EP3122591A1 - Method for estimating the autonomy of an electric or hybrid vehicle - Google Patents

Method for estimating the autonomy of an electric or hybrid vehicle

Info

Publication number
EP3122591A1
EP3122591A1 EP15718516.6A EP15718516A EP3122591A1 EP 3122591 A1 EP3122591 A1 EP 3122591A1 EP 15718516 A EP15718516 A EP 15718516A EP 3122591 A1 EP3122591 A1 EP 3122591A1
Authority
EP
European Patent Office
Prior art keywords
temperature
battery
section
sections
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15718516.6A
Other languages
German (de)
French (fr)
Inventor
Marc Lucea
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3122591A1 publication Critical patent/EP3122591A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/645Type of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/68Traffic data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/18Driver interactions by enquiring driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/56Temperature prediction, e.g. for pre-cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the present invention relates to a method for estimating the range of an electric or hybrid vehicle. It is particularly applicable to the assessment of the autonomy of electric vehicles equipped with a navigation system.
  • Electric In addition to the steady improvement in efficiency of conventional combustion engines, which is accompanied by a reduction in CO2 emissions, electric vehicles (“EV”) and thermal hybrid vehicles. Electric (“HEV”) is now considered the most promising solution for reducing CO2 emissions.
  • Li-ion cell batteries are those likely to provide the best compromise between the power density, which promotes the performance in terms of acceleration in particular, and the energy density, which promotes autonomy.
  • V the voltage levels required, of the order of 400 volts (V ), or even considering the high temperature levels generated by the exothermic migration of lithium ions between the electrodes of Li-ion cells, whether at the discharge when the vehicle is rolling or at the load when the driver is plugging his vehicle at a charging station.
  • the remaining Telest range depends on a large number of parameters, which include the state of charge of the battery, the driving style of the driver, the total mass of the vehicle, the outside temperature, the conditions traffic or the difference in altitude on the journey.
  • the method usually used is to have periodically estimated by a computer in charge of battery management (commonly referred to as the English abbreviation BMS meaning "Battery Management System”), the energy available in the traction battery.
  • BMS Battery Management System
  • a supervision calculator (commonly referred to as EVC for Electric Vehicle Controller) uses this estimate for, based on distance, traffic and altitude information provided by a GPS system (English abbreviation). Saxon meaning "Global Positionning System”), deduce a prediction of autonomy.
  • the EVC calculator thus performs somehow a prediction of energy required on the planned path, and compares it with the remaining energy provided by the BMS calculator.
  • This approach has several disadvantages in particular situations of temperature. It may be a hot start for a cold run, such as when the vehicle is parked in a "heated" garage and the outside temperature is well below that of the garage.
  • the energy estimate made by the BMS calculator which is based on its own temperature measurements taken by its sensors in the garage, is generally too optimistic, since the outside temperature at which the battery will actually be exposed for most of the time. trip is lower than that measured before departure, causing additional losses.
  • US2013 / 01 10331 A1 a method for predicting the range of an electric vehicle from no longer a measured temperature value, but from a record of temperature values depending on the time of day.
  • this method at different times of the day, including day or night and time in the day, are associated with temperature values recorded in the battery pack during trips previously carried out in a nearby time slot. These temperature readings are used to estimate more precisely than with a single temperature value the amount of energy available in the battery and thus to estimate more finely the autonomy of the vehicle.
  • a disadvantage of this method is that the estimation of autonomy does not take into account the geographical peculiarities that can affect the meteorological conditions in general and the temperature in particular, since it implicitly assumes that at a time of the day it's the same temperature everywhere.
  • the prediction may be far from reality.
  • the driver is driving from a hot zone to a colder zone, his range may be overestimated and he may risk failure. This is again a problem that the present invention proposes to solve.
  • the subject of the invention is a method for estimating the autonomy of an electric or hybrid vehicle on a predetermined path, the method including a step of estimating the energy available in the vehicle's traction battery. function of the temperature of said battery.
  • the method according to the invention includes a step of calculating a value representative of the evolution of the temperature of the battery during the journey, said value being used to estimate the available energy.
  • the step of calculating the representative value can advantageously include a step of cutting the path in p segments, where p is a strictly positive integer, and a step of estimating the temperature of the battery at the end of each of the p sections.
  • the step of calculating the representative value may furthermore include that the representative value is equal to the minimum value among the p temperature values of the battery at the end of each of the p segments, or that the representative value is equal to the average value of the p temperature values of the battery at the end of each of the p sections.
  • the step of cutting the path in p sections may include a step of entering the path by a driver of the vehicle via the interface of a navigation system connected to the vehicle, as well as a step of pre-cutting the path by the navigation system in q sections, where q is a strictly positive integer less than or equal to p, such that the average speed of the vehicle estimated by the navigation system on each of the q sections varies from one section to the next on the path.
  • the step of cutting the path in p sections may furthermore include, if some of the sections have an estimated duration of travel greater than a predetermined threshold, a second step of redrawing said sections whose travel time is too long, such that the travel time of each of the p segments thus obtained is less than or equal to the threshold.
  • the step of estimating the temperature of the battery at the end of each of the p segments may include, for i integer varying from 1 to p:
  • the step of estimating the temperature of the battery at the end of each of the p segments may include estimating, for i integer varying from 1 to p, the temperature (Tpack (ti)) of the battery at the end of the i th stretch by the equation:
  • ⁇ , ⁇ and ⁇ can be parameters corresponding to thermal characteristics of the battery.
  • i integer varying from 1 to p can be provided by the navigation system the average speed on the i th section depending on the state of traffic on said section, and the mean outside temperature (Textj) provided on the i st section.
  • the present invention also relates to a computer comprising hardware and software means implementing such a method.
  • the present invention finally relates to an electric vehicle or hyubrid comprises such a computer and a dashboard on which to display the estimated autonomy.
  • FIGS. 1 and 2 illustrate, by an architecture diagram and a functional diagram respectively, an embodiment of the invention.
  • FIG. 1 thus illustrates with an architecture diagram an exemplary embodiment of the invention.
  • a battery pack 1 1 of an electric vehicle comprises N cells connected in series, not shown in the figure.
  • a voltage measurement is carried out for each of these N cells, N being typically between 10 and 100 for an electric or hybrid vehicle, and Vcells the N cell voltage measurements.
  • a set of M temperature measurements, Tcells noted are performed by a BMS 12 computer acting as manager of the battery pack 1 1, by means of sensors inserted in the battery pack 1 1.
  • the current flowing through the battery pack 1 1, noted Ipack is measured by a sensor not shown in the figure.
  • the BMS calculator 12 plays the role of the management computer of the battery pack 1 1. From the input signals Vcells, Tcells and Ipack, the BMS calculator 12 produces the following signals:
  • Tpack it is an estimate or a representation of the temperature of the battery pack 1 1 estimated from the M Tcells measurements; it can be the maximum temperature measured among the M Tcells measurements, or the minimum temperature, or the average, or a vector containing all of these 3 minimum / maximum / average temperatures;
  • Energy (Tpack) this is an estimate of the remaining energy in the battery pack 1 1 at Tpack temperature; estimated by conventional techniques described in the state of the art, Energy (Tpack) represents the energy remaining in the battery pack 1 1 for a constant power discharge, it depends both on the state of charge of the pack battery 1 1 at a given instant and its temperature Tpack;
  • Upack This is the voltage across the battery pack 1 1.
  • a GPS system 14 acts as a navigation calculator. Depending on the destination entered by the driver, GPS 14 provides the following information:
  • Elevation difference this is the difference in altitude between the starting point and the end point on the route indicated;
  • Distance This is the distance from the start point to the end point, for the route entered by the driver;
  • Distance [D1; D2; ...; Dq] denotes the vector describing the distances of q different sections forming the path, on which the average speed to be taken into account is different;
  • the EVC computer 13 therefore acts as a vehicle supervision computer, to which the BMS computer 12, the GPS 14 and the dashboard 15 of the vehicle are connected. From the input signals Text, Traffic, Distance, Elevation, Tpack, Ipack, Energy (Tpack) and Energy (Trep), the EVC computer 13 produces the following signals:
  • Trep it is a representative value of the temperature change of the battery pack 1 1 on the path entered by the driver; the way of calculating this value according to the invention is described later;
  • a thermal management system 16 manages the cooling and heating of the battery pack 1 1 by a stream of air or heat transfer fluid, not shown in the figure.
  • the thermal management system 16 is controlled by the EVC computer 13 via a control signal, the EVC computer 13 knowing the average steady state temperature of the heat transfer fluid when the system 16 is activated. This average steady-state temperature is noted Tcooling: it depends on the characteristics of the fluid and the heating / cooling strategies implemented in the EVC computer 13.
  • FIG. 2 illustrates in a functional diagram the same embodiment of the invention, in particular the details of the operations performed in the EVC computer 13.
  • a GPS information pre-processing block 21 performs a digital processing of the Distance, Text and Traffic signals supplied by the GPS system 14, so as to adapt the sectioning made by the GPS system 14 to the internal needs of the EVC computer 13.
  • Traffic [V1; V2; ...; Vp]: this is a vector describing the p different average speed values, on p different sections D1 to Dp;
  • Text [Text_1; Text_2; ...; Text_p]: this is a vector describing the p different average outdoor temperature values, on the p different lengths of respective lengths D1 to Dp.
  • the average outside temperature and the average speed on these sub-sections are identical to those of the initial section, only the distance is adapted.
  • a block 22 of energetic balance linked to the difference in altitude estimates the energy necessary to undergo the change of altitude corresponding to the signal Descent provided by the GPS system 14, noted AE unequated.
  • AEdistance ⁇ [(" ⁇ V i + ⁇ ⁇ ) ⁇ D i ]
  • a and ⁇ are vehicle-dependent calibration parameters, where Vi is the average speed provided by the GPS system 14 for the i th section of distance Di. This energy balance over the distance takes into account the mechanical and aerodynamic friction, as well as the efficiencies of the electrical components and the power train.
  • a block 24 named History makes it possible to estimate the driving style of the driver, to possibly update the parameters a and ⁇ used in block 23, and the parameters ⁇ , ⁇ and ⁇ used in a thermal modeling block 26 of the pack. battery 1 1. Depending on whether the driver practices a sporty or economical driving style, these parameters can be updated to improve energy balances and target temperature estimates.
  • the driving style may for example be described by calculating a weighted average or a root mean square of the Ipack current passing through the battery pack 1 1, or the power drawn from the battery pack 1 1, ie Upack x Ipack.
  • a block 25 of Global Energy Balance performs the energy balance for the vehicle as a whole, from the AEdivided, AEdistance, Energy (Tpack) and Energy (Trep) signals.
  • Another signal calculated by block 25 is as follows:
  • Autonomie_totale Energy (Trep) / Conso_specific (Trep) If the signal Autonomie_restante is positive, an indicator is displayed on the dashboard 15 to inform the driver on the remaining remaining estimated after his trip. Total autonomy can also be displayed.
  • the temperatures of the battery pack 1 1 at the end of the p sections forming the path are estimated:
  • Tpack (t) represents the temperature of the battery pack 1 1 at a time t
  • Text (t) represents the outside temperature at time t
  • Tcooling (t) represents the temperature of the cooling system at time t
  • ⁇ , ⁇ and ⁇ are adjustment parameters making it possible to take into account the thermal characteristics of the battery pack 1 1, these parameters potentially being able to be updated in the block 24 History.
  • the first term represents internal heating of the battery pack 1 1 by Joules effect
  • the second term represents the heat flow between the battery pack 1 1 and the atmosphere
  • the third term represents the heat flow between the battery pack 1 1 and the cooling / heating heat transfer fluid.
  • Step 1 estimation of the temperature evolution of the battery pack 1 1 on the first section of length D1, the average speed V1 and the average outside temperature Text_1
  • Tcooling of the heat transfer fluid this temperature to be taken into account on the first section is determined by means of a table of precalibrated values, which describes the steady-state temperature of this heat transfer fluid as a function of the temperature of the battery pack 1 1:
  • Tcooling_l table_cooling (Tpack) where Tpack is the temperature measured in the battery pack 1 1 at the moment when the driver informs his destination in the GPS system 14, where Tcooling_1 represents the average temperature of the heat transfer fluid to be taken into account on the first section where table_cooling represents the precalibrated values table. Depending on the case, this temperature Tcooling_1 may correspond to the activation of means for heating or cooling the fluid.
  • Step 2 Estimation of changes in the battery pack temperature for 1 1 of the 2 nd run-length D2, the average speed V2 and the average outdoor temperature text_2
  • Tcooling_2 coolant temperature this temperature to be taken into account on the 2 nd section is determined by means of a table of values pre-calibrated, which describes the steady-state temperature of the fluid depending on the pack temperature battery 1 1:
  • Tcooling_2 table_cooling (TPACK (t)) where TPACK (tl) is the temperature of the battery pack 1 1 at the end of 1 section estimated according to step 1 above, where Tcooling_2 represents the average temperature of the coolant to be taken into account on the 2nd section and where table_cooling represents the table of pre-calibrated values.
  • this temperature Tcooling_2 may correspond to the activation of means for heating or cooling the fluid.
  • Tcooling_i of the coolant on the i th section this temperature to be taken into account on the i th section is determined by means of a table of precalibrated values, which describes the temperature in steady state of this fluid in function the temperature of the battery pack 1 1:
  • Tcooling_i table_cooling (Tpack (ti - 1)) where Tpack (ti-I) is the temperature of the battery pack 1 1 at the end of the (i-1) th section estimated according to step i-1, where Tcoolingj represents the average temperature of the heat transfer fluid to be taken into account on the i th section, and where table_cooling represents the table of precalibrated values. Depending on the case, this temperature Tcoolingj may correspond to the activation of means for heating or cooling the fluid.
  • Tpack (ft ' ) Tpack (ti - l) - ⁇ + ⁇ ⁇ + ⁇
  • step p we thus obtain an estimate of the temperature of the battery pack 1 1 at the end of each of the p sections that constitute the path:
  • Tpack_est [Tpack (tl), Tpack (t2), ..., Tpack (tp)]
  • the temperature Trep is determined from the vector Tpack_est obtained previously. Several approaches are possible to determine this Trep temperature that the EVC calculator 13 will return to the BMS calculator 12.
  • the temperature Trep can be chosen as the lowest temperature estimated on the path:
  • Trep mini ⁇ i ⁇ p (Tpack (ti))
  • This approach may lead to a slight underestimation of the autonomy, the losses in the battery pack 1 1 being greater at low temperature. This approach is recommended when the differences between the p different values of the Tpack_est vector are relatively small.
  • the temperature Trep can be chosen as the average temperature on the p sections of the route:
  • Trep meani ⁇ i ⁇ p (Tpack (ti))
  • the above embodiment thus makes it possible to obtain a value representative of the evolution of the temperature of the battery pack 1 1 on the path entered by the driver via the GPS system 14, and an estimate of the range of the vehicle for this purpose. temperature value.
  • This estimate of autonomy has the advantage of being more reliable than that which can be performed at the start of the vehicle, without taking into account the temperature changes that the battery pack will undergo during the journey.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

A method for estimating the autonomy of an electric vehicle. The present invention concerns a method for estimating the autonomy of an electric or hybrid vehicle on a predefined journey, the method including a step of estimating the energy available in the traction battery of the vehicle depending on the temperature of said battery. The method according to the invention includes a step of calculating a value representative of the change in the temperature of the battery during the journey, said value being used to estimate the available energy. Application: electric or hybrid vehicles

Description

Procédé pour estimer l'autonomie d'un véhicule électrique ou hybride  Method for estimating the range of an electric or hybrid vehicle
La présente invention concerne un procédé pour estimer l'autonomie d'un véhicule électrique ou hybride. Il s'applique tout particulièrement à l'estimation de l'autonomie des véhicules électriques équipés d'un système de navigation. The present invention relates to a method for estimating the range of an electric or hybrid vehicle. It is particularly applicable to the assessment of the autonomy of electric vehicles equipped with a navigation system.
Dans le contexte actuel de consensus autour du réchauffement climatique, la diminution des émissions de dioxyde de carbone (CO2) est un défi majeur auquel sont confrontés les constructeurs automobiles, les normes étant toujours plus exigeantes en la matière. In the current context of consensus around global warming, the reduction of carbon dioxide (CO2) emissions is a major challenge faced by car manufacturers, the standards being ever more demanding in this area.
Outre l'amélioration constante des rendements des moteurs thermiques classiques, qui s'accompagne d'une baisse des émissions de CO2, les véhicules électriques (« EV » d'après la terminologie anglo-saxonne « Electric Vehicle ») et les véhicules hybrides thermique-électrique (« HEV » d'après la terminologie anglo-saxonne « Hybrid Electric Vehicle ») sont aujourd'hui considérés comme la solution la plus prometteuse pour diminuer les émissions de CO2.  In addition to the steady improvement in efficiency of conventional combustion engines, which is accompanied by a reduction in CO2 emissions, electric vehicles ("EV") and thermal hybrid vehicles. Electric ("HEV") is now considered the most promising solution for reducing CO2 emissions.
Différentes technologies de stockage de l'énergie électrique ont été testées dans les dernières années afin de répondre aux besoins des EV. Il apparaît aujourd'hui que les batteries à cellules lithium-ion (Li-ion) sont celles susceptibles de fournir le meilleur compromis entre la densité de puissance, qui favorise les performances en termes d'accélération notamment, et la densité d'énergie, qui favorise l'autonomie. Cependant, l'utilisation de cette technologie Li-ion pour constituer des batteries de traction pour EV n'est pas sans poser de nombreuses difficultés, notamment si l'on considère les niveaux de tension nécessaires, de l'ordre de 400 volts (V), ou encore si l'on considère les hauts niveaux de température générés par la migration exothermique des ions lithium entre les électrodes des cellules Li-ion, que ce soit à la décharge quand le véhicule roule ou à la charge lorsque le conducteur branche son véhicule à une borne de recharge.  Different technologies for storing electrical energy have been tested in recent years to meet the needs of EVs. It now appears that lithium-ion cell batteries (Li-ion) are those likely to provide the best compromise between the power density, which promotes the performance in terms of acceleration in particular, and the energy density, which promotes autonomy. However, the use of this Li-ion technology to form traction batteries for EV is not without posing many difficulties, especially if we consider the voltage levels required, of the order of 400 volts (V ), or even considering the high temperature levels generated by the exothermic migration of lithium ions between the electrodes of Li-ion cells, whether at the discharge when the vehicle is rolling or at the load when the driver is plugging his vehicle at a charging station.
A l'heure actuelle, le principal frein à l'essor des véhicules électriques reste leur autonomie, qui est encore limitée par comparaison aux véhicules thermiques classiques. Ainsi, pour convaincre les clients potentiels de passer à un véhicule électrique, il apparaît essentiel de munir ces derniers de jauges d'énergie aussi fiables que possible, afin de limiter l'angoisse de tomber en panne, en fournissant au conducteur une estimation de l'autonomie kilométrique restante aussi réaliste que possible. Il s'agit là d'un problème que la présente invention se propose de résoudre. At present, the main obstacle to the development of electric vehicles remains their autonomy, which is still limited compared to conventional thermal vehicles. So, to convince potential customers to switch to an electric vehicle, it seems essential to provide the latter with energy gauges as reliable as possible, in order to limit the anxiety of breaking down, by providing the driver with an estimate of the remaining kilometric range that is as realistic as possible. This is a problem that the present invention proposes to solve.
Cependant, l'autonomie kilométrique restante dépend d'un grand nombre de paramètres, au nombre desquels on peut citer l'état de charge de la batterie, le style de conduite du conducteur, la masse totale du véhicule, la température extérieure, les conditions de circulation ou encore les dénivelés sur le trajet. La démarche habituellement utilisée consiste à faire estimer périodiquement par un calculateur en charge de la gestion de la batterie (couramment désigné par l'abréviation anglo-saxonne BMS signifiant « Battery Management System »), l'énergie disponible dans la batterie de traction. Un calculateur de supervision (couramment désigné par l'abréviation anglo-saxonne EVC signifiant « Electric Vehicle Contrôler ») utilise cette estimation pour, sur la base d'informations de distance, de trafic et de dénivelé fournies par un système GPS (abréviation anglo-saxonne signifiant « Global Positionning System »), en déduire une prédiction d'autonomie. Le calculateur EVC réalise donc en quelque sorte une prédiction d'énergie nécessaire sur le trajet prévu, et la compare à l'énergie restante fournie par le calculateur BMS. Cette approche présente toutefois plusieurs inconvénients dans des situations particulières de température. Il peut s'agir d'un départ à chaud pour un roulage à froid, comme lorsque le véhicule est garé dans un garage « chauffé » et que la température extérieure est bien inférieure à celle du garage. L'estimation d'énergie faite par le calculateur BMS, qui se base sur ses propres mesures de température prises par ses capteurs dans le garage, est généralement trop optimiste, car la température extérieure à laquelle sera effectivement exposée la batterie durant l'essentiel du trajet est plus faible que celle mesurée avant le départ, occasionnant des pertes supplémentaires. De façon équivalente, lorsque le véhicule est garé en plein soleil alors que la température de l'air ambiant est plus faible que celle mesurée par le calculateur BMS avant départ, celui-ci aura tendance à surestimer l'énergie restante. Il peut s'agir également d'un départ à froid pour un roulage à chaud, comme lorsque le véhicule est garé à l'ombre ou dans un garage climatisé, alors que la température extérieure sur le trajet prévu est bien supérieure. Dans ce cas, l'estimation d'énergie fournie par le calculateur BMS est trop pessimiste, car les pertes engendrées par la faible température sont surestimées avant le départ. Il s'agit là encore d'un problème que la présente invention se propose de résoudre. However, the remaining kilometric range depends on a large number of parameters, which include the state of charge of the battery, the driving style of the driver, the total mass of the vehicle, the outside temperature, the conditions traffic or the difference in altitude on the journey. The method usually used is to have periodically estimated by a computer in charge of battery management (commonly referred to as the English abbreviation BMS meaning "Battery Management System"), the energy available in the traction battery. A supervision calculator (commonly referred to as EVC for Electric Vehicle Controller) uses this estimate for, based on distance, traffic and altitude information provided by a GPS system (English abbreviation). Saxon meaning "Global Positionning System"), deduce a prediction of autonomy. The EVC calculator thus performs somehow a prediction of energy required on the planned path, and compares it with the remaining energy provided by the BMS calculator. This approach, however, has several disadvantages in particular situations of temperature. It may be a hot start for a cold run, such as when the vehicle is parked in a "heated" garage and the outside temperature is well below that of the garage. The energy estimate made by the BMS calculator, which is based on its own temperature measurements taken by its sensors in the garage, is generally too optimistic, since the outside temperature at which the battery will actually be exposed for most of the time. trip is lower than that measured before departure, causing additional losses. Equivalently, when the vehicle is parked in full sun while the ambient air temperature is lower than that measured by the BMS calculator before departure, it will tend to overestimate the remaining energy. It can also be a cold start for a warm run, such as when the vehicle is parked in the shade or in an air-conditioned garage, while the outside temperature on the planned route is much better. In this case, the energy estimate provided by the BMS calculator is too pessimistic, since the losses generated by the low temperature are overestimated before departure. This is again a problem that the present invention proposes to solve.
Dans le but de surmonter cet inconvénient, il est connu de In order to overcome this disadvantage, it is known to
US2013/01 10331 A1 un procédé de prédiction de l'autonomie d'un véhicule électrique à partir non plus d'une valeur de température mesurée, mais à partir d'un relevé de valeurs de températures dépendant du moment de la journée. Dans ce procédé, à différents moments de la journée, notamment le jour ou la nuit et l'heure dans la journée, sont associées des valeurs de température relevées dans le pack batterie durant des trajets effectués précédemment dans une tranche horaire proche. Ces relevés de température sont utilisés pour estimer plus finement qu'avec une seule valeur de température la quantité d'énergie disponible dans la batterie et donc estimer plus finement l'autonomie du véhicule. Un inconvénient de ce procédé est que l'estimation d'autonomie ne tient pas compte des particularités géographiques qui peuvent impacter les conditions météorologiques en général et la température en particulier, puisqu'il fait implicitement l'hypothèse qu'à un moment de la journée, il fait la même température partout. Ainsi, en cas de changement brusque des conditions météorologiques, ce qui est probable en cas de trajet long de plusieurs centaines de kilomètres, la prédiction peut s'avérer éloignée de la réalité. En particulier, si le conducteur roule d'une zone chaude vers une zone plus froide, son autonomie peut être surestimée et il peut risquer la panne. Il s'agit là encore d'un problème que la présente invention se propose de résoudre. US2013 / 01 10331 A1 a method for predicting the range of an electric vehicle from no longer a measured temperature value, but from a record of temperature values depending on the time of day. In this method, at different times of the day, including day or night and time in the day, are associated with temperature values recorded in the battery pack during trips previously carried out in a nearby time slot. These temperature readings are used to estimate more precisely than with a single temperature value the amount of energy available in the battery and thus to estimate more finely the autonomy of the vehicle. A disadvantage of this method is that the estimation of autonomy does not take into account the geographical peculiarities that can affect the meteorological conditions in general and the temperature in particular, since it implicitly assumes that at a time of the day it's the same temperature everywhere. Thus, in the event of a sudden change in weather conditions, which is likely in the case of journeys lasting several hundred kilometers, the prediction may be far from reality. In particular, if the driver is driving from a hot zone to a colder zone, his range may be overestimated and he may risk failure. This is again a problem that the present invention proposes to solve.
L'invention a notamment pour but de surmonter les inconvénients précités, notamment ceux liés au changement des conditions météorologiques, notamment les variations de température sur les longs trajets. A cet effet, l'invention a pour objet un procédé pour estimer l'autonomie d'un véhicule électrique ou hybride sur un trajet prédéterminé, le procédé incluant une étape d'estimation de l'énergie disponible dans la batterie de traction du véhicule en fonction de la température de ladite batterie. Le procédé selon l'invention inclut une étape de calcul d'une valeur représentative de l'évolution de la température de la batterie durant le trajet, ladite valeur étant utilisée pour estimer l'énergie disponible. The invention aims in particular to overcome the aforementioned drawbacks, particularly those related to changing weather conditions, including temperature variations on long trips. To this end, the subject of the invention is a method for estimating the autonomy of an electric or hybrid vehicle on a predetermined path, the method including a step of estimating the energy available in the vehicle's traction battery. function of the temperature of said battery. The method according to the invention includes a step of calculating a value representative of the evolution of the temperature of the battery during the journey, said value being used to estimate the available energy.
Dans un mode de réalisation, l'étape de calcul de la valeur représentative peut avantageusement inclure une étape de découpage du trajet en p tronçons, où p est un nombre entier strictement positif, ainsi qu'une étape d'estimation de la température de la batterie à la fin de chacun des p tronçons.  In one embodiment, the step of calculating the representative value can advantageously include a step of cutting the path in p segments, where p is a strictly positive integer, and a step of estimating the temperature of the battery at the end of each of the p sections.
Par exemple, l'étape de calcul de la valeur représentative peut inclure en outre que la valeur représentative soit égale à la valeur minimale parmi les p valeurs de température de la batterie en fin de chacun des p tronçons, ou que la valeur représentative soit égale à la valeur moyenne des p valeurs de température de la batterie en fin de chacun des p tronçons.  For example, the step of calculating the representative value may furthermore include that the representative value is equal to the minimum value among the p temperature values of the battery at the end of each of the p segments, or that the representative value is equal to the average value of the p temperature values of the battery at the end of each of the p sections.
Avantageusement, l'étape de découpage du trajet en p tronçons peut inclure une étape de saisie du trajet par un conducteur du véhicule via l'interface d'un système de navigation connecté au véhicule, ainsi qu'une étape de pré-découpage du trajet par le système de navigation en q tronçons, où q est un nombre entier strictement positif inférieur ou égal à p, tels que la vitesse moyenne du véhicule estimée par le système de navigation sur chacun des q tronçons varie d'un tronçon au suivant sur le trajet.  Advantageously, the step of cutting the path in p sections may include a step of entering the path by a driver of the vehicle via the interface of a navigation system connected to the vehicle, as well as a step of pre-cutting the path by the navigation system in q sections, where q is a strictly positive integer less than or equal to p, such that the average speed of the vehicle estimated by the navigation system on each of the q sections varies from one section to the next on the path.
L'étape de découpage du trajet en p tronçons peut inclure en outre, si certains tronçons parmi les q tronçons ont une durée estimée de parcours supérieure à un seuil prédéterminé, une seconde étape de redécoupage desdits tronçons dont la durée de parcours est trop longue, de telle sorte que la durée de parcours de chacun des p tronçons ainsi obtenus est inférieure ou égale au seuil.  The step of cutting the path in p sections may furthermore include, if some of the sections have an estimated duration of travel greater than a predetermined threshold, a second step of redrawing said sections whose travel time is too long, such that the travel time of each of the p segments thus obtained is less than or equal to the threshold.
Par exemple, l'étape d'estimation de la température de la batterie à la fin de chacun des p tronçons peut inclure, pour i entier variant de 1 à p : For example, the step of estimating the temperature of the battery at the end of each of the p segments may include, for i integer varying from 1 to p:
• une étape d'estimation, en fonction de la vitesse moyenne (Vi) estimée sur le ième tronçon, du courant moyen (lmoyen_i) traversant la batterie durant le ième tronçon ; A step of estimating, as a function of the average speed (Vi) estimated on the i th section, of the average current (lmoyen_i) passing through the battery during the i th section;
• une étape d'estimation de la température (Tcooling_i), en début du ième tronçon, d'un fluide caloporteur permettant de réchauffer ou refroidir la batterie ; • une étape de collecte de la température extérieure moyenne (Text_i) prévue sur le ième tronçon ; A step of estimating the temperature (Tcooling_i), at the beginning of the i th section, of a coolant for heating or cooling the battery; • a step of collecting the average outside temperature (Text_i) planned on the i th section;
• une étape d'estimation de la température (Tpack(ti)) de la batterie à l'instant (ti) où le véhicule atteint la fin du ième tronçon, à partir : A step of estimating the temperature (Tpack (ti)) of the battery at the moment (ti) at which the vehicle reaches the end of the i th section, from:
o de la température estimée de la batterie à fin du (i-1 )ème tronçon (Tpack(ti-I )) ou de la température mesurée (Tpack) de la batterie si i=1 , et/ou ;  o the estimated temperature of the battery at the end of the (i-1) th section (Tpack (ti-I)) or the measured temperature (Tpack) of the battery if i = 1, and / or;
o du courant moyen (lmoyen_i) estimé traversant la batterie durant le ième tronçon, et/ou ;  o the average current (lmoyen_i) estimated crossing the battery during the ith section, and / or;
o de la température extérieure moyenne (Text_i) prévue sur le ième tronçon, et/ou ;  o the average outside temperature (Text_i) provided on the ith section, and / or;
o de la température estimée (Tcooling_i) du fluide caloporteur en début du ième tronçon.  o the estimated temperature (Tcooling_i) of the coolant at the beginning of the ith section.
Par exemple, l'étape d'estimation de la température de la batterie à la fin de chacun des p tronçons peut inclure d'estimer, pour i entier variant de 1 à p, la température (Tpack(ti)) de la batterie à la fin du ième tronçon par l'équation :For example, the step of estimating the temperature of the battery at the end of each of the p segments may include estimating, for i integer varying from 1 to p, the temperature (Tpack (ti)) of the battery at the end of the i th stretch by the equation:
t' l) ^ (imoyen i)2 + δ Text i + Θ Tcooling i ■ (imoyen i)2 + S Text i + Θ Tcooling it 'l) ^ (imoyen i) 2 + δ Text i + Θ Tcooling i ■ (imoyen i) 2 + S Text i + Θ Tcooling i
Tpack(ft') = T ki Tpack (ft ' ) = T ki
Pac (ti - ) —  Pac (ti -) -
δ + θ  δ + θ
où γ, δ et Θ peuvent être des paramètres correspondant à des caractéristiques thermiques de la batterie. where γ, δ and Θ can be parameters corresponding to thermal characteristics of the battery.
Avantageusement, pour i entier variant de 1 à p, peuvent être fournies par le système de navigation la vitesse moyenne sur le ième tronçon en fonction de l'état du trafic sur ledit tronçon, ainsi que la température extérieure moyenne (Textj) prévue sur le ième tronçon. Advantageously, for i integer varying from 1 to p, can be provided by the navigation system the average speed on the i th section depending on the state of traffic on said section, and the mean outside temperature (Textj) provided on the i st section.
La présente invention a également pour objet un calculateur comportant des moyens matériels et logiciels implémentant un tel procédé. The present invention also relates to a computer comprising hardware and software means implementing such a method.
La présente invention a enfin pour objet un véhicule électrique ou hyubride comporte un tel calculateur et un tableau de bord sur lequel afficher l'autonomie estimée. The present invention finally relates to an electric vehicle or hyubrid comprises such a computer and a dashboard on which to display the estimated autonomy.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de figures 1 et 2 annexées et qui illustrent, par un diagramme d'architecture et un diagramme fonctionnel respectivement, un exemple de réalisation de l'invention. Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to FIGS. 1 and 2 annexed and which illustrate, by an architecture diagram and a functional diagram respectively, an embodiment of the invention.
La figure 1 illustre donc par un diagramme d'architecture un exemple de réalisation de l'invention. Un pack batterie 1 1 d'un véhicule électrique comporte N cellules montées en série, non illustrées sur la figure. Une mesure de tension est réalisée pour chacune de ces N cellules, N valant typiquement entre 10 et 100 pour un véhicule électrique ou hybride, et on note Vcells les N mesures de tensions cellules. Un ensemble de M mesures de température, notées Tcells, sont réalisées par un calculateur BMS 12 jouant le rôle de gestionnaire du pack batterie 1 1 , au moyen de capteurs insérés dans le pack batterie 1 1 . Le courant parcourant le pack batterie 1 1 , noté Ipack, est mesuré par un capteur non représenté sur la figure. Comme explicité précédemment, le calculateur BMS 12 joue le rôle le calculateur de gestion du pack batterie 1 1 . A partir des signaux d'entrées Vcells, Tcells et Ipack, le calculateur BMS 12 produit les signaux suivants : FIG. 1 thus illustrates with an architecture diagram an exemplary embodiment of the invention. A battery pack 1 1 of an electric vehicle comprises N cells connected in series, not shown in the figure. A voltage measurement is carried out for each of these N cells, N being typically between 10 and 100 for an electric or hybrid vehicle, and Vcells the N cell voltage measurements. A set of M temperature measurements, Tcells noted, are performed by a BMS 12 computer acting as manager of the battery pack 1 1, by means of sensors inserted in the battery pack 1 1. The current flowing through the battery pack 1 1, noted Ipack, is measured by a sensor not shown in the figure. As explained above, the BMS calculator 12 plays the role of the management computer of the battery pack 1 1. From the input signals Vcells, Tcells and Ipack, the BMS calculator 12 produces the following signals:
• Tpack : il s'agit d'une estimation ou d'une représentation de la température du pack batterie 1 1 estimée à partir des M mesures Tcells ; il peut s'agir de la température maximale mesurée parmi les M mesures Tcells, ou encore de la température minimale, ou encore de la moyenne, ou encore d'un vecteur contenant l'ensemble de ces 3 températures minimale/maximale/moyenne ;  • Tpack: it is an estimate or a representation of the temperature of the battery pack 1 1 estimated from the M Tcells measurements; it can be the maximum temperature measured among the M Tcells measurements, or the minimum temperature, or the average, or a vector containing all of these 3 minimum / maximum / average temperatures;
• Energy(Tpack) : il s'agit d'une estimation de l'énergie restante dans le pack batterie 1 1 à la température Tpack ; estimée par des techniques classiques décrites dans l'état de l'art, Energy(Tpack) représente l'énergie restante dans le pack batterie 1 1 pour une décharge à puissance constante, elle dépend à la fois de l'état de charge du pack batterie 1 1 à un instant donné et de sa température Tpack ;  • Energy (Tpack): this is an estimate of the remaining energy in the battery pack 1 1 at Tpack temperature; estimated by conventional techniques described in the state of the art, Energy (Tpack) represents the energy remaining in the battery pack 1 1 for a constant power discharge, it depends both on the state of charge of the pack battery 1 1 at a given instant and its temperature Tpack;
• Energy(Trep) : il s'agit d'une estimation de l'énergie restante dans le pack batterie 1 1 , pour une valeur de température Trep représentative de évolution de la température du pack batterie 1 1 , Trep étant calculée selon l'invention décrite dans la présente demande par un calculateur EVC 13 jouant le rôle de calculateur de supervision du véhicule ;  • Energy (Trep): this is an estimate of the energy remaining in the battery pack 1 1, for a temperature value Trep representative of the temperature change of the battery pack 1 1, Trep being calculated according to the invention described in the present application by an EVC calculator 13 acting as the supervision computer of the vehicle;
• Upack : il s'agit de la tension aux bornes du pack batterie 1 1 . Sur la figure 1 , un système GPS 14 joue le rôle de calculateur de navigation. Selon la destination renseignée par le conducteur, le GPS 14 fournit les informations suivantes : • Upack: This is the voltage across the battery pack 1 1. In Figure 1, a GPS system 14 acts as a navigation calculator. Depending on the destination entered by the driver, GPS 14 provides the following information:
• Dénivelé : il s'agit de l'écart d'altitude entre le point de départ et le point d'arrivée sur le trajet renseigné ;  • Elevation difference: this is the difference in altitude between the starting point and the end point on the route indicated;
• Distance : il s'agit de la distance entre le point de départ et le point d'arrivée, pour le trajet renseigné par le conducteur ; on note Distance=[D1 ;D2 ;... ;Dq] le vecteur décrivant les distances de q différents tronçons formant le trajet, sur lesquels la vitesse moyenne à prendre en compte est différente ;  • Distance: This is the distance from the start point to the end point, for the route entered by the driver; Distance = [D1; D2; ...; Dq] denotes the vector describing the distances of q different sections forming the path, on which the average speed to be taken into account is different;
• Trafic : il s'agit d'informations sur l'état du trafic ; ce signal peut par exemple correspondre à la vitesse moyenne sur le trajet, qui dépend elle- même des conditions de circulation (e.g. bouchon, travaux, type de la voie de circulation,...) ; on note Trafic=[V1 ;V2 ;... ;Vq] le vecteur décrivant les q différentes valeurs de vitesse moyenne, sur les q différents tronçons D1 ,...,Dq ;  • Traffic: This is traffic status information; this signal may for example correspond to the average speed on the journey, which itself depends on the traffic conditions (e.g. stopper, work, type of traffic lane, ...); we denote Trafic = [V1; V2; ...; Vq] the vector describing the q different mean velocity values, on q different sections D1, ..., Dq;
• Text : il s'agit de la température extérieure sur le trajet ; on note Text=[Text_1 ;Text_2 ;... ;Text_q] le vecteur décrivant les q différentes valeurs de température extérieure moyenne, sur les q différents tronçons de longueurs respectives D1 ,...,Dq.  • Text: this is the outside temperature on the trip; Text = [Text_1; Text_2; ...; Text_q] denotes the vector describing the q different mean outside temperature values, on the q different lengths of respective lengths D1, ..., Dq.
Le calculateur EVC 13 joue donc le rôle de calculateur de supervision du véhicule, auquel sont connectés le calculateur BMS 12, le GPS 14 et le tableau de bord 15 du véhicule. A partir des signaux d'entrée Text, Trafic, Distance, Dénivelé, Tpack, Ipack, Energy(Tpack) et Energie(Trep), le calculateur EVC 13 produit les signaux suivants : The EVC computer 13 therefore acts as a vehicle supervision computer, to which the BMS computer 12, the GPS 14 and the dashboard 15 of the vehicle are connected. From the input signals Text, Traffic, Distance, Elevation, Tpack, Ipack, Energy (Tpack) and Energy (Trep), the EVC computer 13 produces the following signals:
• Trep : il s'agit d'une valeur représentative de l'évolution de la température du pack batterie 1 1 sur le trajet renseigné par le conducteur ; la façon de calculer cette valeur selon l'invention est décrite par la suite ;  • Trep: it is a representative value of the temperature change of the battery pack 1 1 on the path entered by the driver; the way of calculating this value according to the invention is described later;
· Autonomie_Restante : il s'agit de l'autonomie kilométrique restante, estimée sur la base du trajet et des conditions de température et de trafic, et qui correspond à la marge d'autonomie au-delà de la destination renseignée ; · Autonomie_Restante: it is about the remaining kilometric autonomy, estimated on the basis of the path and the conditions of temperature and traffic, and which corresponds to the margin of autonomy beyond the indicated destination;
• Autonomie_Totale : il s'agit de l'autonomie kilométrique totale, estimée sur la base des conditions de température et de trafic. Un système de gestion thermique 16 gère le refroidissement et le réchauffage du pack batterie 1 1 par un flux d'air ou de liquide caloporteur, non illustré sur la figure. Le système de gestion thermique 16 est contrôlé par le calculateur EVC 13 via un signal de commande, le calculateur EVC 13 connaissant la température moyenne en régime stabilisé du fluide caloporteur lorsque le système 16 est activé. Cette température moyenne en régime stabilisé est notée Tcooling : elle dépend des caractéristiques du fluide et des stratégies de réchauffage/refroidissement implémentées dans le calculateur EVC 13. • Autonomy_Total: This is the total kilometric autonomy, estimated on the basis of temperature and traffic conditions. A thermal management system 16 manages the cooling and heating of the battery pack 1 1 by a stream of air or heat transfer fluid, not shown in the figure. The thermal management system 16 is controlled by the EVC computer 13 via a control signal, the EVC computer 13 knowing the average steady state temperature of the heat transfer fluid when the system 16 is activated. This average steady-state temperature is noted Tcooling: it depends on the characteristics of the fluid and the heating / cooling strategies implemented in the EVC computer 13.
La figure 2 illustre par un diagramme fonctionnel le même exemple de réalisation de l'invention, en particulier le détail des opérations réalisées dans le calculateur EVC 13. FIG. 2 illustrates in a functional diagram the same embodiment of the invention, in particular the details of the operations performed in the EVC computer 13.
Un bloc 21 de prétraitement des informations GPS réalise un traitement numérique des signaux Distance, Text et Trafic fournis par le système GPS 14, de façon à adapter le découpage en tronçons réalisé par le système GPS 14 aux besoins internes du calculateur EVC 13. Le redécoupage réalisé dans ce bloc 21 , à partir de q tronçons réalisés par le système GPS 14 (où q est un entier strictement positif), permet de produire p nouveaux tronçons (avec p entier tel que p≥q), dont les caractéristiques, notamment leurs durées, sont adaptées aux besoins de modélisation thermique. Ainsi, en sortie du bloc 21 de prétraitement, on obtient les vecteurs suivants  A GPS information pre-processing block 21 performs a digital processing of the Distance, Text and Traffic signals supplied by the GPS system 14, so as to adapt the sectioning made by the GPS system 14 to the internal needs of the EVC computer 13. The redistribution realized in this block 21, from q sections made by the GPS system 14 (where q is a strictly positive integer), makes it possible to produce p new sections (with p integer such that p≥q), whose characteristics, in particular their durations, are adapted to the needs of thermal modeling. Thus, at the output of the preprocessing block 21, the following vectors are obtained
• Distance=[D1 ;D2 ;... ;Dp] : il s'agit d'un vecteur décrivant les distances des p tronçons successifs formant le trajet ;  • Distance = [D1; D2; ...; Dp]: this is a vector describing the distances of the p successive sections forming the path;
• Trafic=[V1 ;V2 ;... ;Vp] : il s'agit d'un vecteur décrivant les p différentes valeurs de vitesse moyenne, sur les p différents tronçons D1 à Dp ;  • Traffic = [V1; V2; ...; Vp]: this is a vector describing the p different average speed values, on p different sections D1 to Dp;
• Text=[Text_1 ;Text_2 ;... ;Text_p] : il s'agit d'un vecteur décrivant les p différentes valeurs de température extérieure moyenne, sur les p différents tronçons de longueurs respectives D1 à Dp.  • Text = [Text_1; Text_2; ...; Text_p]: this is a vector describing the p different average outdoor temperature values, on the p different lengths of respective lengths D1 to Dp.
Pour réaliser ce redécoupage, le critère porte sur la durée associée à chaque tronçon, c'est-à-dire la durée ti=Di/Vi pour i entre 1 et q : ces durées doivent être inférieures à un seuil précalibré noté seuil_durée_tronçon, qui peut typiquement être de l'ordre de 1 minute, de façon à ce que les estimations réalisées par le modèle thermique de la batterie 1 1 , qui est décrit en détail par la suite, soient assez fiables, notamment vis-à-vis du système de gestion thermique 16. En effet, de trop longues durées de tronçons ne permettent pas de reproduire correctement les stratégies de refroidissement / réchauffage au travers du signal Tcooling, comme décrit par la suite. Ainsi, si le ième tronçon fourni par le système GPS 14 ne respecte pas ti<seuil_durée_tronçon, alors ce ième tronçon est redécoupé en plusieurs sous-tronçons vérifiant ti'=Di7Vi'<seuil_durée_tronçon. La température extérieure moyenne et la vitesse moyenne sur ces sous-tronçons sont identiques à celles du tronçon initial, seule la distance est adaptée. Un bloc 22 de bilan énergétique lié au dénivelé estime l'énergie nécessaire pour subir la variation de dénivelé correspondant au signal Dénivelé fourni par le système GPS 14, notée AEdenivelé. Il est par exemple possible d'estimer cette énergie par : AEdenivelé = M x g x Dénivelé où M représente la masse totale du véhicule pour un chargement moyen (typiquement avec 2 passagers), où g représente l'accélération de la pesanteur et où Dénivelé représente le dénivelé sur le trajet fourni par le système GPS 14. To perform this redistribution, the criterion relates to the duration associated with each section, that is to say the duration ti = Di / Vi for i between 1 and q: these times must be less than a precalibrated threshold noted threshold_duration_tronçon, which can typically be of the order of 1 minute, so that the estimates made by the thermal model of the battery 1 1, which is described in detail later are reliable enough, particularly vis-à-vis the thermal management system 16. Indeed, too long lengths of sections do not correctly reproduce the cooling / heating strategies through the signal Tcooling, as described later . Thus, if the i th section provided by the GPS system 14 does not respect ti <threshold_duration_tronçon, then i th section is redécoupé in several sub-sections verifying ti '= Di7Vi'<threshold_duration_tronçon. The average outside temperature and the average speed on these sub-sections are identical to those of the initial section, only the distance is adapted. A block 22 of energetic balance linked to the difference in altitude estimates the energy necessary to undergo the change of altitude corresponding to the signal Descent provided by the GPS system 14, noted AE unequated. It is possible, for example, to estimate this energy by: AEdivided = M xgx Descent where M represents the total mass of the vehicle for an average load (typically with 2 passengers), where g represents the acceleration of gravity and where Elevation represents the altitude difference on the route provided by the GPS system 14.
Un bloc 23 de bilan énergétique lié à la distance estime, à partir des signaux Distance et Trafic fournis par le système GPS 14, l'énergie nécessaire à parcourir la distance correspondant au signal Distance fourni par le système GPS 14 dans les conditions de circulation correspondant au signal Trafic fournis par le système GPS 14, notée AEdistance. Différentes méthodes sont décrites dans l'état de l'art pour estimer AEdistance. Il est par exemple possible de l'estimer par : AEdistance = ^ [(« · Vi + β )· Di ] An energy balance block 23 linked to the distance estimates, from the distance and traffic signals provided by the GPS system 14, the energy necessary to travel the distance corresponding to the distance signal supplied by the GPS system 14 under the corresponding traffic conditions. to the traffic signal provided by the GPS system 14, denoted AEdistance. Different methods are described in the state of the art for estimating AEdistance. For example, it is possible to estimate it by: AEdistance = ^ [("· V i + β ) · D i ]
où a et β sont des paramètres de calibration dépendant du véhicule, où Vi est la vitesse moyenne fournie par le système GPS 14 pour le ième tronçon de distance Di. Ce bilan énergétique sur la distance tient compte des frottements mécaniques et aérodynamiques, ainsi que des rendements des organes électriques et de la chaîne de traction. where a and β are vehicle-dependent calibration parameters, where Vi is the average speed provided by the GPS system 14 for the i th section of distance Di. This energy balance over the distance takes into account the mechanical and aerodynamic friction, as well as the efficiencies of the electrical components and the power train.
Un bloc 24 nommé Historique permet d'estimer le style de conduite du conducteur, pour mettre éventuellement à jour les paramètres a et β utilisés dans le bloc 23, et les paramètres γ, δ et Θ utilisés dans un bloc 26 de modélisation thermique du pack batterie 1 1 . Selon que le conducteur pratique un style de conduite sportif ou économe, ces paramètres peuvent être mis à jour pour améliorer les bilans énergétiques et les estimations de température cible. Le style de conduite peut par exemple être décrit en calculant une moyenne pondérée ou une valeur quadratique moyenne du courant Ipack traversant le pack batterie 1 1 , ou de la puissance tirée du pack batterie 1 1 , soit Upack x Ipack. Un bloc 25 de Bilan énergétique global réalise le bilan énergétique pour le véhicule dans son ensemble, à partir des signaux AEdenivelé, AEdistance, Energy(Tpack) et Energy(Trep). Un signal calculé par le bloc 25 est le suivant : Autonomie_restante = [Energie(Trep) - AEdenivelé - AEdistance] / Conso_spécifique(Trep) où Conso_spécifique, en joules par kilomètre, est une valeur de calibration qui dépend à la fois du véhicule, comme sa masse et le type de sa chaîne de traction électrique, et de la température Trep ; A block 24 named History makes it possible to estimate the driving style of the driver, to possibly update the parameters a and β used in block 23, and the parameters γ, δ and Θ used in a thermal modeling block 26 of the pack. battery 1 1. Depending on whether the driver practices a sporty or economical driving style, these parameters can be updated to improve energy balances and target temperature estimates. The driving style may for example be described by calculating a weighted average or a root mean square of the Ipack current passing through the battery pack 1 1, or the power drawn from the battery pack 1 1, ie Upack x Ipack. A block 25 of Global Energy Balance performs the energy balance for the vehicle as a whole, from the AEdivided, AEdistance, Energy (Tpack) and Energy (Trep) signals. A signal calculated by block 25 is the following: Autonomy_reservative = [Energy (Trep) - AEdifferential - AEdistance] / Specific_consistency (Trep) where Conso_specific, in joules per kilometer, is a calibration value which depends both on the vehicle, as its mass and the type of its electric power train, and the Trep temperature;
Un autre signal calculé par le bloc 25 est le suivant : Another signal calculated by block 25 is as follows:
Autonomie_totale = Energie(Trep)/ Conso_spécifique(Trep) Si le signal Autonomie_restante est positif, un indicateur est affiché au tableau de bord 15 pour renseigner le conducteur sur l'autonomie restante estimée à l'issue de son trajet. L'autonomie totale peut aussi être affichée. Un bloc 26 de modélisation thermique du pack batterie 1 1 estime, à partir des signaux Text, Tpack, Tcooling, Distance, Trafic et des paramètres éventuellement mis à jour dans le bloc Historique (α, β, γ, δ, Θ), la température cible Trep à laquelle le pack batterie 1 1 fonctionnera durant le trajet. Pour réaliser cette estimation, un modèle thermique du pack batterie 1 1 est utilisé : Trep=f(Text, Tpack, Tcooling, Distance, Trafic, Historique). Autonomie_totale = Energy (Trep) / Conso_specific (Trep) If the signal Autonomie_restante is positive, an indicator is displayed on the dashboard 15 to inform the driver on the remaining remaining estimated after his trip. Total autonomy can also be displayed. A thermal modeling block 26 of the battery pack 1 1 estimates, from the signals Text, Tpack, Tcooling, Distance, Traffic and parameters possibly updated in the history block (α, β, γ, δ, Θ), the Trep target temperature at which the battery pack 1 1 will operate during the trip. To make this estimate, a thermal model of the battery pack 1 1 is used: Trep = f (Text, Tpack, Tcooling, Distance, Traffic, History).
Tout d'abord, le courant moyen traversant le pack batterie 1 1 durant le trajet est estimé : à partir du signal Trafic=[V1 ;V2 ;... ;Vp] prétraité, on détermine des valeurs de courant moyen sur chacun des p tronçons, on obtient le vecteur [lmoyen_1 ; lmoyen_2 ; lmoyen_p]. Ces valeurs de courant moyen sont déterminées au moyen d'une table de valeurs précalibrées dépendant de la vitesse moyenne. Cette table tient compte des caractéristiques du véhicule, comme sa masse ou le rendement de sa machine électrique ou encore le rapport de démultiplication de sa chaîne cinématique. Firstly, the average current flowing through the battery pack 1 1 during the journey is estimated: from the pre-processed Traffic signal = [V1; V2; ...; Vp], average current values are determined on each of the p sections, we obtain the vector [lmoyen_1; lmoyen_2; lmoyen_p]. These average current values are determined by means of a table of precalibrated values dependent on the average speed. This table takes into account the characteristics of the vehicle, such as its mass or the efficiency of its electric machine or the gear ratio of its driveline.
Ensuite, les températures du pack batterie 1 1 à l'issue des p tronçons formant le trajet sont estimées: Par exemple, l'évolution de la température du pack batterie 1 1 peut s'exprimer, en temps continu, par l'équation différentielle suivante : dTpaCk^ = yl(t)2 + ^ . (Text( - Tpack( )+ 5 - (Tcooling( - Tpack( ) Then, the temperatures of the battery pack 1 1 at the end of the p sections forming the path are estimated: For example, the change in the temperature of the battery pack 1 1 can be expressed, in continuous time, by the differential equation next: d TpaCk ^ = yl (t) 2 + ^. (Text (- Tpack () + 5 - (Tcooling (- Tpack ()
où Tpack(t) représente la température du pack batterie 1 1 à un instant t, où Text(t) représente la température extérieure à l'instant t, où Tcooling(t) représente la température du système de refroidissement à l'instant t et où γ, δ et Θ sont des paramètres de réglage permettant de tenir compte des caractéristiques thermiques du pack batterie 1 1 , ces paramètres pouvant potentiellement être mis à jour dans le bloc 24 Historique. Au second membre de cette dernière équation différentielle ci- dessus, le premier terme représente échauffement interne du pack batteries 1 1 par effet Joules, le second terme représente le flux de chaleur entre le pack batterie 1 1 et l'atmosphère, le troisième terme représente le flux de chaleur entre le pack batterie 1 1 et le fluide caloporteur de refroidissement / chauffage. where Tpack (t) represents the temperature of the battery pack 1 1 at a time t, where Text (t) represents the outside temperature at time t, where Tcooling (t) represents the temperature of the cooling system at time t and where γ, δ and Θ are adjustment parameters making it possible to take into account the thermal characteristics of the battery pack 1 1, these parameters potentially being able to be updated in the block 24 History. In the second member of this last differential equation above, the first term represents internal heating of the battery pack 1 1 by Joules effect, the second term represents the heat flow between the battery pack 1 1 and the atmosphere, the third term represents the heat flow between the battery pack 1 1 and the cooling / heating heat transfer fluid.
Pour résoudre cette équation différentielle dans le calculateur EVC 13, on commence par déterminer les durées associées à chacun des p tronçons, à partir des informations prétraitées Trafic et Distance initialement fournies par le système GPS 14 : un vecteur Duree=[t1 , t2,...,tp] décrit les p durées associées à chacun des p tronçons, avec ti=Di/Vi pour i entier compris entre 1 et p.  To solve this differential equation in the EVC computer 13, we first determine the durations associated with each of the p sections, from the pre-processed information Traffic and Distance initially provided by the GPS system 14: a vector Duree = [t1, t2 ,. .., tp] describes the p durations associated with each of the p sections, with ti = Di / Vi for i integer between 1 and p.
L'algorithme suivant peut ensuite être exécuté dans le calculateur EVC 13 suivant les étapes suivantes :  The following algorithm can then be executed in the EVC computer 13 according to the following steps:
· Etape 1 : estimation de l'évolution de la température du pack batterie 1 1 sur le 1 er tronçon de longueur D1 , à la vitesse moyenne V1 et à la température extérieure moyenne Text_1 · Step 1: estimation of the temperature evolution of the battery pack 1 1 on the first section of length D1, the average speed V1 and the average outside temperature Text_1
o Détermination de la température Tcooling du fluide caloporteur : cette température à prendre en compte sur le 1 er tronçon est déterminée au moyen d'une table de valeurs précalibrées, qui décrit la température en régime stabilisé de ce fluide caloporteur en fonction de la température du pack batterie 1 1 :  o Determination of the temperature Tcooling of the heat transfer fluid: this temperature to be taken into account on the first section is determined by means of a table of precalibrated values, which describes the steady-state temperature of this heat transfer fluid as a function of the temperature of the battery pack 1 1:
Tcooling_l = table_cooling(Tpack) où Tpack est la température mesurée dans le pack batterie 1 1 au moment où le conducteur renseigne sa destination dans le système GPS 14, où Tcooling_1 représente la température moyenne du fluide caloporteur à prendre en compte sur le 1 er tronçon, et où table_cooling représente la table de valeurs précalibrées. Selon les cas, cette température Tcooling_1 peut correspondre à l'activation de moyens de réchauffage ou de refroidissement du fluide. Tcooling_l = table_cooling (Tpack) where Tpack is the temperature measured in the battery pack 1 1 at the moment when the driver informs his destination in the GPS system 14, where Tcooling_1 represents the average temperature of the heat transfer fluid to be taken into account on the first section where table_cooling represents the precalibrated values table. Depending on the case, this temperature Tcooling_1 may correspond to the activation of means for heating or cooling the fluid.
Calcul de l'évolution de la température du pack batterie 1 1 sur le 1 er tronçon : à partir de l'équation différentielle qui précède, et en considérant comme constants sur l'ensemble du 1 er tronçon les signaux Text(t)=Text_1 , lpack(t)=lmoyen_1 , Tcooling(t)=Tcooling_1 , on obtient, pour la température estimée du pack batterie 1 1 à l'instant t1 , c'est-à-dire à la fin du 1 er tronçon: Calculation of the evolution of the temperature of the battery pack 1 1 on the first section: starting from the differential equation which precedes, and considering as constants on the whole of the first section the signals Text (t) = Text_1, lpack (t) = lmoyen_1, Tcooling (t) = Tcooling_1, we obtain, for the estimated temperature of the battery pack 1 1 at time t1, that is to say at the end of the first section:
(imoyen l)2 + δ Text l + Θ Tcooling l -(δ+θ)ΰ Y ' (imoyen l)2 + δ Text l + Θ Tcooling l(imoyen l) 2 + δ Text l + Θ Tcooling l - (δ + θ) ΰ Y '(imoyen l) 2 + δ Text l + Θ Tcooling l
Tpack(d) Tpack - δ + ί + + θ Tpack (d) Tpack - δ + ί + + θ
• Etape 2 : estimation de l'évolution de la température du pack batterie 1 1 sur le 2ème tronçon de longueur D2, à la vitesse moyenne V2 et à la température extérieure moyenne Text_2 • Step 2: Estimation of changes in the battery pack temperature for 1 1 of the 2 nd run-length D2, the average speed V2 and the average outdoor temperature text_2
o Détermination de la température Tcooling_2 du fluide caloporteur : cette température à prendre en compte sur le 2ème tronçon est déterminée au moyen d'une table de valeurs précalibrées, qui décrit la température en régime stabilisé de ce fluide en fonction de la température du pack batterie 1 1 : o Determination of Tcooling_2 coolant temperature: this temperature to be taken into account on the 2 nd section is determined by means of a table of values pre-calibrated, which describes the steady-state temperature of the fluid depending on the pack temperature battery 1 1:
Tcooling_2 = table_cooling(Tpack(tl)) où Tpack(tl ) est la température du pack batterie 1 1 à l'issue du 1 er tronçon estimée selon l'étape 1 qui précède, où Tcooling_2 représente la température moyenne du fluide caloporteur à prendre en compte sur le 2ème tronçon et où table_cooling représente la table de valeurs précalibrées. Selon les cas, cette température Tcooling_2 peut correspondre à l'activation de moyens de réchauffage ou de refroidissement du fluide. Tcooling_2 = table_cooling (TPACK (t)) where TPACK (tl) is the temperature of the battery pack 1 1 at the end of 1 section estimated according to step 1 above, where Tcooling_2 represents the average temperature of the coolant to be taken into account on the 2nd section and where table_cooling represents the table of pre-calibrated values. Depending on the case, this temperature Tcooling_2 may correspond to the activation of means for heating or cooling the fluid.
Calcul de l'évolution de la température du pack batterie 1 1 sur le 2ème tronçon : à partir de l'équation différentielle qui précède, et en considérant comme constants sur l'ensemble du 2ème tronçon les signaux Text(t)=Text_2, lpack(t)=lmoyen_2, Tcooling(t)=Tcooling_2, on obtient : Calculation of the evolution of the temperature of the battery pack 1 1 on the 2nd section: starting from the differential equation which precedes, and considering as constant on the whole of the 2nd section the signals Text (t) = Text_2 , lpack (t) = lmoyen_2, Tcooling (t) = Tcooling_2, we obtain:
• (lmoyen_2)2 + δ Text_2 + Θ Tcooling_2 -{s+e)ti 7 ' (lmoyen_2)2 + δ Text_2 + Θ Tcooling_2• (lmoyen_2) 2 + δ Text_2 + Θ Tcooling_2 - {s + e) ti 7 '(lmoyen_2) 2 + δ Text_2 + Θ Tcooling_2
Tpack(i2) Tpack(tl) Tpack (i2) Tpack (tl)
+ 7+ Θ • Etape i où i≤p : estimation de l'évolution de la température du pack batterie 1 1 sur le ième tronçon de longueur Di, à la vitesse moyenne Vi et à la température extérieure moyenne Text_i + 7+ Θ Step i where i≤p: estimation of the temperature evolution of the battery pack 1 1 on the i th section of length Di, at the average speed Vi and at the mean outside temperature Text_i
o Détermination de la température Tcooling_i du fluide caloporteur sur le ième tronçon : cette température à prendre en compte sur le ième tronçon est déterminée au moyen d'une table de valeurs précalibrées, qui décrit la température en régime stabilisé de ce fluide en fonction de la température du pack batterie 1 1 : o Determination of the temperature Tcooling_i of the coolant on the i th section: this temperature to be taken into account on the i th section is determined by means of a table of precalibrated values, which describes the temperature in steady state of this fluid in function the temperature of the battery pack 1 1:
Tcooling_i = table_cooling(Tpack(ti - 1)) où Tpack(ti-I ) est la température du pack batterie 1 1 à l'issue du (i- 1 )ème tronçon estimée selon l'étape i-1 , où Tcoolingj représente la température moyenne du fluide caloporteur à prendre en compte sur le ième tronçon, et où table_cooling représente la table de valeurs précalibrées. Selon les cas, cette température Tcoolingj peut correspondre à l'activation de moyens de réchauffage ou de refroidissement du fluide. Tcooling_i = table_cooling (Tpack (ti - 1)) where Tpack (ti-I) is the temperature of the battery pack 1 1 at the end of the (i-1) th section estimated according to step i-1, where Tcoolingj represents the average temperature of the heat transfer fluid to be taken into account on the i th section, and where table_cooling represents the table of precalibrated values. Depending on the case, this temperature Tcoolingj may correspond to the activation of means for heating or cooling the fluid.
Calcul de l'évolution de la température du pack batterie 1 1 sur le ième tronçon: à partir de l'équation différentielle qui précède, et en considérant comme constants sur l'ensemble du ième tronçon les signaux Text(t)=Text_i, lpack(t)=lmoyen_i, Tcooling(t)=Tcooling_i, on obtient : Calculation of the evolution of the temperature of the battery pack 1 1 on the i th section: starting from the differential equation which precedes, and considering as constant on the whole of the i th section the signals Text (t) = Text_i , lpack (t) = lmoyen_i, Tcooling (t) = Tcooling_i, we obtain:
• (imoyen i)2 + S Text i + Θ Tcooling i „-(3+θ}ή Y_ (imoyen i)2 + δ■ Text i + θ■ Tcooling i• (imoyen i) 2 + S Text i + Θ Tcooling i "- (3 + θ} ή Y_ (imoyen i) 2 + δ ■ Text i + θ ■ Tcooling i
Tpack(ft') = Tpack(ti - l)- δ + θ δ + θ Tpack (ft ' ) = Tpack (ti - l) - δ + θ δ + θ
En poursuivant les étapes précédentes jusqu'à l'étape p, on obtient ainsi une estimation de la température du pack batterie 1 1 à la fin de chacun des p tronçons qui constituent le trajet : By continuing the previous steps up to step p, we thus obtain an estimate of the temperature of the battery pack 1 1 at the end of each of the p sections that constitute the path:
Tpack_est = [Tpack(tl),Tpack(t2),...,Tpack(tp)] Tpack_est = [Tpack (tl), Tpack (t2), ..., Tpack (tp)]
Enfin, la température Trep est déterminée à partir du vecteur Tpack_est obtenu précédemment. Plusieurs approches sont possibles pour déterminer cette température Trep que le calculateur EVC 13 va renvoyer au calculateur BMS 12. Finally, the temperature Trep is determined from the vector Tpack_est obtained previously. Several approaches are possible to determine this Trep temperature that the EVC calculator 13 will return to the BMS calculator 12.
Selon une première approche que l'on pourrait qualifier de « conservative », la température Trep peut être choisie comme étant la température la plus faible estimée sur le trajet :  According to a first approach that could be described as "conservative", the temperature Trep can be chosen as the lowest temperature estimated on the path:
Trep=mini <i<p(Tpack(ti ) ) Trep = mini <i < p (Tpack (ti))
Cette approche peut conduire à une légère sous-estimation de l'autonomie, les pertes dans le pack batterie 1 1 étant plus importantes à basse température. Cette approche est recommandée lorsque les écarts entre les p différentes valeurs du vecteur Tpack_est sont relativement faibles. This approach may lead to a slight underestimation of the autonomy, the losses in the battery pack 1 1 being greater at low temperature. This approach is recommended when the differences between the p different values of the Tpack_est vector are relatively small.
Selon une autre approche que l'on pourrait qualifier de Another approach that could be described as
« modérée », la température Trep peut être choisie comme étant la température moyenne sur les p tronçons du trajet : "Moderate", the temperature Trep can be chosen as the average temperature on the p sections of the route:
Trep=meani<i<p(Tpack(ti)) Trep = meani <i < p (Tpack (ti))
Cette approche est recommandée lorsque les écarts entre les p différentes valeurs du vecteur Tpack_est sont relativement grands. This approach is recommended when the differences between the p different values of the Tpack_est vector are relatively large.
Le mode de réalisation qui précède permet ainsi d'obtenir une valeur représentative de l'évolution de la température du pack batterie 1 1 sur le trajet renseigné par le conducteur via le système GPS 14, et une estimation de l'autonomie du véhicule pour cette valeur de température. Cette estimation d'autonomie présente l'avantage d'être plus fiable que celle qui peut être effectuée au démarrage du véhicule, sans tenir compte des variations de température que le pack batterie va subir durant le trajet. The above embodiment thus makes it possible to obtain a value representative of the evolution of the temperature of the battery pack 1 1 on the path entered by the driver via the GPS system 14, and an estimate of the range of the vehicle for this purpose. temperature value. This estimate of autonomy has the advantage of being more reliable than that which can be performed at the start of the vehicle, without taking into account the temperature changes that the battery pack will undergo during the journey.

Claims

REVENDICATIONS
1 . Procédé pour estimer l'autonomie d'un véhicule électrique ou hybride sur un trajet prédéterminé, le procédé incluant une étape d'estimation de l'énergie disponible dans la batterie de traction (1 1 ) du véhicule en fonction de la température (Tpack) de ladite batterie, 1. Method for estimating the autonomy of an electric or hybrid vehicle on a predetermined path, the method including a step of estimating the energy available in the traction battery (1 1) of the vehicle as a function of temperature (Tpack) of said battery,
le procédé étant caractérisé en ce qu'il inclut en outre une étape de calcul d'une valeur représentative (Trep) de l'évolution de la température de la batterie durant le trajet, ladite valeur étant utilisée pour estimer l'énergie disponible. 2. Procédé selon la revendication 1 , caractérisé en ce que l'étape de calcul de la valeur représentative (Trep) inclut :  the method being characterized in that it further includes a step of calculating a representative value (Trep) of the evolution of the temperature of the battery during the journey, said value being used to estimate the available energy. 2. Method according to claim 1, characterized in that the step of calculating the representative value (Trep) includes:
une étape de découpage du trajet en p tronçons, où p est un nombre entier strictement positif ;  a step of cutting the path in p sections, where p is a strictly positive integer;
une étape d'estimation de la température de la batterie (1 1 ) à la fin de chacun des p tronçons.  a step of estimating the temperature of the battery (1 1) at the end of each of the p sections.
3. Procédé selon la revendication 2, caractérisé en ce que l'étape de calcul de la valeur représentative (Trep) inclut en outre que : 3. Method according to claim 2, characterized in that the step of calculating the representative value (Trep) furthermore includes:
la valeur représentative est égale à la valeur minimale parmi les p valeurs de température de la batterie en fin de chacun des p tronçons, ou ;  the representative value is equal to the minimum value among the p temperature values of the battery at the end of each of the p segments, or;
la valeur représentative est égale à la valeur moyenne des p valeurs de température de la batterie en fin de chacun des p tronçons. 4. Procédé selon la revendication 2, caractérisé en ce que l'étape de découpage du trajet en p tronçons inclut :  the representative value is equal to the average value of the p temperature values of the battery at the end of each of the p sections. 4. Method according to claim 2, characterized in that the step of cutting the path in p sections includes:
une étape de saisie du trajet par un conducteur du véhicule via l'interface d'un système de navigation (14) connecté au véhicule ; une étape de pré-découpage du trajet par le système de navigation en q tronçons, où q est un nombre entier strictement positif inférieur ou égal à p, tels que la vitesse moyenne du véhicule estimée par le système de navigation sur chacun des q tronçons varie d'un tronçon au suivant sur le trajet. Procédé selon la revendication 4, caractérisé en ce que l'étape de découpage du trajet en p tronçons inclut en outre, si certains tronçons parmi les q tronçons ont une durée estimée de parcours supérieure à un seuil prédéterminé, une seconde étape de redécoupage desdits tronçons dont la durée de parcours est trop longue, de telle sorte que la durée de parcours de chacun des p tronçons ainsi obtenus est inférieure ou égale au seuil. a step of entering the path by a driver of the vehicle via the interface of a navigation system (14) connected to the vehicle; a step of pre-cutting of the path by the navigation system in q sections, where q is a strictly positive integer less than or equal to p, such that the average speed of the vehicle estimated by the navigation system on each of q sections varies from one section to the next on the route. A method according to claim 4, characterized in that the step of cutting the path in p sections further includes, if some of the sections q have an estimated duration of travel greater than a predetermined threshold, a second step of redistricting said sections whose travel time is too long, so that the travel time of each p sections thus obtained is less than or equal to the threshold.
Procédé selon la revendication 2, caractérisé en ce que l'étape d'estimation de la température de la batterie (1 1 ) à la fin de chacun des p tronçons inclut, pour i entier variant de 1 à p : Method according to claim 2, characterized in that the step of estimating the temperature of the battery (1 1) at the end of each of the p segments includes, for i integer varying from 1 to p:
une étape d'estimation, en fonction de la vitesse moyenne (Vi) estimée sur le ième tronçon, du courant moyen (lmoyen_i) traversant la batterie durant le ième tronçon ; an estimation step, as a function of the average speed (Vi) estimated on the i th section, of the average current (lmoyen_i) passing through the battery during the i th section;
une étape d'estimation de la température (Tcooling_i), en début du ième tronçon, d'un fluide caloporteur permettant de réchauffer ou refroidir la batterie ; a step of estimating the temperature (Tcooling_i) at the beginning of the i th section of a heat transfer fluid for heating or cooling the battery;
une étape de collecte de la température extérieure moyenne (Text_i) prévue sur le ième tronçon ; a step of collecting the average outside temperature (Text_i) provided on the i th section;
une étape d'estimation de la température (Tpack(ti)) de la batterie à l'instant (ti) où le véhicule atteint la fin du ième tronçon, à partir : a step of estimating the temperature (Tpack (ti)) of the battery at the instant (ti) where the vehicle reaches the end of the i th section, from:
o de la température estimée de la batterie à fin du (i-1 )ème tronçon (Tpack(ti-I )) ou de la température mesurée (Tpack) de la batterie si i=1 , et/ou ; o the estimated temperature of the battery at the end of the (i-1) th section (Tpack (ti-I)) or the measured temperature (Tpack) of the battery if i = 1, and / or;
o du courant moyen (lmoyen_i) estimé traversant la batterie durant le ième tronçon, et/ou ; o the average current (lmoyen_i) estimated crossing the battery during the i th section, and / or;
o de la température extérieure moyenne (Text_i) prévue sur le ième tronçon, et/ou ; o the average outside temperature (Text_i) provided on the i th section, and / or;
o de la température estimée (Tcooling_i) du fluide caloporteur en début du ième tronçon. o the estimated temperature (Tcooling_i) of the heat transfer fluid at the beginning of the i th section.
Procédé selon la revendication 6, caractérisé en ce que l'étape d'estimation de la température de la batterie à la fin de chacun des p tronçons inclut d'estimer, pour i entier variant de 1 à p, la température (Tpack(ti)) de la batterie à la fin du ième tronçon par l'équation : T k(t' l) ^ (imoyen i)2 + δ Text i + Θ Tcooling i (imoyen i)2 + δ Text i + θ Tcooling iA method according to claim 6, characterized in that the step of estimating the temperature of the battery at the end of each of the p sections includes estimating, for i integer varying from 1 to p, the temperature (Tpack (ti )) of the battery at the end of the i th section by the equation: T k (t 'l) ^ (imoyen i) 2 + δ Text i + Θ Tcooling i (imoyen i) 2 + δ Text i + θ Tcooling i
Tpack(ft') = Tpack (ft ' ) =
δ + θ δ + θ  δ + θ δ + θ
où γ, δ et Θ sont des paramètres correspondant à des caractéristiqu thermiques de la batterie. 8. Procédé selon les revendications 4 et 6, caractérisé en ce que, pour i entier variant de 1 à p, sont fournies par le système de navigation (14) : la vitesse moyenne (Vi) sur le ième tronçon en fonction de l'état du trafic sur ledit tronçon ; where γ, δ and Θ are parameters corresponding to thermal characteristics of the battery. 8. Method according to claims 4 and 6, characterized in that, for i integer ranging from 1 to p, are provided by the navigation system (14): the average speed (Vi) on the i th section depending on the state of the traffic on said section;
la température extérieure moyenne (Textj) prévue sur le ième tronçon. the mean outside temperature (Textj) expected on the i th section.
9. Calculateur (13) caractérisé en ce qu'il comporte des moyens matériels et logiciels (21 , 22, 23, 24, 25, 26) implémentant le procédé selon l'une quelconque des revendications précédentes. 9. Calculator (13) characterized in that it comprises hardware and software means (21, 22, 23, 24, 25, 26) implementing the method according to any one of the preceding claims.
10. Véhicule électrique ou hybride caractérisé en ce qu'il comporte un calculateur (13) selon la revendication précédente et un tableau de bord (15) sur lequel afficher l'autonomie estimée. 10. Electric or hybrid vehicle characterized in that it comprises a computer (13) according to the preceding claim and a dashboard (15) on which to display the estimated autonomy.
EP15718516.6A 2014-03-24 2015-03-23 Method for estimating the autonomy of an electric or hybrid vehicle Withdrawn EP3122591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452456A FR3018921B1 (en) 2014-03-24 2014-03-24 METHOD FOR ESTIMATING THE AUTONOMY OF AN ELECTRIC OR HYBRID VEHICLE
PCT/FR2015/050723 WO2015145053A1 (en) 2014-03-24 2015-03-23 Method for estimating the autonomy of an electric or hybrid vehicle

Publications (1)

Publication Number Publication Date
EP3122591A1 true EP3122591A1 (en) 2017-02-01

Family

ID=51293047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15718516.6A Withdrawn EP3122591A1 (en) 2014-03-24 2015-03-23 Method for estimating the autonomy of an electric or hybrid vehicle

Country Status (4)

Country Link
US (1) US10442304B2 (en)
EP (1) EP3122591A1 (en)
FR (1) FR3018921B1 (en)
WO (1) WO2015145053A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018206152A1 (en) * 2017-05-11 2018-11-15 Sew-Eurodrive Gmbh & Co. Kg Method for controlling a fan of a mobile part, and device for carrying out such a method
CN110286584A (en) * 2018-03-19 2019-09-27 罗伯特·博世有限公司 Motor vehicle cooling control system and method
US11117567B2 (en) * 2018-06-26 2021-09-14 Toyota Motor Engineering & Manufacturing North America, Inc. Real time trajectory optimization for hybrid energy management utilizing connected information technologies
WO2020070051A1 (en) * 2018-10-02 2020-04-09 Pirelli Tyre S.P.A. Method and system for estimating a residual range of a vehicle
CN109448157B (en) * 2018-10-31 2024-02-06 汉海信息技术(上海)有限公司 Method, system, server and storage medium for determining fault of electric vehicle
CN109703413A (en) * 2018-12-22 2019-05-03 北京工业大学 A kind of enhanced battery management system
CN109969038B (en) * 2019-04-16 2021-09-21 爱驰汽车有限公司 Energy management method, system, equipment and storage medium for vehicle-mounted dual-source battery pack
KR20220018136A (en) * 2020-08-05 2022-02-15 현대자동차주식회사 Method and apparatus for controlling battery cooling in environmental vehicle
CN114619924A (en) * 2020-12-14 2022-06-14 观致汽车有限公司 Method for warming up hybrid vehicle and hybrid vehicle employing the same
WO2022236751A1 (en) * 2021-05-12 2022-11-17 华为技术有限公司 Battery state of charge estimation method and device
FR3132875A1 (en) 2022-02-18 2023-08-25 Vitesco Technologies METHOD FOR CONTROLLING ELECTRICAL ENERGY SUPPLIED TO AN ELECTRIC MOTOR OF A VEHICLE
CN114987287B (en) * 2022-07-05 2023-06-27 阿维塔科技(重庆)有限公司 Remaining driving range prediction method and device, vehicle and computer storage medium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321530B2 (en) * 2006-01-27 2009-08-26 トヨタ自動車株式会社 Vehicle and control method thereof
JP5076378B2 (en) * 2006-07-03 2012-11-21 マツダ株式会社 Battery temperature control device
US7597648B2 (en) * 2006-11-28 2009-10-06 Gm Global Technology Operations, Inc. Input brake providing electric only fixed gear
US8234025B2 (en) * 2006-11-28 2012-07-31 GM Global Technology Operations LLC Control system for a hybrid powertrain system
US8068947B2 (en) * 2006-11-28 2011-11-29 GM Global Technology Operations LLC Range maximization of a hybrid vehicle operating in an electric vehicle operating state
JP4852630B2 (en) * 2009-06-25 2012-01-11 本田技研工業株式会社 Battery charge / discharge control device
US9043106B2 (en) * 2010-10-04 2015-05-26 W. Morrison Consulting Group, Inc. Vehicle control system and methods
US8831806B2 (en) 2011-10-28 2014-09-09 GM Global Technology Operations LLC Range estimation for a rechargeable energy storage system of a vehicle
US8676400B2 (en) * 2012-02-03 2014-03-18 Volkswagen Ag Navigation system and method for an electric vehicle travelling from a starting point to a destination
DE102012204410A1 (en) 2012-03-20 2013-09-26 Robert Bosch Gmbh Method and device for operating a battery arrangement of a motor vehicle
FR2991277A3 (en) * 2012-05-31 2013-12-06 Renault Sa Method for calculating trajectory to be followed by e.g. electric vehicle till destination, involves providing directive to driver of vehicle for indicating driver to recharge traction battery of vehicle during determined time and cost
US9290108B2 (en) * 2014-03-31 2016-03-22 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for adaptive battery temperature control of a vehicle over a known route

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015145053A1 *

Also Published As

Publication number Publication date
FR3018921B1 (en) 2017-07-07
US10442304B2 (en) 2019-10-15
FR3018921A1 (en) 2015-09-25
US20170101026A1 (en) 2017-04-13
WO2015145053A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
WO2015145053A1 (en) Method for estimating the autonomy of an electric or hybrid vehicle
EP3363707A1 (en) Method for determining an area reachable by a vehicle using a dynamic model and an associated graph
FR3010238A1 (en) METHOD FOR ELECTRICAL REGENERATION OF AN ENERGY ACCUMULATOR
EP2723604B1 (en) Motor vehicle driving assistance method with a view to optimizing the use of the power supply
WO2014009405A1 (en) Method of managing the energy consumed by an automotive vehicle and system implementing such a method
EP2636093B1 (en) Method for charging a battery for supplying power to a drive motor of a motor vehicle
EP2878034B1 (en) Vehicle comprising a battery and means for determining a maximum allowable power for the battery, and corresponding method
FR2714338A1 (en) Method and device for limiting running power
EP3676145A1 (en) Method for managing the state of charge of a hybrid vehicle
WO2012156605A1 (en) Method for estimating the state-of-health of a battery and adapted battery management system
WO2021170345A1 (en) Method for estimating the state of health of a battery
FR2980274A1 (en) Method for estimating ageing indicators of electric traction battery of e.g. electric car, involves providing battery health status indication to user, based on stored battery intensity and temperature values and ageing prediction model
WO2015067887A1 (en) Method and system for controlling the speed of a vehicle
WO2012160045A1 (en) Method of managing the energy consumed by a mobile system, in particular a motor vehicle, on-board device implementing such a method
FR3059105B1 (en) SYSTEM FOR EVALUATING THE RESIDUAL ENERGY OF A VEHICLE BATTERY AT THE END OF A COURSE
US20210129683A1 (en) Power source system and management device
FR3126550A1 (en) AUTOMOTIVE VEHICLE BATTERY THERMAL MANAGEMENT SYSTEM BASED ON A DESTINATION PREDICTION
FR2991277A3 (en) Method for calculating trajectory to be followed by e.g. electric vehicle till destination, involves providing directive to driver of vehicle for indicating driver to recharge traction battery of vehicle during determined time and cost
EP3162612B1 (en) Method for controlling the supply of a transport vehicle engine and associated device
WO2014023711A1 (en) Method for managing and diagnosing a battery
EP2391520B1 (en) Method for managing the power from a power train of a hybrid motor vehicle
FR3058940A1 (en) SYSTEM FOR EVALUATING THE RESIDUAL ENERGY OF A VEHICLE BATTERY AT THE END OF A ROUTE
FR2990077A1 (en) DEVICE FOR SUPERVISION OF THE CHARGE OF A MOTOR VEHICLE BATTERY
FR3089463A1 (en) Method for determining the range of a vehicle
FR2969097A1 (en) Device for controlling hybrid powertrain of plug-in type hybrid vehicle, controls hybrid powertrain according to first law of energy management, where discharge of rechargeable electrical energy source is provided to charging state of load

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180131

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180724