EP3110916B1 - Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products - Google Patents

Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products Download PDF

Info

Publication number
EP3110916B1
EP3110916B1 EP14816330.6A EP14816330A EP3110916B1 EP 3110916 B1 EP3110916 B1 EP 3110916B1 EP 14816330 A EP14816330 A EP 14816330A EP 3110916 B1 EP3110916 B1 EP 3110916B1
Authority
EP
European Patent Office
Prior art keywords
unit
hydrocracking
stream
units
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14816330.6A
Other languages
German (de)
French (fr)
Other versions
EP3110916A1 (en
Inventor
Arno Johannes Maria OPRINS
Andrew Mark Ward
Ravichander Narayanaswamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Saudi Basic Industries Corp
Original Assignee
SABIC Global Technologies BV
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV, Saudi Basic Industries Corp filed Critical SABIC Global Technologies BV
Publication of EP3110916A1 publication Critical patent/EP3110916A1/en
Application granted granted Critical
Publication of EP3110916B1 publication Critical patent/EP3110916B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Definitions

  • the present invention relates to a process for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products. More in detail, the present invention relates to a process for converting hydrocarbons, especially hydrocarbons originating from refinery operations, such as for example atmospheric distillation unit or a fluid catalytic cracking unit (FCC), into lighter boiling hydrocracked hydrocarbons having a boiling point of cyclobutane and lower.
  • refinery operations such as for example atmospheric distillation unit or a fluid catalytic cracking unit (FCC)
  • FCC fluid catalytic cracking unit
  • US Patent No. 4,137,147 relates to a process for manufacturing ethylene and propylene from a charge having a distillation point lower than about 360 DEG C. and containing at least normal and iso-paraffins having at least 4 carbon atoms per molecule, wherein: the charge is subjected to a hydrogenolysis reaction in a hydrogenolysis zone, in the presence of a catalyst, (b) the effluents from the hydrogenolysis reaction are fed to a separation zone from which are discharged (i) from the top, methane and possibly hydrogen, (ii) a fraction consisting essentially of hydrocarbons with 2 and 3 carbon atoms per molecule, and (iii) from the bottom, a fraction consisting essentially of hydrocarbons with at least 4 carbon atoms per molecule, (c) only the fraction consisting essentially of hydrocarbons with 2 and 3 carbon atoms per molecule is fed to a steam-cracking zone, in the presence of steam, to transform at least a portion of the hydrocarbons with 2
  • US Patent No 3,660,270 relates to a process for producing gasoline which comprises hydrocracking a petroleum distillate in a first conversion zone, separating the effluent from the first conversion zone into a light naphtha fraction, a second fraction having an initial boiling point between 180 and 280 F. and an end boiling point between about 500' to 600 F., and a third heavy fraction, hydrocracking and dehydrogenating the second fraction in a second conversion zone in the presence of a catalyst and recovering from the second conversion zone at least one naphtha product.
  • US patent application No 2009/159493 relates to a method for hydroprocessing a hydrocarbon feedstock, said method employing multiple hydroprocessing zones within a single reaction loop, each zone having one or more catalyst beds.
  • fresh feed is passed to the top of a fixed bed hydrotreater reactor.
  • Hydrogen is added in between the first and second beds, and second and third beds of fixed bed hydrotreater reactor.
  • the hydrotreated jet and diesel range material is recovered as liquid stream at high pressure and pumped to a hydrocracking reactor. Hydrogen is added in between the first and second beds and second and third beds of the hydrocracking reactor.
  • US Patent No 5,603,824 relates to an integrated hydroprocessing method in which hydrocracking, dewaxing and desulfurization all occur in a single, vertical two bed reactor, wherein a distillate is split into heavy and light fractions, the heavy fraction being hydrocracked and partially desulfurized in the top reactor bed, and the effluent from the top bed is then combined with the light fraction and is cascaded into the bottom reactor bed, where dewaxing for pour point reduction and further desulfurization occurs.
  • crude oil is processed, via distillation, into a number of cuts such as naphtha, gas oils and residua.
  • cuts such as naphtha, gas oils and residua.
  • Each of these cuts has a number of potential uses such as for producing transportation fuels such as gasoline, diesel and kerosene or as feeds to some petrochemicals and other processing units.
  • Light crude oil cuts such as naphtha's and some gas oils can be used for producing light olefins and single ring aromatic compounds via processes such as steam cracking in which the hydrocarbon feed stream is evaporated and diluted with steam then exposed to a very high temperature (800°C to 860°C) in short residence time ( ⁇ 1 second) furnace (reactor) tubes.
  • the hydrocarbon molecules in the feed are transformed into (on average) shorter molecules and molecules with lower hydrogen to carbon ratios (such as olefins) when compared to the feed molecules.
  • This process also generates hydrogen as a useful by-product and significant quantities of lower value co-products such as methane and C9+ Aromatics and condensed aromatic species (containing two or more aromatic rings which share edges).
  • the heavier (or higher boiling point) aromatic rich streams such as residua are further processed in a crude oil refinery to maximize the yields of lighter (distillable) products from the crude oil.
  • This processing can be carried out by processes such as hydro-cracking (whereby the hydro-cracker feed is exposed to a suitable catalyst under conditions which result in some fraction of the feed molecules being broken into shorter hydrocarbon molecules with the simultaneous addition of hydrogen).
  • Heavy refinery stream hydrocracking is typically carried out at high pressures and temperatures and thus has a high capital cost.
  • An aspect of the conventional hydrocracking of heavy refinery streams such as residua is that this is typically carried out under compromise conditions which are chosen to achieve the desired overall conversion.
  • the feed streams contain a mixture of species with a range of easiness of cracking this results in some fraction of the distillable products formed by hydrocracking of relatively easily hydrocracked species being further converted under the conditions necessary to hydrocrack species more difficult to hydrocrack.
  • This increases the hydrogen consumption and heat management difficulties associated with the process, and also increases the yield of light molecules such as methane at the expense of more valuable species.
  • US patent application No's 2012/0125813 , US 2012/0125812 and US 2012/0125811 relate to a process for cracking a heavy hydrocarbon feed comprising a vaporization step, a distillation step, a coking step, a hydroprocessing step, and a steam cracking step.
  • US patent application No 2012/0125813 relates to a process for steam cracking a heavy hydrocarbon feed to produce ethylene, propylene, C4 olefins, pyrolysis gasoline, and other products, wherein steam cracking of hydrocarbons, i.e.
  • a mixture of a hydrocarbon feed such as ethane, propane, naphtha, gas oil, or other hydrocarbon fractions
  • a hydrocarbon feed such as ethane, propane, naphtha, gas oil, or other hydrocarbon fractions
  • olefins such as ethylene, propylene, butenes, butadiene, and aromatics such as benzene, toluene, and xylenes.
  • US patent application No 2009/0050523 relates to the formation of olefins by thermal cracking in a pyrolysis furnace of liquid whole crude oil and/or condensate derived from natural gas in a manner that is integrated with a hydrocracking operation.
  • US patent application No 2008/0093261 relates to the formation of olefins by hydrocarbon thermal cracking in a pyrolysis furnace of liquid whole crude oil and/or condensate derived from natural gas in a manner that is integrated with a crude oil refinery.
  • An object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products.
  • Another object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products, especially LPG, while minimizing methane.
  • Another object of the present invention is to provide a method for producing light boiling hydrocarbon products which can be used as a feedstock for further chemical processing.
  • Another object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into high value products, wherein the production of low value products such as methane and C9+ aromatics species is minimized.
  • the present invention relates to a process according to claim 1. It is preferred that the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point lower than cyclobutane, or in a preferred embodiment methylpropane (isobutene). According to another embodiment the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point lower than C5, more preferably lower than C6.
  • each hydrocracking unit present in the cascade of hydrocracking units is optimised to a specific yield distribution of lighter products, e.g. one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane.
  • one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane e.g. one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane.
  • cascade of hydrocracking unit(s) means a series of hydrocracking units.
  • the hydrocracking units are separated from each other by a separation unit, i.e. a unit in which the cracked feedstock is separated into a top stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavy hydrocarbon fraction.
  • the bottom stream comprising a heavy hydrocarbon fraction of such a hydrocracking unit is a feedstock for a subsequent hydrocracking unit.
  • Such a construction is different from a construction wherein several catalyst beds are arranged vertically wherein the effluent from one bed is cascaded into another bed, namely from the top bed into the bottom bed, since such a cascade does not apply the intermediate step of withdrawal of the complete effluent and the separation thereof into a top stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavy hydrocarbon fraction, wherein the bottom stream comprising a heavy hydrocarbon fraction is a feedstock for a subsequent hydrocracking unit.
  • the separation unit herein may comprise several separation sections.
  • the petrochemicals processes further preferably comprise one or more chosen from the group of alkylation processes, high severity catalytic cracking (including high severity FCC), light naphtha aromatization (LNA), reforming and mild hydrocracking.
  • high severity catalytic cracking including high severity FCC
  • LNA light naphtha aromatization
  • reforming and mild hydrocracking.
  • the choice of the petrochemicals processes mentioned before is dependent on the composition of the light boiling hydrocarbon fractions. If, for example a stream mainly comprising C5 is obtained, the pentane dehydrogenation unit would be preferred. In addition, such a stream mainly comprising C5 can be sent to high severity catalytic cracking (including high severity FCC) for making propylene and ethylene as well. If, for example a stream mainly comprising C6 is obtained, a process such as light naphtha aromatization (LNA), reforming and mild hydrocracking, would be preferred.
  • LNA light naphtha aromatization
  • the process comprises separating said light boiling hydrocarbon fractions into a stream comprising C1, a stream comprising C2, a stream comprising C3 and a stream comprising C4 and preferably feeding said stream comprising C3 to a propane dehydrogenation unit and preferably feeding said stream comprising C4 to a butane dehydrogenation unit, respectively.
  • the stream comprising C2 is fed to a gas steam cracker unit.
  • the present method comprises as specific petrochemicals processes the combination of a gas steam cracker unit and at least one unit chosen from the group of a butanes dehydrogenation unit, a propane dehydrogenation unit, a combined propane-butanes dehydrogenation unit, or a combination of units thereof to produce a mixed product stream.
  • This combination of units provides a high yield of the desired products, namely olefinic and aromatic petrochemicals, wherein the portion of the crude oil converted to LPG is increased significantly.
  • the light boiling hydrocarbon fractions comprising stream is separated into one or more streams, wherein the stream comprising hydrogen is preferably used as a hydrogen source for hydrocracking purpose, the stream comprising methane is preferably used as a fuel source, the stream comprising ethane is preferably used as a feed for the gas steam cracking unit, the stream comprising propane is preferably used as a feed for a propane dehydrogenation unit, a stream comprising butanes is preferably used as a feed for a butane dehydrogenation unit, a stream comprising C1-minus is preferably used as a fuel source and/or as a hydrogen source, a stream comprising C3-minus is preferably used as a feed for a propane dehydrogenation unit but, according to another embodiment, also as a feed for the gas steam cracking unit, a stream comprising C2-C3 is preferably used as a feed for a propane dehydrogenation unit, but, according to another embodiment, also as a feed for the gas steam cracking unit, a
  • the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point greater than methane and equal to or lower than that of cyclobutane.
  • a hydrocarbon feedstock for example crude oil
  • ADU fractional distillation column
  • the material boiling at a higher temperature than 12 °C the boiling point for cyclobutane
  • a series (or cascade) of hydrocracking process reactors with a range of (increasingly severe) operating conditions / catalysts etc. chosen to maximise the yield of material suitable for other petrochemicals processes (such as steam crackers or dehydrogenation units) without the need for another stage of hydrocracking.
  • lighter material is separated from the lighter products and only the heavier materials are fed to the next, more severe, stage of hydrocracking whilst lighter material is separated and thus not exposed to further hydrocracking.
  • This lighter material (boiling point ⁇ 12 °C) is fed to other processes such as steam cracking, dehydrogenation processes or a combination of these processes.
  • the present invention will be discussed in more detail in the experimental section of this application.
  • the present inventors optimise each step of the hydrocracking cascade (via chosen operating conditions, catalyst type and reactor design) such that the ultimate yield of desired products (material with boiling point higher than methane and lower than cyclobutane) is maximised and capital and associating operating costs are minimised.
  • the present process further comprises separating hydrogen from the lighter boiling hydrocarbon products and feeding the hydrogen thus separated to a hydrocracking unit in the cascade of hydrocracking unit(s), wherein the hydrogen thus separated is preferably fed to a preceding hydrocracker unit in the cascade of hydrocracking unit(s).
  • the hydrocarbon feedstock can be a cut from a crude oil atmospheric distillation unit (ADU), such as naphtha, ADU bottom stream, atmospheric gas oils, and products from refinery processes, such as cycle oils from an FCC unit or heavy cracked naphthas.
  • ADU crude oil atmospheric distillation unit
  • the present cascade of hydrocracking units comprises at least two hydrocracking units, wherein said hydrocracking units are preferably preceded by a hydrotreating unit, wherein the bottom stream of said hydrotreating unit is used as a feedstock for said first hydrocracking unit, especially that the temperature prevailing in said hydrotreating unit is higher than in said first hydrocracking unit.
  • the temperature in the first hydrocracking unit is lower than the temperature in the second hydrocracking unit.
  • the particle size of the catalyst present in the cascade of hydrocracking units decreases from the first hydrocracking unit to the subsequent hydrocracking unit(s).
  • the temperature in the cascade of hydrocracking units increases, wherein the temperature prevailing in said second hydrocracking unit is higher than in said hydrotreating unit.
  • the reactor type design of the present hydrocracking unit(s) is chosen from the group of the fixed bed type, ebulatted bed reactor type and the slurry phase type. This may involve a series of dissimilar processes such as first a fixed bed hydrotreater, followed by a fixed bed hydrocracker, followed by an ebullated bed hydro-cracker, followed by a last hydrocracker which is a slurry hydrocracker.
  • the reactor type design of said hydrotreating unit is of the fixed bed type
  • the reactor type design of said first hydrocracking unit is of the ebulatted bed reactor type
  • the reactor type design of said second hydrocracking unit is of the slurry phase type.
  • Figure 1 is a schematic illustration of an embodiment of the process of the invention.
  • crude oil feed 1 an atmospheric distillation unit 2 for separating the crude oil into stream 29, comprising hydrocarbons having a boiling point of cyclobutane, i.e. 12 °C, and lower.
  • Bottom stream 3 leaving distillation unit 2 is fed to a hydro processing unit 4, for example a hydro treating unit, wherein the thus treated hydrocarbons 5 are sent to a separation unit 6 producing a gaseous stream 8, a hydrogen comprising stream 10 and a bottom stream 13 comprising hydrocarbons having a boiling point of cyclobutane and higher.
  • separation unit 6 has been identified as a single separation unit, in practice such a separation unit may comprise several separation units.
  • Stream 13 is fed into a hydrocracking unit 15 and its effluent 16 is sent to a separation unit 17 producing gaseous stream 18, a hydrogen comprising stream 10 and a bottom stream 20 comprising hydrocarbons having a boiling point of cyclobutane and higher. Hydrogen make up is indicated with reference number 41.
  • the effluent 20 from separation unit 17 is sent to a further hydrocracking unit 22 and its effluent 23 is sent to a separation unit 24 producing a gaseous top stream 28, a hydrogen comprising stream 10 and a bottom stream 27.
  • Bottom stream 27 can be partly recycled as stream 25 to the inlet of hydrocracking unit 22.
  • Bottom stream 27 can be further separated in separation units (not shown here).
  • the hydrogen containing stream 10 leaving separation unit 24 is sent to a compressor and returned to the inlet of hydrocracking unit 22. Since hydrocracking unit 22 in this figure is the last hydrocracking unit in the cascade, the reactor type design of this hydrocracking unit 22 is of the slurry phase type.
  • the top stream 29 coming from distillation unit 2 and streams 8, 18 and 28 are and sent to a number of processing units.
  • the combined streams 29, 8, 18, and 28, i.e. light boiling hydrocarbon fractions are separated in separator section 30, which section 30 may comprise several separation units.
  • separator section 30 may comprise several separation units.
  • Stream 33 for example a stream comprising C2
  • gas steam cracker unit 34 is sent to gas steam cracker unit 34, and its effluent 36 is sent to a further separation section 38, which section 38 may comprise several separation units.
  • Streams 31, 32 are sent to a dehydrogenation unit 35, such as one or more of pentane dehydrogenation unit, propane dehydrogenation unit, butane dehydrogenation unit and mixed propane-butane dehydrogenation unit.
  • a stream comprising C3 is sent to a propane dehydrogenation unit 35 and a stream comprising C4 is sent to a butane dehydrogenation unit 35.
  • the effluent 37 is sent to a further separation section 38, which section 38 may comprise several separation units.
  • aromatization unit 34 and dehydrogenation unit 35 are one or more chosen form aromatization unit, alkylation processes, high severity catalytic cracking (including high severity FCC), light naphtha aromatization (LNA), reforming and mild hydrocracking.
  • Separation section 38 produces into individual streams 39, 40, 41. From individual streams 39, 40, 41 olefins and aromatics can be recovered. Although only three individual streams 39, 40, 41 have been shown, the present invention is not restricted to any number of individual streams.
  • hydroprocessing unit 4 hydrocracking unit 15 and hydrocracking unit 22 under such processing conditions that the composition of streams 8, 18 and 28 are such that each of streams 8, 18 and 28 is sent to one or more different processing units, as mentioned before.
  • the figure shows that streams 8, 18 and 28 are combined and sent as one single feed to unit 30, some embodiments prefer to have separate streams 8, 18 and 28 sent to individual processing units. This means that separator section 30 can be bypassed.

Description

  • The present invention relates to a process for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products. More in detail, the present invention relates to a process for converting hydrocarbons, especially hydrocarbons originating from refinery operations, such as for example atmospheric distillation unit or a fluid catalytic cracking unit (FCC), into lighter boiling hydrocracked hydrocarbons having a boiling point of cyclobutane and lower.
  • US Patent No. 4,137,147 relates to a process for manufacturing ethylene and propylene from a charge having a distillation point lower than about 360 DEG C. and containing at least normal and iso-paraffins having at least 4 carbon atoms per molecule, wherein: the charge is subjected to a hydrogenolysis reaction in a hydrogenolysis zone, in the presence of a catalyst, (b) the effluents from the hydrogenolysis reaction are fed to a separation zone from which are discharged (i) from the top, methane and possibly hydrogen, (ii) a fraction consisting essentially of hydrocarbons with 2 and 3 carbon atoms per molecule, and (iii) from the bottom, a fraction consisting essentially of hydrocarbons with at least 4 carbon atoms per molecule, (c) only the fraction consisting essentially of hydrocarbons with 2 and 3 carbon atoms per molecule is fed to a steam-cracking zone, in the presence of steam, to transform at least a portion of the hydrocarbons with 2 and 3 carbon atoms per molecule to monoolefinic hydrocarbons; the fraction consisting essentially of hydrocarbons with at least 4 carbon atoms per molecule, obtained from the bottom of the separation zone, is supplied to a second hydrogenolysis zone where it is treated in the presence of a catalyst, the effluent from the second hydrogenolysis zone is supplied to a separation zone to discharge, on the one hand, hydrocarbons with at least 4 carbon atoms per molecule which are recycled at least partly to the second hydrogenolysis zone, and, on the other hand, a fraction consisting essentially of a mixture of hydrogen, methane and saturated hydrocarbons with 2 and 3 carbon atoms per molecule; a hydrogen stream and a methane stream are separated from the mixture and there is fed to the steam-cracking zone the hydrocarbons of the mixture with 2 and 3 carbon atoms, together with the fraction consisting essentially of hydrocarbons with 2 and 3 carbon atoms per molecule as recovered from the separation zone following the first hydrogenolysis zone. At the outlet of the steam-cracking zone are thus obtained, in addition to a stream of methane and hydrogen and a stream of paraffinic hydrocarbons with 2 and 3 carbon atoms per molecule, olefins with 2 and 3 carbon atoms per molecule and products with at least 4 carbon atoms per molecule.
  • US Patent No 3,660,270 relates to a process for producing gasoline which comprises hydrocracking a petroleum distillate in a first conversion zone, separating the effluent from the first conversion zone into a light naphtha fraction, a second fraction having an initial boiling point between 180 and 280 F. and an end boiling point between about 500' to 600 F., and a third heavy fraction, hydrocracking and dehydrogenating the second fraction in a second conversion zone in the presence of a catalyst and recovering from the second conversion zone at least one naphtha product.
  • US patent application No 2009/159493 relates to a method for hydroprocessing a hydrocarbon feedstock, said method employing multiple hydroprocessing zones within a single reaction loop, each zone having one or more catalyst beds. According to this method fresh feed is passed to the top of a fixed bed hydrotreater reactor. Hydrogen is added in between the first and second beds, and second and third beds of fixed bed hydrotreater reactor. The hydrotreated jet and diesel range material is recovered as liquid stream at high pressure and pumped to a hydrocracking reactor. Hydrogen is added in between the first and second beds and second and third beds of the hydrocracking reactor.
  • US Patent No 5,603,824 relates to an integrated hydroprocessing method in which hydrocracking, dewaxing and desulfurization all occur in a single, vertical two bed reactor, wherein a distillate is split into heavy and light fractions, the heavy fraction being hydrocracked and partially desulfurized in the top reactor bed, and the effluent from the top bed is then combined with the light fraction and is cascaded into the bottom reactor bed, where dewaxing for pour point reduction and further desulfurization occurs.
  • Conventionally, crude oil is processed, via distillation, into a number of cuts such as naphtha, gas oils and residua. Each of these cuts has a number of potential uses such as for producing transportation fuels such as gasoline, diesel and kerosene or as feeds to some petrochemicals and other processing units.
  • Light crude oil cuts such as naphtha's and some gas oils can be used for producing light olefins and single ring aromatic compounds via processes such as steam cracking in which the hydrocarbon feed stream is evaporated and diluted with steam then exposed to a very high temperature (800°C to 860°C) in short residence time (<1 second) furnace (reactor) tubes. In such a process the hydrocarbon molecules in the feed are transformed into (on average) shorter molecules and molecules with lower hydrogen to carbon ratios (such as olefins) when compared to the feed molecules. This process also generates hydrogen as a useful by-product and significant quantities of lower value co-products such as methane and C9+ Aromatics and condensed aromatic species (containing two or more aromatic rings which share edges).
  • Typically, the heavier (or higher boiling point) aromatic rich streams, such as residua are further processed in a crude oil refinery to maximize the yields of lighter (distillable) products from the crude oil. This processing can be carried out by processes such as hydro-cracking (whereby the hydro-cracker feed is exposed to a suitable catalyst under conditions which result in some fraction of the feed molecules being broken into shorter hydrocarbon molecules with the simultaneous addition of hydrogen). Heavy refinery stream hydrocracking is typically carried out at high pressures and temperatures and thus has a high capital cost.
  • An aspect of the conventional hydrocracking of heavy refinery streams such as residua is that this is typically carried out under compromise conditions which are chosen to achieve the desired overall conversion. As the feed streams contain a mixture of species with a range of easiness of cracking this results in some fraction of the distillable products formed by hydrocracking of relatively easily hydrocracked species being further converted under the conditions necessary to hydrocrack species more difficult to hydrocrack. This increases the hydrogen consumption and heat management difficulties associated with the process, and also increases the yield of light molecules such as methane at the expense of more valuable species.,
  • US patent application No's 2012/0125813 , US 2012/0125812 and US 2012/0125811 relate to a process for cracking a heavy hydrocarbon feed comprising a vaporization step, a distillation step, a coking step, a hydroprocessing step, and a steam cracking step. For example, US patent application No 2012/0125813 relates to a process for steam cracking a heavy hydrocarbon feed to produce ethylene, propylene, C4 olefins, pyrolysis gasoline, and other products, wherein steam cracking of hydrocarbons, i.e. a mixture of a hydrocarbon feed such as ethane, propane, naphtha, gas oil, or other hydrocarbon fractions, is a non-catalytic petrochemical process that is widely used to produce olefins such as ethylene, propylene, butenes, butadiene, and aromatics such as benzene, toluene, and xylenes.
  • US patent application No 2009/0050523 relates to the formation of olefins by thermal cracking in a pyrolysis furnace of liquid whole crude oil and/or condensate derived from natural gas in a manner that is integrated with a hydrocracking operation.
  • US patent application No 2008/0093261 relates to the formation of olefins by hydrocarbon thermal cracking in a pyrolysis furnace of liquid whole crude oil and/or condensate derived from natural gas in a manner that is integrated with a crude oil refinery.
  • An object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products.
  • Another object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products, especially LPG, while minimizing methane.
  • Another object of the present invention is to provide a method for producing light boiling hydrocarbon products which can be used as a feedstock for further chemical processing.
  • Another object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into high value products, wherein the production of low value products such as methane and C9+ aromatics species is minimized.
  • The present invention relates to a process according to claim 1. It is preferred that the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point lower than cyclobutane, or in a preferred embodiment methylpropane (isobutene). According to another embodiment the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point lower than C5, more preferably lower than C6.
  • According to another embodiment each hydrocracking unit present in the cascade of hydrocracking units is optimised to a specific yield distribution of lighter products, e.g. one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane. In such an embodiment wherein the compositions of the light boiling hydrocarbon fractions are different, it is preferred to further process the light boiling hydrocarbon fractions separately.
  • The term "cascade of hydrocracking unit(s)" as used herein means a series of hydrocracking units. The hydrocracking units are separated from each other by a separation unit, i.e. a unit in which the cracked feedstock is separated into a top stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavy hydrocarbon fraction. And the bottom stream comprising a heavy hydrocarbon fraction of such a hydrocracking unit is a feedstock for a subsequent hydrocracking unit. Such a construction is different from a construction wherein several catalyst beds are arranged vertically wherein the effluent from one bed is cascaded into another bed, namely from the top bed into the bottom bed, since such a cascade does not apply the intermediate step of withdrawal of the complete effluent and the separation thereof into a top stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavy hydrocarbon fraction, wherein the bottom stream comprising a heavy hydrocarbon fraction is a feedstock for a subsequent hydrocracking unit. The separation unit herein may comprise several separation sections.
  • The petrochemicals processes further preferably comprise one or more chosen from the group of alkylation processes, high severity catalytic cracking (including high severity FCC), light naphtha aromatization (LNA), reforming and mild hydrocracking.
  • The choice of the petrochemicals processes mentioned before is dependent on the composition of the light boiling hydrocarbon fractions. If, for example a stream mainly comprising C5 is obtained, the pentane dehydrogenation unit would be preferred. In addition, such a stream mainly comprising C5 can be sent to high severity catalytic cracking (including high severity FCC) for making propylene and ethylene as well. If, for example a stream mainly comprising C6 is obtained, a process such as light naphtha aromatization (LNA), reforming and mild hydrocracking, would be preferred. The process comprises separating said light boiling hydrocarbon fractions into a stream comprising C1, a stream comprising C2, a stream comprising C3 and a stream comprising C4 and preferably feeding said stream comprising C3 to a propane dehydrogenation unit and preferably feeding said stream comprising C4 to a butane dehydrogenation unit, respectively.
  • The stream comprising C2 is fed to a gas steam cracker unit.
  • Thus the present method comprises as specific petrochemicals processes the combination of a gas steam cracker unit and at least one unit chosen from the group of a butanes dehydrogenation unit, a propane dehydrogenation unit, a combined propane-butanes dehydrogenation unit, or a combination of units thereof to produce a mixed product stream. This combination of units provides a high yield of the desired products, namely olefinic and aromatic petrochemicals, wherein the portion of the crude oil converted to LPG is increased significantly.
  • According to a preferred embodiment the light boiling hydrocarbon fractions comprising stream is separated into one or more streams, wherein the stream comprising hydrogen is preferably used as a hydrogen source for hydrocracking purpose, the stream comprising methane is preferably used as a fuel source, the stream comprising ethane is preferably used as a feed for the gas steam cracking unit, the stream comprising propane is preferably used as a feed for a propane dehydrogenation unit, a stream comprising butanes is preferably used as a feed for a butane dehydrogenation unit, a stream comprising C1-minus is preferably used as a fuel source and/or as a hydrogen source, a stream comprising C3-minus is preferably used as a feed for a propane dehydrogenation unit but, according to another embodiment, also as a feed for the gas steam cracking unit, a stream comprising C2-C3 is preferably used as a feed for a propane dehydrogenation unit, but, according to another embodiment, also as a feed for the gas steam cracking unit, a stream comprising C1-C3 is preferably used as a feed for a propane dehydrogenation unit, but, according to another embodiment, also as a feed for the gas steam cracking unit, a stream comprising C1-C4 butanes is preferably used as a feed for a butane dehydrogenation unit, a stream comprising C2-C4 butanes is preferably used as a feed for a butane dehydrogenation unit, a stream comprising C2-minus is preferably used as a feed for the gas steam cracking unit, a stream comprising C3-C4 is preferably used as a feed for a propane or butane dehydrogenation unit, or a combined propane and butane dehydrogenation unit, a stream comprising C4-minus is preferably used as a feed for a butane dehydrogenation unit.
  • According to the present process it is preferred that the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point greater than methane and equal to or lower than that of cyclobutane.
  • According to the present invention a hydrocarbon feedstock, for example crude oil, is fed to a fractional distillation column (ADU) and the material boiling at a higher temperature than 12 °C (the boiling point for cyclobutane) is fed to a series (or cascade) of hydrocracking process reactors with a range of (increasingly severe) operating conditions / catalysts etc. chosen to maximise the yield of material suitable for other petrochemicals processes (such as steam crackers or dehydrogenation units) without the need for another stage of hydrocracking. After each step of hydrocracking the remaining heavy material (boiling point > 12 °C) is separated from the lighter products and only the heavier materials are fed to the next, more severe, stage of hydrocracking whilst lighter material is separated and thus not exposed to further hydrocracking. This lighter material (boiling point <12 °C) is fed to other processes such as steam cracking, dehydrogenation processes or a combination of these processes. The present invention will be discussed in more detail in the experimental section of this application.
  • The present inventors optimise each step of the hydrocracking cascade (via chosen operating conditions, catalyst type and reactor design) such that the ultimate yield of desired products (material with boiling point higher than methane and lower than cyclobutane) is maximised and capital and associating operating costs are minimised.
  • It is preferred to combine the lighter boiling hydrocarbon fractions from all hydrocracking units and to process them as a feedstock for petrochemicals processes.
  • The present process further comprises separating hydrogen from the lighter boiling hydrocarbon products and feeding the hydrogen thus separated to a hydrocracking unit in the cascade of hydrocracking unit(s), wherein the hydrogen thus separated is preferably fed to a preceding hydrocracker unit in the cascade of hydrocracking unit(s).
  • The hydrocarbon feedstock can be a cut from a crude oil atmospheric distillation unit (ADU), such as naphtha, ADU bottom stream, atmospheric gas oils, and products from refinery processes, such as cycle oils from an FCC unit or heavy cracked naphthas.
  • The present cascade of hydrocracking units comprises at least two hydrocracking units, wherein said hydrocracking units are preferably preceded by a hydrotreating unit, wherein the bottom stream of said hydrotreating unit is used as a feedstock for said first hydrocracking unit, especially that the temperature prevailing in said hydrotreating unit is higher than in said first hydrocracking unit.
  • In addition it is preferred that the temperature in the first hydrocracking unit is lower than the temperature in the second hydrocracking unit.
  • In addition it is also preferred that the particle size of the catalyst present in the cascade of hydrocracking units decreases from the first hydrocracking unit to the subsequent hydrocracking unit(s).
  • According to a preferred embodiment the temperature in the cascade of hydrocracking units increases, wherein the temperature prevailing in said second hydrocracking unit is higher than in said hydrotreating unit.
  • The reactor type design of the present hydrocracking unit(s) is chosen from the group of the fixed bed type, ebulatted bed reactor type and the slurry phase type. This may involve a series of dissimilar processes such as first a fixed bed hydrotreater, followed by a fixed bed hydrocracker, followed by an ebullated bed hydro-cracker, followed by a last hydrocracker which is a slurry hydrocracker. Alternatively, the reactor type design of said hydrotreating unit is of the fixed bed type, the reactor type design of said first hydrocracking unit is of the ebulatted bed reactor type and the reactor type design of said second hydrocracking unit is of the slurry phase type.
  • In the present process it is preferred to recycle the bottom stream of the final hydrocracking unit to the inlet of said final hydrocracking unit.
  • The invention will be described in further detail below and in conjunction with the attached drawings in which the same or similar elements are referred to by the same number.
  • Figure 1 is a schematic illustration of an embodiment of the process of the invention.
  • Referring now to the process and apparatus schematically depicted in the sole figure 1, there is shown crude oil feed 1, an atmospheric distillation unit 2 for separating the crude oil into stream 29, comprising hydrocarbons having a boiling point of cyclobutane, i.e. 12 °C, and lower. Bottom stream 3 leaving distillation unit 2 is fed to a hydro processing unit 4, for example a hydro treating unit, wherein the thus treated hydrocarbons 5 are sent to a separation unit 6 producing a gaseous stream 8, a hydrogen comprising stream 10 and a bottom stream 13 comprising hydrocarbons having a boiling point of cyclobutane and higher. Although separation unit 6 has been identified as a single separation unit, in practice such a separation unit may comprise several separation units. Stream 13 is fed into a hydrocracking unit 15 and its effluent 16 is sent to a separation unit 17 producing gaseous stream 18, a hydrogen comprising stream 10 and a bottom stream 20 comprising hydrocarbons having a boiling point of cyclobutane and higher. Hydrogen make up is indicated with reference number 41. The effluent 20 from separation unit 17 is sent to a further hydrocracking unit 22 and its effluent 23 is sent to a separation unit 24 producing a gaseous top stream 28, a hydrogen comprising stream 10 and a bottom stream 27. Bottom stream 27 can be partly recycled as stream 25 to the inlet of hydrocracking unit 22. Bottom stream 27 can be further separated in separation units (not shown here). The hydrogen containing stream 10 leaving separation unit 24 is sent to a compressor and returned to the inlet of hydrocracking unit 22. Since hydrocracking unit 22 in this figure is the last hydrocracking unit in the cascade, the reactor type design of this hydrocracking unit 22 is of the slurry phase type.
  • The top stream 29 coming from distillation unit 2 and streams 8, 18 and 28 are and sent to a number of processing units. According to a preferred embodiment the combined streams 29, 8, 18, and 28, i.e. light boiling hydrocarbon fractions, are separated in separator section 30, which section 30 may comprise several separation units. In the figure three separated streams 31, 32, 33 have been shown, but the present invention is not restricted to any number of streams. Stream 33, for example a stream comprising C2, is sent to gas steam cracker unit 34, and its effluent 36 is sent to a further separation section 38, which section 38 may comprise several separation units. Streams 31, 32 are sent to a dehydrogenation unit 35, such as one or more of pentane dehydrogenation unit, propane dehydrogenation unit, butane dehydrogenation unit and mixed propane-butane dehydrogenation unit. For example a stream comprising C3 is sent to a propane dehydrogenation unit 35 and a stream comprising C4 is sent to a butane dehydrogenation unit 35. The effluent 37 is sent to a further separation section 38, which section 38 may comprise several separation units. Although not shown, other examples of petrochemicals processes, in addition to gas steam cracking unit 34 and dehydrogenation unit 35, are one or more chosen form aromatization unit, alkylation processes, high severity catalytic cracking (including high severity FCC), light naphtha aromatization (LNA), reforming and mild hydrocracking. Separation section 38 produces into individual streams 39, 40, 41. From individual streams 39, 40, 41 olefins and aromatics can be recovered. Although only three individual streams 39, 40, 41 have been shown, the present invention is not restricted to any number of individual streams.
  • As shown here it is possible to separate the combined streams 29, 8, 18, 28 into a into a stream comprising C1, a stream comprising C2, a stream comprising C3 and a stream comprising C4 and feeding said stream comprising C3 to a propane dehydrogenation unit 35 and feeding the stream comprising C4 to a butane dehydrogenation unit 35, and feeding the stream comprising C2 to a gas steam cracker unit 34.
  • In addition, it is also possible to run hydroprocessing unit 4, hydrocracking unit 15 and hydrocracking unit 22 under such processing conditions that the composition of streams 8, 18 and 28 are such that each of streams 8, 18 and 28 is sent to one or more different processing units, as mentioned before. Although the figure shows that streams 8, 18 and 28 are combined and sent as one single feed to unit 30, some embodiments prefer to have separate streams 8, 18 and 28 sent to individual processing units. This means that separator section 30 can be bypassed.

Claims (12)

  1. A process for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products, said lighter boiling hydrocarbon products being suitable as feedstock's for petrochemicals processes, said converting process comprising the following steps of:
    feeding a heavy hydrocarbon feedstock to a cascade of hydrocracking units, wherein the cascade of hydrocracking units comprises at least two hydrocracking units
    cracking said feedstock in a hydrocracking unit,
    separating said cracked feedstock into a stream comprising hydrogen, a stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavier hydrocarbon fraction
    feeding said bottom stream of such a hydrocracking unit as a feedstock for a subsequent hydrocracking unit in said cascade of hydrocracking units, wherein the process conditions in each hydrocracking unit are different from each other, in which the temperature conditions from the first to the subsequent hydrocracking units increases, wherein the reactor type design of the last hydrocracking unit in said cascade of hydrocracking units is of the slurry phase type, and
    sending the light boiling hydrocarbon fractions from each hydrocracking unit to petrochemicals processes, comprising at least a gas steam cracking unit and one or more units chosen from the group of pentane dehydrogenation unit, propane dehydrogenation unit, butane dehydrogenation unit and mixed propane-butane dehydrogenation unit,
    further comprising separating said light boiling hydrocarbon fractions into a stream comprising C1, a stream comprising C2, a stream comprising C3 and a stream comprising C4 and feeding said stream comprising C3 to a propane dehydrogenation unit and feeding said stream comprising C4 to a butane dehydrogenation unit.
    further comprising feeding said stream comprising C2 to a gas steam cracker unit.
  2. The process according to claim 1, wherein the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking units are hydrocarbons having a boiling point higher than methane and equal to or lower than that of cyclobutane.
  3. The process according to any or more of claims 1-2, wherein the petrochemicals processes further comprise one or more of the group of aromatization unit, alkylation processes, high severity catalytic cracking (including high severity FCC), light naphtha aromatization (LNA), reforming and mild hydrocracking.
  4. The process according to any one or more of the preceding claims, further comprising feeding said stream comprising hydrogen to a hydrocracking unit in said cascade of hydrocracking units, especially further comprising feeding said hydrogen to a preceding hydrocracker unit in said cascade of hydrocracking units.
  5. The process according to any one or more of the preceding claims, wherein said heavy hydrocarbon feedstock is chosen form the group of crude oil atmospheric distillation unit (ADU), such as naphtha, ADU bottom stream, atmospheric gas oils, and products from refinery processes, such as cycle oils from an FCC unit or heavy cracked naphthas.
  6. The process according to any one or more of the preceding claims, , wherein said hydrocracking units are preceded by a hydrotreating unit, wherein the bottom stream of said hydrotreating unit is used as a feedstock for said first hydrocracking unit, especially that the temperature prevailing in said hydrotreating unit is higher than in said first hydrocracking unit.
  7. The process according to any one of claims 1-6, wherein the particle size of the catalyst present in the cascade of hydrocracking units decreases from the first hydrocracking unit to the subsequent hydrocracking unit(s).
  8. The process according to any one of claims 6-7, wherein the temperature in the cascade of hydrocracking units increases, wherein the temperature prevailing in said second hydrocracking unit is higher than in said hydrotreating unit.
  9. The process according to any one or more of the preceding claims, wherein the reactor type design of the hydrocracking unit(s) is chosen from the group of the fixed bed type, ebulatted bed reactor type and the slurry phase type.
  10. The process according to any one or more of the claims 6-9, wherein the reactor type design of said hydrotreating unit is of the fixed bed type.
  11. The process according to any one or more of the claims 6-10, wherein the reactor type design of said first hydrocracking unit is of the ebulatted bed reactor type.
  12. The process according to any one or more of the preceding claims, wherein the bottom stream of the final hydrocracking unit is recycled to the inlet of said final hydrocracking unit.
EP14816330.6A 2014-02-25 2014-12-23 Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products Active EP3110916B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14156639 2014-02-25
PCT/EP2014/079218 WO2015128041A1 (en) 2014-02-25 2014-12-23 Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products

Publications (2)

Publication Number Publication Date
EP3110916A1 EP3110916A1 (en) 2017-01-04
EP3110916B1 true EP3110916B1 (en) 2018-08-15

Family

ID=50151231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14816330.6A Active EP3110916B1 (en) 2014-02-25 2014-12-23 Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products

Country Status (9)

Country Link
US (1) US10119083B2 (en)
EP (1) EP3110916B1 (en)
JP (1) JP6415588B2 (en)
KR (1) KR102387832B1 (en)
CN (1) CN106459786B (en)
EA (1) EA033030B1 (en)
ES (1) ES2696423T3 (en)
SG (1) SG11201606019YA (en)
WO (1) WO2015128041A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US10301556B2 (en) * 2016-08-24 2019-05-28 Saudi Arabian Oil Company Systems and methods for the conversion of feedstock hydrocarbons to petrochemical products
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
US10793792B2 (en) * 2017-05-15 2020-10-06 Saudi Arabian Oil Company Systems and methods for the conversion of heavy oils to petrochemical products
CN110892041A (en) * 2017-07-17 2020-03-17 沙特阿拉伯石油公司 System and method for processing heavy oil
US11041127B2 (en) * 2017-08-15 2021-06-22 Sabic Global Technologies B.V. Shale gas and condensate to chemicals
US10815437B2 (en) 2017-12-29 2020-10-27 Lummus Technology Llc Conversion of heavy fuel oil to chemicals
US11203558B2 (en) 2018-09-19 2021-12-21 Sabic Global Technologies, B.V. Selective hydrogenolysis integrated with cracking
DE112019004677T5 (en) 2018-09-19 2021-12-30 Sabic Global Technologies B.V. BIMETALLIC CATALYSTS ON ZEOLITHES FOR THE SELECTIVE CONVERSION OF n-BUTANE INTO ETHANE
WO2020178683A1 (en) 2019-03-05 2020-09-10 Sabic Global Technologies B.V. Distribution hub for c4 conversion to ethane/propane feedstock network
WO2020190785A1 (en) 2019-03-15 2020-09-24 Lummus Technology Llc Configuration for olefins and aromatics production
US11807818B2 (en) * 2021-01-07 2023-11-07 Saudi Arabian Oil Company Integrated FCC and aromatic recovery complex to boost BTX and light olefin production

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660270A (en) * 1970-01-15 1972-05-02 Chevron Res Two-stage process for producing naphtha from petroleum distillates
JPS4914721B1 (en) * 1970-08-11 1974-04-10
CH564050A5 (en) 1972-04-06 1975-07-15 Sandoz Ag
US4137147A (en) * 1976-09-16 1979-01-30 Institut Francais Du Petrole Process for manufacturing olefinic hydrocarbons with respectively two and three carbon atoms per molecule
US4458096A (en) * 1983-05-26 1984-07-03 Air Products And Chemicals, Inc. Process for the production of ethylene and propylene
US4997544A (en) * 1989-05-12 1991-03-05 Mobil Oil Corporation Hydroconversion process
FI932187A (en) * 1992-05-29 1993-11-30 Boc Group Inc FOERFARANDE FOER FRAMSTAELLNING AV OMAETTADE KOLVAETEN OCH SEPARERING AV DESAMMA FRAON MAETTADE KOLVAETEN
US6270654B1 (en) 1993-08-18 2001-08-07 Ifp North America, Inc. Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
US5603824A (en) 1994-08-03 1997-02-18 Mobil Oil Corporation Hydrocarbon upgrading process
FR2764902B1 (en) 1997-06-24 1999-07-16 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF HEAVY OIL FRACTIONS COMPRISING A STEP OF CONVERSION INTO A BOILING BED AND A STEP OF HYDROCRACKING
US6797154B2 (en) * 2001-12-17 2004-09-28 Chevron U.S.A. Inc. Hydrocracking process for the production of high quality distillates from heavy gas oils
US7214308B2 (en) 2003-02-21 2007-05-08 Institut Francais Du Petrole Effective integration of solvent deasphalting and ebullated-bed processing
US7704377B2 (en) 2006-03-08 2010-04-27 Institut Francais Du Petrole Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
US7550642B2 (en) 2006-10-20 2009-06-23 Equistar Chemicals, Lp Olefin production utilizing whole crude oil/condensate feedstock with enhanced distillate production
US20080093262A1 (en) 2006-10-24 2008-04-24 Andrea Gragnani Process and installation for conversion of heavy petroleum fractions in a fixed bed with integrated production of middle distillates with a very low sulfur content
US20090050523A1 (en) 2007-08-20 2009-02-26 Halsey Richard B Olefin production utilizing whole crude oil/condensate feedstock and selective hydrocracking
US20090159493A1 (en) * 2007-12-21 2009-06-25 Chevron U.S.A. Inc. Targeted hydrogenation hydrocracking
US7938952B2 (en) 2008-05-20 2011-05-10 Institute Francais Du Petrole Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
JP5270508B2 (en) 2009-10-15 2013-08-21 株式会社神戸製鋼所 Hydrocracking method of heavy petroleum oil
FR2951735B1 (en) 2009-10-23 2012-08-03 Inst Francais Du Petrole METHOD FOR CONVERTING RESIDUE INCLUDING MOBILE BED TECHNOLOGY AND BOILING BED TECHNOLOGY
US9005430B2 (en) 2009-12-10 2015-04-14 IFP Energies Nouvelles Process and apparatus for integration of a high-pressure hydroconversion process and a medium-pressure middle distillate hydrotreatment process, whereby the two processes are independent
US8658022B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8663456B2 (en) 2010-11-23 2014-03-04 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8658019B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
EP2737027B1 (en) * 2011-07-29 2018-12-26 Saudi Arabian Oil Company Hydrocracking process with interstage steam stripping
FR2981659B1 (en) 2011-10-20 2013-11-01 Ifp Energies Now PROCESS FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCONVERSION STEP AND A FIXED BED HYDROTREATMENT STEP FOR THE PRODUCTION OF LOW SULFUR CONTENT
FR3027911B1 (en) 2014-11-04 2018-04-27 IFP Energies Nouvelles METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCRACKING STEP, MATURATION STEP AND SEDIMENT SEPARATION STEP FOR THE PRODUCTION OF LOW SEDIMENT FOLDS
FR3027912B1 (en) 2014-11-04 2018-04-27 IFP Energies Nouvelles PROCESS FOR PRODUCING HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBON LOAD USING A SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP
FR3033797B1 (en) 2015-03-16 2018-12-07 IFP Energies Nouvelles IMPROVED PROCESS FOR CONVERTING HEAVY HYDROCARBON LOADS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EA033030B1 (en) 2019-08-30
EA201691706A1 (en) 2017-01-30
KR20160126044A (en) 2016-11-01
US20160362617A1 (en) 2016-12-15
WO2015128041A1 (en) 2015-09-03
JP6415588B2 (en) 2018-10-31
JP2017512232A (en) 2017-05-18
KR102387832B1 (en) 2022-04-18
CN106459786A (en) 2017-02-22
US10119083B2 (en) 2018-11-06
ES2696423T3 (en) 2019-01-15
CN106459786B (en) 2020-03-27
SG11201606019YA (en) 2016-08-30
EP3110916A1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
EP3110916B1 (en) Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
AU2013301886B2 (en) Process for converting hydrocarbon feeds by thermal steamcracking
EP3110918B1 (en) Process for upgrading refinery heavy hydrocarbons to petrochemicals
US10316259B2 (en) Process for converting hydrocarbons into olefins
CN106062141A (en) Integrated hydrocracking process
US20150218065A1 (en) Process For Preparing Olefins By Thermal Steamcracking In Cracking Furnaces
CN104619815A (en) Method for converting hydrocarbon feedstocks into olefinic product flows by means of thermal steam cracking
CN105408456A (en) Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
CN104540925A (en) Method for producing olefins by thermal steam-cracking
US10301559B2 (en) Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
EP3110924B1 (en) Process for converting hydrocarbons into olefins and btx.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014030585

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10G0065100000

Ipc: C10G0029200000

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAUDI BASIC INDUSTRIES CORPORATION

Owner name: SABIC GLOBAL TECHNOLOGIES B.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 65/10 20060101ALI20180425BHEP

Ipc: C10G 9/36 20060101ALI20180425BHEP

Ipc: C10G 11/18 20060101ALI20180425BHEP

Ipc: C10G 29/20 20060101AFI20180425BHEP

Ipc: C10G 69/02 20060101ALI20180425BHEP

Ipc: C10G 69/06 20060101ALI20180425BHEP

Ipc: C10G 65/12 20060101ALI20180425BHEP

INTG Intention to grant announced

Effective date: 20180530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1029747

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014030585

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2696423

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190115

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1029747

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014030585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211104

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211110

Year of fee payment: 8

Ref country code: BE

Payment date: 20211119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220104

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221223

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231116

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231108

Year of fee payment: 10

Ref country code: DE

Payment date: 20231031

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221224