EP3118242B1 - Branched organopolysiloxanes - Google Patents
Branched organopolysiloxanes Download PDFInfo
- Publication number
- EP3118242B1 EP3118242B1 EP16182462.8A EP16182462A EP3118242B1 EP 3118242 B1 EP3118242 B1 EP 3118242B1 EP 16182462 A EP16182462 A EP 16182462A EP 3118242 B1 EP3118242 B1 EP 3118242B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- branched
- groups
- parts
- alkoxysilane
- organopolysiloxane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001296 polysiloxane Polymers 0.000 title claims description 80
- 239000003054 catalyst Substances 0.000 claims description 50
- 239000003085 diluting agent Substances 0.000 claims description 30
- 150000002430 hydrocarbons Chemical class 0.000 claims description 23
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 19
- 239000003921 oil Substances 0.000 claims description 17
- 229930195733 hydrocarbon Natural products 0.000 claims description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 239000004215 Carbon black (E152) Substances 0.000 claims description 11
- 125000003545 alkoxy group Chemical group 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 8
- 150000001450 anions Chemical class 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims 1
- -1 antifoams Substances 0.000 description 74
- 239000000203 mixture Substances 0.000 description 51
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 42
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 42
- 239000004205 dimethyl polysiloxane Substances 0.000 description 40
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 36
- 239000003431 cross linking reagent Substances 0.000 description 23
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 23
- 239000000565 sealant Substances 0.000 description 23
- 239000011572 manganese Substances 0.000 description 21
- 239000000460 chlorine Substances 0.000 description 20
- DIAIBWNEUYXDNL-UHFFFAOYSA-N n,n-dihexylhexan-1-amine Chemical compound CCCCCCN(CCCCCC)CCCCCC DIAIBWNEUYXDNL-UHFFFAOYSA-N 0.000 description 18
- 235000019198 oils Nutrition 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 239000001993 wax Substances 0.000 description 11
- 239000004606 Fillers/Extenders Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- 238000005227 gel permeation chromatography Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 7
- 235000019486 Sunflower oil Nutrition 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 6
- 125000000962 organic group Chemical group 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002600 sunflower oil Substances 0.000 description 6
- XQMTUIZTZJXUFM-UHFFFAOYSA-N tetraethoxy silicate Chemical compound CCOO[Si](OOCC)(OOCC)OOCC XQMTUIZTZJXUFM-UHFFFAOYSA-N 0.000 description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 150000003254 radicals Chemical group 0.000 description 5
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003139 biocide Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 150000004756 silanes Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229920002367 Polyisobutene Polymers 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 229910008051 Si-OH Inorganic materials 0.000 description 3
- 229910006358 Si—OH Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012963 UV stabilizer Substances 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000000417 fungicide Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000012760 heat stabilizer Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 239000004590 silicone sealant Substances 0.000 description 3
- 125000003944 tolyl group Chemical group 0.000 description 3
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 3
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 229910020175 SiOH Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 235000014121 butter Nutrition 0.000 description 2
- 239000001175 calcium sulphate Substances 0.000 description 2
- 235000011132 calcium sulphate Nutrition 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 2
- 125000005375 organosiloxane group Chemical group 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 239000000049 pigment Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006294 polydialkylsiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012763 reinforcing filler Substances 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- UQMGAWUIVYDWBP-UHFFFAOYSA-N silyl acetate Chemical class CC(=O)O[SiH3] UQMGAWUIVYDWBP-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 2
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 2
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OGZPYBBKQGPQNU-DABLZPOSSA-N (e)-n-[bis[[(e)-butan-2-ylideneamino]oxy]-methylsilyl]oxybutan-2-imine Chemical compound CC\C(C)=N\O[Si](C)(O\N=C(/C)CC)O\N=C(/C)CC OGZPYBBKQGPQNU-DABLZPOSSA-N 0.000 description 1
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- SBMYBOVJMOVVQW-UHFFFAOYSA-N 2-[3-[[4-(2,2-difluoroethyl)piperazin-1-yl]methyl]-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound FC(CN1CCN(CC1)CC1=NN(C=C1C=1C=NC(=NC=1)NC1CC2=CC=CC=C2C1)CC(=O)N1CC2=C(CC1)NN=N2)F SBMYBOVJMOVVQW-UHFFFAOYSA-N 0.000 description 1
- HNUKTDKISXPDPA-UHFFFAOYSA-N 2-oxopropyl Chemical group [CH2]C(C)=O HNUKTDKISXPDPA-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- FDEJNNNVDVOMKI-UHFFFAOYSA-N N-[(N-acetylanilino)-prop-1-enylsilyl]-N-phenylacetamide Chemical compound CC=C[SiH](N(C(C)=O)C1=CC=CC=C1)N(C(C)=O)C1=CC=CC=C1 FDEJNNNVDVOMKI-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- IMPVGWPSUORTEQ-UHFFFAOYSA-N N-[[acetyl(ethyl)amino]-prop-1-enylsilyl]-N-ethylacetamide Chemical compound CC=C[SiH](N(C(C)=O)CC)N(C(C)=O)CC IMPVGWPSUORTEQ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910007157 Si(OH)3 Inorganic materials 0.000 description 1
- 229910020388 SiO1/2 Inorganic materials 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- FGPCETMNRYMFJR-UHFFFAOYSA-L [7,7-dimethyloctanoyloxy(dimethyl)stannyl] 7,7-dimethyloctanoate Chemical compound CC(C)(C)CCCCCC(=O)O[Sn](C)(C)OC(=O)CCCCCC(C)(C)C FGPCETMNRYMFJR-UHFFFAOYSA-L 0.000 description 1
- ZAEXPVSOLSDZRQ-UHFFFAOYSA-N [acetyloxy(dibutoxy)silyl] acetate Chemical compound CCCCO[Si](OC(C)=O)(OC(C)=O)OCCCC ZAEXPVSOLSDZRQ-UHFFFAOYSA-N 0.000 description 1
- LHFURYICKMKJHJ-UHFFFAOYSA-L [benzoyloxy(dibutyl)stannyl] benzoate Chemical compound CCCC[Sn+2]CCCC.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 LHFURYICKMKJHJ-UHFFFAOYSA-L 0.000 description 1
- HAAANJSJNWKVMX-UHFFFAOYSA-L [butanoyloxy(dimethyl)stannyl] butanoate Chemical compound CCCC(=O)O[Sn](C)(C)OC(=O)CCC HAAANJSJNWKVMX-UHFFFAOYSA-L 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- KXJLGCBCRCSXQF-UHFFFAOYSA-N [diacetyloxy(ethyl)silyl] acetate Chemical compound CC(=O)O[Si](CC)(OC(C)=O)OC(C)=O KXJLGCBCRCSXQF-UHFFFAOYSA-N 0.000 description 1
- TVJPBVNWVPUZBM-UHFFFAOYSA-N [diacetyloxy(methyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(OC(C)=O)OC(C)=O TVJPBVNWVPUZBM-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- NBJODVYWAQLZOC-UHFFFAOYSA-L [dibutyl(octanoyloxy)stannyl] octanoate Chemical compound CCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCC NBJODVYWAQLZOC-UHFFFAOYSA-L 0.000 description 1
- MCZCJVXEOMJCBE-UHFFFAOYSA-N [dimethyl(triacetyloxysilyloxy)silyl] acetate Chemical compound CC(=O)O[Si](C)(C)O[Si](OC(C)=O)(OC(C)=O)OC(C)=O MCZCJVXEOMJCBE-UHFFFAOYSA-N 0.000 description 1
- BEIRWWZHJZKPCX-UHFFFAOYSA-N [phenyl-di(propanoyloxy)silyl] propanoate Chemical compound CCC(=O)O[Si](OC(=O)CC)(OC(=O)CC)C1=CC=CC=C1 BEIRWWZHJZKPCX-UHFFFAOYSA-N 0.000 description 1
- BTHCBXJLLCHNMS-UHFFFAOYSA-N acetyloxysilicon Chemical compound CC(=O)O[Si] BTHCBXJLLCHNMS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000002318 adhesion promoter Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 229910001586 aluminite Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- PWEVMPIIOJUPRI-UHFFFAOYSA-N dimethyltin Chemical compound C[Sn]C PWEVMPIIOJUPRI-UHFFFAOYSA-N 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- GBFVZTUQONJGSL-UHFFFAOYSA-N ethenyl-tris(prop-1-en-2-yloxy)silane Chemical compound CC(=C)O[Si](OC(C)=C)(OC(C)=C)C=C GBFVZTUQONJGSL-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 125000005816 fluoropropyl group Chemical group [H]C([H])(F)C([H])([H])C([H])([H])* 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical group CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- ZWXYOPPJTRVTST-UHFFFAOYSA-N methyl-tris(prop-1-en-2-yloxy)silane Chemical compound CC(=C)O[Si](C)(OC(C)=C)OC(C)=C ZWXYOPPJTRVTST-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- QCEIUXMRQGQEOY-UHFFFAOYSA-N n-[(n-acetylanilino)-dimethylsilyl]-n-phenylacetamide Chemical compound C=1C=CC=CC=1N(C(C)=O)[Si](C)(C)N(C(=O)C)C1=CC=CC=C1 QCEIUXMRQGQEOY-UHFFFAOYSA-N 0.000 description 1
- MYADPEFFMQPOQC-UHFFFAOYSA-N n-[[acetyl(ethyl)amino]-dimethylsilyl]-n-ethylacetamide Chemical compound CCN(C(C)=O)[Si](C)(C)N(CC)C(C)=O MYADPEFFMQPOQC-UHFFFAOYSA-N 0.000 description 1
- XJSOFJATDVCLHI-UHFFFAOYSA-N n-[[acetyl(methyl)amino]-dimethylsilyl]-n-methylacetamide Chemical compound CC(=O)N(C)[Si](C)(C)N(C)C(C)=O XJSOFJATDVCLHI-UHFFFAOYSA-N 0.000 description 1
- BPMXEJSBTONLLG-UHFFFAOYSA-N n-[[acetyl(methyl)amino]-prop-1-enylsilyl]-n-methylacetamide Chemical compound CC=C[SiH](N(C)C(C)=O)N(C)C(C)=O BPMXEJSBTONLLG-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000006254 rheological additive Chemical class 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229940057910 shea butter Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 229940098780 tribehenin Drugs 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
- C08G77/08—Preparatory processes characterised by the catalysts used
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/062—Organo-phosphoranes without P-C bonds
- C07F9/065—Phosphoranes containing the structure P=N-
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/16—Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
Definitions
- This invention relates to branched organopolysiloxanes and to their preparation and use.
- the term branched is used in this invention to describe a polymer with more than two end groups.
- Organopolysiloxanes have a wide variety of uses, for example as sealants, antifoams, elastomers, pressure sensitive adhesives, or release agents or in hair care or other personal care or household care compositions.
- branched organopolysiloxanes have advantages over linear organopolysiloxanes. For example, branched organopolysiloxanes show improved properties as antifoams versus linear materials.
- branched organopolysiloxanes are useful in sealant compositions which cure to a high modulus seal. Compared to linear polysiloxanes, they allow formulation of higher modulus sealants while maintaining the rheology of the uncured sealant in an acceptable range.
- branched organosiloxanes are useful due to their increased wash off resistance compared to linear organosiloxanes.
- Branched organopolysiloxanes can in general be prepared by a polycondensation reaction of a linear organopolysiloxane containing functional groups such as Si-OH groups with an alkoxysilane or other branching agent containing more than two reactive groups per molecule.
- An example of such process is disclosed in US 5,674,938 .
- branching is not always easy to control and can lead to gelation.
- the branched structure can be controlled when introducing branching by the hydrosilylation reaction of Si-H groups with alkenyl groups, but this requires special polysiloxane starting materials containing Si-H groups and the use of costly platinum catalyst.
- a moisture curable sealant composition capable of curing to a high modulus seal, comprising a branched organopolysiloxane prepared as described above, a crosslinking agent reactive with the organopolysiloxane and a catalyst for siloxane condensation.
- branched organopolysiloxane reaction product of an alkoxysilane with a linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon in the presence of a phosphazene catalyst in a process as claimed as a moisture curable sealant composition capable of curing to a high modulus seal.
- phosphazene catalysts in the polycondensation reaction produces branched organopolysiloxanes, suitable for use in a moisture curable sealant composition capable of curing to a high modulus seal, with less tendency to gel than when using other siloxane polycondensation catalysts.
- Phosphazene catalysts also have the advantage that the content of undesired low molecular weight cyclic silicones in the polymerisation product is low.
- the linear organopolysiloxane generally contains on average more than one hydroxyl or hydrolysable group bonded to silicon, preferably terminal hydroxyl or hydrolysable groups.
- the polymer can for example have the general formula X 1 -A'-X 2 (1) where X 1 and X 2 are independently selected from silicon containing groups which contain hydroxyl or hydrolysable substituents and A' represents a polymer chain.
- Examples of X 1 or X 2 groups incorporating hydroxyl and/or hydrolysable substituents include groups terminating as described below: -Si(OH) 3 , -(R a )Si(OH) 2 , -(R a ) 2 SiOH, -R a Si(OR b ) 2 , -Si(OR b ) 3 , -R a 2 SiOR b or -R a 2 Si-R c -SiR d p (OR b ) 3-p where each R a independently represents a monovalent hydrocarbyl group, for example, an alkyl group, in particular having from 1 to 8 carbon atoms, (and is preferably methyl); each R b and R d group is independently an alkyl or alkoxy group in which the alkyl groups suitably have up to 6 carbon atoms; R c is a divalent hydrocarbon group which may be interrupted by one or more siloxane spacers having up to six silicon
- Endblocking groups are of the formula -(R a ) 2 SiOH may be particularly preferred.
- the linear organopolysiloxane can include a small amount, for example less than 20%, of unreactive endblocking groups of the formula R a 3 SiO 1/2 .
- the polymer chain A' is preferably a polydiorganosiloxane chain comprising siloxane units of formula (2) -(R 2 2 SiO)- (2) in which each R 2 is independently an organic group such as a hydrocarbon group having from 1 to 18 carbon atoms, a substituted hydrocarbon group having from 1 to 18 carbon atoms or a hydrocarbonoxy group having up to 18 carbon atoms.
- hydrocarbon groups R 2 include methyl, ethyl, propyl, butyl, vinyl, cyclohexyl, phenyl and tolyl groups.
- Substituted hydrocarbon groups have one or more hydrogen atoms in a hydrocarbon group replaced with another substituent, for example a halogen atom such as chlorine, fluorine, bromine or iodine, an oxygen atom containing group such as acrylic, methacrylic, alkoxy or carboxyl, a nitrogen atom containing group such as an amino, amido or cyano group, or a sulphur atom containing group such as a mercapto group.
- a halogen atom such as chlorine, fluorine, bromine or iodine
- an oxygen atom containing group such as acrylic, methacrylic, alkoxy or carboxyl
- a nitrogen atom containing group such as an amino, amido or cyano group
- a sulphur atom containing group such as
- substituted hydrocarbon groups include a propyl group substituted with chlorine or fluorine such as 3,3,3-trifluoropropyl, chlorophenyl, beta-(perfluorobutyl)ethyl or chlorocyclohexyl group.
- at least some and more preferably substantially all of the groups R 2 are methyl.
- the polydiorganosiloxanes are polydialkylsiloxanes, most preferably polydimethylsiloxanes.
- Polydiorganosiloxanes comprising units of the formula (2) may be homopolymers or copolymers. Mixtures of different polydiorganosiloxanes are also suitable.
- the polymeric chain may comprise a combination of blocks made from chains of units depicted in figure (2) above where the two R 2 groups are:
- the polymer (A) may alternatively have a block copolymeric backbone comprising at least one block of siloxane groups of the type depicted in formula (2) above and at least one block comprising any suitable organic polymer chain.
- suitable organic polymer chains are polyacrylic, polyisobutylene and polyether chains.
- the substantially linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon generally has a degree of polymerization such that its viscosity at 25°C is between 5 mPa.s and 5000 mPa.s, preferably between 10 mPa.s and 500 mPa.s.
- the alkoxysilane which is reacted with the linear organopolysiloxane preferably contains an average of more than 2 silicon-bonded alkoxy groups per molecule.
- the alkoxy groups preferably each have 1 to 4 carbon atoms and most preferably are methyl or ethyl groups.
- the alkoxysilane comprises one or both of a tetraalkoxysilane and a trialkoxysilane of the formula R'Si(OR) 3 , where R represents an alkyl group having 1 to 4 carbon atoms and R' represents a monovalent hydrocarbon or substituted hydrocarbon group having 1 to 18 carbon atoms.
- R' examples include alkyl groups, for example methyl, ethyl, propyl, butyl, hexyl, octyl, 2-ethylhexyl, lauryl or stearyl; cycloalkyl groups, for example cyclopentyl or cyclohexyl); alkenyl groups, for example vinyl, allyl or hexenyl; aryl groups, for example phenyl or tolyl; aralkyl groups, for example 2-phenylethyl; and groups obtained by replacing all or part of the hydrogen in the preceding organic groups with halogen, for example 3,3,3-trifluoropropyl.
- alkyl groups for example methyl, ethyl, propyl, butyl, hexyl, octyl, 2-ethylhexyl, lauryl or stearyl
- cycloalkyl groups for example cyclopentyl or cyclohex
- trialkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, n-octyltriethoxysilane, n-octyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane and 3,3,3-trifluoropropyltrimethoxysilane.
- the presence of such a long chain alkyl group increases the compatibility of the branched organopolysiloxane with organic materials, for example hydrocarbon solvents or organic polymers.
- the alkoxysilane can be a tetraalkoxysilane such as tetraethoxysilane (tetraethyl orthosilicate). Reaction of the linear organoplysiloxane with a tetraalkoxysilane can form a branched organopolysiloxane having Si-alkoxy functionality in the polysiloxane chain as well as branching.
- tetraalkoxysilane such as tetraethoxysilane (tetraethyl orthosilicate).
- the alkoxysilane can be a partially condensed alkoxysilane in which some alkoxy groups have been hydrolysed and condensed to form siloxane linkages and some alkoxy groups remain bonded to silicon.
- a partially condensed alkoxysilane preferably contains on average more than two alkoxy groups per molecule bonded to silicon.
- the alkoxysilane can for example be an oligomeric partially condensed trialkoxysilane. Such an oligomer may have a branched structure as well as Si-alkoxy groups to provide further branching sites. Tetraalkoxysilanes can also be used in partially condensed form; for example partially condensed tetraethoxysilane containing SiO 2 branching units is widely available.
- the alkoxysilane and the linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon are preferably reacted in amounts such that the molar ratio of Si-bonded alkoxy groups in the alkoxysilane to hydroxyl or hydrolysable groups in the substantially linear organopolysiloxane is from 1:100 to 1: 1, more preferably 1:40 to 1:2. If the substantially linear organopolysiloxane has hydrolysable groups rather than hydroxyl groups, it may be suitable for a controlled amount of moisture to be present during the reaction.
- the branched organopolysiloxane may contain reactive terminal Si-OH or Si-alkoxy groups.
- One type of phosphazene catalyst is an oxygen-containing halophosphazene, particularly an oxygen-containing chlorophosphazene.
- the average value of n can for example be in the range 1 to 10, particularly 1 to 5.
- the catalyst may also comprise condensation products of such an organosilicon-containing phosphazene.
- radicals Q in which Q represents the hydroxyl group, monovalent organic radicals, such as alkoxy radicals or aryloxy radicals, halogen atoms other than chlorine, organosilicon radicals and phosphorus-containing radicals, although this is not preferred.
- the anion is a complex anion of the formula MX v+1 in which M is an element having an electronegativity on Pauling's scale of from 1.0 to 2.0 and valency v and X is a halogen atom.
- the element M can for example be phosphorus or antimony.
- the anion Z can alternatively be a complex anion of the formula [MX v-y+1 R 3 y ]- wherein R 3 is an alkyl group having 1 to 12 carbon atoms and y has a value between 0 and v, as described in US-A-5457220 .
- a phosphazene catalyst (not of the invention) can alternatively be a phosphazene base, particularly an aminated phosphazene as described in US-A-6001928 , US-A-6054548 or US-A-6448196 .
- a phosphazene base can be formed by reaction of a perchlorooligophosphazenium salt with a secondary amine followed by ion exchange reaction with a basic nucleophile.
- the secondary amine is for example of the formula HNR 4 2 , and some or all of the chlorophosphazene oligomer are replaced by -NR 4 2 groups.
- the phosphazene catalyst is typically present at 1 or 2 up to 200 parts per million based on the combined weight of alkoxysilane and substantially linear organopolysiloxane, for example at 5 to 50 parts per million.
- the reaction between the alkoxysilane and linear organopolysiloxane can be carried out at ambient temperature but is preferably carried out at elevated temperature, for example in the range 50 to 100°C.
- the extent of polymerization during the process of the invention is preferably such that the branched organopolysiloxane produced has a weight average molecular weight Mw at least five times, more preferably at least ten times, the Mw of the starting organopolysiloxane.
- the Mw can be measured by gel permeation chromatography (GPC).
- the Mw of the branched organopolysiloxane produced is preferably at least 10,000, more preferably at least 100,000, and may be as high as 1,000,000 or more.
- the reaction can be terminated by adding a neutraliser when a desired degree of polymerization has been reached.
- the neutralizer can for example be a trialkylamine in the case of the catalysts described in US-A-5457220 .
- the branched organopolysiloxanes obtained using the phosphazene catalyst in the above process have a high weight average molecular weight Mw and show a broad molecular weight distribution.
- the branched organopolysiloxanes have acceptable rheology, that is they are not too stiff to be shaped when uncured, despite their high Mw.
- the reaction between the alkoxysilane and substantially linear organopolysiloxane is carried out in the presence of an inert liquid diluent.
- a liquid diluent generally allows the formation of higher molecular weight branched polymers while keeping a fluid product.
- the liquid diluent is a solvent for the substantially linear organopolysiloxane, and optionally the alkoxysilane.
- the diluent is an organic based diluent and has no groups reactive with the alkoxysilane or with the substantially linear organopolysiloxane.
- the diluent may be chosen from materials whose presence is desired as an extender and/or plasticizer in the end product formulation based on the branched organopolysiloxane produced.
- the diluent must comprise at least a hydrocarbon oil comprising 5 to 25 carbon atoms per molecule.
- any suitable solvent or diluent or combination of diluents may be used in the reaction mixture.
- any of the extenders used in WO-A-2006/106362 can be used. These include each of the following alone or in combination with others from the list:
- Preferred diluents include the mineral oil fractions. Also described are alkylcycloaliphatic compounds and alkybenzenes including polyalkylbenzenes. Any suitable mixture of mineral oil fractions may be used as diluent but high molecular weight extenders, for example having a molecular weight above 220, are particularly preferred.
- Examples include alkylcyclohexanes of molecular weight above 220), paraffinic hydrocarbons and mixtures thereof containing from 1 to 99%, preferably from 15 to 80% n-paraffinic and/or isoparaffinic hydrocarbons (linear branched paraffinic) and 1 to 99%, preferably 85 to 20% cyclic hydrocarbons (naphthenic) and a maximum of 3%, preferably a maximum of 1% aromatic carbon atoms.
- the cyclic paraffinic hydrocarbons (naphthenics) may contain cyclic and/or polycyclic hydrocarbons.
- Diluents suitable for retaining in many products as an extender or plasticiser comprise non-mineral based natural oils, i.e. oils derived from animals, seeds or nuts and not from petroleum. Such natural oils are generally triglycerides of mixtures of fatty acids, particularly mixtures containing some unsaturated fatty acid. Diluents containing natural oils may for example be used in some personal care products.
- the diluent can be a derivative of a natural oil such as a transesterified vegetable oil, a boiled natural oil, a blown natural oil, or a stand oil (thermally polymerized oil).
- alkylbenzene compounds described for use as diluent include heavy alkylate alkylbenzenes and alkylcycloaliphatic compounds.
- alkyl substituted aryl compounds useful as diluents are compounds which have aryl groups, especially benzene substituted by alkyl and possibly other substituents, and a molecular weight of at least 200. Examples of such diluents useful as extenders are described in US-A-4312801 .
- the amount of diluent is 5 to 70%, of the combined weight of alkoxysilane, substantially linear organopolysiloxane and diluent.
- a diluent whose presence is required as an extender or plasticizer in the branched organopolysiloxane formulation will often be used at 25 to 60% of the combined weight of alkoxysilane, substantially linear organopolysiloxane and diluent.
- Non-reactive additives whose presence is required in the branched organopolysiloxane formulation, for example heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides or perfumes, may be dissolved in the diluent.
- diluents which can be a solid such as a wax, preferably having a melting point in the range 30 to 100°C.
- the wax can for example be a hydrocarbon wax such as a petroleum-derived wax, or a wax comprising carboxylic esters such as beeswax, lanolin, tallow, carnauba, candelilla, tribehenin or a wax derived from plant seeds, fruits, nuts or kernel, including softer waxes referred to as 'butter', for example mango butter, shea butter or cocoa butter.
- the wax can alternatively be a polyether wax or a silicone wax.
- the branched organopolysiloxanes produced according to the present invention are particularly suitable for use in sealants and antifoams but are also useful in personal care products and pressure sensitive adhesives.
- the branched organopolysiloxane product, optionally containing diluent, can be dissolved in an organic solvent or emulsified in water if the branched organopolysiloxane formulation is required in solution or emulsion form.
- the branched organopolysiloxane product, optionally containing diluent is generally used in the sealant formulation without further dilution.
- a sealant composition comprising a branched organopolysiloxane prepared as described above is preferably a moisture curable sealant composition comprising the branched organopolysiloxane, a crosslinking agent reactive with the branched organopolysiloxane and a catalyst for siloxane condensation.
- the crosslinking agent in such a sealant composition generally has groups reactive with the Si-OH and/or Si-alkoxy terminal groups of the branched organopolysiloxane.
- the crosslinking agent preferably contains at least two and preferably at least three groups reactive with the silicon-bonded hydroxyl or alkoxy groups of the branched organopolysiloxane.
- the reactive groups of the crosslinking agent are preferably silicon bonded hydrolysable groups.
- the crosslinking agent can for example be a silane or short chain organopolysiloxane, for example a polydiorganosiloxane having from 2 to about 100 siloxane units.
- the molecular structure of such an organopolysiloxane can be straight chained, branched, or cyclic.
- the crosslinking agent can alternatively be an organic polymer substituted by silicon-bonded hydrolysable groups.
- the hydrolysable groups in the crosslinker can for example be selected from acyloxy groups (for example, acetoxy, octanoyloxy, and benzoyloxy groups); ketoximino groups (for example dimethyl ketoximo, and isobutylketoximino); alkoxy groups (for example methoxy, ethoxy, an propoxy) and/or alkenyloxy groups (for example isopropenyloxy and 1-ethyl-2-methylvinyloxy).
- acyloxy groups for example, acetoxy, octanoyloxy, and benzoyloxy groups
- ketoximino groups for example dimethyl ketoximo, and isobutylketoximino
- alkoxy groups for example methoxy, ethoxy, an propoxy
- alkenyloxy groups for example isopropenyloxy and 1-ethyl-2-methylvinyloxy
- the fourth group is suitably a non-hydrolysable silicon-bonded organic group.
- These silicon-bonded organic groups are suitably hydrocarbyl groups which are optionally substituted by halogen such as fluorine and chlorine.
- fourth groups include alkyl groups (for example methyl, ethyl, propyl, and butyl); cycloalkyl groups (for example cyclopentyl and cyclohexyl); alkenyl groups (for example vinyl and allyl); aryl groups (for example phenyl, and tolyl); aralkyl groups (for example 2-phenylethyl) and groups obtained by replacing all or part of the hydrogen in the preceding organic groups with halogen.
- the fourth silicon-bonded organic group is methyl or ethyl.
- crosslinking agents include acyloxysilanes, particularly acetoxysilanes such as methyltriacetoxysilane, vinyltriacetoxysilane, ethyl triacetoxysilane, di-butoxy diacetoxysilane and/or dimethyltetraacetoxydisiloxane, and also phenyl-tripropionoxysilane.
- the crosslinking agent can be an oxime-functional silane such as methyltris(methylethylketoximo)silane, vinyl-tris(methylethylketoximo)silane, or an alkoxytrioximosilane.
- the crosslinking agent can be an alkoxysilane, for example an alkyltrialkoxysilane such as methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane or ethyltrimethoxysilane, an alkenyltrialkoxysilane such as vinyltrimethoxysilane or vinyltriethoxysilane, or phenyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, or ethylpolysilicate, n-propylorthosilicate, ethylorthosilicate, or an alkenyloxysilane such as methyltris(isopropenoxy)silane or vinyltris(isopropenoxy)silane.
- an alkyltrialkoxysilane such as methyltrimethoxysilane, methyltriethoxysilane, isobutyl
- the crosslinking agent can alternatively be a short chain polydiorganosiloxane, for example polydimethylsiloxane, tipped with trimethoxysilyl groups or can be an organic polymer, for example a polyether such as polypropylene oxide, tipped with methoxysilane functionality such as trimethoxysilyl groups.
- the crosslinking agent used may also comprise any combination of two or more of the above.
- crosslinking agents include alkylalkenylbis(N-alkylacetamido) silanes such as methylvinyldi-(N-methylacetamido)silane, and methylvinyldi-(N-ethylacetamido)silane; dialkylbis(N-arylacetamido) silanes such as dimethyldi-(N-methylacetamido)silane; and dimethyldi-(N-ethylacetamido)silane; alkylalkenylbis(N-arylacetamido) silanes such as methylvinyldi(N-phenylacetamido)silane and dialkylbis(N-arylacetamido) silanes such as dimethyldi-(N-phenylacetamido)silane, or any combination of two or more of the above.
- crosslinking agent present in the sealant composition will depend upon the particular nature of the crosslinking agent, particularly its molecular weight.
- the compositions suitably contain crosslinking agent in at least a stoichiometric amount as compared to the branched organopolysiloxane.
- Sealant compositions may contain, for example, from 2-30% by weight crosslinking agent, generally from 2 to 10%.
- acetoxysilane or oximinosilane crosslinkers may typically be present in amounts of from 3 to 8 % by weight.
- the sealant composition further comprises a siloxane condensation catalyst.
- a siloxane condensation catalyst This increases the speed at which the composition cures.
- the catalyst chosen for inclusion in a particular silicone sealant composition depends upon the speed of cure required.
- Any suitable condensation catalyst may be used including compounds of tin, lead, antimony, iron, cadmium, barium, manganese, zinc, chromium, cobalt, nickel, titanium, aluminium, gallium or germanium and zirconium, for example organotin catalysts, organic salts of tin and 2-ethylhexoates of iron, cobalt, manganese, lead and zinc.
- Organotin, titanate and/or zirconate based catalysts are preferred.
- Silicone sealant compositions which contain oximosilanes or acetoxysilanes generally use an organotin catalyst, for example a diorganotin dicarboxylate such as dibutyltin dilaurate, dimethyltin dibutyrate, dibutyltin diacetate, dimethyltin bisneodecanoate, dibutyltin dibenzoate, dimethyltin dineodeconoate or dibutyltin dioctoate.
- organotin catalyst for example a diorganotin dicarboxylate such as dibutyltin dilaurate, dimethyltin dibutyrate, dibutyltin diacetate, dimethyltin bisneodecanoate, dibutyltin dibenzoate, dimethyltin dineodeconoate or dibutyltin dioctoate.
- the preferred curing catalysts are titanate or zirconate compounds including chelated titanates and zirconates.
- Titanate and/or zirconate based catalysts may comprise a compound according to the general formula Ti[OR 4 ] 4 where each R 4 may be the same or different and represents a monovalent, primary, secondary or tertiary aliphatic hydrocarbon group which may be linear or branched containing from 1 to 10 carbon atoms.
- the titanate may contain partially unsaturated groups.
- R 4 examples include but are not restricted to methyl, ethyl, propyl, isopropyl, butyl, tertiary butyl and a branched secondary alkyl group such as 2,4-dimethyl-3-pentyl.
- the titanate may be chelated.
- the chelation may be with any suitable chelating agent such as an alkyl acetylacetonate such as methyl or ethyl acetylacetonate.
- Sealant compositions may contain, as optional constituents, other ingredients which are conventional to the formulation of silicone sealants.
- the sealant compositions will normally contain one or more finely divided reinforcing fillers such as high surface area fumed and precipitated silicas including rice hull ash and/or calcium carbonate, which is to some extent a reinforcing filler.
- the sealant composition can additionally contain a nonreinforcing filler such as crushed quartz, diatomaceous earth, barium sulphate, iron oxide, titanium dioxide, carbon black, talc, wollastonite, aluminite, calcium sulphate (anhydrite), gypsum, calcium sulphate, magnesium carbonate, a clay such as kaolin, aluminium trihydroxide, magnesium hydroxide, graphite, copper carbonate, nickel carbonate, barium carbonate and/or strontium carbonate and/or electrically and/or heat conductive fillers.
- a nonreinforcing filler such as crushed quartz, diatomaceous earth, barium sulphate, iron oxide, titanium dioxide, carbon black, talc, wollastonite, aluminite, calcium sulphate (anhydrite), gypsum, calcium sulphate, magnesium carbonate, a clay such as kaolin, aluminium trihydroxide, magnesium hydroxide, graphite, copper
- sealant compositions include but are not restricted to co-catalysts for accelerating the cure of the composition such as metal salts of carboxylic acids and amines, rheology modifiers, adhesion promoters, pigments, heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides, and/or water scavengers, (typically the same compounds as those used as crosslinking agents, or silazanes).
- the sealant compositions can be prepared by mixing the ingredients employing any suitable mixing equipment.
- preferred one-part moisture curable compositions may be made by mixing the branched organopolysiloxane, optionally comprising a non-reactive silicone or organic fluid extender or plasticizer, with all or part of the filler, and mixing this with a pre-mix of the crosslinking agent and the catalyst under substantially anhydrous conditions.
- the resulting curable compositions are generally stored under substantially anhydrous conditions, for example in sealed containers, until required for use.
- Such one-part moisture curable compositions are stable in storage but cure on exposure to atmospheric moisture and may be employed in a variety of applications, particularly suitable for sealing joints, cavities and other spaces in articles and structures which are subject to relative movement, or for example as coating, caulking, mold making and encapsulating materials.
- the sealant composition can alternatively be a two-part composition in which the branched organopolysiloxane and the crosslinking agent are packaged separately.
- the catalyst can in general be packaged with either the polysiloxane or with the crosslinking agent.
- Both packages in such a two-part composition can be anhydrous for curing on exposure to atmospheric moisture, or one only of the packages may contain a controlled amount of moisture to speed up initial cure of the composition on mixing of the packages.
- the branched organopolysiloxane product can for example be dissolved in an organic solvent or emulsified in water using an anionic, cationic, amphoteric and/or nonionic surfactant.
- a personal care product for example a cosmetic such as a skin cream, is required in organic solution form it may be convenient to react the alkoxysilane and substantially linear organopolysiloxane in solution in the organic solvent to be used in the personal care product.
- Personal care formulations containing the branched polyorganosiloxane can contain various additives known in such formulations, for example perfumes, sunscreens, antioxidants, vitamins, drugs, biocides, pest repellents, catalysts, natural extracts, peptides, warming effect and cooling agents, fillers, colouring agents such as dyes, pigments and shimmers, heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides, thickeners, preservatives, antifoams, freeze thaw stabilizers, or inorganic salts to buffer pH.
- perfumes for example perfumes, sunscreens, antioxidants, vitamins, drugs, biocides, pest repellents, catalysts, natural extracts, peptides, warming effect and cooling agents, fillers, colouring agents such as dyes, pigments and shimmers, heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides, thickeners, preservatives, antifoams, freeze thaw stabilizers
- the product When a personal care product containing a branched organopolysiloxane produced according to the invention is applied to the skin or hair, the product is generally more resistant to washing off than a similar product containing a linear organopolysiloxane of similar molecular weight.
- the invention is illustrated by the following Examples, in which parts and percentages are by weight.
- the molecular weight of the siloxanes in the mixtures was determined by gel permeation chromatography (GPC). The analyses have been performed by GPC (Alliance Waters 2690) using triple detection (Refractive index detector, Viscometer and Light Scattering Detectors) and toluene as solvent. Molecular weight averages were determined by universal calibration relative to a triple detection calibration realized on a single point using polystyrene narrow standard (Mw 70,950g/mol).
- Example 1 was repeated using different amounts of MTM (example 2 and 3) and alternative alkoxysilanes in place of the MTM (example 4 and 5):
- the number average molecular weight Mn and the weight average molecular weight Mw of each branched polydimethylsiloxane were measured by GPC.
- the results, and the polydispersity index PI (ratio Mw / Mn) are shown in Table 1 below.
- the viscosity of the reaction product was measured by a Brookfield viscometer (Brookfield RVDV-I+, spindle 7 example 1-3, spindle 6 example 4 and 5 at 25°C) and is also shown in Table 1.
- the branched polydimethylsiloxanes of Examples 1, 4 and 5 were characterized by Si29-NMR.
- the Si29- NMR showed that no self-condensation of the alkoxysilanes had occurred.
- the NMR result for Example 4 showed that some Si-alkoxy function had been retained in the branched polydimethylsiloxane.
- the NMR result for Example 5 showed incorporation of n-octyl groups on the polysiloxane chain at branching points.
- the polymerisation was stopped after 63 minutes by the addition of 0.075 parts trihexylamine.
- a branched polydimethyl methyphenylsiloxane copolymer dissolved in xylene was produced.
- the branched polydimethyl methyphenylsiloxane copolymer has Mn 82kg/mol and Mw 1007kg/mol.
- the mixture has a viscosity of 30000 mPas. (Brookfield as in example 1)
- Example 11 was repeated using different amounts of MTM (example 12) and alternative alkoxysilanes in place of the MTM (example 13 and 14):
- MTM methyltrimethoxysilane
- Example 19 was repeated using different conditions.
- the number average molecular weight Mn and the weight average molecular weight Mw of each branched polydimethylsiloxane were measured by GPC.
- the results, and the polydispersity index PI (ratio Mw / Mn) are shown in Table 4 below.
- the viscosity of the reaction product was measured by a Brookfield viscometer at 25°C as in example 1.
- Table 4 Example 20 21 22 23 Mn (kg/mol) 81 73 73 68 Mw (kg/mol) 127 123 131 197 PI 1.57 1.63 1.79 2.91 Viscosity 57840 47940 45360 69100
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Silicon Polymers (AREA)
- Sealing Material Composition (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cosmetics (AREA)
Description
- This invention relates to branched organopolysiloxanes and to their preparation and use. The term branched is used in this invention to describe a polymer with more than two end groups.
- Organopolysiloxanes have a wide variety of uses, for example as sealants, antifoams, elastomers, pressure sensitive adhesives, or release agents or in hair care or other personal care or household care compositions. In some of these uses, branched organopolysiloxanes have advantages over linear organopolysiloxanes. For example, branched organopolysiloxanes show improved properties as antifoams versus linear materials.
- We have also found that branched organopolysiloxanes are useful in sealant compositions which cure to a high modulus seal. Compared to linear polysiloxanes, they allow formulation of higher modulus sealants while maintaining the rheology of the uncured sealant in an acceptable range.
- We have also found that in personal care products, particularly cosmetic formulations applied to skin or hair, branched organosiloxanes are useful due to their increased wash off resistance compared to linear organosiloxanes.
- Branched organopolysiloxanes can in general be prepared by a polycondensation reaction of a linear organopolysiloxane containing functional groups such as Si-OH groups with an alkoxysilane or other branching agent containing more than two reactive groups per molecule. An example of such process is disclosed in
US 5,674,938 . However branching is not always easy to control and can lead to gelation. The branched structure can be controlled when introducing branching by the hydrosilylation reaction of Si-H groups with alkenyl groups, but this requires special polysiloxane starting materials containing Si-H groups and the use of costly platinum catalyst. - In a process according to the invention for the preparation of a branched organopolysiloxane by the reaction of an alkoxysilane with a linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon, characterized in that the reaction is carried out in the presence of a phosphazene catalyst as defined in the claims.
- Also disclosed is a moisture curable sealant composition capable of curing to a high modulus seal, comprising a branched organopolysiloxane prepared as described above, a crosslinking agent reactive with the organopolysiloxane and a catalyst for siloxane condensation.
- Also disclosed is the use of the branched organopolysiloxane reaction product of an alkoxysilane with a linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon in the presence of a phosphazene catalyst in a process as claimed as a moisture curable sealant composition capable of curing to a high modulus seal.
- We have found that the use of a phosphazene catalyst in the polycondensation reaction produces branched organopolysiloxanes, suitable for use in a moisture curable sealant composition capable of curing to a high modulus seal, with less tendency to gel than when using other siloxane polycondensation catalysts. Phosphazene catalysts also have the advantage that the content of undesired low molecular weight cyclic silicones in the polymerisation product is low.
- The linear organopolysiloxane generally contains on average more than one hydroxyl or hydrolysable group bonded to silicon, preferably terminal hydroxyl or hydrolysable groups. The polymer can for example have the general formula
X1-A'-X2 (1)
where X1 and X2 are independently selected from silicon containing groups which contain hydroxyl or hydrolysable substituents and A' represents a polymer chain. Examples of X1 or X2 groups incorporating hydroxyl and/or hydrolysable substituents include groups terminating as described below:
-Si(OH)3, -(Ra)Si(OH)2, -(Ra)2SiOH, -RaSi(ORb)2, -Si(ORb)3, -Ra 2SiORb or -Ra 2Si-Rc-SiRd p(ORb)3-p where each Ra independently represents a monovalent hydrocarbyl group, for example, an alkyl group, in particular having from 1 to 8 carbon atoms, (and is preferably methyl); each Rb and Rd group is independently an alkyl or alkoxy group in which the alkyl groups suitably have up to 6 carbon atoms; Rc is a divalent hydrocarbon group which may be interrupted by one or more siloxane spacers having up to six silicon atoms; and p has the value 0, 1 or 2. Endblocking groups are of the formula -(Ra)2SiOH may be particularly preferred. The linear organopolysiloxane can include a small amount, for example less than 20%, of unreactive endblocking groups of the formula Ra 3SiO1/2. - The polymer chain A' is preferably a polydiorganosiloxane chain comprising siloxane units of formula (2)
-(R2 2SiO)- (2)
in which each R2 is independently an organic group such as a hydrocarbon group having from 1 to 18 carbon atoms, a substituted hydrocarbon group having from 1 to 18 carbon atoms or a hydrocarbonoxy group having up to 18 carbon atoms. - Examples of hydrocarbon groups R2 include methyl, ethyl, propyl, butyl, vinyl, cyclohexyl, phenyl and tolyl groups. Substituted hydrocarbon groups have one or more hydrogen atoms in a hydrocarbon group replaced with another substituent, for example a halogen atom such as chlorine, fluorine, bromine or iodine, an oxygen atom containing group such as acrylic, methacrylic, alkoxy or carboxyl, a nitrogen atom containing group such as an amino, amido or cyano group, or a sulphur atom containing group such as a mercapto group. Examples of substituted hydrocarbon groups include a propyl group substituted with chlorine or fluorine such as 3,3,3-trifluoropropyl, chlorophenyl, beta-(perfluorobutyl)ethyl or chlorocyclohexyl group. Preferably, at least some and more preferably substantially all of the groups R2 are methyl. Preferably the polydiorganosiloxanes are polydialkylsiloxanes, most preferably polydimethylsiloxanes.
- Polydiorganosiloxanes comprising units of the formula (2) may be homopolymers or copolymers. Mixtures of different polydiorganosiloxanes are also suitable. In the case of polydiorganosiloxane co-polymers the polymeric chain may comprise a combination of blocks made from chains of units depicted in figure (2) above where the two R2 groups are:
- both alkyl groups (preferably both methyl or ethyl), or
- alkyl and phenyl groups, or
- alkyl and fluoropropyl, or
- alkyl and vinyl or
- alkyl and hydrogen groups.
- The polymer (A) may alternatively have a block copolymeric backbone comprising at least one block of siloxane groups of the type depicted in formula (2) above and at least one block comprising any suitable organic polymer chain. Examples of suitable organic polymer chains are polyacrylic, polyisobutylene and polyether chains.
- The substantially linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon generally has a degree of polymerization such that its viscosity at 25°C is between 5 mPa.s and 5000 mPa.s, preferably between 10 mPa.s and 500 mPa.s.
- The alkoxysilane which is reacted with the linear organopolysiloxane preferably contains an average of more than 2 silicon-bonded alkoxy groups per molecule. The alkoxy groups preferably each have 1 to 4 carbon atoms and most preferably are methyl or ethyl groups. The alkoxysilane comprises one or both of a tetraalkoxysilane and a trialkoxysilane of the formula R'Si(OR)3, where R represents an alkyl group having 1 to 4 carbon atoms and R' represents a monovalent hydrocarbon or substituted hydrocarbon group having 1 to 18 carbon atoms. Examples of such groups R' include alkyl groups, for example methyl, ethyl, propyl, butyl, hexyl, octyl, 2-ethylhexyl, lauryl or stearyl; cycloalkyl groups, for example cyclopentyl or cyclohexyl); alkenyl groups, for example vinyl, allyl or hexenyl; aryl groups, for example phenyl or tolyl; aralkyl groups, for example 2-phenylethyl; and groups obtained by replacing all or part of the hydrogen in the preceding organic groups with halogen, for example 3,3,3-trifluoropropyl. Examples of preferred trialkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, n-octyltriethoxysilane, n-octyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane and 3,3,3-trifluoropropyltrimethoxysilane. Trialkoxysilanes having a long chain alkyl group R' having for example 6 to 18 carbon atoms, for example n-octyltrimethoxysilane, react with the linear organopolysiloxane to form a branched organopolysiloxane having a long chain alkyl group, for example an octyl group, at the branching point. The presence of such a long chain alkyl group increases the compatibility of the branched organopolysiloxane with organic materials, for example hydrocarbon solvents or organic polymers.
- The alkoxysilane can be a tetraalkoxysilane such as tetraethoxysilane (tetraethyl orthosilicate). Reaction of the linear organoplysiloxane with a tetraalkoxysilane can form a branched organopolysiloxane having Si-alkoxy functionality in the polysiloxane chain as well as branching.
- The alkoxysilane can be a partially condensed alkoxysilane in which some alkoxy groups have been hydrolysed and condensed to form siloxane linkages and some alkoxy groups remain bonded to silicon. Such a partially condensed alkoxysilane preferably contains on average more than two alkoxy groups per molecule bonded to silicon. The alkoxysilane can for example be an oligomeric partially condensed trialkoxysilane. Such an oligomer may have a branched structure as well as Si-alkoxy groups to provide further branching sites. Tetraalkoxysilanes can also be used in partially condensed form; for example partially condensed tetraethoxysilane containing SiO2 branching units is widely available.
- The alkoxysilane and the linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon are preferably reacted in amounts such that the molar ratio of Si-bonded alkoxy groups in the alkoxysilane to hydroxyl or hydrolysable groups in the substantially linear organopolysiloxane is from 1:100 to 1: 1, more preferably 1:40 to 1:2. If the substantially linear organopolysiloxane has hydrolysable groups rather than hydroxyl groups, it may be suitable for a controlled amount of moisture to be present during the reaction. The branched organopolysiloxane may contain reactive terminal Si-OH or Si-alkoxy groups.
- The phosphazene catalyst for the reaction of the alkoxysilane with the hydroxyl-containing substantially linear organopolysiloxane contains at least one -(N=P<)- unit and is an oligomer having up to 10 such phosphazene units, for example having an average of from 1.5 up to 5 phosphazene units and is, as claimed, a phosphazenium salt, particularly an ionic derivative of a phosphonitrile halide such as a perchlorooligophosphazenium salt.
- One type of phosphazene catalyst (not of the invention) is an oxygen-containing halophosphazene, particularly an oxygen-containing chlorophosphazene. Such an oxygen-containing chlorophosphazene can for example have the formula Cl(PCl2=N)n-P(O)Cl or HO(PCl2=N)n-P(O)Cl2. The average value of n can for example be in the range 1 to 10, particularly 1 to 5. The catalyst may also comprise tautomers of the catalyst of the formula HO(PCl2=N)n-P(O)Cl2. Another type of oxygen-containing chlorophosphazene has the formula Z'O(PCl2=N)n-P(O)Cl2 in which Z' represents an organosilicon radical bonded to phosphorus via oxygen, for example a phosphazene catalyst of the formula R"3SiO(PCl2=N)n-P(O)Cl2 where each R" represents a monovalent hydrocarbon or substituted hydrocarbon group having 1 to 18 carbon atoms. The catalyst may also comprise condensation products of such an organosilicon-containing phosphazene. All or some of the chlorine atoms in any of the above oxygen-containing phosphazenes can be replaced by radicals Q, in which Q represents the hydroxyl group, monovalent organic radicals, such as alkoxy radicals or aryloxy radicals, halogen atoms other than chlorine, organosilicon radicals and phosphorus-containing radicals, although this is not preferred.
- The phosphazene catalyst of the invention is a perchlorooligophosphazenium salt of the formula
[Cl3P-(N=PCl2)nCl]+ Z
where n has an average value in the range 1 to 10 and Z represents an anion. The anion is a complex anion of the formula MXv+1 in which M is an element having an electronegativity on Pauling's scale of from 1.0 to 2.0 and valency v and X is a halogen atom. The element M can for example be phosphorus or antimony. The anion Z can alternatively be a complex anion of the formula [MXv-y+1R3 y]- wherein R3 is an alkyl group having 1 to 12 carbon atoms and y has a value between 0 and v, as described inUS-A-5457220 . - As described herein, a phosphazene catalyst (not of the invention) can alternatively be a phosphazene base, particularly an aminated phosphazene as described in
US-A-6001928 ,US-A-6054548 orUS-A-6448196 . Such a phosphazene base can be formed by reaction of a perchlorooligophosphazenium salt with a secondary amine followed by ion exchange reaction with a basic nucleophile. The secondary amine is for example of the formula HNR4 2, and some or all of the chlorophosphazene oligomer are replaced by -NR4 2 groups. - The phosphazene catalyst is typically present at 1 or 2 up to 200 parts per million based on the combined weight of alkoxysilane and substantially linear organopolysiloxane, for example at 5 to 50 parts per million. The reaction between the alkoxysilane and linear organopolysiloxane can be carried out at ambient temperature but is preferably carried out at elevated temperature, for example in the range 50 to 100°C.
- The extent of polymerization during the process of the invention is preferably such that the branched organopolysiloxane produced has a weight average molecular weight Mw at least five times, more preferably at least ten times, the Mw of the starting organopolysiloxane. The Mw can be measured by gel permeation chromatography (GPC). The Mw of the branched organopolysiloxane produced is preferably at least 10,000, more preferably at least 100,000, and may be as high as 1,000,000 or more. The reaction can be terminated by adding a neutraliser when a desired degree of polymerization has been reached. The neutralizer can for example be a trialkylamine in the case of the catalysts described in
US-A-5457220 . - The branched organopolysiloxanes obtained using the phosphazene catalyst in the above process have a high weight average molecular weight Mw and show a broad molecular weight distribution. The branched organopolysiloxanes have acceptable rheology, that is they are not too stiff to be shaped when uncured, despite their high Mw.
- The reaction between the alkoxysilane and substantially linear organopolysiloxane is carried out in the presence of an inert liquid diluent. The presence of a liquid diluent generally allows the formation of higher molecular weight branched polymers while keeping a fluid product. The liquid diluent is a solvent for the substantially linear organopolysiloxane, and optionally the alkoxysilane. The diluent is an organic based diluent and has no groups reactive with the alkoxysilane or with the substantially linear organopolysiloxane. The diluent may be chosen from materials whose presence is desired as an extender and/or plasticizer in the end product formulation based on the branched organopolysiloxane produced. The diluent must comprise at least a hydrocarbon oil comprising 5 to 25 carbon atoms per molecule.
- Any suitable solvent or diluent or combination of diluents may be used in the reaction mixture. In general any of the extenders used in
WO-A-2006/106362 can be used. These include each of the following alone or in combination with others from the list: - hydrocarbon oils such as mineral oil fractions comprising linear (e.g. n-paraffinic) mineral oils, branched (iso-paraffinic) mineral oils, and/or cyclic (referred in some prior art as naphthenic) mineral oils, the hydrocarbons in the oil fractions comprising from 5 to 25 carbon atoms per molecule;
- trialkylsilyl terminated polydialkyl siloxane where the alkyl groups are preferably methyl groups, where each alkyl group may be the same or different and comprises from 1 to 6 carbon atoms but is preferably a methyl group, preferably with a viscosity of from 100 to 100000 mPa.s at 25°C and most preferably from 1000 to 60000 mPa.s at 25°C;
- polyisobutylenes (PIB);
- phosphate esters such as trioctyl phosphate;
- polyalkylbenzenes, linear and/or branched alkylbenzenes such as heavy alkylates, dodecyl benzene and other alkylarenes;
- esters of aliphatic monocarboxylic acids;
- linear or branched mono unsaturated hydrocarbons such as linear or branched alkenes or mixtures thereof containing from 8 to 25 carbon atoms;
- natural oils and derivatives thereof.
- Preferred diluents include the mineral oil fractions. Also described are alkylcycloaliphatic compounds and alkybenzenes including polyalkylbenzenes. Any suitable mixture of mineral oil fractions may be used as diluent but high molecular weight extenders, for example having a molecular weight above 220, are particularly preferred. Examples include alkylcyclohexanes of molecular weight above 220), paraffinic hydrocarbons and mixtures thereof containing from 1 to 99%, preferably from 15 to 80% n-paraffinic and/or isoparaffinic hydrocarbons (linear branched paraffinic) and 1 to 99%, preferably 85 to 20% cyclic hydrocarbons (naphthenic) and a maximum of 3%, preferably a maximum of 1% aromatic carbon atoms. The cyclic paraffinic hydrocarbons (naphthenics) may contain cyclic and/or polycyclic hydrocarbons.
- Diluents suitable for retaining in many products as an extender or plasticiser comprise non-mineral based natural oils, i.e. oils derived from animals, seeds or nuts and not from petroleum. Such natural oils are generally triglycerides of mixtures of fatty acids, particularly mixtures containing some unsaturated fatty acid. Diluents containing natural oils may for example be used in some personal care products. The diluent can be a derivative of a natural oil such as a transesterified vegetable oil, a boiled natural oil, a blown natural oil, or a stand oil (thermally polymerized oil).
- The alkylbenzene compounds described for use as diluent include heavy alkylate alkylbenzenes and alkylcycloaliphatic compounds. Examples of alkyl substituted aryl compounds useful as diluents are compounds which have aryl groups, especially benzene substituted by alkyl and possibly other substituents, and a molecular weight of at least 200. Examples of such diluents useful as extenders are described in
US-A-4312801 . - The amount of diluent is 5 to 70%, of the combined weight of alkoxysilane, substantially linear organopolysiloxane and diluent. A diluent whose presence is required as an extender or plasticizer in the branched organopolysiloxane formulation will often be used at 25 to 60% of the combined weight of alkoxysilane, substantially linear organopolysiloxane and diluent. Non-reactive additives whose presence is required in the branched organopolysiloxane formulation, for example heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides or perfumes, may be dissolved in the diluent.
- Also described are diluents which can be a solid such as a wax, preferably having a melting point in the range 30 to 100°C. The wax can for example be a hydrocarbon wax such as a petroleum-derived wax, or a wax comprising carboxylic esters such as beeswax, lanolin, tallow, carnauba, candelilla, tribehenin or a wax derived from plant seeds, fruits, nuts or kernel, including softer waxes referred to as 'butter', for example mango butter, shea butter or cocoa butter. The wax can alternatively be a polyether wax or a silicone wax.
- The branched organopolysiloxanes produced according to the present invention are particularly suitable for use in sealants and antifoams but are also useful in personal care products and pressure sensitive adhesives. The branched organopolysiloxane product, optionally containing diluent, can be dissolved in an organic solvent or emulsified in water if the branched organopolysiloxane formulation is required in solution or emulsion form. For sealant use the branched organopolysiloxane product, optionally containing diluent, is generally used in the sealant formulation without further dilution.
- A sealant composition comprising a branched organopolysiloxane prepared as described above is preferably a moisture curable sealant composition comprising the branched organopolysiloxane, a crosslinking agent reactive with the branched organopolysiloxane and a catalyst for siloxane condensation.
- The crosslinking agent in such a sealant composition generally has groups reactive with the Si-OH and/or Si-alkoxy terminal groups of the branched organopolysiloxane. The crosslinking agent preferably contains at least two and preferably at least three groups reactive with the silicon-bonded hydroxyl or alkoxy groups of the branched organopolysiloxane. The reactive groups of the crosslinking agent are preferably silicon bonded hydrolysable groups. The crosslinking agent can for example be a silane or short chain organopolysiloxane, for example a polydiorganosiloxane having from 2 to about 100 siloxane units. The molecular structure of such an organopolysiloxane can be straight chained, branched, or cyclic. The crosslinking agent can alternatively be an organic polymer substituted by silicon-bonded hydrolysable groups.
- The hydrolysable groups in the crosslinker can for example be selected from acyloxy groups (for example, acetoxy, octanoyloxy, and benzoyloxy groups); ketoximino groups (for example dimethyl ketoximo, and isobutylketoximino); alkoxy groups (for example methoxy, ethoxy, an propoxy) and/or alkenyloxy groups (for example isopropenyloxy and 1-ethyl-2-methylvinyloxy).
- When the crosslinking agent is a silane having three silicon-bonded hydrolysable groups per molecule, the fourth group is suitably a non-hydrolysable silicon-bonded organic group. These silicon-bonded organic groups are suitably hydrocarbyl groups which are optionally substituted by halogen such as fluorine and chlorine. Examples of such fourth groups include alkyl groups (for example methyl, ethyl, propyl, and butyl); cycloalkyl groups (for example cyclopentyl and cyclohexyl); alkenyl groups (for example vinyl and allyl); aryl groups (for example phenyl, and tolyl); aralkyl groups (for example 2-phenylethyl) and groups obtained by replacing all or part of the hydrogen in the preceding organic groups with halogen. Preferably the fourth silicon-bonded organic group is methyl or ethyl.
- Examples of crosslinking agents include acyloxysilanes, particularly acetoxysilanes such as methyltriacetoxysilane, vinyltriacetoxysilane, ethyl triacetoxysilane, di-butoxy diacetoxysilane and/or dimethyltetraacetoxydisiloxane, and also phenyl-tripropionoxysilane. The crosslinking agent can be an oxime-functional silane such as methyltris(methylethylketoximo)silane, vinyl-tris(methylethylketoximo)silane, or an alkoxytrioximosilane. The crosslinking agent can be an alkoxysilane, for example an alkyltrialkoxysilane such as methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane or ethyltrimethoxysilane, an alkenyltrialkoxysilane such as vinyltrimethoxysilane or vinyltriethoxysilane, or phenyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, or ethylpolysilicate, n-propylorthosilicate, ethylorthosilicate, or an alkenyloxysilane such as methyltris(isopropenoxy)silane or vinyltris(isopropenoxy)silane. The crosslinking agent can alternatively be a short chain polydiorganosiloxane, for example polydimethylsiloxane, tipped with trimethoxysilyl groups or can be an organic polymer, for example a polyether such as polypropylene oxide, tipped with methoxysilane functionality such as trimethoxysilyl groups. The crosslinking agent used may also comprise any combination of two or more of the above.
- Further alternative crosslinking agents include alkylalkenylbis(N-alkylacetamido) silanes such as methylvinyldi-(N-methylacetamido)silane, and methylvinyldi-(N-ethylacetamido)silane; dialkylbis(N-arylacetamido) silanes such as dimethyldi-(N-methylacetamido)silane; and dimethyldi-(N-ethylacetamido)silane; alkylalkenylbis(N-arylacetamido) silanes such as methylvinyldi(N-phenylacetamido)silane and dialkylbis(N-arylacetamido) silanes such as dimethyldi-(N-phenylacetamido)silane, or any combination of two or more of the above.
- The amount of crosslinking agent present in the sealant composition will depend upon the particular nature of the crosslinking agent, particularly its molecular weight. The compositions suitably contain crosslinking agent in at least a stoichiometric amount as compared to the branched organopolysiloxane. Sealant compositions may contain, for example, from 2-30% by weight crosslinking agent, generally from 2 to 10%. For example, acetoxysilane or oximinosilane crosslinkers may typically be present in amounts of from 3 to 8 % by weight.
- The sealant composition further comprises a siloxane condensation catalyst. This increases the speed at which the composition cures. The catalyst chosen for inclusion in a particular silicone sealant composition depends upon the speed of cure required. Any suitable condensation catalyst may be used including compounds of tin, lead, antimony, iron, cadmium, barium, manganese, zinc, chromium, cobalt, nickel, titanium, aluminium, gallium or germanium and zirconium, for example organotin catalysts, organic salts of tin and 2-ethylhexoates of iron, cobalt, manganese, lead and zinc. Organotin, titanate and/or zirconate based catalysts are preferred.
- Silicone sealant compositions which contain oximosilanes or acetoxysilanes generally use an organotin catalyst, for example a diorganotin dicarboxylate such as dibutyltin dilaurate, dimethyltin dibutyrate, dibutyltin diacetate, dimethyltin bisneodecanoate, dibutyltin dibenzoate, dimethyltin dineodeconoate or dibutyltin dioctoate.
- For sealant compositions which include alkoxysilane crosslinking agents, the preferred curing catalysts are titanate or zirconate compounds including chelated titanates and zirconates. Titanate and/or zirconate based catalysts may comprise a compound according to the general formula Ti[OR4]4 where each R4 may be the same or different and represents a monovalent, primary, secondary or tertiary aliphatic hydrocarbon group which may be linear or branched containing from 1 to 10 carbon atoms. Optionally the titanate may contain partially unsaturated groups. However, preferred examples of R4 include but are not restricted to methyl, ethyl, propyl, isopropyl, butyl, tertiary butyl and a branched secondary alkyl group such as 2,4-dimethyl-3-pentyl. Alternatively, the titanate may be chelated. The chelation may be with any suitable chelating agent such as an alkyl acetylacetonate such as methyl or ethyl acetylacetonate.
- Sealant compositions may contain, as optional constituents, other ingredients which are conventional to the formulation of silicone sealants. For example, the sealant compositions will normally contain one or more finely divided reinforcing fillers such as high surface area fumed and precipitated silicas including rice hull ash and/or calcium carbonate, which is to some extent a reinforcing filler. The sealant composition can additionally contain a nonreinforcing filler such as crushed quartz, diatomaceous earth, barium sulphate, iron oxide, titanium dioxide, carbon black, talc, wollastonite, aluminite, calcium sulphate (anhydrite), gypsum, calcium sulphate, magnesium carbonate, a clay such as kaolin, aluminium trihydroxide, magnesium hydroxide, graphite, copper carbonate, nickel carbonate, barium carbonate and/or strontium carbonate and/or electrically and/or heat conductive fillers.
- Other ingredients which may be included in sealant compositions include but are not restricted to co-catalysts for accelerating the cure of the composition such as metal salts of carboxylic acids and amines, rheology modifiers, adhesion promoters, pigments, heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides, and/or water scavengers, (typically the same compounds as those used as crosslinking agents, or silazanes).
- The sealant compositions can be prepared by mixing the ingredients employing any suitable mixing equipment. For example, preferred one-part moisture curable compositions may be made by mixing the branched organopolysiloxane, optionally comprising a non-reactive silicone or organic fluid extender or plasticizer, with all or part of the filler, and mixing this with a pre-mix of the crosslinking agent and the catalyst under substantially anhydrous conditions. The resulting curable compositions are generally stored under substantially anhydrous conditions, for example in sealed containers, until required for use. Such one-part moisture curable compositions are stable in storage but cure on exposure to atmospheric moisture and may be employed in a variety of applications, particularly suitable for sealing joints, cavities and other spaces in articles and structures which are subject to relative movement, or for example as coating, caulking, mold making and encapsulating materials.
- The sealant composition can alternatively be a two-part composition in which the branched organopolysiloxane and the crosslinking agent are packaged separately. In such a composition the catalyst can in general be packaged with either the polysiloxane or with the crosslinking agent. Both packages in such a two-part composition can be anhydrous for curing on exposure to atmospheric moisture, or one only of the packages may contain a controlled amount of moisture to speed up initial cure of the composition on mixing of the packages.
- For use in personal care products, the branched organopolysiloxane product can for example be dissolved in an organic solvent or emulsified in water using an anionic, cationic, amphoteric and/or nonionic surfactant. If a personal care product, for example a cosmetic such as a skin cream, is required in organic solution form it may be convenient to react the alkoxysilane and substantially linear organopolysiloxane in solution in the organic solvent to be used in the personal care product.
- Personal care formulations containing the branched polyorganosiloxane can contain various additives known in such formulations, for example perfumes, sunscreens, antioxidants, vitamins, drugs, biocides, pest repellents, catalysts, natural extracts, peptides, warming effect and cooling agents, fillers, colouring agents such as dyes, pigments and shimmers, heat stabilizers, flame retardants, UV stabilizers, fungicides, biocides, thickeners, preservatives, antifoams, freeze thaw stabilizers, or inorganic salts to buffer pH.
- When a personal care product containing a branched organopolysiloxane produced according to the invention is applied to the skin or hair, the product is generally more resistant to washing off than a similar product containing a linear organopolysiloxane of similar molecular weight.
- The invention is illustrated by the following Examples, in which parts and percentages are by weight. The molecular weight of the siloxanes in the mixtures was determined by gel permeation chromatography (GPC). The analyses have been performed by GPC (Alliance Waters 2690) using triple detection (Refractive index detector, Viscometer and Light Scattering Detectors) and toluene as solvent. Molecular weight averages were determined by universal calibration relative to a triple detection calibration realized on a single point using polystyrene narrow standard (Mw 70,950g/mol).
- 500 parts dimethylhydroxyl-terminated polydimethylsiloxane having a viscosity of 70 mPa.s at 25°C, a Mn of 2500g/mol and a Mw of 3500g/mol was mixed with 500 parts Hydroseal G 250H hydrocarbon oil extender (sold by Total), and 4.01 parts methyltrimethoxysilane (MTM). 20 parts per million (ppm) of an ionic phosphazene [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 80°C under vacuum. The polymerisation was stopped after 20 minutes by the addition of 0.05 parts trihexylamine. A branched polydimethylsiloxane polymer, mixed with the hydrocarbon oil extender, was produced.
- Example 1 was repeated using different amounts of MTM (example 2 and 3) and alternative alkoxysilanes in place of the MTM (example 4 and 5):
- Example 2 - 0.4 parts MTM, 29 minutes polymerization time
- Example 3 - 0.8 parts MTM, 22 minutes polymerization time
- Example 4 - 6.13 parts tetraethyl orthosilicate (TEOS, tetraethoxysilane), temperature 90C°, catalyst 40ppm, 0.09p trihexylamine ,131 minutes polymerization time
- Example 5 - 8.13 parts n-octyltriethoxysilane, temperature 90C°, catalyst 20ppm, 0.45p trihexylamine 32 minutes polymerization time
- Branched polydimethylsiloxane polymers, mixed with the hydrocarbon oil extender, were produced in each case.
- The number average molecular weight Mn and the weight average molecular weight Mw of each branched polydimethylsiloxane were measured by GPC. The results, and the polydispersity index PI (ratio Mw / Mn) are shown in Table 1 below. The viscosity of the reaction product was measured by a Brookfield viscometer (Brookfield RVDV-I+, spindle 7 example 1-3, spindle 6 example 4 and 5 at 25°C) and is also shown in Table 1.
Table 1 Example 1 2 3 4 5 Mn (kg/mol) 53 159 142 65 56 Mw (kg/mol) 906 407 525 959 994 PI 17.3 2.6 3.7 14.7 17.8 Viscosity (mPas) 15200 63800 64400 22600 14000 - The branched polydimethylsiloxanes of Examples 1, 4 and 5 were characterized by Si29-NMR. The Si29- NMR showed that no self-condensation of the alkoxysilanes had occurred. The NMR result for Example 4 showed that some Si-alkoxy function had been retained in the branched polydimethylsiloxane. The NMR result for Example 5 showed incorporation of n-octyl groups on the polysiloxane chain at branching points.
- 800 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 200 parts of a silicone wax having a melting point of about 32°C (DC 2503 sold by Dow Corning) and 0.64 parts methyltrimethoxysilane (MTM) at 70°C. 20 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 70°C under vacuum. The polymerisation was stopped after 54 minutes by the addition of 0.08 parts trihexylamine. A branched polydimethylsiloxane polymer blend with silicone wax was produced. The branched polydimethylsiloxane has Mn 112kg/mol and Mw 176kg/mol. The mixture has a viscosity of 324000 mPas (Brookfield as in example 1).
- 500 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 500 parts of an isoparaffin (Isopar L supplied by Exxon) and 6.13 parts tetraethoxyorthosilicate (TEOS). 20 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 90°C under vacuum.. The polymerisation was stopped after 67 minutes by the addition of 0.05 parts trihexylamine. A branched polydimethylsiloxane dissolved in isoparaffin was produced. The branched polydimethylsiloxane has Mn 78kg/mol and Mw 1546 kg/mol. The mixture has a viscosity of 17000 mPas. (Brookfield as in example 1)
- The wash off resistance on skin of the branched silicone of Reference Example 7 was evaluated by a number of washes with a surfactant solution (0.5% sodium lauryl ether sulfate in water) using FTIR spectroscopy. A linear polydimethysiloxane with a Mw of 938kg/mol was tested for comparison. Samples tested were diluted to 5% active in isododecane. The % of silicone found on the skin after various washes are indicated in Table 2.
Table 2 Linear Polymer Branched Polymer Before wash 100 100 wash 1 35.35 55.31 wash 2 26.76 48.63 wash 3 24.41 35.21 - 500 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 500 parts Isopar L isoparaffin and 4.00 parts methyltrimethoxysilane (MTM). 20 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 80°C under vacuum. The polymerisation was stopped after 20 minutes by the addition of 0.05 parts trihexylamine. A branched polydimethylsiloxane dissolved in isoparaffin was produced. The branched polydimethylsiloxane has Mn 89 kg/mol and Mw 1334 kg/mol. The mixture has a viscosity of 300000 mPas. (Brookfield as in example 1).
- 400 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 400 parts of Xylene and 0.64 parts methyltrimethoxysilane (MTM). 20 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 80°C under vacuum.. The polymerisation was stopped after 52 minutes by the addition of 0.04 parts trihexylamine. A branched polydimethylsiloxane dissolved in xylene was produced. The branched polydimethylsiloxane has Mn 169 kg/mol and Mw 1002kg/mol.
- 395 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 and 100 parts methylphenylhydroxyl-terminated polymethylphenylsiloxane having a viscosity of approx. 500 mPa.s at 25°C were mixed with 500 parts of Xylene, and 5 parts phenyltrimethoxysilane . 30 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 80°C under vacuum.. The polymerisation was stopped after 63 minutes by the addition of 0.075 parts trihexylamine. A branched polydimethyl methyphenylsiloxane copolymer dissolved in xylene was produced. The branched polydimethyl methyphenylsiloxane copolymer has Mn 82kg/mol and Mw 1007kg/mol. The mixture has a viscosity of 30000 mPas. (Brookfield as in example 1)
- 1000 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 were mixed with 8.013 parts of methyltrimethoxysilane (MTM). 3 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 70°C under vacuum. The polymerisation was stopped after 2 minutes by the addition of 0.025 parts trihexylamine. A branched polydimethylsiloxane was produced. The branched polydimethylsiloxane has Mn 63 kg/mol and Mw 178 kg/mol.
- Example 11 was repeated using different amounts of MTM (example 12) and alternative alkoxysilanes in place of the MTM (example 13 and 14):
- Example 12 - 4.006 parts MTM, 2 minutes polymerization time
- Example 13 - 12.255 parts tetraethyl orthosilicate (TEOS, tetraethoxysilane), 2 minutes polymerization time
- Example 14 - 6.13 parts tetraethyl orthosilicate (TEOS, tetraethoxysilane), 2 minutes polymerization time
- Branched polydimethylsiloxane polymers, were produced in each case
- The number average molecular weight Mn and the weight average molecular weight Mw of each branched polydimethylsiloxane were measured by GPC. The results, and the polydispersity index PI (ratio Mw / Mn) are shown in Table 3 below.
Table 3 Example 12 13 14 Mn (kg/mol) 88 36 76 Mw (kg/mol) 218 98 159 PI 2.48 2.71 2.08 - 800 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 200 parts Sunflower Oil (Sunflower Oil provided by Mosselman) and 6.41 parts methyltrimethoxysilane (MTM). 25 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 70°C under vacuum. The polymerisation was stopped after 7 minutes by the addition of 0.134 parts trihexylamine. A branched polydimethylsiloxane dispersed in Sunflower Oil was produced. The branched polydimethylsiloxane has Mn 77 kg/mol and Mw 435 kg/mol.
- 800 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 200 parts Sunflower Oil (Sunflower Oil provided by Mosselman) and 0.321 parts methyltrimethoxysilane (MTM). 22.5 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 70°C under vacuum. The polymerisation was stopped after 12 minutes by the addition of 0.151 parts trihexylamine. A branched polydimethylsiloxane dispersed in Sunflower Oil was produced. The branched polydimethylsiloxane has Mn 65 kg/mol and Mw 123 kg/mol.
- 500 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 500 parts Isododecane (Isododecane provided by Ineos Oligomers) and 2.003 parts methyltrimethoxysilane (MTM). 10 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 60°C under vacuum. The polymerisation was stopped after 7 minutes by the addition of 0.0419 parts trihexylamine. A branched polydimethylsiloxane dissolved in Isododecane was produced. The branched polydimethylsiloxane has Mn 128 kg/mol and Mw 1 153 kg/mol.
- 500 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 500 parts Isopar L isoparaffin (see example 8) and 3.036 parts tetraethyl orthosilicate (TEOS, tetraethoxysilane). 7.5 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]- diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 80°C under vacuum. The polymerisation was stopped after 33 minutes by the addition of 0.028 parts trihexylamine. A branched polydimethylsiloxane dissolved in isoparaffin was produced. The branched polydimethylsiloxane has Mn 118 kg/mol and Mw 1101 kg/mol.
- 900 parts of the dimethylhydroxyl-terminated polydimethylsiloxane of Example 1 was mixed with 100 parts decamethylcyclopentasiloxane and 0.72 parts methyltrimethoxysilane (MTM). 4 parts per million (ppm) [Cl(PCl2=N)xPCl3]+[PCl6]~ diluted in dichloromethane was added as catalyst. The polymerisation was carried out in a 11 glass reactor (IKA) at 80°C under vacuum. The polymerisation was stopped after 36 minute by the addition of 0.009 parts trihexylamine. A branched polydimethylsiloxane dissolved in decamethylcyclopentasiloxane was produced. The branched polydimethylsiloxane has Mn 47 kg/mol and Mw 78 kg/mol.
- Example 19 was repeated using different conditions.
- Example 20 - 5 parts catalyst, 0.72parts methyltrimethoxysilane, 13 minutes polymerisation time, 0.0228 parts of trihexylamine
- Example 21 - 5 parts catalyst, 1.44parts methyltrimethoxysilane, 13 minutes polymerisation time, 0.0228 parts of trihexylamine
- Example 22 - 5 parts catalyst, 3.61parts methyltrimethoxysilane, 14 minutes polymerisation time, 0.0228 parts of trihexylamine
- Example 23 - 5 parts catalyst, 7.21parts methyltrimethoxysilane, 15 minutes polymerisation time, 0.0228 parts of trihexylamine
- The number average molecular weight Mn and the weight average molecular weight Mw of each branched polydimethylsiloxane were measured by GPC. The results, and the polydispersity index PI (ratio Mw / Mn) are shown in Table 4 below. The viscosity of the reaction product was measured by a Brookfield viscometer at 25°C as in example 1.
Table 4 Example 20 21 22 23 Mn (kg/mol) 81 73 73 68 Mw (kg/mol) 127 123 131 197 PI 1.57 1.63 1.79 2.91 Viscosity 57840 47940 45360 69100
Claims (4)
- A process for preparing a branched organopolysiloxane through a reaction of alkoxysilane with a linear organopolysiloxane containing at least one hydroxyl or hydrolysable group bonded to silicon, characterized in that the alkoxysilane comprises one or both of a tetraalkoxysilane and a trialkoxysilane of the formula R'Si(OR)3, where R represents an alkyl group having 1 to 4 carbon atoms and R' represents a monovalent hydrocarbon or a substituted hydrocarbon group having 1 to 18 carbon atoms and that the reaction is carried out in the presence of a phosphazene catalyst and an inert liquid diluent, wherein the diluent has no groups reactive with the alkoxysilane or the linear organopolysiloxane and is a solvent for the linear organopolysiloxane, the diluent is a hydrocarbon oil comprising 5 to 25 carbon atoms per molecule, wherein the amount of the diluent used in the process is 5 to 70% of the combined amount of the linear organopolysiloxane, the alkoxysilane and the diluent; and wherein the phosphazene catalyst is a perchlorooligophosphazenium salt of the formula [Cl3P-(N=PCl2)nCl]+Z-, where n has an average value in the range of 1 to 10 and Z represents an anion of the formula MXv+1 in which M is an element having an electronegativity on Pauling's scale of from 1.0 to 2.0 and valency v and X is a halogen atom.
- A process according to claim 1, characterized in that the linear organopolysiloxane has terminal hydroxyl groups bonded to silicon.
- A process according to claim 1 or 2, characterized in that the alkoxysilane includes a partially condensed alkoxysilane containing an average more than two alkoxy groups per molecule bonded to silicon.
- A process according to claim 1, characterized in that the branched organopolysiloxane has a weight average molecular weight at least ten times that of the linear organopolysiloxane.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16499009P | 2009-03-31 | 2009-03-31 | |
PCT/US2010/029111 WO2010117744A2 (en) | 2009-03-31 | 2010-03-30 | Branched organopolysiloxanes |
EP10722844A EP2414433A2 (en) | 2009-03-31 | 2010-03-30 | Branched organopolysiloxanes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10722844A Division EP2414433A2 (en) | 2009-03-31 | 2010-03-30 | Branched organopolysiloxanes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3118242A1 EP3118242A1 (en) | 2017-01-18 |
EP3118242B1 true EP3118242B1 (en) | 2018-10-17 |
Family
ID=42936803
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16182462.8A Active EP3118242B1 (en) | 2009-03-31 | 2010-03-30 | Branched organopolysiloxanes |
EP10722844A Ceased EP2414433A2 (en) | 2009-03-31 | 2010-03-30 | Branched organopolysiloxanes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10722844A Ceased EP2414433A2 (en) | 2009-03-31 | 2010-03-30 | Branched organopolysiloxanes |
Country Status (6)
Country | Link |
---|---|
US (1) | US9051428B2 (en) |
EP (2) | EP3118242B1 (en) |
JP (1) | JP5894911B2 (en) |
KR (1) | KR101710059B1 (en) |
CN (1) | CN102356118B (en) |
WO (1) | WO2010117744A2 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102549047B (en) * | 2009-08-25 | 2016-01-20 | 道康宁公司 | For the preparation of the method for silicone pressure-sensitive adhesive |
KR102194392B1 (en) * | 2012-12-21 | 2020-12-23 | 니혼 야마무라가라스 가부시키가이샤 | Organic-inorganic hybrid prepolymer, organic-inorganic hybrid material, and element sealing structure |
CN103936995A (en) * | 2013-05-20 | 2014-07-23 | 深圳市泰科科技有限公司 | Preparation method of alkoxy-terminated linear polysiloxane |
DE102013216787A1 (en) | 2013-08-23 | 2015-02-26 | Evonik Degussa Gmbh | Guanidinruppen containing semi-organic silicon group-containing compounds |
DE102013216777A1 (en) | 2013-08-23 | 2015-02-26 | Evonik Industries Ag | Room temperature curable silicone resin compositions |
WO2015122989A1 (en) * | 2014-02-14 | 2015-08-20 | Dow Corning Corporation | Emulsions of branched organopolysiloxanes |
RU2703565C2 (en) * | 2014-10-09 | 2019-10-21 | Колопласт А/С | Composition containing polymer and state change initiator |
BR112017015276B1 (en) | 2015-01-28 | 2022-09-06 | Dow Corning Corporation | GEL, CONDENSATION-CURABLE GEL COMPOSITION, METHOD OF MANUFACTURING A GEL, AND, USE OF A GEL |
RU2709088C2 (en) * | 2015-04-30 | 2019-12-13 | Колопласт А/С | Adhesive composition |
GB201613396D0 (en) * | 2016-08-03 | 2016-09-14 | Dow Corning | Foam control compositions comprising silicone materials |
GB201613399D0 (en) | 2016-08-03 | 2016-09-14 | Dow Corning | Cosmetic composition comprising silicone materials |
GB201613397D0 (en) | 2016-08-03 | 2016-09-14 | Dow Corning | Cosmetic composition comprising silicone materials |
EP3323844A1 (en) * | 2016-11-17 | 2018-05-23 | Henkel AG & Co. KGaA | Curable compositions based on silicon-containing polymers using phosphazenes as catalysts |
GB201707437D0 (en) | 2017-05-09 | 2017-06-21 | Dow Corning | Lamination adhesive compositions and their applications |
GB201707439D0 (en) | 2017-05-09 | 2017-06-21 | Dow Corning | Lamination Process |
WO2019086311A1 (en) | 2017-10-30 | 2019-05-09 | Unilever Plc | Hair conditioning composition |
CN107739590A (en) * | 2017-10-30 | 2018-02-27 | 董林妤 | A kind of rapid curing solar energy silica gel and preparation method thereof |
US11674000B2 (en) * | 2018-08-24 | 2023-06-13 | Wacker Chemie Ag | Process for preparing branched organopolysiloxanes |
CN109796597B (en) * | 2019-01-25 | 2022-03-25 | 江南大学 | Preparation method of branched silane and polyether alkyl co-modified silicone oil |
KR20210142129A (en) | 2019-03-14 | 2021-11-24 | 다우 글로벌 테크놀로지스 엘엘씨 | Polyorganosiloxane having a poly(meth)acrylate group and method for preparing and using the same |
WO2020216661A1 (en) | 2019-04-26 | 2020-10-29 | Unilever Plc | Hair conditioning composition |
KR20230002732A (en) | 2020-04-20 | 2023-01-05 | 다우 실리콘즈 코포레이션 | Polyorganosiloxane hybrid pressure-sensitive adhesive and its preparation and use method |
US20230174721A1 (en) | 2020-05-07 | 2023-06-08 | Dow Silicones Corporation | (meth)acrylate functional silicone and methods for its preparation and use |
EP4146762B1 (en) | 2020-05-07 | 2024-05-08 | Dow Silicones Corporation | Silicone hybrid pressure sensitive adhesive and methods for its preparation and use on uneven surfaces |
WO2021225673A1 (en) | 2020-05-07 | 2021-11-11 | Dow Silicones Corporation | Silicone hybrid pressure sensitive adhesive and methods for its preparation and use in protective films for (opto)electronic device fabrication |
JP2022094833A (en) * | 2020-12-15 | 2022-06-27 | 日東化成株式会社 | Curing catalyst to be used to cure polymer, moisture-curable composition and manufacturing method of cured product |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES8103128A1 (en) | 1979-01-16 | 1981-02-16 | Krafft S A | Introduced in processes for the manufacture of silicon-based curable compositions |
GB9103666D0 (en) * | 1991-02-21 | 1991-04-10 | Dow Corning Sa | Method of making organopolysiloxanes |
DE4317978A1 (en) * | 1993-05-28 | 1994-12-01 | Wacker Chemie Gmbh | Phosphazenes containing organosilicon residues, process for their preparation and their use |
DE4317909A1 (en) * | 1993-05-28 | 1994-12-01 | Wacker Chemie Gmbh | Process for condensing and / or equilibrating organosilicon compounds |
CN1126476A (en) * | 1993-07-10 | 1996-07-10 | 纽恩希里茨化工厂有限公司 | Catalyst fot the production of organosiloxanes and polyorganosiloxanes |
US5403909A (en) * | 1993-07-15 | 1995-04-04 | General Electric Company | Catalysts for polycondensation and redistribution of organosiloxane polymers |
DE4344663A1 (en) * | 1993-12-27 | 1995-06-29 | Nuenchritz Chemie Gmbh | Liquid polysiloxanes |
US5457220A (en) | 1994-04-29 | 1995-10-10 | General Electric Company | Process for the production of crosslinked siloxanes by disproportionation |
GB9703552D0 (en) | 1997-02-20 | 1997-04-09 | Dow Corning | Polymerisation of cyclosiloxanes in the presence of fillers |
GB9727136D0 (en) * | 1997-12-24 | 1998-02-25 | Dow Corning | Catalyst composition |
GB9827069D0 (en) | 1998-12-09 | 1999-02-03 | Dow Corning | Polymerisation catalyst |
US6150488A (en) * | 1998-12-30 | 2000-11-21 | Wacker Silicones Corporation | Process for preparing silanol-functional specifically branched organopolysiloxanes and products produced thereby |
DE19936289A1 (en) | 1999-08-02 | 2001-02-15 | Wacker Chemie Gmbh | Defoamer formulation |
US6054548A (en) | 1999-08-26 | 2000-04-25 | Dow Corning Limited | Process for producing a silicone polymer |
US6239211B1 (en) * | 2000-01-24 | 2001-05-29 | Dow Corning Corporation | Emulsions containing silicone polymers |
FR2813608B1 (en) * | 2000-09-01 | 2004-08-27 | Rhodia Chimie Sa | METHOD FOR CONTROLLING THE APPEARANCE OF FOG DURING THE COATING OF FLEXIBLE SUPPORTS WITH A CROSSLINKABLE LIQUID SILICONE COMPOSITION IN A CYLINDER DEVICE |
JP3900267B2 (en) * | 2002-05-09 | 2007-04-04 | 信越化学工業株式会社 | Room temperature curable organopolysiloxane composition |
EP1866376B1 (en) | 2005-04-06 | 2015-05-20 | Dow Corning Corporation | Organosiloxane compositions |
US7262312B2 (en) | 2005-08-05 | 2007-08-28 | Sheridan Robert E | Process for producing organoalkoxysilanes from organic acids or cyanates and haloalkylalkoxysilanes |
WO2008045427A1 (en) * | 2006-10-10 | 2008-04-17 | Dow Corning Corporation | Silicone polymer emulsions |
-
2010
- 2010-03-30 CN CN201080012012.6A patent/CN102356118B/en active Active
- 2010-03-30 EP EP16182462.8A patent/EP3118242B1/en active Active
- 2010-03-30 JP JP2012503580A patent/JP5894911B2/en active Active
- 2010-03-30 WO PCT/US2010/029111 patent/WO2010117744A2/en active Application Filing
- 2010-03-30 KR KR1020117022635A patent/KR101710059B1/en active IP Right Grant
- 2010-03-30 EP EP10722844A patent/EP2414433A2/en not_active Ceased
- 2010-03-30 US US13/260,933 patent/US9051428B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012522117A (en) | 2012-09-20 |
CN102356118A (en) | 2012-02-15 |
CN102356118B (en) | 2015-04-22 |
US20120022210A1 (en) | 2012-01-26 |
JP5894911B2 (en) | 2016-03-30 |
WO2010117744A2 (en) | 2010-10-14 |
KR20120000072A (en) | 2012-01-03 |
KR101710059B1 (en) | 2017-02-24 |
US9051428B2 (en) | 2015-06-09 |
EP3118242A1 (en) | 2017-01-18 |
EP2414433A2 (en) | 2012-02-08 |
WO2010117744A3 (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3118242B1 (en) | Branched organopolysiloxanes | |
US8022162B2 (en) | Organosiloxane compositions | |
US6001928A (en) | Polymerization of cyclosiloxanes in the presence of fillers | |
WO2008045395A2 (en) | Process for making organopolysiloxane compositions | |
EP2493984A2 (en) | Paintable elastomer | |
KR100618927B1 (en) | Process for producing a silicone polymer | |
WO2008045446A2 (en) | Process for making organopolysiloxane compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2414433 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170712 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171018 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180522 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DOW SILICONES CORPORATION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2414433 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010054518 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1053950 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1053950 Country of ref document: AT Kind code of ref document: T Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190118 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010054518 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
26N | No opposition filed |
Effective date: 20190718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190330 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240206 Year of fee payment: 15 Ref country code: GB Payment date: 20240108 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240213 Year of fee payment: 15 |