EP3123002A1 - Stator vane support system within a gas turbine engine - Google Patents
Stator vane support system within a gas turbine engineInfo
- Publication number
- EP3123002A1 EP3123002A1 EP14720027.3A EP14720027A EP3123002A1 EP 3123002 A1 EP3123002 A1 EP 3123002A1 EP 14720027 A EP14720027 A EP 14720027A EP 3123002 A1 EP3123002 A1 EP 3123002A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stator vane
- inner ring
- aft
- vane segment
- radially
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
- F04D29/542—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/042—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/16—Sealings between pressure and suction sides
- F04D29/161—Sealings between pressure and suction sides especially adapted for elastic fluid pumps
- F04D29/164—Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/64—Mounting; Assembling; Disassembling of axial pumps
- F04D29/644—Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/61—Assembly methods using limited numbers of standard modules which can be adapted by machining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/60—Assembly methods
- F05D2230/64—Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/80—Repairing, retrofitting or upgrading methods
Definitions
- This invention is directed generally to stator vane airfoils within gas turbine engines, and more particularly to support systems for stator vane airfoils.
- Turbine engines typically include a plurality of rows of stationary compressor stator vanes extending radially inward from a shell and include plurality of rows of rotatable compressor blades attached to a rotor assembly for turning the rotor.
- Stator segments deflect in the upstream direction under steady gas pressure loading, and the deflection varies around the stator
- a compressor stator vane segment including a connection system that enables stator vane alignment while enabling an individual stator vane to be replaced is disclosed.
- the stator vane connection system may include a radially extending inner support extending from a stator vane, whereby the inner support is secured to forward and aft inner rings via a removable, inner axial bolt.
- the stator vane connection system may include one or more first inner pins that aligns the stator vane and is positioned within the portion of the inner support of the stator vane to which one or more inner axial bolts are attached.
- the stator vane connection system may include one or more first outer alignment pins that aligns the stator vane and is positioned within the portion of the outer diameter platform of the stator vane, whereby the first outer alignment pin aligns the stator vane.
- the compressor stator vane segment may be formed from a stator vane including an airfoil formed from an outer wall, and having a leading edge, a trailing edge, a pressure side, a suction side, an inner diameter platform at a first end of the airfoil, and an outer diameter platform at a second end of the airfoil.
- the compressor stator vane segment may include a stator vane connection system.
- the stator vane connection system may be formed from one or more inner axial bolts extending through a first inner ring, through at least a portion of an inner support of the stator vane positioned inward of the airfoil, and into a second inner ring to secure the stator vane.
- At least one first inner pin may be positioned within the portion of the inner support of the stator vane to which the inner axial bolt is attached.
- the first inner pin may align the stator vane relative to an adjacent stator vane.
- One or more first outer alignment pins may be positioned within the portion of the outer diameter platform of the stator vane, whereby the first outer pin aligns the stator vane relative to an adjacent stator vane.
- the stator vane connection system may also include an outer tie bar coupled to the outer diameter platform.
- the outer tie bar may be secured to the outer diameter platform via a removable connection system, such as, but not limited to, a dovetail connection and one or more radially extending bolts between the outer tie bar and the outer diameter platform.
- the first inner ring may be a forward inner ring.
- One or more seals may extend radially inward from a radially inner surface of the forward inner ring.
- the seal extending radially inward from a radially inner surface of the forward inner ring may be a honeycomb seal.
- the forward inner ring may be sized to fit radially inward of a forward extending portion of the inner diameter platform and within a recess in the inner diameter platform.
- the second inner ring may be an aft inner ring.
- One or more seals may extend radially inward from a radially inner surface of the aft inner ring.
- the seal extending radially inward from a radially inner surface of the aft inner ring may be a honeycomb seal.
- an outer surface of the aft inner ring may be flush with a radially outer surface of the inner diameter platform of the airfoil.
- the aft inner ring may include a portion that is sized to extend axially forward into an aft recess in the inner diameter platform.
- the aft inner ring may also include two aft extending arms separated from each other via an aft recess.
- a radially inner surface of the inner support of the stator vane may be flush with a radially inner surface of the first inner ring and a radially inner surface of the second inner ring.
- the first inner pin may be positioned within the portion of the inner support of the stator vane and may extend in a circumferential direction
- one or more second inner pins may be positioned within the portion of the second inner ring and may extend in a circumferential direction.
- the inner axial bolt may include threads that engage threads within the second inner ring.
- the inner axial bolt may include a head that is larger than a shaft of the axial bolt, and the first inner ring may include a head receiving cavity in which the head of the inner axial bolt resides.
- the compressor stator vane segment may be assembled in a number of ways.
- the compressor stator vane segment may be assembled by milling the airfoil, coating the airfoil flow path surfaces, turning the outer ring from a rolled ring, turning the forward inner ring from a custom forging, turning the aft inner ring from a custom forging, drilling holes in the outer ring, drilling holes in the inner forward ring, drilling holes in the aft inner ring, brazing a forward honeycomb seal to the forward inner ring, brazing an aft honeycomb seal to the aft inner ring, turning the forward honeycomb inner diameter, turning the aft honeycomb inner diameter, sawing the outer ring in half, sawing the forward inner ring in half, sawing the aft inner ring in half, and assembling the stator vanes and rings with bolts and pins and stake the fasteners. Formation of the compressor vane segment in this manner, reduces the number of manufacturing steps by seven steps in comparison
- An advantage of the compressor stator vane segment is that the compressor stator vane segment enables individual airfoil replacement without cutting or welding during outages or other times.
- compressor stator vane segment Another advantage of the compressor stator vane segment is that fewer custom made parts, such as in one embodiment, three fewer custom made parts, are needed than in conventional systems.
- compressor stator vane segment may be formed with fewer manufacturing steps, such as in one embodiment, seven fewer steps, are needed than in conventional systems. Still another advantage of the compressor stator vane segment is that welding and stress relieving are not required.
- compressor stator vane segment Another advantage of the compressor stator vane segment is that machining of the entire assembly is not required, which reduces lifting time and equipment costs.
- Yet another advantage of the compressor stator vane segment is that coating of the entire assembly is not required, which reduces lifting time, shipping and equipment costs.
- inner rings may be formed from a lower cost material, such as, but not limited to, low carbon steel, than conventional systems.
- compressor stator vane segment Another advantage of the compressor stator vane segment is that a cover half and a base half may be interchangeable between engines, which reduces service inventory and handling costs.
- compressor stator vane segment could be formed in 90 degree segments to further reduce service inventory and handling costs and for ease of assembly and disassembly.
- Still another advantage of the compressor stator vane segment is that mechanical dampening may be achieved through use of the bolted assembly.
- Figure 1 is a perspective view of compressor stator vane segment within a gas turbine engine.
- Figure 2 is a cross-sectional view of a compressor stator vane segment within a gas turbine engine taken at section line 2-2 in Figure 1 .
- Figure 3 is a detail view of a portion of the compressor stator vane segment within a gas turbine engine taken at detail line 3-3 in Figure 2.
- Figure 4 is an end view of two compressor stator vane segments forming a single stage stator assembly.
- Figure 5 is an end view of another embodiment of compressor stator vane segments forming a single stage stator assembly, whereby four stator vane segments are used.
- a compressor stator vane segment 10 including a connection system 12 that enables stator vane alignment while enabling an individual stator vane 14 to be replaced is disclosed.
- the stator vane connection system 12 may include a radially extending inner support 16 extending from a stator vane 14, whereby the inner support 16 is secured to forward and aft inner rings 18, 20 via a removable, inner axial bolt 22.
- the stator vane connection system 12 may include one or more first inner pins 24 that aligns the stator vane 14 and is
- the stator vane connection system 12 may include one or more first outer alignment pins 28 that aligns the stator vane 14 and is positioned within the portion of the outer diameter platform 30 of the stator vane 14, whereby the first outer alignment pin 28 aligns the stator vane 14.
- the compressor stator vane segment 10 may include a stator vane 14 formed from an airfoil 32 formed from an outer wall 34, and having a leading edge 36, a trailing edge 38, a pressure side 40, a suction side 42, and an inner diameter platform 44 at a first end 46 of the airfoil 32 and an outer diameter platform 30 at a second end 50 of the airfoil 32.
- the stator vane 14 may be secured with the turbine engine 54 via a stator vane connection system 12.
- the stator vane connection system 12 may be formed from one or more inner axial bolts 22 extending through a first inner ring 18, through at least a portion of an inner support 16 of the stator vane 14 positioned inward of the airfoil 32, and into a second inner ring 20 to secure the stator vane 14.
- the first inner ring 18 is a forward inner ring 18, and the second inner ring 20 is an aft inner ring 20.
- One or more first inner pins 24 may be positioned within the portion of the inner support 16 of the stator vane 14 to which the inner axial bolt 22 is attached. The first inner pin 24 may align the stator vane 14 relative to an adjacent stator vane 14.
- the stator vane connection system 12 may also include on or more first outer alignment pins 28 positioned within the portion of the outer diameter platform 30 of the stator vane 14. The first outer pin 24 aligns the stator vane 14 relative to an adjacent stator vane 14.
- the stator vane connection system 12 may also include an outer tie bar 56 coupled to the outer diameter platform 30.
- the outer tie bar 56 may be secured to the outer diameter platform 30 via a removable connection system 58, such as, but not limited to, a dovetail connection 58.
- the outer tie bar 56 may be configured to have a dovetail shape extending in a circumferential direction such that it includes an linear outer surface 70 with inwardly sloped sidewalls 72, 74.
- the outer diameter platform 30 may have a dovetail shaped receiver 62 with a linear base surface 64 and inward sloped sidewalls 66 and 68.
- the outer tie bar 56 may also be coupled to the stator vane 14 via one or more radially extending bolts 60 between the outer tie bar 56 and the outer diameter platform 30.
- the stator vane connection system 12 may also include one or more forward seals 76 extending radially inward from a radially inner surface 78 of the forward inner ring 18.
- the forward seal 76 may be, but is not limited to being, a honeycomb seal or a knife seal.
- the forward inner ring 18 may be is sized to fit radially inward of a forward extending portion 80 of the inner diameter platform 44 and within a recess 82 in the inner diameter platform 44.
- the forward surface 84 of the forward inner ring 18 may be flush with a forward surface 86 of the inner diameter platform 44.
- the stator vane connection system 12 may also include one or more aft seals 88 extending radially inward from a radially inner surface 90 of the aft inner ring 20.
- the aft seal 88 may be, but is not limited to being, a honeycomb seal or a knife seal.
- an outer surface 92 of the aft inner ring 20 may be flush with a radially outer surface 94 of the inner diameter platform 44 of the airfoil 32.
- the aft inner ring 20 may include a forward portion 96 that is sized to extend axially forward into an aft recess 98 in the inner diameter platform 44.
- the aft inner ring 20 may also include two aft extending arms 100, 102 and separated from each other via an aft recess 104.
- a radially inner surface 106 of the inner support 16 of the stator vane 14 may be flush with a radially inner surface 108 of the first inner ring 18 and a radially inner surface 1 10 of the second inner ring 20.
- first inner pins 24 positioned within the portion of the inner support 16 of the stator vane 14 extends in a circumferential direction.
- One or more second inner pins 1 12 may be positioned within the portion of the second inner ring 20 and may extend in a circumferential direction.
- the first inner pin 24 or the second inner pin 1 12 or both may be positioned generally orthogonal to a longitudinal axis 1 14 of a turbine engine 54.
- the first inner pin 24 and the second inner pin 1 12 may have any appropriate shape and length.
- the first inner pin 24 or the second inner pin 1 12, or both may be generally cylindrical.
- the first inner pin 24 and the second inner pin 1 12 may be formed from any appropriate material.
- the inner axial bolt 22 may include threads 1 16 that engage threads 1 18 within the second inner ring 20.
- the inner axial bolt 22 may also include a head 120 that is larger than a shaft 122 of the axial bolt 22.
- the first inner ring 18 may include a head receiving cavity 124 in which the head 120 of the inner axial bolt 22 resides.
- the compressor stator vane segment 10 may be assembled in a number of ways.
- the compressor stator vane segment 10 may be assembled by milling the airfoil 32, coating the airfoil flow path surfaces, turning the outer ring from a rolled ring, turning the forward inner ring 18 from a custom forging, turning the aft inner ring 20 from a custom forging, drilling holes in the outer ring, drilling holes in the inner forward ring 18, drilling holes in the aft inner ring 20, brazing a forward honeycomb seal 76 to the forward inner ring 18, brazing an aft honeycomb seal 88 to the aft inner ring 20, turning the forward honeycomb inner diameter, turning the aft honeycomb inner diameter, sawing the outer ring in half, sawing the forward inner ring 18 in half, sawing the aft inner ring 20 in half, and assembling the stator vanes 14 and rings 18, 20 with bolts 22, 60 and pins 24, 28, 1 12 and staking the fasteners.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2014/031934 WO2015147821A1 (en) | 2014-03-27 | 2014-03-27 | Stator vane support system within a gas turbine engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3123002A1 true EP3123002A1 (en) | 2017-02-01 |
EP3123002B1 EP3123002B1 (en) | 2019-01-09 |
Family
ID=50588931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14720027.3A Not-in-force EP3123002B1 (en) | 2014-03-27 | 2014-03-27 | Stator vane support system within a gas turbine engine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170146026A1 (en) |
EP (1) | EP3123002B1 (en) |
JP (1) | JP6461305B2 (en) |
CN (1) | CN106471218A (en) |
WO (1) | WO2015147821A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11047245B2 (en) * | 2019-08-12 | 2021-06-29 | Raytheon Technologies Corporation | CMC component attachment pin |
CN111561480B (en) * | 2020-05-14 | 2022-02-22 | 中国航发沈阳发动机研究所 | Stator structure |
FR3132743B1 (en) * | 2022-02-14 | 2024-03-08 | Safran Aircraft Engines | Turbomachine assembly including a casing |
US11725526B1 (en) | 2022-03-08 | 2023-08-15 | General Electric Company | Turbofan engine having nacelle with non-annular inlet |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1542561A (en) * | 1967-07-07 | Snecma | Turbomachinery blade attachment device | |
GB1387866A (en) * | 1972-06-21 | 1975-03-19 | Rolls Royce | Aerofoil members for gas turbine engines |
US4274805A (en) * | 1978-10-02 | 1981-06-23 | United Technologies Corporation | Floating vane support |
US4509238A (en) * | 1983-03-21 | 1985-04-09 | General Electric Company | Method for fabricating a steam turbine diaphragm |
GB2207629B (en) * | 1987-07-22 | 1991-01-02 | Rolls Royce Plc | Method of manufacture of an axial flow compressor assembly |
SE459683B (en) * | 1987-11-19 | 1989-07-24 | Abb Stal Ab | GAS TURBIN WITH LINKING INSTALLATION OF A SEALING RING IN A LED ROVER WIRE |
US4889470A (en) * | 1988-08-01 | 1989-12-26 | Westinghouse Electric Corp. | Compressor diaphragm assembly |
US5022818A (en) * | 1989-02-21 | 1991-06-11 | Westinghouse Electric Corp. | Compressor diaphragm assembly |
US5421703A (en) * | 1994-05-25 | 1995-06-06 | General Electric Company | Positively retained vane bushing for an axial flow compressor |
US5622475A (en) * | 1994-08-30 | 1997-04-22 | General Electric Company | Double rabbet rotor blade retention assembly |
DE29521718U1 (en) * | 1995-12-20 | 1998-04-09 | Abb Patent Gmbh, 68309 Mannheim | Guide device for a turbine with a guide vane carrier |
US5765993A (en) * | 1996-09-27 | 1998-06-16 | Chromalloy Gas Turbine Corporation | Replacement vane assembly for fan exit guide |
CA2231986A1 (en) * | 1997-01-10 | 1999-09-12 | Masahito Kataoka | Stationary blade of integrated segment construction and manufacturing method therefor |
DE10063724A1 (en) * | 2000-12-20 | 2002-07-11 | Siemens Ag | Machine with a superconducting winding arranged in a winding support and with means for axial expansion compensation of the winding support |
US6969239B2 (en) * | 2002-09-30 | 2005-11-29 | General Electric Company | Apparatus and method for damping vibrations between a compressor stator vane and a casing of a gas turbine engine |
US7094025B2 (en) * | 2003-11-20 | 2006-08-22 | General Electric Company | Apparatus and methods for removing and installing a selected nozzle segment of a gas turbine in an axial direction |
US7040857B2 (en) * | 2004-04-14 | 2006-05-09 | General Electric Company | Flexible seal assembly between gas turbine components and methods of installation |
GB2417528B (en) * | 2004-08-23 | 2008-08-06 | Alstom Technology Ltd | Improved rope seal for gas turbine engines |
US7654794B2 (en) * | 2005-11-17 | 2010-02-02 | General Electric Company | Methods and apparatus for assembling steam turbines |
JP4918263B2 (en) * | 2006-01-27 | 2012-04-18 | 三菱重工業株式会社 | Stator blade ring of axial compressor |
US8511982B2 (en) * | 2008-11-24 | 2013-08-20 | Alstom Technology Ltd. | Compressor vane diaphragm |
EP2905475B1 (en) * | 2008-12-25 | 2016-12-21 | Mitsubishi Hitachi Power Systems, Ltd. | Stator blade assembly and gas turbine |
JP5501610B2 (en) * | 2008-12-25 | 2014-05-28 | 三菱重工業株式会社 | Turbine blade and gas turbine |
US8834109B2 (en) * | 2011-08-03 | 2014-09-16 | United Technologies Corporation | Vane assembly for a gas turbine engine |
US10662814B2 (en) * | 2014-11-03 | 2020-05-26 | Raytheon Technologies Corporation | Stator shroud systems |
US10378383B2 (en) * | 2017-01-26 | 2019-08-13 | General Electric Company | Alignment apparatus for coupling diaphragms of turbines |
-
2014
- 2014-03-27 US US15/129,579 patent/US20170146026A1/en not_active Abandoned
- 2014-03-27 EP EP14720027.3A patent/EP3123002B1/en not_active Not-in-force
- 2014-03-27 WO PCT/US2014/031934 patent/WO2015147821A1/en active Application Filing
- 2014-03-27 JP JP2017502567A patent/JP6461305B2/en not_active Expired - Fee Related
- 2014-03-27 CN CN201480077562.4A patent/CN106471218A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2017509831A (en) | 2017-04-06 |
EP3123002B1 (en) | 2019-01-09 |
JP6461305B2 (en) | 2019-01-30 |
CN106471218A (en) | 2017-03-01 |
US20170146026A1 (en) | 2017-05-25 |
WO2015147821A1 (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8128354B2 (en) | Gas turbine engine | |
US8727719B2 (en) | Annular flange for fastening a rotor or stator element in a turbomachine | |
US8376692B2 (en) | Turbo compressor in an axial type of construction | |
US9097124B2 (en) | Gas turbine engine stator vane assembly with inner shroud | |
JP5420221B2 (en) | Improvement of pitch control ring for stator blade of turbomachine | |
EP3123002B1 (en) | Stator vane support system within a gas turbine engine | |
US9951654B2 (en) | Stator blade sector for an axial turbomachine with a dual means of fixing | |
EP2372161B1 (en) | Guide vane assembly for axial compressor | |
US9739159B2 (en) | Method and system for relieving turbine rotor blade dovetail stress | |
EP2971615B1 (en) | Low leakage duct segment using expansion joint assembly | |
US20140301841A1 (en) | Turbomachine compressor guide vanes assembly | |
EP3172410B1 (en) | Stator vane system usable within a gas turbine engine | |
EP3336318B1 (en) | Struts for exhaust frames of turbine systems | |
US20070071605A1 (en) | Integrated nozzle and bucket wheels for reaction steam turbine stationary components and related method | |
EP1764482A2 (en) | Single piece nozzle wheel and manufacturing method | |
US20180112546A1 (en) | Stator vane dampening system usable within a turbine engine | |
EP2933437B1 (en) | Systems and methods for anti-rotation features | |
EP3059396B1 (en) | Gas turbine engine and turbine configurations | |
CN113677871B (en) | Improved device for connecting blades in counter-rotating turbines | |
US10001134B2 (en) | Rotor disc | |
US20170218782A1 (en) | Modular turbine blade with separate platform support system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160908 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014039519 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01D0009040000 Ipc: F04D0029160000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 9/04 20060101ALI20180813BHEP Ipc: F04D 29/16 20060101AFI20180813BHEP Ipc: F04D 29/54 20060101ALI20180813BHEP Ipc: F04D 29/64 20060101ALI20180813BHEP Ipc: F01D 11/00 20060101ALI20180813BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180925 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1087656 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014039519 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1087656 Country of ref document: AT Kind code of ref document: T Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190509 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190409 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190509 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190409 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014039519 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
26N | No opposition filed |
Effective date: 20191010 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |