EP3112581A1 - Outil de battage en fond de trou - Google Patents
Outil de battage en fond de trou Download PDFInfo
- Publication number
- EP3112581A1 EP3112581A1 EP15174393.7A EP15174393A EP3112581A1 EP 3112581 A1 EP3112581 A1 EP 3112581A1 EP 15174393 A EP15174393 A EP 15174393A EP 3112581 A1 EP3112581 A1 EP 3112581A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- chamber
- housing
- downhole
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012530 fluid Substances 0.000 claims abstract description 65
- 230000000149 penetrating effect Effects 0.000 claims abstract description 5
- 238000004873 anchoring Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 description 20
- 230000004888 barrier function Effects 0.000 description 14
- 238000007789 sealing Methods 0.000 description 10
- 239000003921 oil Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/04—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
- E21B23/0412—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion characterised by pressure chambers, e.g. vacuum chambers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/04—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
- E21B23/042—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion using a single piston or multiple mechanically interconnected pistons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B31/00—Fishing for or freeing objects in boreholes or wells
- E21B31/107—Fishing for or freeing objects in boreholes or wells using impact means for releasing stuck parts, e.g. jars
Definitions
- the present invention relates to a downhole stroking tool for providing an axial force in an axial direction, comprising a housing, a first chamber, a first tool part comprising a pump unit providing pressurised fluid to the chamber, a shaft penetrating the chamber, and a first piston dividing the first chamber into a first chamber section and a second chamber section. Furthermore, the invention relates to a downhole system comprising the downhole stroking tool and a driving unit, such as a downhole tractor, for propelling the system forward in a well and to the use of a downhole stroking tool for pulling a plug in a well.
- a driving unit such as a downhole tractor
- a downhole stroking tool for providing an axial force in an axial direction, comprising:
- the force generated by the downhole stroking tool is mainly transferred via the housing and not as in prior art tools via the shaft to e.g. a plug.
- a higher bending stiffness of the downhole stroking tool is obtained.
- the housing is supported along its stroke by the piston, whereby the downhole stroking tool is capable of transferring a higher axial force substantially without bending compared to prior art tools.
- the tool may further comprise a pressure intensifier arranged downstream of the pump to increase the pressure before being fed to the chamber.
- the downhole stroking tool is capable of generating a higher fluid pressure than the pump is capable of providing, and thus, the downhole stroking tool is capable of providing a higher axial force than without the pressure intensifier. Due to the restrictions downhole in a well, the size of the pump is also restricted.
- the shaft may have a through-bore for allowing an electrical conductive means to run through the shaft.
- the shaft is fixed and the housing with the piston sliding, the shaft does not transfer any forces during the stroke and can thus have several through-bores for fluid channels and for electrical wiring.
- the downhole stroking tool may further comprise a connector, the housing comprising a first end part overlapping the first tool part.
- the housing may comprise a second end part connected to the connector.
- the downhole stroking tool may further comprise an operational tool connected with the housing.
- the operational tool may be a fishing neck, a key tool or a setting tool.
- the operational tool may be electrically powered.
- the housing may have an inner diameter substantially corresponding to an outer diameter of the first tool part.
- the housing may have an inner diameter substantially corresponding to an outer diameter of the first tool part along the first tool part which overlaps the housing.
- the shaft and/or the housing may comprise one or more fluid channels for providing fluid to and/or from the chamber during pressurisation of the first or the second chamber section, generating a pressure on the piston.
- the first tool part may have at least one sealing element for providing a seal against the housing.
- the tool may comprise a valve block for controlling which chamber section is fed the pressurised fluid and thus whether the downhole stroking tool provides an upstroke or downstroke movement.
- the housing may transfer the axial force.
- the downhole stroking tool may further comprise a second chamber divided by a second piston.
- the second chamber may comprise a first chamber section and a second chamber section.
- first and second chambers may be comprised in the housing.
- the shaft may comprise an intermediate part dividing the first and the second chamber.
- the intermediate part may support the housing, allowing the housing to slide in relation to the intermediate part.
- the tool may be powered by a battery in the tool and thus be wireless.
- the pump may be powered by high pressured fluid from surface down through a pipe, coiled tubing or the casing.
- the downhole stroking tool may further comprise an anchoring section having projectable fixation units for fixating the downhole stroking tool in a well.
- the present invention furthermore relates to a downhole system comprising the downhole stroking tool described above and a driving unit, such as a downhole tractor, for propelling the system forward in a well.
- a driving unit such as a downhole tractor
- the present invention relates to a downhole system comprising the downhole stroking tool described above and a well tubular metal structure comprising an annular barrier for isolating a first zone from a second zone in an annulus surrounding the well tubular metal structure.
- the annular barrier may comprise a tubular metal part mounted as part of the well tubular metal structure, and an expandable metal sleeve connected with the tubular metal part defining an expandable space.
- the annular barrier may comprise an expansion opening in the tubular metal part through which pressurised fluid enters to expand the expandable sleeve.
- the downhole stroking tool may comprise an expansion section having circumferential sealing elements arranged on each side of the expansion opening for isolating an expansion zone opposite the expansion opening.
- the tool end element may be connected with the expansion section, the tool end element comprising fluid channels providing fluid communication between the second chamber section and an opening in the expansion section opposite the expansion zone. This is to provide pressurised fluid into the expandable space and expand the annular barrier.
- fluid channel of the shaft of the downhole stroking tool may be fluidly connected with the sealing elements of the expansion section to expand the sealing elements by means of pressurised fluid from the pump.
- the second tool part, the housing and the piston of the downhole stroking tool are connected with a first end of a section shaft of the expansion section, and a second end of the section shaft may be connected to a piston sliding in a section housing, dividing the section housing into a first section housing which is in fluid communication with an opening in the expansion section to provide pressurised fluid into the annular barrier.
- the opening of the expansion section may be provided with a one-way valve or check valve.
- first section chamber may be fluidly connected with a part of an inside of the well tubular metal structure by means of a second fluid channel, which part does not form part of the isolated zone.
- the second fluid channel may be provided with a one-way valve or check valve for taking in fluid from the well tubular metal structure.
- the present invention relates to the use of a downhole stroking tool described above for pulling a plug in a well.
- Fig. 1 shows a downhole stroking tool 1 for providing an axial force in an axial direction of the tool, being also the axial direction of the well, e.g. for pulling a plug 41 and a casing 45.
- the downhole stroking tool comprises a housing 2, a first chamber inside the tool, and a first tool part 4 comprising a pump unit 5 for providing pressurised fluid to the chamber.
- the downhole stroking tool further comprises an electrical motor 42 and an electronic section 43 for controlling the function of the tool.
- the tool is electrically powered through a wireline 44.
- the downhole stroking tool 1 comprises a shaft 6 penetrating the chamber 3 and a first piston 7 dividing the first chamber into a first chamber section 8 and a second chamber section 9.
- the piston forms part of the housing which forms part of a second tool part 10.
- the second tool part 10, the housing 2 and the piston 7 are slidable in relation to the shaft 6 and the first tool part 4 so that the housing moves in relation to the shaft and the shaft is stationary in relation to the pump unit 5 during pressurisation of the first or the second chamber section 8, 9.
- the fluid is fed to one of the chamber sections through a fluid channel 19 in the first part and a fluid channel 19 in the shaft 6 for providing fluid to and/or from the chamber 3 during pressurisation of the first or the second chamber section 8, 9, generating a pressure on the piston 7.
- the pressurisation of the first chamber section generates a pressure on the piston and a down stroke in that the housing moves down away from the pump, as shown in Fig. 3 .
- fluid is led into the first chamber section 8
- fluid is forced out of the second chamber section.
- a pressure is generated on the piston, providing an up stroke movement in that the housing moves from the position in Fig. 3 to the position in Fig. 2 and thus moves towards the pump.
- the shaft is fixedly connected with the first tool part, and the housing is slidable in relation to the first tool part and a first end part 16 of the housing overlaps the first tool part.
- the housing When overlapping, the housing is supported partly by the first part, since the first part 4 has an outer diameter OD T which is substantially the same as an inner diameter ID H of the housing.
- the housing comprises a second end part 17 connected to a connector 15, illustrated by dotted lines.
- the connector may furthermore be connected to an operational tool 18, also illustrated with dotted lines.
- the force generated by the downhole stroking tool is mainly transferred via the housing and not as in prior art tools via the shaft to e.g. a plug.
- the shaft bends easier than when being aligned with the element.
- the force is transferred further away from the centre and thus eliminates the risk of bending when being off the centre in relation to the element.
- the tool of the present invention is therefore capable of transferring a higher amount of force as the risk of the shaft bending while transferring a high force is substantially decreased.
- the shaft bends when the force exceeds a certain level.
- Increasing the shaft diameter reduces the area of the piston and thus reduces the force the piston is capable of providing.
- the prior art tools cannot provide a force substantially above 50,000 pounds but the tool of present invention can provide a force of 100,000 pounds.
- the housing is supported along its stroke by the piston, whereby the downhole stroking tool is capable of transferring a higher axial force substantially without bending compared to prior art tools.
- the shaft does not transfer any forces and thus does not have to have a certain diameter, and the shaft diameter can therefore be reduced and the piston area increased, enabling the tool to generate a higher axial force.
- the tool is powered by a battery in the tool and is thus wireless.
- the pump may be powered by high pressured fluid from surface down through a pipe, coiled tubing or the casing.
- the downhole stroking tool 1 further comprises a pressure intensifier 11 arranged downstream of the pump to increase the pressure before being fed to the chamber 3.
- the pressure intensifier comprises an intensifier piston 36 having one surface area closest to the pump unit 5 which is larger than another surface area closest the chamber.
- the pressure intensifier further comprises fluid channels 26 for providing fluid to and from the pressure intensifier 11, and comprises at least one valve 37.
- the downhole stroking tool is capable of generating a higher fluid pressure than the pump is capable of providing, and thus, the downhole stroking tool is capable of providing a higher axial force than without the pressure intensifier. Due to the restrictions downhole in a well, the size of the pump is also restricted.
- the first tool part has at least one sealing element 32 for providing a seal against the housing.
- the sealing element is arranged in a groove in the first tool part closest to the piston so as to provide a seal even when the housing moves.
- a first end 33 of the shaft 6 is fixedly arranged in the first tool part, and a second end part 34 of the shaft 6 is fastened in the tool end element 35, the tool end element defining one end of the chamber and the first tool part 4 defining the other end.
- Another sealing element 32 is arranged in a circumferential groove in the tool end element 35 so as to provide a seal between the sliding housing 2 and the tool end element 35.
- the tool further comprises a valve block 31 for controlling which chamber section is fed pressurised fluid and thus if the downhole stroking tool 1 provides an upstroke or downstroke movement.
- the shaft has a through-bore 12 in which an electrical conductive means 14 runs through the shaft to provide electric power to e.g. an operational tool 18.
- the shaft thus comprises both a fluid channel and a through-bore for electrical means.
- the operational tool may be electrically powered through the electrical conductive means 14 running through the shaft.
- the operational tool may be a plug connector, a fishing neck, a key tool or a setting tool.
- the downhole stroking tool according to Fig. 6 further comprises a second chamber 21 divided by a second piston 22.
- the second chamber comprises a first chamber section 8b and a second chamber section 9b.
- the first chamber section 8b and a second chamber section 9b of the second chamber 21 have the same configuration as the first chamber section 8a and a second chamber section 9a of the first chamber 3 as they are divided by a piston.
- the first and second chambers 3, 21 are both comprised in the housing 2, and both the first piston 7 and the second piston 22 are connected to or form part of the housing and slide along the housing 2.
- the shaft comprises an intermediate part 23 dividing the first and the second chamber and forming the ends of both the first and the second chamber.
- the first chamber 3 is defined by the first tool part 4, the housing 2, the shaft 6 and the intermediate part 23.
- the second chamber 21 is defined by the intermediate part 23, the housing 2, the shaft 6 and the tool end element 35.
- the intermediate part supports the housing, also while the housing slides in relation to the intermediate part.
- the shaft has several fluid channels, one in fluid communication with the second chamber section 9a of the first chamber 3 and one in fluid communication with the second chamber section 9b of the second chamber 21.
- a second fluid channel is in fluid communication with the first chamber section 8b of the second chamber 21.
- the fluid communication with the second chamber section 9b of the second chamber 21 may be in a separate fluid channel.
- the downhole stroking tool further comprises an anchoring section 51 having projectable fixation units 55 for fixating the downhole stroking tool in the casing in the well 101.
- Fig. 7 discloses a downhole system 100 comprising the downhole stroking tool 1 and a driving unit 52, such as a downhole tractor, for propelling the system forward in a well.
- a driving unit 52 such as a downhole tractor
- the downhole system 100 comprises the downhole stroking tool 1 and a well tubular metal structure 45.
- the well tubular metal structure 45 comprises an annular barrier 71 which is expanded in the annulus 72 surrounding the well tubular metal structure to isolate a first zone 101 from a second zone opposite the annular barrier.
- the annular barrier 71 comprises a tubular metal part 73 mounted as part of the well tubular metal structure 45, and an expandable metal sleeve 74 connected with the tubular metal part, defining an expandable space 78.
- the annular barrier 71 comprises an expansion opening 75 through which pressurised fluid enters to expand the expandable sleeve.
- the downhole stroking tool 1 comprises an expansion section 76 having circumferential sealing elements 77 arranged on each side of the expansion opening 75 for isolating an expansion zone 103 opposite the expansion opening.
- the tool end element 35 connected with the expansion section and the tool end element comprises fluid channels 70 providing fluid communication between the second chamber section 9 and an opening 73 in the isolation secion 76 opposite the expansion zone 103. This is to provide pressurised fluid into the expandable space and expand the annular barrier 71.
- the fluid in the second chamber section 9 is forced in through the fluid channels 70 in the tool end element 35 and further into the expansion section and into the annular barruer by pressurising the zone 103 opposite the expansion opening 75.
- the fluid channel 19 in the shaft 6 of the downhole stroking tool 1 is fluidly connected with the sealing elements 77 of the expansion section 76 to expand the sealing elements by means of pressurised fluid from the pump unit 5.
- the second tool part 10, the housing 2 and the piston 4 of the downhole stroking tool are connected with a first end 81 of a section shaft 82 of the expansion section.
- a second end 83 of the section shaft is connected to a piston 84 sliding in a section housing 85, dividing a section chamber 80 into a first chamber section 86 in fluid communication with the opening 79 in the expansion section 76 for providing pressurised fluid into the annular barrier and a second chamber section 91.
- the opening 79 of the expansion section 76 is provided with a one-way valve 87 or a check valve.
- the first chamber section 86 is fluidly connected with a part of an inside 89 of the well tubular metal structure by means of a second fluid channel 88, which part of the inside of the well tubular metal structure does not form part of the isolated zone.
- the second fluid channel is provided with a one-way valve 87 or a check valve for taking in fluid from the well tubular metal structure but hindering the fluid from flowing out of the chamber 80.
- fluid or well fluid any kind of fluid that may be present in oil or gas wells downhole, such as natural gas, oil, oil mud, crude oil, water, etc.
- gas is meant any kind of gas composition present in a well, completion, or open hole
- oil is meant any kind of oil composition, such as crude oil, an oil-containing fluid, etc.
- Gas, oil, and water fluids may thus all comprise other elements or substances than gas, oil, and/or water, respectively.
- a casing, production casing or well tubular metal structure is meant any kind of pipe, tubing, tubular, liner, string etc. used downhole in relation to oil or natural gas production.
- a downhole tractor can be used to push the tool all the way into position in the well.
- the downhole tractor 52 may have projectable arms 56 having wheels 57, wherein the wheels contact the inner surface of the casing for propelling the tractor and the tool forward in the casing.
- a downhole tractor is any kind of driving tool capable of pushing or pulling tools in a well downhole, such as a Well Tractor®.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Marine Sciences & Fisheries (AREA)
- Actuator (AREA)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15174393.7A EP3112581A1 (fr) | 2015-06-29 | 2015-06-29 | Outil de battage en fond de trou |
RU2017132259A RU2705666C2 (ru) | 2015-03-03 | 2016-03-02 | Скважинный толкающий инструмент |
CN201680010647.XA CN107429551B (zh) | 2015-03-03 | 2016-03-02 | 井下冲程工具 |
MX2017010986A MX2017010986A (es) | 2015-03-03 | 2016-03-02 | Herramienta de movimiento de carrera de fondo de perforacion. |
MYPI2017001233A MY187492A (en) | 2015-03-03 | 2016-03-02 | Downhole stroking tool |
CA2977210A CA2977210A1 (fr) | 2015-03-03 | 2016-03-02 | Outil de battage de fond de trou |
PCT/EP2016/054452 WO2016139264A1 (fr) | 2015-03-03 | 2016-03-02 | Outil de battage de fond de trou |
AU2016227699A AU2016227699B2 (en) | 2015-03-03 | 2016-03-02 | Downhole stroking tool |
US15/552,579 US10435977B2 (en) | 2015-03-03 | 2016-03-02 | Downhole stroking tool |
EP16707455.8A EP3265644B1 (fr) | 2015-03-03 | 2016-03-02 | Outil de battage en fond de trou |
BR112017017663-7A BR112017017663B1 (pt) | 2015-03-03 | 2016-03-02 | Ferramenta de acesso a fundo de poço, sistema de fundo de poço e uso de uma ferramenta de acesso a fundo de poço |
DK16707455T DK3265644T3 (da) | 2015-03-03 | 2016-03-02 | Borehulsslagværktøj |
SA517382153A SA517382153B1 (ar) | 2015-03-03 | 2017-08-17 | أداة ضاربة أسفل البئر |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15174393.7A EP3112581A1 (fr) | 2015-06-29 | 2015-06-29 | Outil de battage en fond de trou |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3112581A1 true EP3112581A1 (fr) | 2017-01-04 |
Family
ID=53498865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15174393.7A Withdrawn EP3112581A1 (fr) | 2015-03-03 | 2015-06-29 | Outil de battage en fond de trou |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3112581A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3138214A (en) * | 1961-10-02 | 1964-06-23 | Jersey Prod Res Co | Bit force applicator |
WO2008128543A2 (fr) * | 2007-04-24 | 2008-10-30 | Welltec A/S | Outil à mouvement de frappe |
EP2607606A1 (fr) * | 2011-12-21 | 2013-06-26 | Welltec A/S | Outil de réglage |
EP2886790A1 (fr) * | 2013-12-18 | 2015-06-24 | Welltec A/S | Système de déploiement de fond de trou pour éjecter un traceur et/ou prendre un échantillon de fluide |
-
2015
- 2015-06-29 EP EP15174393.7A patent/EP3112581A1/fr not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3138214A (en) * | 1961-10-02 | 1964-06-23 | Jersey Prod Res Co | Bit force applicator |
WO2008128543A2 (fr) * | 2007-04-24 | 2008-10-30 | Welltec A/S | Outil à mouvement de frappe |
EP2607606A1 (fr) * | 2011-12-21 | 2013-06-26 | Welltec A/S | Outil de réglage |
EP2886790A1 (fr) * | 2013-12-18 | 2015-06-24 | Welltec A/S | Système de déploiement de fond de trou pour éjecter un traceur et/ou prendre un échantillon de fluide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3415711A1 (fr) | Outil de pose de pièce rapportée de fond de trou | |
RU2657564C2 (ru) | Скважинный насосный узел и скважинная система | |
US10100599B2 (en) | Annular barrier completion with inductive system | |
EP3265644B1 (fr) | Outil de battage en fond de trou | |
WO2013010777A1 (fr) | Bloc obturateur de puits et outil d'intervention dans des puits | |
EP2505771A1 (fr) | Ensemble formant bras | |
US20160153268A1 (en) | A gas lift system and a gas lift method | |
EP3112581A1 (fr) | Outil de battage en fond de trou | |
EP3070258A1 (fr) | Outil de battage en fond de trou | |
US20080047715A1 (en) | Wellbore tractor with fluid conduit sheath | |
US20150308243A1 (en) | Wireline pump | |
EP3891355B1 (fr) | Outil de fond de trou comportant une longue rallonge en saillie | |
US11624256B2 (en) | Downhole packer assembly | |
EP4245959A1 (fr) | Outil d'expansion filaire | |
EP2518257A1 (fr) | Chaîne d'outil | |
EP3187682A1 (fr) | Barrière annulaire munie d'un conducteur électrique de fond de trou | |
CN115398102A (zh) | 带螺纹连接式导叶的离心井泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170705 |