 1 est particulièrement avantageuse pour former des lingots de forme parallélépipédique, de forme parallélépipède rectangle ou de forme cubique. If the crucible 1 has two adjacent perpendicular side walls, at least two of the marks 4 can be positioned respectively on two adjacent side walls 3. In this case, the first cutting plane can then be advantageously parallel to a first side wall 3, and the second cutting plane parallel to a second side wall 3 adjacent to the first side wall. This configuration of the crucible 1 is particularly advantageous for forming ingots of parallelepipedal shape, rectangular parallelepiped shape or cubic shape.
Selon un mode de réalisation particulier, le creuset 1 peut comporter au moins un repère additionnel, avantageusement positionné en regard de l'un des repères 4, par exemple sur une paroi latérale 3 opposée à la paroi latérale comportant le repère 4 lorsque le creuset 1 est parallélépipédique. Le fait de positionner deux repères 4 en regard l'un de l'autre permet de déterminer la position du plan de découpe du lingot après cristallisation avec une précision accrue. Lorsque le creuset 1 est utilisé pour faire de la cristallisation par reprise sur germe, celui-ci peut comporter des moyens de positionnement (non représentés) au fond du creuset 1 . Leur rôle est de permettre le placement des germes dans des positions prédéfinies par rapport aux repères 4. Ces moyens de positionnement sont par exemple ceux décrits dans la demande internationale WO 2013/034819, c'est-à-dire des trous pour positionner les germes. Ils peuvent également prendre la forme de repères tels que des rainures, des nervures, ou des plots facilitant le placement des germes. According to a particular embodiment, the crucible 1 may comprise at least one additional mark, advantageously positioned opposite one of the markers 4, for example on a side wall 3 opposite to the side wall having the mark 4 when the crucible 1 is parallelepipedic. The fact of positioning two pins 4 facing each other makes it possible to determine the position of the cutting plane of the ingot after crystallization with increased precision. When the crucible 1 is used to crystallize by resumption on seed, it may include positioning means (not shown) at the bottom of the crucible 1. Their role is to allow the placement of the seeds in predefined positions relative to the pins 4. These positioning means are for example those described in the international application WO 2013/034819, that is to say, holes for positioning the seeds. . They can also take the form of markers such as grooves, ribs, or studs facilitating the placement of germs.
Selon le mode de réalisation illustré, les repères 4 s'étendent avantageusement sur toute la hauteur des faces internes des parois latérales 3 suivant un axe orthogonal au fond 2 du creuset 1. According to the illustrated embodiment, the marks 4 advantageously extend over the entire height of the internal faces of the side walls 3 along an axis orthogonal to the bottom 2 of the crucible 1.
Toutefois, chaque repère 4 peut s'étendre seulement sur une partie de la hauteur des faces internes des parois latérales 3, par exemple depuis le fond 2 du creuset, ou depuis le bord supérieur des parois latérales 3. La longueur de chaque repère 4 est supérieure à 10% de la hauteur des parois latérales 3, préférentiellement supérieure à 30% de la hauteur des parois latérales 3, et avantageusement supérieure à 50% de la hauteur des parois latérales 3. Les repères 4 peuvent également être continus ou discontinus, et présenter des hauteurs différentes. However, each reference 4 may extend only over part of the height of the internal faces of the side walls 3, for example from the bottom 2 of the crucible, or from the upper edge of the side walls 3. The length of each marker 4 is greater than 10% of the height of the side walls 3, preferably greater than 30% of the height of the side walls 3, and preferably greater than 50% of the height of the side walls 3. The marks 4 may also be continuous or discontinuous, and present different heights.
Chaque repère 4 du creuset 1 peut donc avoir des caractéristiques qui lui sont propres, par exemple lorsque le creuset 1 est destiné à la cristallisation de plusieurs types de matériaux cristallins dont les propriétés diffèrent, conduisant ainsi à différentes découpes possibles du lingot. La position de chaque repère 4 peut être judicieusement choisie en fonction du type de cristallisation effectuée, et en fonction du type de matériau à cristalliser. Des repères 4 peuvent être placés à quelques centimètres des extrémités des parois latérales 3 afin de ne garder que la partie centrale du lingot lors de la découpe. En effet, les bords des lingots sont généralement contaminés par des éléments en provenance du creuset 1 et sont donc de moins bonne qualité d'usage. Ce phénomène est en particulier bien connu dans le cas du silicium pour applications photovoltaïques où les bords du lingot sont qualifiés sous l'appellation red zone en anglais. Les repères 4 permettent d'assurer le centrage des briques cristallines qui sont découpées dans le lingot afin d'en assurer la qualité, et d'assurer la reproductibilité du positionnement du lingot lors de la découpe de ce dernier. Le lingot devrait être avantageusement découpé au niveau des joints de germes monocristallins, de façon à reléguer les défauts induits au niveau de ces joints de germes en périphérie des briques. Each reference 4 of the crucible 1 may therefore have characteristics of its own, for example when the crucible 1 is intended for the crystallization of several types of crystalline materials whose properties differ, thus leading to different possible cuts of the ingot. The position of each marker 4 can be judiciously chosen depending on the type of crystallization performed, and depending on the type of material to be crystallized. 4 marks can be placed a few centimeters from the ends of the side walls 3 to keep only the central portion of the ingot during cutting. Indeed, the edges of the ingots are generally contaminated by elements from the crucible 1 and are therefore of lower quality of use. This phenomenon is particularly well known in the case of silicon for photovoltaic applications where the edges of the ingot are qualified under the name red zone in English. The marks 4 make it possible to ensure the centering of the crystalline bricks which are cut in the ingot in order to ensure the quality thereof, and to ensure the reproducibility of the positioning of the ingot during the cutting of the latter. The ingot should be advantageously cut at the monocrystalline seed seals, so as to relegate the defects induced at these seals seeds at the periphery of the bricks.
Lorsque la cristallisation dirigée est réalisée par reprise sur germes, il peut être utile de placer les repères 4 au niveau des bords des germes monocristallins, de façon à reléguer les défauts induits dans le cristal au niveau de ces joints de germes en périphérie des briques et améliorer leur qualité mécanique et électrique. Ainsi, lors de la découpe, les défauts sont éliminés sans que l'utilisateur n'ait besoin de chercher des indices de solidification sur les faces supérieure et inférieure du lingot. When the directed crystallization is carried out by resumption on seeds, it may be useful to place the markers 4 at the edges of the monocrystalline seeds, so as to relegate the defects induced in the crystal at these seals of seeds at the periphery of the bricks and improve their mechanical and electrical quality. Thus, during the cutting, the defects are eliminated without the user needing to look for signs of solidification on the upper and lower faces of the ingot.
Dans le domaine du photovoltaïque, les briques utilisées ont avantageusement une forme de parallélépipède rectangle ou de cube, dont les côtés ont des dimensions généralement comprises entre 50 et 200 mm. Les panneaux photovoltaïques comportent par exemple des cellules dont la taille standard est égale à 156 mm de côté. In the field of photovoltaics, the bricks used advantageously have a rectangular parallelepiped shape or cube, whose sides have dimensions generally between 50 and 200 mm. Photovoltaic panels comprise for example cells whose standard size is equal to 156 mm side.
Aussi, pour former des briques utilisées dans le domaine du photovoltaïque, le creuset 1 peut avantageusement comporter des repères 4 placés sur sa paroi latérale 3 interne de sorte que deux repères consécutifs d'une même paroi latérale 3 soient distants de 50 à 200 mm, et préférentiellement distants de 156 mm. En plaçant des germes ayant ces dimensions caractéristiques au fond du creuset 1 à l'aide des repères 4, des briques cristallines aux dimensions idéales et ayant de très bonnes propriétés mécanique et électrique peuvent alors être formées. Also, to form bricks used in the field of photovoltaics, the crucible 1 may advantageously comprise pins 4 placed on its inner side wall 3 so that two consecutive marks of the same side wall 3 are spaced 50 to 200 mm, and preferably distant of 156 mm. By placing seeds having these characteristic dimensions at the bottom of the crucible 1 with the help of markers 4, crystalline bricks with ideal dimensions and having very good mechanical and electrical properties can then be formed.
Selon les modes de réalisation illustrés aux figures 2 et 3, les repères 4 peuvent être des nervures, c'est-à-dire des reliefs formés en sur-épaisseur, ou des rainures, c'est-à-dire des reliefs formés en sous-épaisseur sur les parois latérales 3 du creuset 1 . L'utilisation de nervures est préférée notamment quand le creuset est en oxyde de silicium, et que le matériau cristallin est du silicium. Il est au contraire avantageux d'utiliser des rainures sur les creusets en graphite. According to the embodiments illustrated in FIGS. 2 and 3, the marks 4 may be ribs, that is to say reliefs formed in over-thickness, or grooves, that is to say, reliefs formed in under-thickness on the side walls 3 of the crucible 1. The use of ribs is preferred especially when the crucible is silicon oxide, and the crystalline material is silicon. On the contrary, it is advantageous to use grooves on the graphite crucibles.
Lorsque les repères 4 sont des nervures, les empreintes laissées sur le lingot cristallin sont alors des rainures, c'est-à-dire des reliefs en sous-épaisseur. A l'inverse lorsque les repères 4 sont des rainures, les empreintes laissées sur le lingot sont des nervures, c'est-à-dire des reliefs en sur-épaisseur. When the pins 4 are ribs, the indentations left on the crystalline ingot are then grooves, that is to say reliefs in sub-thickness. Conversely, when the marks 4 are grooves, the impressions left on the ingot are ribs, that is to say reliefs in over-thickness.
Les rainures peuvent par exemple être formées par usinage des faces internes des parois latérales 3, ou par gravure à travers un masque selon toute technique de lithographie conventionnelle. Par usinage on entend une élimination mécanique du matériau formant le creuset. Par gravure, on entend une élimination chimique, par exemple une solution de HF pour un creuset en silice. Les rainures ont préférentiellement une profondeur inférieure à 2 mm. The grooves may for example be formed by machining the internal faces of the side walls 3, or by etching through a mask according to any conventional lithography technique. By machining is meant a mechanical removal of the material forming the crucible. By etching is meant a chemical elimination, for example an HF solution for a silica crucible. The grooves preferably have a depth of less than 2 mm.
Dans le cas où les repères 4 sont des nervures, ces derniers peuvent être réalisés au moyen d'un gabarit (non représenté) permettant de donner une forme homogène sur toute la longueur des repères 4. Un apport de matière est alors réalisé sur une face interne d'une paroi latérale 3 du creuset 1 . Les nervures font saillie sur une épaisseur préférentiellement inférieure à 2 mm. Les repères 4 peuvent avantageusement avoir une forme triangulaire, et en particulier une forme triangulaire isocèle. Cette forme triangulaire est visible dans un plan parallèle au fond 2 du creuset 1 . Un gabarit de taille et de forme adaptées peut par exemple permettre la réalisation de nervures ayant avantageusement une section dont la base, c'est-à-dire la largeur de la nervure, mesure entre 100 μιη et 6 mm, préférentiellement entre 500 μιη et 2 mm, et dont l'angle au sommet est compris entre 30° et 120°, préférentiellement entre 45° et 90°. Ces dimensions forment un bon compromis entre les contraintes de réalisation des nervures, et la précision du positionnement de l'axe de découpe du lingot. In the case where the pins 4 are ribs, they can be made by means of a template (not shown) to give a homogeneous shape over the entire length of the marks 4. An input material is then made on one side internal side wall 3 of the crucible 1. The ribs protrude over a thickness preferably less than 2 mm. The marks 4 may advantageously have a triangular shape, and in particular an isosceles triangular shape. This triangular shape is visible in a plane parallel to the bottom 2 of the crucible 1. A template of suitable size and shape may, for example, enable the production of ribs advantageously having a section whose base, ie the width of the rib, measures between 100 μm and 6 mm, preferably between 500 μm and 2 mm, and whose apex angle is between 30 ° and 120 °, preferably between 45 ° and 90 °. These dimensions form a good compromise between the constraints of realization of the ribs, and the accuracy of the positioning of the cutting axis of the ingot.
Les nervures peuvent par exemple être réalisées par un dépôt localisé d'une solution contenant une poudre compatible avec le matériau à cristalliser, et un traitement thermique autorisant le frittage de la poudre. Par exemple si le matériau à cristalliser est du Si la poudre peut être du Si3N4. The ribs may for example be made by a localized deposit of a solution containing a powder compatible with the material to be crystallized, and a heat treatment allowing the sintering of the powder. For example if the material to be crystallized is Si If the powder can be Si 3 N 4 .
Le creuset 1 peut avantageusement être utilisé dans un four de cristallisation (non représenté) dans lequel un gradient thermique de cristallisation est appliqué au cours de l'opération de cristallisation dirigée, afin de réaliser la croissance du matériau cristallin. Ce gradient thermique est avantageusement appliqué suivant un axe orthogonal au fond 2 du creuset, la température étant d'autant plus froide que l'on s'approche du fond 2 du creuset 1. The crucible 1 may advantageously be used in a crystallization furnace (not shown) in which a thermal gradient of crystallization is applied during the directional crystallization operation, in order to achieve the growth of the crystalline material. This thermal gradient is advantageously applied along an orthogonal axis to the bottom 2 of the crucible, the temperature being all the colder as one approaches the bottom 2 of the crucible 1.
L'invention concerne également le procédé de réalisation d'un creuset 1 . Celui-ci peut être mis en œuvre à partir d'un creuset de forme quelconque et de taille quelconque. Il peut par exemple être en silice ou en graphite (cristallisation des semi-conducteurs) ou en métaux précieux (cristallisation des oxydes). Que le creuset soit réutilisable ou non, il se déforme lors des phases de fusion et de solidification du matériau. The invention also relates to the method of producing a crucible 1. This can be implemented from a crucible of any shape and size. It may for example be silica or graphite (crystallization of semiconductors) or precious metals (crystallization of oxides). Whether the crucible is reusable or not, it deforms during the melting and solidification phases of the material.
En effet, lorsque le creuset 1 est soumis à une rampe de température, par exemple une augmentation de température de l'ordre de 1500°C, la résultante des forces exercées par le matériau fondu sur les faces latérales 3 déforme les angles du creuset 1 qui deviennent plus pointus, et pousse les faces latérales 3 vers l'extérieur du creuset 1 . Ensuite, lorsque la température diminue, le volume du lingot cristallin diminue en cristallisant. Indeed, when the crucible 1 is subjected to a temperature ramp, for example a temperature increase of the order of 1500 ° C, the resultant forces exerted by the molten material on the side faces 3 deforms the corners of the crucible 1 which become more pointed, and push the lateral faces 3 towards the outside of the crucible 1. Then, as the temperature decreases, the volume of the crystalline ingot decreases by crystallizing.
Par exemple, les creusets en silice subissent une transition vitreuse puis une cristallisation pendant la croissance cristalline du matériau. Ces changements de phases génèrent des variations de l'ordre de 2% entre les dimensions initiales et finales du creuset, ces variations étant dépendantes de la composition exacte du creuset. Il est donc impossible de réaliser une abaque de déformation du creuset lors de la croissance cristalline du matériau. La présence des repères 4 permet de définir précisément la position de la découpe indépendamment de la déformation du lingot. Par ailleurs les dimensions des repères 4 (épaisseur de la nervure ou profondeur de la rainure) sont suffisamment petites pour ne pas avoir d'influence sur les variations de dimension du creuset lors de ses changements de phase. Lors d'une cristallisation dirigée par reprise sur germes, la position des germes dans le creuset avant découpe n'est pas connue avec certitude. Un autre rôle joué par les repères 4 est de garder la mémoire de la position des germes après le cycle de cristallisation. For example, the silica crucibles undergo a glass transition and crystallization during the crystalline growth of the material. These phase changes generate variations of about 2% between the initial and final dimensions of the crucible, these variations being dependent on the exact composition of the crucible. It is therefore impossible to make an abacus deformation of the crucible during the crystalline growth of the material. The presence of the marks 4 makes it possible to precisely define the position of the cutout independently of the deformation of the ingot. Moreover, the dimensions of the marks 4 (thickness of the rib or depth of the groove) are small enough not to have any influence on the variations in size of the crucible during its phase changes. During germ-directed crystallization, the position of the seeds in the crucible before cutting is not known with certainty. Another role played by the marks 4 is to keep the memory of the position of the seeds after the crystallization cycle.
Afin de minimiser les incertitudes de positionnement des repères 4 sur les faces latérales 3, il peut être judicieux de former les repères 4 dans des zones des faces latérales 3 qui se déforment peu, par exemple au voisinage du centre de ces dernières si le creuset 1 a une forme parallélépipédique. In order to minimize the positioning uncertainties of the marks 4 on the lateral faces 3, it may be judicious to form the marks 4 in zones of the lateral faces 3 which deform little, for example in the vicinity of the center of the latter if the crucible 1 has a parallelepipedic shape.
Pour réaliser un creuset 1 tel que décrit ci-dessus, on utilise un creuset comportant au moins un fond 2 et au moins une paroi latérale 3 orthogonale au fond 2, et on forme au moins deux repères 4 orthogonaux au fond 2 sur les faces internes de l'une au moins des parois latérales 3. To make a crucible 1 as described above, use is made of a crucible comprising at least one bottom 2 and at least one side wall 3 orthogonal to the bottom 2, and at least two orthogonal markers 4 are formed at the bottom 2 on the internal faces. at least one of the side walls 3.
Les repères 4 peuvent être réalisés de manière continue à partir du fond 2 ou du bord supérieur des parois latérales 3, ou de manière discontinue sur les parois latérales 3. Leurs longueurs peuvent être supérieures à au moins 10% de la hauteur totale des parois latérales 3, préférentiellement sur des longueurs supérieures à 30%, encore plus préférentiellement sur des longueurs supérieures à 50%, et avantageusement toute la hauteur des parois latérales 3. The marks 4 may be made continuously from the bottom 2 or the upper edge of the side walls 3, or discontinuously on the side walls 3. Their lengths may be greater than at least 10% of the total height of the side walls. 3, preferentially over lengths greater than 30%, even more preferably over lengths greater than 50%, and advantageously the entire height of the side walls 3.
Les repères 4 peuvent avantageusement avoir une section triangulaire, de manière à pouvoir repérer précisément l'axe de découpe du lingot. La base de la section triangulaire peut par exemple être comprise entre 100 μιη et 6 mm, et l'angle au sommet peut être compris entre 45° et 90°. The marks 4 may advantageously have a triangular section, so as to be able to pinpoint the cutting axis of the ingot. The base of the triangular section may for example be between 100 μιη and 6 mm, and the apex angle may be between 45 ° and 90 °.
L'un au moins des repères 4 peut être une rainure formée par exemple par usinage de l'une au moins des faces internes des parois latérales 3, ou par gravure selon des techniques classiques de lithographie. De manière alternative, les repères 4 peuvent avantageusement être des nervures fabriquées à l'aide d'un gabarit. Lorsque le creuset 1 est en oxyde de silicium et que le matériau à cristalliser est du silicium, les repères 4 peuvent avantageusement être des réalisées à l'aide d'un matériau comprenant une poudre de Si3N4. Pour former les nervures, on mélange avantageusement 35% à 55% de poudre de Si3N4, 1 % à 4% d'alcool polyvinylique, et de l'eau dé-ionisée. On applique ce mélange localement sur les faces internes des parois latérales 3 du creuset 1 à l'aide du gabarit pour former les repères 4. Ce mélange doit être suffisamment visqueux pour ne pas couler ou s'étaler lors de l'application sur les parois latérales 3 du creuset 1 . L'ensemble est ensuite recuit dans un four chauffé à une température comprise entre 900° et 1200°C, préférentiellement entre 1000°C et 1 100°C. La durée du recuit est comprise entre 30min et 4h, préférentiellement entre 1 h et 3h. Selon un exemple de mise en œuvre pour la croissance du silicium pour applications photovoltaïques, il est possible de réaliser des repères 4 sur un creuset 1 en silice de taille G2. Les repères 4 sont des nervures comprenant 43% de poudre de Si3N4, 2,3% d'alcool polyvinylique, et de l'eau dé-ionisée. Après formation des nervures à l'aide du gabarit, le creuset 1 est recuit dans un four à 1050°C pendant 2h. Le Si3N4 ayant des propriétés anti-adhérentes, cela permet de faciliter le démoulage du lingot après cristallisation. At least one of the marks 4 may be a groove formed for example by machining at least one of the internal faces of the side walls 3, or by engraving according to conventional lithography techniques. Alternatively, the marks 4 may advantageously be ribs manufactured using a template. When the crucible 1 is made of silicon oxide and the material to be crystallized is silicon, the marks 4 may advantageously be made using a material comprising a powder of Si 3 N 4 . To form the ribs, 35% to 55% of powder of Si 3 N 4 , 1% to 4% of polyvinyl alcohol, and deionized water are advantageously mixed. This mixture is applied locally on the inner faces of the side walls 3 of the crucible 1 using the template to form the marks 4. This mixture must be sufficiently viscous not to sink or spread during application to the walls. side 3 of the crucible 1. The assembly is then annealed in a heated oven at a temperature between 900 ° and 1200 ° C, preferably between 1000 ° C and 1100 ° C. The annealing time is between 30 min and 4 h, preferably between 1 h and 3 h. According to an exemplary implementation for the growth of silicon for photovoltaic applications, it is possible to make reference points 4 on a silica crucible 1 of size G2. The marks 4 are ribs comprising 43% of powder of Si 3 N 4 , 2.3% of polyvinyl alcohol, and deionized water. After formation of the ribs using the template, the crucible 1 is annealed in an oven at 1050 ° C for 2 hours. Si 3 N 4 having anti-adhesive properties, this makes it easier to demold the ingot after crystallization.
Pour réaliser une brique 5 de matériau cristallin au moyen d'un creuset 1 tel que décrit ci-dessus, on introduit le matériau dans le creuset 1 , par exemple du silicium, puis l'ensemble est placé dans un four de cristallisation tel que celui évoqué ci-dessus. Un gradient thermique est appliqué dans le four de cristallisation, et ce gradient est avantageusement dirigé suivant un axe orthogonal au fond 2 du creuset 1 . Le matériau passe par une phase de fusion, puis de solidification. To make a brick 5 of crystalline material by means of a crucible 1 as described above, the material is introduced into the crucible 1, for example silicon, and then the assembly is placed in a crystallization furnace such as the one mentioned above. A thermal gradient is applied in the crystallization furnace, and this gradient is advantageously directed along an orthogonal axis to the bottom 2 of the crucible 1. The material goes through a melting phase, then solidification.
Le lingot est ensuite démoulé lorsque la matière est complètement cristallisée. Des traces dues aux repères 4 apparaissent sur les parois latérales du lingot. Les traces sont utilisées pour positionner de manière correcte des fils ou des lames 6 de découpe selon les premier et deuxième axes de découpe, de sorte à obtenir des briques cristallines, par exemple des briques de silicium cristallin. Cette étape de fabrication des briques 5 est illustrée à la figure 5. The ingot is then demolded when the material is completely crystallized. Traces due to the marks 4 appear on the side walls of the ingot. The traces are used to correctly position cutting wires or blades 6 along the first and second cutting axes, so as to obtain crystalline bricks, for example bricks of crystalline silicon. This step of manufacturing the bricks 5 is illustrated in FIG.
Selon une méthode de fabrication particulière des briques cristallines, la croissance dirigée par reprise sur germes peut être utilisée. Dans cette méthode, au moins un germe monocristallin est déposé sur le fond 2 du creuset 1 en utilisant avantageusement les moyens de positionnement des germes sur le fond 2 du creuset 1 . Les moyens de positionnement peuvent par exemple être des repères 4 dont les positions sur les parois latérales 3 du creuset 1 sont choisies pour être adaptées aux dimensions des germes. According to a particular manufacturing method of the crystalline bricks, germ-directed growth can be used. In this method, at least one monocrystalline seed is deposited on the bottom 2 of the crucible 1, advantageously using the means for positioning the seeds on the bottom 2 of the crucible 1. The positioning means may for example be pins 4 whose positions on the side walls 3 of the crucible 1 are chosen to be adapted to the dimensions of the seeds.
Ensuite, lors de l'étape de découpe du lingot, les traces laissées par les repères 4 permettent avantageusement de faire coïncider les plans de découpe avec les plans des joints des germes monocristallins. Then, during the cutting step of the ingot, the traces left by the marks 4 advantageously make it possible to make the cutting planes coincide with the planes of the joints of the monocrystalline seeds.
Selon un mode de réalisation particulier, des plans de découpe supplémentaires peuvent être choisis afin de réaliser une ou plusieurs étapes de découpe supplémentaires. Deux plans de découpe supplémentaires peuvent par exemple être utilisés, ces deux plans supplémentaires étant avantageusement parallèles aux premier et deuxième plans de découpe. Les plans de découpe supplémentaires peuvent être positionnés par exemple au moyen de repères supplémentaires 4 placés sur les parois latérales 3 du creuset 1 . Ils peuvent également être déterminés à partir de la position des premier et deuxième plans de découpe. According to a particular embodiment, additional cutting planes may be chosen in order to perform one or more additional cutting steps. Two additional cutting planes may for example be used, these two additional planes being advantageously parallel to the first and second cutting planes. The Additional cutting planes can be positioned for example by means of additional marks 4 placed on the side walls 3 of the crucible 1. They can also be determined from the position of the first and second cutting planes.
Par exemple, dans le mode de mise en œuvre représenté aux figures 4 et 5, cinq germes de forme carrée et quatre germes de forme rectangulaire sont utilisés pour former le matériau cristallin par cristallisation dirigée. Les germes sont disposés de manière à occuper tout le fond 2 du creuset 1 , et huit repères 4 ont avantageusement été placés sur les parois latérales 3 du creuset 1 au niveau des jonctions entre les germes. Après cristallisation du lingot, ce dernier est démoulé et découpé en briques suivant quatre plans de découpe parallèles deux à deux, les plans de découpe coïncidant avec les plans des joints de germes. For example, in the embodiment shown in Figures 4 and 5, five square shaped seeds and four rectangular shaped seeds are used to form the crystalline material by directed crystallization. The seeds are arranged to occupy the entire bottom 2 of the crucible 1, and eight pins 4 have advantageously been placed on the side walls 3 of the crucible 1 at the junctions between the seeds. After crystallization of the ingot, the latter is demolded and cut into bricks according to four parallel cutting planes in pairs, the cutting planes coinciding with the planes of the seed joints.
On obtient ainsi des briques cristallines dépourvues de joints de grains, ou ayant des joints de grains relégués à la périphérie des briques cristallines. Ces derniers ont ainsi une qualité électrique et mécanique élevée, et répondent aux exigences requises dans le domaine du photovoltaïque. Crystalline bricks without grain boundaries or having grain boundaries relegated to the periphery of the crystalline bricks are thus obtained. The latter thus have a high electrical and mechanical quality, and meet the requirements in the field of photovoltaics.

Claims

Revendications claims
1. Creuset (1 ) pour la formation d'un matériau cristallin par solidification par reprise sur germe, comprenant un fond (2), au moins une paroi latérale (3) orthogonale au fond (2) du creuset (1 ), et des moyens de matérialisation de la position d'au moins un germe destiné à être positionné au fond du creuset, ledit germe comportant au moins des première et deuxième faces orthogonales au fond du creuset, 1. Crucible (1) for the formation of a crystalline material by solidification by germ recovery, comprising a bottom (2), at least one side wall (3) orthogonal to the bottom (2) of the crucible (1), and means for materializing the position of at least one seed intended to be positioned at the bottom of the crucible, said seed having at least first and second orthogonal faces at the bottom of the crucible,
caractérisé en ce que les moyens de matérialisation comprennent au moins deux repères (4) s'étendant sur la face interne de la au moins une paroi latérale (3) suivant un axe orthogonal au fond du creuset (1 ), characterized in that the materializing means comprise at least two marks (4) extending on the inner face of the at least one side wall (3) along an orthogonal axis at the bottom of the crucible (1),
et en ce que les positions respectives de deux au moins des repères sur l'une au moins des parois latérales (3) définissent, dans le matériau cristallin, un premier plan de découpe tangent à la première face dudit germe et un deuxième plan de découpe tangent à la deuxième face dudit germe. and in that the respective positions of at least two of the marks on at least one of the side walls (3) define, in the crystalline material, a first cutting plane tangential to the first face of said seed and a second cutting plane tangent to the second face of said seed.
2. Creuset (1 ) selon la revendication 1 , comportant au moins deux parois latérales (3) adjacentes perpendiculaires, et dans lequel au moins deux des repères (4) sont positionnés respectivement sur deux des parois latérales (3) adjacentes perpendiculaires. 2. Crucible (1) according to claim 1, comprising at least two adjacent perpendicular side walls (3), and wherein at least two of the marks (4) are respectively positioned on two of the adjacent perpendicular side walls (3).
3. Creuset (1 ) selon l'une quelconque des revendications 1 ou 2, configuré pour former une brique cristalline de forme parallélépipédique, de forme parallélépipède rectangle ou de forme cubique. 3. Crucible (1) according to any one of claims 1 or 2, configured to form a parallelepiped-shaped crystalline brick of rectangular parallelepiped shape or cubic shape.
4. Creuset (1 ) selon l'une quelconque des revendications 1 à 3, dans lequel deux au moins des repères (4) sont positionnés sur une même paroi latérale, et sont espacés d'une distance comprise entre 50 et 200mm. 4. Crucible (1) according to any one of claims 1 to 3, wherein at least two marks (4) are positioned on the same side wall, and are spaced a distance of between 50 and 200mm.
5. Creuset (1 ) selon l'une quelconque des revendications 1 à 4, comportant au moins un repère additionnel positionné en regard de l'un des repères (4) sur une paroi latérale (3) opposée à la paroi latérale (3) comportant ledit repère (4). 5. Crucible (1) according to any one of claims 1 to 4, comprising at least one additional mark positioned opposite one of the marks (4) on a side wall (3) opposite to the side wall (3) having said mark (4).
6. Creuset (1 ) selon l'une quelconque des revendications 1 à 5, dans lequel l'un au moins des repères (4) présente une longueur supérieure ou égale à 10% de la hauteur de la paroi latérale correspondante (3), et préférentiellement supérieure à 50% de la hauteur de la paroi latérale correspondante (3). 6. Crucible (1) according to any one of claims 1 to 5, wherein at least one of the marks (4) has a length greater than or equal to 10% of the height of the corresponding side wall (3), and preferably greater than 50% of the height of the corresponding side wall (3).
7. Creuset (1 ) selon l'une quelconque des revendications 1 à 6, dans lequel l'un au moins des repères (4) a une section triangulaire dans un plan de coupe parallèle au fond (2). 7. Crucible (1) according to any one of claims 1 to 6, wherein at least one of the marks (4) has a triangular section in a cutting plane parallel to the bottom (2).
8. Creuset (1 ) selon la revendication 7, dans lequel la section de l'un au moins des repères (4) est triangulaire isocèle. 8. Crucible (1) according to claim 7, wherein the section of at least one of the pins (4) is triangular isosceles.
9. Creuset (1 ) selon la revendication 7 ou 8, dans lequel la base de la section triangulaire est comprise entre 100 μιη et 6 mm, et dans lequel l'angle au sommet de la section triangulaire est compris entre 45° et 90°. 9. Crucible (1) according to claim 7 or 8, wherein the base of the triangular section is between 100 μιη and 6 mm, and wherein the apex angle of the triangular section is between 45 ° and 90 ° .
10. Creuset (1 ) selon l'une quelconque des revendications 1 à 9, dans lequel l'un au moins des repères (4) est une rainure dans la face interne de la paroi latérale (3). 10. Crucible (1) according to any one of claims 1 to 9, wherein at least one of the marks (4) is a groove in the inner face of the side wall (3).
11. Creuset (1 ) selon l'une quelconque des revendications 1 à 10, dans lequel l'un au moins des repères (4) est une nervure dans la face interne de la paroi latérale (3). 11. Crucible (1) according to any one of claims 1 to 10, wherein at least one of the pins (4) is a rib in the inner face of the side wall (3).
12. Procédé de réalisation d'un creuset (1 ) selon l'une quelconque des revendications 1 à 1 1 , comportant les étapes suivantes : • fournir un creuset (1 ) comportant au moins un fond (2) et au moins une paroi latérale (3) orthogonale au fond (2) du creuset (1 ),12. A method of producing a crucible (1) according to any one of claims 1 to 1 1, comprising the following steps: Providing a crucible (1) comprising at least one bottom (2) and at least one side wall (3) orthogonal to the bottom (2) of the crucible (1),
• former au moins deux repères (4) suivant un axe orthogonal au fond (2) du creuset (1 ) sur la face interne de l'une au moins des parois latérales (3) du creuset (1 ). • forming at least two marks (4) along an orthogonal axis at the bottom (2) of the crucible (1) on the inner face of at least one of the side walls (3) of the crucible (1).
13. Procédé de réalisation d'un creuset (1 ) selon la revendication 12, dans lequel l'un au moins des repères (4) est formé sur une longueur supérieure à 10% de la hauteur de l'une au moins des parois latérales (3), et préférentiellement supérieure à 50% de la hauteur de la paroi latérale correspondante (3). 13. A method of producing a crucible (1) according to claim 12, wherein at least one of the marks (4) is formed over a length greater than 10% of the height of at least one of the side walls. (3), and preferentially greater than 50% of the height of the corresponding side wall (3).
14. Procédé de réalisation d'un creuset (1 ) selon l'une quelconque des revendications 12 ou 13, dans lequel la formation de l'un au moins des repères (4) est réalisée par apport de matière dans un gabarit de sorte à former une nervure, ou par gravure de sorte à former une rainure. 14. A method of producing a crucible (1) according to any one of claims 12 or 13, wherein the formation of at least one of the pins (4) is achieved by adding material in a template so as to forming a rib, or by etching so as to form a groove.
15. Procédé de réalisation d'un creuset (1 ) selon l'une quelconque des revendications 12 à 14, dans lequel la formation de l'un au moins des repères (4) est réalisée par un dépôt local d'une solution contenant des particules de Si3N4 sur la face interne de la paroi latérale (3) du creuset (1 ) suivie d'un recuit du creuset (1 ) de sorte à former une nervure. 15. A method of producing a crucible (1) according to any one of claims 12 to 14, wherein the formation of at least one of the pins (4) is performed by a local deposition of a solution containing particles of Si 3 N 4 on the inner face of the side wall (3) of the crucible (1) followed by annealing of the crucible (1) so as to form a rib.
16. Procédé de réalisation d'un creuset (1 ) selon la revendication 15, dans lequel la solution comporte 35 à 55% de Si3N4, 1 % à 4% d'alcool polyvinylique, et de l'eau dé-ionisée. 16. A method of producing a crucible (1) according to claim 15, wherein the solution comprises 35 to 55% of Si 3 N 4 , 1% to 4% of polyvinyl alcohol, and deionized water. .
17. Procédé de réalisation d'un creuset (1 ) selon l'une quelconque des revendications 15 ou 16, dans lequel le recuit est réalisé à une température comprise entre 900° et 1200°C, pendant une durée comprise entre 30 min et 4h. 17. A method of producing a crucible (1) according to any one of claims 15 or 16, wherein the annealing is carried out at a temperature between 900 ° and 1200 ° C for a period of between 30 min and 4h.
18. Procédé de réalisation d'une brique de matériau cristallin par cristallisation dirigée comportant les étapes suivantes : 18. A method of producing a crystalline material brick by directed crystallization comprising the steps of:
• disposer d'un creuset (1 ) selon l'une quelconque des revendications 1 à 1 1 ,  • have a crucible (1) according to any one of claims 1 to 1 1,
• réaliser une opération de cristallisation dirigée comportant le placement d'au moins un germe monocristallin (5) au fond du creuset (1 ) à l'aide de deux au moins des repères, pour former un lingot en matériau cristallin dans le creuset (1 ),  Carrying out a directed crystallization operation comprising placing at least one monocrystalline seed (5) at the bottom of the crucible (1) using at least two pins to form an ingot of crystalline material in the crucible (1). )
• extraire le lingot du creuset (1 ),  Extract the ingot from the crucible (1),
• découper le lingot de matériau cristallin selon le premier plan de découpe et selon le deuxième plan de découpe, les premier et deuxième plans de découpe coïncidant avec les plans des joints de germes monocristallins, de sorte à obtenir une brique.  • cutting the crystalline material ingot according to the first cutting plane and the second cutting plane, the first and second cutting planes coinciding with the planes of monocrystalline seed seals, so as to obtain a brick.
19. Procédé selon la revendication 18, dans lequel le matériau cristallin est du silicium. The method of claim 18, wherein the crystalline material is silicon.
20. Procédé selon l'une quelconque des revendications 18 ou 19, comportant une étape de découpe supplémentaire selon deux plans de découpe supplémentaires respectivement parallèles aux premier et deuxième plans de découpe. 20. A method according to any one of claims 18 or 19, comprising an additional cutting step according to two additional cutting planes respectively parallel to the first and second cutting planes.
EP15717572.0A 2014-03-31 2015-03-30 Crucible, process for manufacturing the crucible, and process for manufacturing a crystalline material by means of such a crucible Withdrawn EP3126549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400784A FR3019189B1 (en) 2014-03-31 2014-03-31 CREUSET, METHOD FOR MANUFACTURING THE CUP, AND METHOD FOR MANUFACTURING CRYSTALLINE MATERIAL USING SUCH CUP
PCT/FR2015/050818 WO2015150681A1 (en) 2014-03-31 2015-03-30 Crucible, process for manufacturing the crucible, and process for manufacturing a crystalline material by means of such a crucible

Publications (1)

Publication Number Publication Date
EP3126549A1 true EP3126549A1 (en) 2017-02-08

Family

ID=50976738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15717572.0A Withdrawn EP3126549A1 (en) 2014-03-31 2015-03-30 Crucible, process for manufacturing the crucible, and process for manufacturing a crystalline material by means of such a crucible

Country Status (4)

Country Link
US (1) US20170016140A1 (en)
EP (1) EP3126549A1 (en)
FR (1) FR3019189B1 (en)
WO (1) WO2015150681A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1577413A (en) * 1976-03-17 1980-10-22 Metals Research Ltd Growth of crystalline material
USH520H (en) * 1985-12-06 1988-09-06 Technique for increasing oxygen incorporation during silicon czochralski crystal growth
US6277351B1 (en) * 2000-03-20 2001-08-21 Carl Francis Swinehart Crucible for growing macrocrystals
JP4545505B2 (en) * 2004-07-22 2010-09-15 株式会社トクヤマ Method for producing silicon
JP5486190B2 (en) * 2006-01-20 2014-05-07 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション Single crystal molded silicon for photoelectric conversion and method and apparatus for manufacturing single crystal molded silicon body
TW200846509A (en) * 2007-01-19 2008-12-01 Vesuvius Crucible Co Crucible and filling method for melting a non-ferrous product
JP2011251891A (en) * 2010-05-06 2011-12-15 Sumitomo Electric Ind Ltd Method for producing single crystal and crucible for single crystal production
DE102010048602A1 (en) * 2010-10-15 2012-04-19 Centrotherm Sitec Gmbh Crucible for silicon, crucible arrangement and separation unit for a crucible
US20120167817A1 (en) * 2010-12-30 2012-07-05 Bernhard Freudenberg Method and device for producing silicon blocks
CN103827351B (en) * 2011-08-31 2017-03-08 3M创新有限公司 The silicon nitride comprising peel ply of high rigidity
FR2979638A1 (en) 2011-09-05 2013-03-08 Commissariat Energie Atomique DEVICE FOR MANUFACTURING CRYSTALLINE MATERIAL FROM A NON-UNIFORM THERMAL RESISTANCE CUP

Also Published As

Publication number Publication date
FR3019189B1 (en) 2018-07-27
FR3019189A1 (en) 2015-10-02
US20170016140A1 (en) 2017-01-19
WO2015150681A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
FR2842650A1 (en) Fabrication of substrates for optics, electronics, or optoelectronics, by implanting atomic species beneath front face of ingot to create zone of weakness, bonding support, and directly detaching portion of top layer bonded to support
EP2363879A2 (en) Method for manufacturing a multilayer structure with trimming by thermomechanical effects
US20170191188A1 (en) Crucible for growing crystals
KR20160148004A (en) Methods and apparati for making thin semi-conductor wafers with locally controlled regions that are relatively thicker than other regions and such wafers
JP2015505800A (en) Fabrication of single crystal silicon
KR20150044932A (en) System and method of growing silicon ingots from seeds in a crucible and manfacture of seeds used therein
EP3311394B1 (en) Method for obtaining on a crystalline substrate a semi-polar layer of iii-nitride
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
EP3384521A1 (en) Method for obtaining a semi-polar nitride layer on a crystalline substrate
FR2918080A1 (en) DEVICE AND METHOD FOR PRODUCING SEMICONDUCTOR MATERIAL WAFERS BY MOLDING AND DIRECTED CRYSTALLIZATION
WO2021111063A1 (en) Cleaving a wafer for manufacturing solar cells
WO2016046213A1 (en) Crucible for directional solidification of multicrystalline or quasi-monocrystalline silicon by growth on a seed
JP7145763B2 (en) Crucible for silicon ingot growth with patterned protrusion structure layer
TW201231742A (en) Modification process for nano-structuring ingot surface, wafer manufacturing method and wafer thereof
WO2015150681A1 (en) Crucible, process for manufacturing the crucible, and process for manufacturing a crystalline material by means of such a crucible
JP3206540B2 (en) Laminated crucible for producing silicon ingot and method for producing the same
CN103943742A (en) Manufacturing method of sapphire substrate
TW201446454A (en) Method for the edge rounding of solid fragments generated from a solid starting material and solid products produced by means of this method
TWI555887B (en) Crucible for the production of crystalline semiconductor ingots and process for manufacturing the same
EP3158112B1 (en) Method for forming a diamond monocrystal from a diamond monocrystalline substrate
WO2008095594A1 (en) Crucible and method of filling a crucible for melting a non-ferrous product
TWM545789U (en) Polysilicon ingot device and polysilicon ingot
KR100438819B1 (en) Method for fabricating GaN single crystal substrate
EP3412625A1 (en) Method for manufacturing a micromechanical part
EP3231006B1 (en) Method for the production of wafers of nitride of element 13, having a non-zero truncation angle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GARANDET, JEAN-PAUL

Inventor name: CHAVRIER, DENIS

Inventor name: PIHAN, ETIENNE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170519