EP3108145B2 - Rotary machine and method for heat exchange in a rotary machine - Google Patents

Rotary machine and method for heat exchange in a rotary machine Download PDF

Info

Publication number
EP3108145B2
EP3108145B2 EP15703933.0A EP15703933A EP3108145B2 EP 3108145 B2 EP3108145 B2 EP 3108145B2 EP 15703933 A EP15703933 A EP 15703933A EP 3108145 B2 EP3108145 B2 EP 3108145B2
Authority
EP
European Patent Office
Prior art keywords
heat exchange
fluid
rotary machine
heat
exchange system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15703933.0A
Other languages
German (de)
French (fr)
Other versions
EP3108145B1 (en
EP3108145A1 (en
Inventor
Simon Gassmann
Benedikt Trottmann
Marcelo Inforsati
Thomas Felix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Management AG
Original Assignee
Sulzer Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50156575&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3108145(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer Management AG filed Critical Sulzer Management AG
Publication of EP3108145A1 publication Critical patent/EP3108145A1/en
Application granted granted Critical
Publication of EP3108145B1 publication Critical patent/EP3108145B1/en
Publication of EP3108145B2 publication Critical patent/EP3108145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/126Shaft sealings using sealing-rings especially adapted for liquid pumps
    • F04D29/128Shaft sealings using sealing-rings especially adapted for liquid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/5866Cooling at last part of the working fluid in a heat exchanger
    • F04D29/5873Cooling at last part of the working fluid in a heat exchanger flow schemes and regulation thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals

Definitions

  • the invention relates to a rotary machine for conveying a fluid and a method for heat exchange in such a machine according to the preamble of the independent patent claim of the respective category.
  • Rotary machines such as pumps, are used to convey fluid media in a wide variety of technological fields.
  • pumps play an important role in the entire processing chain, which usually starts at the oil or gas field, and often have to work under technically very demanding conditions.
  • the medium When pumping crude oil, for example, it is possible for the medium to be pumped to be at very high temperatures of up to 200°C. Such high temperatures place great demands on the pump and in particular on the mechanical seals in such a pump.
  • Mechanical seals are commonly used to seal the shaft which carries the impeller of the pump and which is driven by the drive unit such as a motor. These seals are intended to prevent the fluid to be pumped from escaping on or along the shaft.
  • mechanical seals are designed as face or slide ring seals, which include a stator and a rotor. The rotor is connected to the shaft in a rotationally fixed manner, while the stator is fixed with respect to the pump housing in such a way that it is secured against rotation. During the rotation of the shaft, the rotor and the stator slide against each other, which results in a high mechanical load on these parts. For the proper operation of such mechanical seals, it is necessary for these seals not to be subject to excessive thermal loads in the operating state.
  • the mechanical seals must be cooled, especially in the case of such fluids that are pumped at high temperatures. Too high a temperature in the area of the mechanical seal can lead to material degradation on the sliding surfaces or other parts of the seal, damage to the secondary seals, unwanted phase transitions in the fluid to be pumped or thermally induced changes in the shaft, e.g. B. Bends.
  • a heat exchange jacket is provided in the vicinity of the mechanical seal, which is a cooling jacket for dissipating heat or a heating jacket for supplying heat, depending on the application.
  • This jacket includes a cavity that surrounds the mechanical seal in the form of an annular space, for example, and through which a fluid heat carrier flows, which supplies or dissipates the heat.
  • the cavity has no connection to the space in which the mechanical seal is arranged, so that there is no direct contact between the heat transfer medium and the mechanical seal.
  • external auxiliary systems e.g. B. used an external pump to promote the fluid heat transfer medium in the cavity of the heat exchange jacket and to circulate the heat transfer medium.
  • the second option for heat exchange is based on direct contact of the mechanical seal with a fluid heat transfer medium and is usually referred to as "flushing".
  • the mechanical seal or at least parts thereof, is directly subjected to a fluid heat transfer medium in order to withdraw heat from it or to supply heat to it.
  • a fluid heat transfer medium for this type of heat exchange, it is known to circulate the fluid heat carrier in a closed circuit, which then comprises an external heat exchanger, to which the heat carrier releases the heat absorbed by the mechanical seal (cooling of the seal), or to which the heat carrier transfers the absorbs heat, which it supplies to the mechanical seal (heating of the seal).
  • the circulation of the heat carrier is driven by an external pump.
  • an impeller can also be provided, e.g. on the mechanical seal, which is driven by the rotation of the shaft and circulates the fluid heat carrier.
  • a rotary machine for conveying a fluid according to claim 1 is proposed.
  • the rotary machine according to the invention is also particularly suitable for high-temperature applications in which the fluid to be conveyed can have temperatures of up to 200° C. or more.
  • the rotating machine is designed as a pump, with the drive unit comprising a motor which is arranged in a motor housing.
  • impeller is arranged in a pump housing which is connected to the motor housing to form an overall housing, so that the pump including the motor is enclosed in a single housing.
  • This compact design which is closed off from the outside, allows the pump to be operated even under difficult environmental conditions.
  • the rotary machine works in a vertical arrangement. It is then preferred that the drive unit is arranged above the pump unit in the normal position of use, because then the drive unit is not loaded by the weight of the impeller.
  • a further advantageous measure with regard to cooling, lubricating and protecting the drive unit, e.g. against the fluid to be pumped, is if the motor housing is filled with a sealing liquid during operation.
  • the sealing liquid is then particularly preferably provided as the fluid heat carrier.
  • the impeller for circulating the heat carrier is driven by the drive unit and is preferably provided on the side of the drive unit facing away from the impeller.
  • a preferred use of the rotary machine is for conveying hot fluids, the temperature of which is at least 150°C.
  • a method according to claim 9 is also proposed for heat exchange in a rotary machine for conveying a fluid.
  • the common heat exchange system is a refrigeration system.
  • the method is particularly suitable when the rotary machine is a pump, the drive unit comprising a motor which is arranged in a motor housing, the fluid heat carrier being used as a sealing liquid with which the motor housing is filled and the impeller preferably being driven by the drive unit is driven.
  • the fluid heat carrier is a water-based liquid, because these liquids are generally inexpensive, have sufficient heat capacity and are not harmful to the environment.
  • mixtures of water and glycol are suitable as a fluid heat carrier.
  • the method according to the invention is particularly suitable for high-temperature applications in which the fluid to be pumped has a temperature of at least 150°C.
  • a rotary machine according to the invention and a method according to the invention for heat exchange, reference is made, by way of example, to the application that is particularly important in practice, that the rotary machine is a pump.
  • the invention is not limited to such cases, but also includes all other rotary machines in which a mechanical seal is provided for shaft sealing.
  • the rotary machine can also be a compressor, a turbine or a generator, for example.
  • the heat exchange is cooling, in which heat is therefore withdrawn from the system. It goes without saying that the invention also includes applications in the same way in which the heat exchange is heating, ie applications in which heat is supplied to the system.
  • the pump 1 1 shows, in a very schematic representation, a rotary machine which is designed as a pump and is denoted overall by the reference numeral 1.
  • the pump 1 includes a drive unit 2 with a motor 21 which is arranged in a motor housing 22 and is designed here as an electric motor.
  • the motor 21 has a motor shaft 25 which is the rotor of the electric motor.
  • the pump 1 also includes a pump unit 3 with a pump housing 32 in which an impeller 31 is provided for conveying a fluid.
  • the impeller 31 is arranged on a shaft 5 which is connected to the motor shaft 25 by means of a coupling 9 and is thus driven by the motor 21 and rotated about its longitudinal axis A ( 2 ) is relocated.
  • the motor housing 22 and the pump housing 32 are firmly connected to one another, for example screwed together with several screws, and thus form an overall housing 4 for the drive unit 2 and the pump unit 3
  • the shaft 5 and the motor shaft 25 are mounted in a number of axial bearings 7 and radial bearings 8 in a manner known per se.
  • the pump unit 3 also includes an inlet 33, through which the fluid to be pumped is sucked into the pump housing 32 by the action of the impeller 31, and an outlet 34 through which the fluid to be pumped is pushed out.
  • two mechanical seals 6 are provided in the pump, namely a first one, which seals the shaft 5 at the boundary between the pump unit 3 and the drive unit 2, so that the fluid to be pumped cannot flow along the shaft 5 into the drive unit 2 and a second, which is provided below the impeller 31 according to the illustration and which prevents the fluid to be pumped from penetrating along the shaft 5 into a bearing space 35 which is provided below the impeller 31 according to the illustration and in which one of the radial bearings 8 is arranged.
  • the exemplary embodiment of the rotary machine according to the invention explained here is a multi-stage process pump for high-temperature applications in which the fluid to be pumped has very high temperatures of, for example, 150° C., 180° C., 200° C. or even more. Such high temperatures can occur, for example, in natural gas or oil production, because there are oil fields in which the oil is present at temperatures below 200°C.
  • the embodiment described here is designed as a subsea (subsea) pump that is mounted on the seabed and operates there, z. B. for oil or gas production. Especially with such applications, an extremely compact design and the highest possible operational safety and reliability are essential.
  • the Pump 1 designed in a vertical arrangement with the drive unit 2 on top, ie in 1 the pump 1 is shown in its usual position of use.
  • the motor housing 22 of the drive unit 2 is filled with a sealing liquid 23 in a manner known per se, which is used to cool the mechanical and electrical components of the motor 21 and for lubrication.
  • the storage space 35 arranged below the impeller 31 is also filled with the sealing liquid 23 .
  • mechanical seals are designed as face or slide ring seals, which include a stator 61 and a rotor 62 .
  • the rotor is connected to the shaft 5 in a rotationally fixed manner, while the stator 61 is fixed in relation to the overall housing 4 or in relation to the pump housing 32 in such a way that it is secured against rotation.
  • the stator 61 is fixed in relation to the overall housing 4 or in relation to the pump housing 32 in such a way that it is secured against rotation.
  • the rotor 62 and the stator 61 slide against each other.
  • a first heat exchange system 41 and a second heat exchange system 42 are provided—here cooling systems—which are connected to form a common heat exchange system 40 .
  • This integrated heat exchange system 40 is used to cool the mechanical seals 6.
  • the first heat exchange system 41 for cooling the mechanical seal 6 is a so-called flushing system, in which the mechanical seal 6 or at least parts thereof is or are acted upon directly by a fluid heat carrier—here a coolant.
  • a fluid heat carrier here a coolant.
  • the mechanical seal 6 is arranged in a sealing space 63, which is designed, for example, as an annular space and surrounds the shaft 5.
  • the heat transfer medium is introduced into this sealing space 63 through an inlet opening 64 .
  • an outlet opening (not shown) is provided on the sealing space 63 through which the heat carrier can leave the sealing space 63 again.
  • the outlet opening is arranged, for example, rotated by 45° or by 90° with respect to the longitudinal axis A in relation to the inlet opening 64 .
  • the sealing chamber 63 is essentially completely filled with the heat carrier, i.e. the same amount of coolant (heat carrier) flows through the inlet opening 64 into the sealing chamber 63 as flows out of the sealing chamber 63 through the outlet opening.
  • the heat exchange - here the cooling - thus takes place through the direct contact of the heat transfer medium with the mechanical seal 6, in which the heat transfer medium extracts heat from the seal 6 and thus cools it.
  • the second heat exchange system 42 for cooling the mechanical seal 6 includes a heat exchange jacket 421, which is a cooling jacket 421 in the present exemplary embodiment.
  • the cooling jacket 421 includes a cavity 422 which is designed, for example, as an annular space and surrounds the entire shaft 5 .
  • An inlet 423 is provided, through which the heat transfer medium is introduced into the cavity 422, and an outlet 424, through which the heat transfer medium leaves the cavity 422.
  • the cavity 422 is completely filled with the heat carrier that is circulated through the cavity 422 .
  • this type of heat exchange or cooling there is no direct physical contact between the heat transfer medium and the mechanical seal 6.
  • the cooling jacket 421 is in each case arranged on the hotter side of the mechanical seal 6, ie on the side of the seal 6 in which the higher temperature prevails in the operating state.
  • the pump housing 32 is in the operating state, with the exception of the storage space 35 with the fluid to be pumped - so for example with the hot oil - filled.
  • the fluid to be conveyed in the vicinity of the seal 6 is also cooled by the cooling jacket 421 , ie for example also in the gap 51 which leads to the seal 6 .
  • This cooling of the fluid to be conveyed in the immediate vicinity of the mechanical seal 6 also significantly reduces the heat input into the seal 6 by the fluid to be conveyed, which corresponds to a cooling of the seal 6 .
  • the first heat exchange system 41 and the second heat exchange system 42 are now connected to form the integrated common heat exchange system 40 .
  • the consequence of this is that there must be a common fluid heat transfer medium for the common heat exchange system 40 .
  • different fluid heat carriers could also be used for these two separate systems in the case of separate first and second heat exchange systems, the solution according to the invention requires a common fluid heat carrier which, for example, can be the same heat carrier as that of the first or second heat exchange system.
  • the sealing liquid 23 which is also used for lubricating and cooling the motor 21 or the drive unit 2 , is particularly preferably provided as the fluid heat carrier for the common heat exchange system 40 .
  • This has the advantage that only a single liquid has to be provided, which is used both as a sealing liquid 23 and as a fluid heat carrier for the heat exchange system 40 . Especially for subsea applications, this measure has a very positive effect in terms of the equipment required.
  • Water-based liquids such as a mixture of water and glycol are particularly suitable as a fluid heat transfer medium.
  • the common heat exchange system 40 is designed as a closed system, ie as a cooling system or a cooling circuit, in which the fluid heat transfer medium is circulated.
  • An impeller 44 is provided for the circulation of the heat transfer medium, which is arranged on the motor shaft 25 and is thus driven by the drive unit 2, specifically by the rotation of the motor shaft 25 of the motor 21.
  • the impeller 44 conveys the heat transfer medium via a main line 45 to a heat exchanger 43 in which the heat transfer medium releases the heat absorbed at the mechanical seal 6 or in the drive unit 2 or in the storage space 35 and is thereby cooled.
  • a plurality of lines now branch off from the main line 45 downstream of the heat exchanger 43, first a first line 451, through which the heat carrier enters the motor housing 22, as symbolically indicated by the arrow on the line 451.
  • the heat carrier fills the motor housing and serves as a sealing liquid 23.
  • a second line 452 branches off from the main line 45 further downstream, through which the heat transfer medium reaches the cooling system for the mechanical seal 6 .
  • the second line 452 in turn branches into a branch leading to the inlet 423 ( 2 ) of the cooling jacket 421, and into a branch leading to the inlet port 64 of the seal chamber 63. From the outlet opening (not shown) from the sealing chamber 63 and the outlet 424 of the cavity 422 of the cooling jacket 421, the fluid heat carrier reaches the return line 46 via respective lines, which are combined to form line 461.
  • the main line 45 merges into a third line 453, through which the heat carrier reaches the cooling system for the lower mechanical seal 6 according to the illustration.
  • the third line 453 in turn branches into a branch leading to the inlet 423 ( 2 ) of the cooling jacket 421, and into a branch leading to the inlet port 64 of the seal chamber 63.
  • this sealing space 63 is connected to the storage space 35 so that the heat transfer medium can also reach the storage space 35 via the same line that leads to the inlet opening 64 of the sealing space 63 .
  • the fluid heat carrier From the outlet opening from the sealing chamber 63 and the outlet 424 of the cavity 422 of the cooling jacket 421, the fluid heat carrier reaches the return line 46 via respective lines, which are combined to form line 462.
  • the heat carrier returns through the return line 46 to the area of the impeller 44, which drives the circulation of the heat carrier in the closed cooling circuit.
  • the heat transfer medium introduced into the motor housing 22 via the first line 451 is also recirculated by the action of the impeller 44, as indicated by the arrow with reference number 463.
  • the impeller 44 for circulating the fluid heat carrier is preferably on the side of the drive unit 2 or provided on the side of the motor 21 facing away from the impeller 31 .
  • the first heat exchange system 41 for the mechanical seals 6 and the second heat exchange system 42 for the mechanical seals 6 are connected to form a common heat exchange system 40, which thus forms an integral heat exchange system for the mechanical seals 6.
  • the common heat exchange system 40 also serves to supply the motor housing with the sealing liquid 23, which is identical to the fluid heat transfer medium.
  • the sealing liquid 23 in the motor housing 22 is kept under a higher pressure than the fluid to be pumped in the pump housing 32.
  • the pressure of the sealing liquid 23 in the motor housing 22 is, for example, 20-25 bar higher than the pressure in the pump housing 32.
  • the method according to the invention and the rotary machine according to the invention are suitable for a large number of applications. They are particularly suitable for high-temperature applications and especially for those in the subsea area.
  • the rotary machine according to the invention can be used to pump oil, gas, seawater or so-called "produced water".
  • the pump can be designed as a single-phase, multi-phase or hybrid pump with the impellers correspondingly adapted to it. Both configurations as single-stage as well as multi-stage pumps are possible.
  • the solution proposed according to the invention thanks to its integrated heat exchange system, represents an efficient, reliable, simple to use and compact option for cooling or heating mechanical seals.
  • a vertical arrangement is preferred in an embodiment of the pump as a submersible pump, in which the drive unit 2 above the Pump unit 3 is arranged.
  • horizontal arrangements are also possible, in which the drive unit 2 and the pump unit 3 are arranged next to one another.
  • Such an arrangement is often preferred when the pump is not used in submarine operation but, for example, on land, or on ships or on drilling platforms.
  • the rotary machine according to the invention and the method according to the invention are also suitable for low-temperature applications, for example for pumping liquid gases in cryogenics.
  • the mechanical seals are warmed or heated by the heat carrier.
  • the heat exchanger 43 then serves to supply heat to the heat transfer medium, which heat is then transported to the mechanical seals in the same way.
  • the heat exchange jacket of the second heat exchange system is then arranged on the colder side of the mechanical seal 6, ie on that side of the mechanical seal 6 which faces the lower temperature range in the operating state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • General Induction Heating (AREA)

Description

Die Erfindung betrifft eine Rotationsmaschine zum Fördern eines Fluids sowie ein Verfahren für den Wärmeaustausch in einer solchen gemäss dem Oberbegriff des unabhängigen Patentanspruchs der jeweiligen Kategorie.The invention relates to a rotary machine for conveying a fluid and a method for heat exchange in such a machine according to the preamble of the independent patent claim of the respective category.

Rotationsmaschinen, wie beispielsweise Pumpen, werden zum Fördern von fluiden Medien in den unterschiedlichsten technologischen Gebieten eingesetzt. In der Kohlenwasserstoffe verarbeitenden Industrie spielen Pumpen in der gesamten Verarbeitungskette, die üblicherweise am Erdöl- oder Gasfeld beginnt, eine wichtige Rolle und müssen häufig unter technisch sehr anspruchsvollen Bedingungen arbeiten. So ist es beispielsweise beim Fördern von Erdöl möglich, dass das zu fördernde Medium unter sehr hohen Temperaturen von bis zu 200°C vorliegt. Solche hohen Temperaturen stellen grosse Anforderungen an die Pumpe und insbesondere auch an die mechanischen Dichtungen in einer solchen Pumpe.Rotary machines, such as pumps, are used to convey fluid media in a wide variety of technological fields. In the hydrocarbon processing industry, pumps play an important role in the entire processing chain, which usually starts at the oil or gas field, and often have to work under technically very demanding conditions. When pumping crude oil, for example, it is possible for the medium to be pumped to be at very high temperatures of up to 200°C. Such high temperatures place great demands on the pump and in particular on the mechanical seals in such a pump.

Mechanische Dichtungen werden üblicherweise zum Abdichten der Welle verwendet, welche das Laufrad der Pumpe trägt und welche von der Antriebseinheit, beispielsweise einem Motor angetrieben wird. Diese Dichtungen sollen ein Austreten des zu fördernden Fluids an oder entlang der Welle vermeiden. Typischerweise sind mechanische Dichtungen als Gleit- oder Gleitringdichtungen ausgestaltet, die einen Stator und einen Rotor umfassen. Dabei ist der Rotor drehfest mit der Welle verbunden, während der Stator bezüglich des Pumpengehäuses so fixiert ist, dass er gegen Rotationen gesichert ist. Während der Rotation der Welle gleiten also der Rotor und der Stator aneinander, woraus eine hohe mechanische Belastung dieser Teile resultiert. Für den ordnungsgemässen Betrieb solcher mechanischen Dichtungen ist es notwendig, dass diese Dichtungen im Betriebszustand keinen zu hohen thermischen Belastungen unterliegen. Daher müssen insbesondere bei solchen Fluiden, die unter hoher Temperatur gefördert werden, die mechanischen Dichtungen gekühlt werden. Eine zu hohe Temperatur im Bereich der mechanischen Dichtung kann zu Materialdegradation an den Gleitflächen oder anderen Teilen der Dichtung führen, zu Schädigungen der Sekundärdichtungen, zu unerwünschten Phasenübergängen im zu fördernden Fluid oder zu thermisch bedingten Veränderungen an der Welle, z. B. Verbiegungen.Mechanical seals are commonly used to seal the shaft which carries the impeller of the pump and which is driven by the drive unit such as a motor. These seals are intended to prevent the fluid to be pumped from escaping on or along the shaft. Typically, mechanical seals are designed as face or slide ring seals, which include a stator and a rotor. The rotor is connected to the shaft in a rotationally fixed manner, while the stator is fixed with respect to the pump housing in such a way that it is secured against rotation. During the rotation of the shaft, the rotor and the stator slide against each other, which results in a high mechanical load on these parts. For the proper operation of such mechanical seals, it is necessary for these seals not to be subject to excessive thermal loads in the operating state. Therefore, the mechanical seals must be cooled, especially in the case of such fluids that are pumped at high temperatures. Too high a temperature in the area of the mechanical seal can lead to material degradation on the sliding surfaces or other parts of the seal, damage to the secondary seals, unwanted phase transitions in the fluid to be pumped or thermally induced changes in the shaft, e.g. B. Bends.

Umgekehrt müssen bei solchen Anwendungen, bei denen das zu fördernde Fluid sehr kalt ist, beispielsweise in der Kryotechnik bei der Förderung verflüssigter Gase, die mechanischen Dichtungen erwärmt bzw. geheizt werden, um einen ordnungsgemässen Betrieb zu gewährleisten.Conversely, in applications in which the fluid to be conveyed is very cold, for example in cryogenics when conveying liquefied gases, the mechanical seals must be warmed up or heated in order to ensure proper operation.

Es muss also je nach Anwendung sichergestellt werden, dass die mechanische Dichtung bzw. ihre Umgebung gekühlt oder geheizt wird, also über einen Wärmeaustausch im korrekten Temperaturbereich gehalten wird.Depending on the application, it must therefore be ensured that the mechanical seal or its surroundings are cooled or heated, i.e. kept in the correct temperature range via heat exchange.

Für diesen Wärmeaustauch an mechanischen Dichtungen, also das Abführen oder das Zuführen von Wärme, sind im Stand der Technik zwei Möglichkeiten bekannt. Bei dem ersten Verfahren ist in der Umgebung der mechanischen Dichtung ein Wärmetauschmantel vorgesehen, der je nach Anwendung ein Kühlmantel zum Abführen von Wärme oder ein Heizmantel zum Zuführen von Wärme ist. Dieser Mantel umfasst einen Hohlraum, der beispielsweise die mechanische Dichtung in Form einen Ringraums umgibt, und durch welchen ein fluider Wärmeträger fliesst, der die Wärme zu- oder abführt. Der Hohlraum hat keine Verbindung zu dem Raum, in welchem die mechanische Dichtung angeordnet ist, sodass es zu keinem direkten Kontakt zwischen dem Wärmeträger und der mechanischen Dichtung kommt. Bei dieser Art der Wärmeabfuhr oder Wärmezufuhr werden üblicherweise externe Hilfssysteme, z. B. eine externe Pumpe verwendet, um den fluiden Wärmeträger in den Hohlraum des Wärmetauschmantels zu fördern bzw. den Wärmeträger zu zirkulieren.Two possibilities are known in the state of the art for this heat exchange at mechanical seals, ie the dissipation or the supply of heat. In the first method, a heat exchange jacket is provided in the vicinity of the mechanical seal, which is a cooling jacket for dissipating heat or a heating jacket for supplying heat, depending on the application. This jacket includes a cavity that surrounds the mechanical seal in the form of an annular space, for example, and through which a fluid heat carrier flows, which supplies or dissipates the heat. The cavity has no connection to the space in which the mechanical seal is arranged, so that there is no direct contact between the heat transfer medium and the mechanical seal. With this type of heat dissipation or heat supply, external auxiliary systems, e.g. B. used an external pump to promote the fluid heat transfer medium in the cavity of the heat exchange jacket and to circulate the heat transfer medium.

Die zweite Möglichkeit für den Wärmeaustausch basiert auf einem direkten Kontakt der mechanischen Dichtung mit einem fluiden Wärmeträger und wird üblicherweise als "Flushing" bezeichnet. Hierbei wird die mechanische Dichtung oder zumindest Teile davon direkt mit einem fluiden Wärmeträger beaufschlagt, um ihr dadurch Wärme zu entziehen oder Wärme zuzuführen. Für diese Art des Wärmeaustauschs ist es bekannt, den fluiden Wärmeträger in einem geschlossenen Kreislauf zu zirkulieren, der dann einen externen Wärmetauscher umfasst, an welchen der Wärmeträger die an der mechanischen Dichtung aufgenommene Wärme abgibt (Kühlung der Dichtung), oder an welchem der Wärmeträger die Wärme aufnimmt, die er der mechanischen Dichtung zuführt (Heizung der Dichtung). Die Zirkulation des Wärmeträgers wird dabei durch eine externe Pumpe angetrieben. Alternativ oder ergänzend zu der externen Pumpe kann auch, z.B. an der mechanischen Dichtung ein Flügelrad vorgesehen sein, welches durch die Rotation der Welle angetrieben wird und den fluiden Wärmeträger zirkuliert.The second option for heat exchange is based on direct contact of the mechanical seal with a fluid heat transfer medium and is usually referred to as "flushing". In this case, the mechanical seal, or at least parts thereof, is directly subjected to a fluid heat transfer medium in order to withdraw heat from it or to supply heat to it. For this type of heat exchange, it is known to circulate the fluid heat carrier in a closed circuit, which then comprises an external heat exchanger, to which the heat carrier releases the heat absorbed by the mechanical seal (cooling of the seal), or to which the heat carrier transfers the absorbs heat, which it supplies to the mechanical seal (heating of the seal). The circulation of the heat carrier is driven by an external pump. As an alternative or in addition to the external pump, an impeller can also be provided, e.g. on the mechanical seal, which is driven by the rotation of the shaft and circulates the fluid heat carrier.

Alternativ zu den geschlossenen Flushing-Systemen ist es auch bekannt, offene System zu verwenden, bei denen der Wärmeträger nicht in einem geschlossenen Kreislauf zirkuliert wird, sondern einer Quelle entnommen wird und nach dem Durchlaufen der Pumpe abgeführt wird, beispielsweise einer Abwasserentsorgung. Bei diesen offenen Systemen kann in der Regel auf einen externen Wärmetauscher verzichtet werden.As an alternative to the closed flushing systems, it is also known to use open systems in which the heat transfer medium is not circulated in a closed circuit but is taken from a source and, after passing through the pump, is discharged, for example a sewage disposal system. With these open systems, there is usually no need for an external heat exchanger.

Es ist ferner bekannt, bei Pumpen zwei getrennte, unabhängig voneinander arbeitende Kühlsysteme vorzusehen, von denen eines mit einem Kühlmantel arbeitet und eines als Flushing-System ausgestaltet ist. Die beiden Systeme können dabei mit unterschiedlichen Wärmeträgern betrieben werden. Solche Lösungen sind jedoch apparativ sehr aufwändig, kostenintensiv und haben üblicherweise einen grossen Platzbedarf.It is also known to provide pumps with two separate cooling systems that work independently of one another, one of which works with a cooling jacket and one of which is designed as a flushing system. The two systems can be operated with different heat carriers. However, such solutions are very complex in terms of apparatus, cost-intensive and usually require a large amount of space.

Ausgehend von diesem Stand der Technik ist es daher eine Aufgabe der Erfindung, eine Rotationsmaschine mit einem neuen Wärmetauschsystem für eine mechanische Dichtung vorzuschlagen, das apperativ einfach ist und auch bei hohen Temperaturbelastungen durch die Wärme oder die Kälte des zu fördernden Fluids eine effiziente Kühlung oder Heizung der mechanischen Dichtung gewährleistet. Insbesondere soll die Rotationsmaschine geeignet sein für Hochtemperaturanwendungen, bei denen das zu fördernde Fluid sehr heiss ist. Ferner ist es eine Aufgabe der Erfindung, ein entsprechendes Verfahren für den Wärmeaustausch in einer Rotationsmaschine vorzuschlagen.Proceeding from this state of the art, it is therefore an object of the invention to propose a rotary machine with a new heat exchange system for a mechanical seal that is simple in terms of apparatus and provides efficient cooling or heating even at high temperature loads due to the heat or cold of the fluid to be conveyed of the mechanical seal. In particular, the rotary machine should be suitable for high-temperature applications in which the fluid to be pumped is very hot. Furthermore, it is an object of the invention to propose a corresponding method for the heat exchange in a rotary machine.

Die diese Aufgabe lösenden Gegenstände der Erfindung sind durch die Merkmale der unabhängigen Patentansprüche der jeweiligen Kategorie gekennzeichnet.The objects of the invention that solve this problem are characterized by the features of the independent patent claims of the respective category.

Erfindungsgemäss wird also eine Rotationsmaschine zum Fördern eines Fluids gemäss Anspruch 1 vorgeschlagen.According to the invention, a rotary machine for conveying a fluid according to claim 1 is proposed.

Erfindungsgemäss wird also vorgeschlagen, ein Wärmetauschsystem, das nach dem Prinzip des Flushing arbeitet, mit einem Wärmetauschsystem, das mit einem Mantel arbeitet, zu einem gemeinsamen Gesamtsystem zu kombinieren, in welchem nur ein fluider Wärmeträger zirkuliert wird, dessen Zirkulation von der Rotationsmaschine selbst angetrieben wird. Dieses Wärmetauschsystem kombiniert also die Vorteile zweier Wärmetauschsysteme, ohne dass hierfür externe Zirkulationsvorrichtungen wie externe Pumpen benötigt werden. Daraus resultiert eine apparativ sehr einfache, kompakte und effiziente Lösung, mit der auch grosse Wärmemengen zuverlässig aus dem Bereich der mechanischen Dichtung abgeführt (Kühlung) bzw. diesem Bereich zugeführt werden können (Heizung).According to the invention, it is therefore proposed to combine a heat exchange system that works according to the flushing principle with a heat exchange system that works with a jacket to form a common overall system in which only one fluid heat carrier is circulated, the circulation of which is driven by the rotary machine itself . This heat exchange system thus combines the advantages of two heat exchange systems without the need for external circulation devices such as external pumps. This results in a very simple, compact and efficient solution in terms of apparatus, with which even large amounts of heat can be reliably removed from the area of the mechanical seal (cooling) or fed to this area (heating).

Aufgrund der hohen Effizienz des Wärmeaustauschs eignet sich die erfindungsgemässe Rotationsmaschine insbesondere auch für Hochtemperaturanwendungen, bei denen das zu fördernde Fluid Temperaturen von bis zuu 200°C oder mehr haben kann.Due to the high efficiency of the heat exchange, the rotary machine according to the invention is also particularly suitable for high-temperature applications in which the fluid to be conveyed can have temperatures of up to 200° C. or more.

Bei einem bevorzugten Ausführungsbeispiel ist die Rotationsmaschine als Pumpe ausgestaltet, wobei die Antriebseinheit einen Motor umfasst, der in einem Motorengehäuse angeordnet ist.In a preferred exemplary embodiment, the rotating machine is designed as a pump, with the drive unit comprising a motor which is arranged in a motor housing.

Dabei ist es vorteilhaft, wenn das Laufrad in einem Pumpengehäuse angeordnet ist, welches mit dem Motorengehäuse zu einem Gesamtgehäuse verbunden ist, sodass die Pumpe inklusive Motor in einem einzigen Gehäuse eingeschlossen ist. Diese kompakte und nach aussen hin abgeschlossene Ausgestaltung erlaubt den Betrieb der Pumpe auch unter schwierigen Umgebungsbedingungen.It is advantageous if the impeller is arranged in a pump housing which is connected to the motor housing to form an overall housing, so that the pump including the motor is enclosed in a single housing. This compact design, which is closed off from the outside, allows the pump to be operated even under difficult environmental conditions.

Je nach Anwendung kann es vorteilhaft sein, wenn die Rotationsmaschine in einer vertikalen Anordnung arbeitet. Dann ist es bevorzugt, dass die Antriebseinheit in der normalen Gebrauchslage oberhalb der Pumpeneinheit angeordnet ist, weil dann die Antriebseinheit nicht durch das Gewicht des Laufrads belastet wird.Depending on the application, it can be advantageous if the rotary machine works in a vertical arrangement. It is then preferred that the drive unit is arranged above the pump unit in the normal position of use, because then the drive unit is not loaded by the weight of the impeller.

Eine weitere vorteilhafte Massnahme im Hinblick auf die Kühlung, die Schmierung und den Schutz der Antriebseinheit, z.B. gegen das zu fördernde Fluid, ist es, wenn das Motorengehäuse im Betriebszustand mit einer Sperrflüssigkeit gefüllt ist.A further advantageous measure with regard to cooling, lubricating and protecting the drive unit, e.g. against the fluid to be pumped, is if the motor housing is filled with a sealing liquid during operation.

Besonders bevorzugt ist dann als der fluide Wärmeträger die Sperrflüssigkeit vorgesehen.The sealing liquid is then particularly preferably provided as the fluid heat carrier.

In apperativer Hinsicht ist es vorteilhaft, wenn das Flügelrad zur Zirkulation des Wärmeträgers von der Antriebseinheit angetrieben wird und vorzugsweise auf der dem Laufrad abgewandten Seite der Antriebseinheit vorgesehen ist.In terms of apparatus, it is advantageous if the impeller for circulating the heat carrier is driven by the drive unit and is preferably provided on the side of the drive unit facing away from the impeller.

Eine bevorzugte Verwendung der Rotationsmaschine ist die zum Fördern von heissen Fluiden, deren Temperatur mindestens 150°C beträgt.A preferred use of the rotary machine is for conveying hot fluids, the temperature of which is at least 150°C.

Erfindungsgemäss wird ferner ein Verfahren gemäss Anspruch 9 vorgeschlagen für den Wärmeaustausch in einer Rotationsmaschine zum Fördern eines Fluids.According to the invention, a method according to claim 9 is also proposed for heat exchange in a rotary machine for conveying a fluid.

Wir bitten Sie die Absätze 21, 29 und 64 zu streichen.We ask you to delete paragraphs 21, 29 and 64.

Die Vorteile dieses Verfahrens entsprechen denjenigen, die bereits im Zusammenhang mit der erfindungsgemässen Rotationsmaschine erläutert wurden.The advantages of this method correspond to those that have already been explained in connection with the rotary machine according to the invention.

In einem bevorzugten Ausführungsbeispiel ist das gemeinsame Wärmetauschsystem ein Kühlsystem.In a preferred embodiment, the common heat exchange system is a refrigeration system.

Das Verfahren eignet sich insbesondere, wenn die Rotationsmaschine eine Pumpe ist, wobei die Antriebseinheit einen Motor umfasst, der in einem Motorengehäuse angeordnet ist, wobei der fluide Wärmeträger als Sperrflüssigkeit verwendet wird, mit welcher das Motorengehäuse gefüllt ist und wobei das Flügelrad vorzugsweise von der Antriebseinheit angetrieben wird.The method is particularly suitable when the rotary machine is a pump, the drive unit comprising a motor which is arranged in a motor housing, the fluid heat carrier being used as a sealing liquid with which the motor housing is filled and the impeller preferably being driven by the drive unit is driven.

Es ist eine vorteilhafte Massnahme, wenn der fluide Wärmeträger eine wasserbasierte Flüssigkeit ist, denn diese Flüssigkeiten sind in der Regel kostengünstig, haben eine ausreichende Wärmekapazität und sind nicht umweltbelastend. Insbesondere sind Mischungen aus Wasser und Glykol als fluider Wärmeträger geeignet.It is an advantageous measure if the fluid heat carrier is a water-based liquid, because these liquids are generally inexpensive, have sufficient heat capacity and are not harmful to the environment. In particular, mixtures of water and glycol are suitable as a fluid heat carrier.

Das erfindungsgemässe Verfahren eignet sich insbesondere für Hochtemperaturanwendungen, bei welchen das zu fördernde Fluid eine Temperatur von mindestens 150°C aufweist.The method according to the invention is particularly suitable for high-temperature applications in which the fluid to be pumped has a temperature of at least 150°C.

Weitere vorteilhafte Massnahmen und Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Further advantageous measures and refinements of the invention result from the dependent claims.

Im Folgenden wird die Erfindung sowohl in apparativer als auch in verfahrenstechnischer Hinsicht anhand eines Ausführungsbeispiels und anhand der Zeichnung näher erläutert. In der schematischen Zeichnung zeigen, teilweise im Schnitt:

Fig. 1:
eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemässen Rotationsmaschine ausgestaltet als Pumpe, und
Fig.2:
eine schematische, teilweise geschnitte Darstellung einer mechanischen Dichtung mit Komponenten des Wärmetauschsystems.
The invention is explained in more detail below both in terms of apparatus and in terms of process technology using an exemplary embodiment and using the drawing. In the schematic drawing show, partly in section:
Figure 1:
a schematic representation of an embodiment of a rotary machine according to the invention designed as a pump, and
Fig.2:
a schematic, partially sectioned representation of a mechanical seal with components of the heat exchange system.

In der folgenden Beschreibung einer erfindungsgemässen Rotationsmaschine und eines erfindungsgemässen Verfahrens für den Wärmeaustausch wird mit beispielhaftem Charakter auf den für die Praxis besonders wichtigen Anwendungsfall Bezug genommen, dass die Rotationsmaschine eine Pumpe ist. Es versteht sich jedoch, dass die Erfindung nicht auf solche Fälle beschränkt ist, sondern auch alle anderen Rotationsmaschinen umfasst, bei denen zur Wellenabdichtung eine mechanische Dichtung vorgesehen ist. Die Rotationsmaschine kann beispielsweise auch ein Kompressor, eine Turbine oder ein Generator sein.In the following description of a rotary machine according to the invention and a method according to the invention for heat exchange, reference is made, by way of example, to the application that is particularly important in practice, that the rotary machine is a pump. However, it goes without saying that the invention is not limited to such cases, but also includes all other rotary machines in which a mechanical seal is provided for shaft sealing. The rotary machine can also be a compressor, a turbine or a generator, for example.

Ferner wird bezüglich des Wärmeaustauschs mit beispielhaftem Charakter davon ausgegangen, dass der Wärmeaustausch eine Kühlung ist, bei der also dem System Wärme entzogen wird. Es versteht sich, dass die Erfindung in sinngemäss gleicher Weise auch Anwendungen umfasst, bei denen der Wärmeaustausch ein Heizen ist, also Anwendungen, bei welchem dem System Wärme zugeführt wird.Furthermore, with regard to the heat exchange with an exemplary character, it is assumed that the heat exchange is cooling, in which heat is therefore withdrawn from the system. It goes without saying that the invention also includes applications in the same way in which the heat exchange is heating, ie applications in which heat is supplied to the system.

Fig. 1 zeigt in einer sehr schematischen Darstellung eine Rotationsmaschine, die als Pumpe ausgestaltet ist und gesamthaft mit dem Bezugszeichen 1 bezeichnet ist. Die Pumpe 1 umfasst eine Antriebseinheit 2 mit einem Motor 21, der in einem Motorengehäuse 22 angeordnet ist und hier als Elektromotor ausgestaltet ist. Der Motor 21 hat eine Motorwelle 25, die den Rotor des Elektromotors darstellt. 1 1 shows, in a very schematic representation, a rotary machine which is designed as a pump and is denoted overall by the reference numeral 1. The pump 1 includes a drive unit 2 with a motor 21 which is arranged in a motor housing 22 and is designed here as an electric motor. The motor 21 has a motor shaft 25 which is the rotor of the electric motor.

Die Pumpe 1 umfasst ferner eine Pumpeneinheit 3 mit einem Pumpengehäuse 32, in welchem ein Laufrad 31 zum Fördern eines Fluids vorgesehen ist. Das Laufrad 31 ist auf einer Welle 5 angeordnet, welche mittels einer Kupplung 9 mit der Motorwelle 25 verbunden ist, und somit von dem Motor 21 angetrieben und in Rotation um ihre Längsachse A (Fig. 2) versetzt wird.The pump 1 also includes a pump unit 3 with a pump housing 32 in which an impeller 31 is provided for conveying a fluid. The impeller 31 is arranged on a shaft 5 which is connected to the motor shaft 25 by means of a coupling 9 and is thus driven by the motor 21 and rotated about its longitudinal axis A ( 2 ) is relocated.

Das Motorengehäuse 22 und das Pumpengehäuse 32 sind fest miteinander verbunden, beispielsweise mit mehreren Schrauben aneinandergeschraubt, und bilden so ein Gesamtgehäuse 4 für die Antriebseinheit 2 und die Pumpeneinheit 3
Die Welle 5 und die Motorwelle 25 sind in an sich bekannter Weise in mehreren Axiallagern 7 und Radiallagern 8 gelagert.
The motor housing 22 and the pump housing 32 are firmly connected to one another, for example screwed together with several screws, and thus form an overall housing 4 for the drive unit 2 and the pump unit 3
The shaft 5 and the motor shaft 25 are mounted in a number of axial bearings 7 and radial bearings 8 in a manner known per se.

Die Pumpeneinheit 3 umfasst ferner einen Einlass 33, durch welchen das zu fördernde Fluid durch die Wirkung des Laufrads 31 in das Pumpengehäuse 32 gesaugt wird, sowie einen Auslass 34 durch welchen das zu fördernde Fluid ausgeschoben wird.The pump unit 3 also includes an inlet 33, through which the fluid to be pumped is sucked into the pump housing 32 by the action of the impeller 31, and an outlet 34 through which the fluid to be pumped is pushed out.

Zur Abdichtung der Welle 5 sind in der Pumpe zwei mechanische Dichtungen 6 vorgesehen, nämlich eine erste, welche die Welle 5 an der Grenze zwischen der Pumpeneinheit 3 und der Antriebseinheit 2 abdichtet, sodass das zu fördende Fluid nicht entlang der Welle 5 in die Antriebseinheit 2 gelangen kann, und eine zweite, die darstellungsgemäss unterhalb des Laufrads 31 vorgesehen ist und die ein Eindringen des zu fördernden Fluids entlang der Welle 5 in einen darstellungsgemäss unterhalb des Laufrads 31 vorgesehenen Lagerraum 35 verhindert, in welchem eines der Radiallager 8 angeordnet ist.To seal the shaft 5, two mechanical seals 6 are provided in the pump, namely a first one, which seals the shaft 5 at the boundary between the pump unit 3 and the drive unit 2, so that the fluid to be pumped cannot flow along the shaft 5 into the drive unit 2 and a second, which is provided below the impeller 31 according to the illustration and which prevents the fluid to be pumped from penetrating along the shaft 5 into a bearing space 35 which is provided below the impeller 31 according to the illustration and in which one of the radial bearings 8 is arranged.

Bei dem hier erläuterten Ausführungsbeispiel der erfindungsgemässen Rotationsmaschine handelt es sich um eine mehrstufige Prozesspumpe für Hochtemperaturanwendungen, bei denen das zu fördernde Fluid sehr hohe Temperaturen von beispielsweise 150°C, 180°C, 200°C oder sogar noch mehr aufweist. Solch hohe Temperaturen können beispielsweise bei der Erdgas- oder Erdöl-Förderung auftreten, denn es gibt Ölfelder, in denen das Öl unter Temperaturen von 200°C vorliegt.The exemplary embodiment of the rotary machine according to the invention explained here is a multi-stage process pump for high-temperature applications in which the fluid to be pumped has very high temperatures of, for example, 150° C., 180° C., 200° C. or even more. Such high temperatures can occur, for example, in natural gas or oil production, because there are oil fields in which the oil is present at temperatures below 200°C.

Im Speziellen ist das hier beschriebene Ausführungsbeispiel als Untersee (Subsea-) Pumpe ausgestaltet, die auf dem Meeresboden montiert wird und dort arbeitet, z. B. zur Erdöl- oder Erdgasgewinnung. Gerade bei solchen Anwendungen ist eine äusserst kompakte Bauweise und eine höchst mögliche Betriebssicherheit und Zuverlässigkeit unabdingbar.In particular, the embodiment described here is designed as a subsea (subsea) pump that is mounted on the seabed and operates there, z. B. for oil or gas production. Especially with such applications, an extremely compact design and the highest possible operational safety and reliability are essential.

Wie bei Untersee-Anwendungen üblich, ist die Pumpe 1 in vertikaler Anordnung mit oben liegender Antriebseinheit 2 ausgestaltet, d.h. in Fig. 1 ist die Pumpe 1 in ihrer üblichen Gebrauchslage dargestellt. Das Motorengehäuse 22 der Antriebseinheit 2 ist in an sich bekannter Weise mit einer Sperrflüssigkeit 23 gefüllt, die zum Kühlen der mechanischen und der elektrischen Komponenten des Motors 21 dient, sowie zur Schmierung. Auch der unterhalb des Laufrads 31 angeordnete Lagerraum 35 ist mit der Sperrflüssigkeit 23 gefüllt.As is usual with subsea applications, the Pump 1 designed in a vertical arrangement with the drive unit 2 on top, ie in 1 the pump 1 is shown in its usual position of use. The motor housing 22 of the drive unit 2 is filled with a sealing liquid 23 in a manner known per se, which is used to cool the mechanical and electrical components of the motor 21 and for lubrication. The storage space 35 arranged below the impeller 31 is also filled with the sealing liquid 23 .

In Fig. 2 ist eine der mechanischen Dichtungen 6 in stark vereinfachter und schematischer Weise dargestellt. Mechanische Dichtungen an sich sind dem Fachmann hinlänglich bekannt und bedürfen daher hier keiner näheren Erläuterung. Aus diesem Grunde und weil es für das Verständnis ausreichend ist, sind in Fig. 2 viele Details wie beispielsweise die Fixierungen der Teile der Dichtung 6 oder Sekundärdichtungen, z. B. O-Ringe, nicht dargestellt.In 2 one of the mechanical seals 6 is shown in a highly simplified and schematic manner. Mechanical seals per se are well known to those skilled in the art and therefore do not require any further explanation here. For this reason and because it is sufficient for understanding, in 2 many details such as the fixations of the parts of the seal 6 or secondary seals, z. B. O-rings, not shown.

Typischerweise sind mechanische Dichtungen als Gleit- oder Gleitringdichtungen ausgestaltet, die einen Stator 61 und einen Rotor 62 umfassen. Dabei ist der Rotor drehfest mit der Welle 5 verbunden, während der Stator 61 bezüglich des Gesamtgehäuses 4 bzw. bezüglich des Pumpengehäuses 32 so fixiert ist, dass er gegen Rotationen gesichert ist. Während der Rotation der Welle 5 gleiten also der Rotor 62 und der Stator 61 aneinander.Typically, mechanical seals are designed as face or slide ring seals, which include a stator 61 and a rotor 62 . The rotor is connected to the shaft 5 in a rotationally fixed manner, while the stator 61 is fixed in relation to the overall housing 4 or in relation to the pump housing 32 in such a way that it is secured against rotation. Thus, during the rotation of the shaft 5, the rotor 62 and the stator 61 slide against each other.

Für das ordnungsgemässe Funktionieren der mechanischen Dichtungen 6 ist es wesentlich, dass die Dichtung 6 nicht zu heiss (bei Hochtemperaturanwendungen) oder nicht zu kalt (bei Tieftemperaturanwendungen) wird. Hierzu wird erfindungsgemäss ein neues Verfahren für den Wärmeaustausch mit der mechanischen Dichtung 6 vorgeschlagen, das nun im Folgenden anhand des in den Fig. 1 und 2 dargestellten Ausführungsbeispiels erläutert wird.It is essential for the proper functioning of the mechanical seals 6 that the seal 6 does not become too hot (in the case of high-temperature applications) or too cold (in the case of low-temperature applications). For this purpose, according to the invention, a new method for the heat exchange with the mechanical seal 6 is proposed, which is now based on the in the 1 and 2 illustrated embodiment is explained.

Es sind ein erstes Wärmetauschsystem 41 und ein zweites Wärmetauschsystem 42 vorgesehen - hier Kühlsysteme - die zu einem gemeinsamen Wärmetauschsystem 40 verbunden sind. Dieses integrierte Wärmetauschsystem 40 dient der Kühlung der mechanischen Dichtungen 6.A first heat exchange system 41 and a second heat exchange system 42 are provided—here cooling systems—which are connected to form a common heat exchange system 40 . This integrated heat exchange system 40 is used to cool the mechanical seals 6.

Das erste Wärmetauschsystem 41 zur Kühlung der mechanischen Dichtung 6 ist ein sogenanntes Flushingsystem, bei dem die mechanische Dichtung 6 oder zumindest Teile davon direkt mit einem fluiden Wärmeträger - hier einer Kühlflüssigkeit- beaufschlagt wird bzw. werden. Wie dies Fig. 2 zeigt, ist die mechanische Dichtung 6 in einem Dichtungsraum 63 angeordnet, welcher beispielsweise als Ringraum ausgestaltet ist und die Welle 5 umgibt. In diesen Dichtungsraum 63 wird der Wärmeträger durch eine Einlassöffnung 64 eingebracht. Ferner ist eine nicht dargestellte Auslassöffnung an dem Dichtungsraum 63 vorgesehen, durch welche der Wärmeträger den Dichtungsraum 63 wieder verlassen kann. Die Auslassöffnung ist beispielsweise um 45° oder um 90° verdreht bezüglich der Längsachse A zur Einlassöffnung 64 angeordnet. Während des Betriebs der Pumpe 1 ist der Dichtungsraum 63 im Wesentlichen vollständig mit dem Wärmeträger gefüllt, das heisst es fliesst pro Zeit gleichviel Kühlmittel (Wärmeträger) durch die Einlassöffnung 64 in den Dichtungsraum 63 hinein wie aus dem Dichtungsraum 63 durch die Auslassöffnung heraustritt. Der Wärmeaustausch - hier also die Kühlung - erfolgt somit durch den direkten Kontakt des Wärmeträgers mit der mechanischen Dichtung 6, bei welchem der Wärmeträger der Dichtung 6 Wärme entzieht und diese somit kühlt.The first heat exchange system 41 for cooling the mechanical seal 6 is a so-called flushing system, in which the mechanical seal 6 or at least parts thereof is or are acted upon directly by a fluid heat carrier—here a coolant. Like this 2 shows, the mechanical seal 6 is arranged in a sealing space 63, which is designed, for example, as an annular space and surrounds the shaft 5. The heat transfer medium is introduced into this sealing space 63 through an inlet opening 64 . Furthermore, an outlet opening (not shown) is provided on the sealing space 63 through which the heat carrier can leave the sealing space 63 again. The outlet opening is arranged, for example, rotated by 45° or by 90° with respect to the longitudinal axis A in relation to the inlet opening 64 . During operation of the pump 1, the sealing chamber 63 is essentially completely filled with the heat carrier, i.e. the same amount of coolant (heat carrier) flows through the inlet opening 64 into the sealing chamber 63 as flows out of the sealing chamber 63 through the outlet opening. The heat exchange - here the cooling - thus takes place through the direct contact of the heat transfer medium with the mechanical seal 6, in which the heat transfer medium extracts heat from the seal 6 and thus cools it.

Das zweite Wärmetauschsystem 42 zur Kühlung der mechanischen Dichtung 6 umfasst einen Wärmetauschmantel 421, der im vorliegenden Ausführungsbeispiel ein Kühlmantel 421 ist. Bei dieser Art des Wärmeaustauschs kommt es zu keinem direkten körperlichen Kontakt der mechanischen Dichtung 6 mit dem Wärmeträger, hier der Kühlflüssigkeit. Der Kühlmantel 421 umfasst einen Hohlraum 422, der beispielsweise als Ringraum ausgestaltet ist und die ganze Welle 5 umgibt. Es ist ein Einlass 423 vorgesehen, durch welchen der Wärmeträger in den Hohlraum 422 eingebracht wird und ein Auslass 424, durch welchen der Wärmeträger den Hohlraum 422 verlässt. Während des Betriebs ist der Hohlraum 422 vollständig mit dem Wärmeträger gefüllt, der durch den Hohlraum 422 zirkuliert wird. Bei dieser Art des Wärmeaustauschs bzw. der Kühlung gibt es keinen direkten körperliche Kontakt zwischen dem Wärmeträger und der mechanischen Dichtung 6.The second heat exchange system 42 for cooling the mechanical seal 6 includes a heat exchange jacket 421, which is a cooling jacket 421 in the present exemplary embodiment. With this type of heat exchange, there is no direct physical contact between the mechanical seal 6 and the heat transfer medium, in this case the coolant. The cooling jacket 421 includes a cavity 422 which is designed, for example, as an annular space and surrounds the entire shaft 5 . An inlet 423 is provided, through which the heat transfer medium is introduced into the cavity 422, and an outlet 424, through which the heat transfer medium leaves the cavity 422. During operation, the cavity 422 is completely filled with the heat carrier that is circulated through the cavity 422 . With this type of heat exchange or cooling, there is no direct physical contact between the heat transfer medium and the mechanical seal 6.

Wie dies insbesondere aus Fig. 1 ersichtlich ist, ist der Kühlmantel 421 jeweils auf der heisseren Seite der mechanischen Dichtung 6 angeordnet, also auf der Seite der Dichtung 6, bei der im Betriebszustand die höhere Temperatur herrscht. Das Pumpengehäuse 32 ist im Betriebszustand mit Ausnahme des Lagerraums 35 mit dem zu fördernden Fluid - also beispielsweise mit dem heissen Erdöl - gefüllt. Durch den Kühlmantel 421 wird insbesondere auch das zu fördernde Fluid in der Nähe der Dichtung 6 gekühlt, also beispielsweise auch in dem Spalt 51 der zu der Dichtung 6 führt. Durch diese Kühlung des zu fördernden Fluids in der unmittelbaren Nähe der mechanischen Dichtung 6 wird somit auch der Wärmeeintrag durch das zu fördernde Fluid in die Dichtung 6 deutlich reduziert, was einer Kühlung der Dichtung 6 entspricht.Like this particular out 1 As can be seen, the cooling jacket 421 is in each case arranged on the hotter side of the mechanical seal 6, ie on the side of the seal 6 in which the higher temperature prevails in the operating state. The pump housing 32 is in the operating state, with the exception of the storage space 35 with the fluid to be pumped - so for example with the hot oil - filled. In particular, the fluid to be conveyed in the vicinity of the seal 6 is also cooled by the cooling jacket 421 , ie for example also in the gap 51 which leads to the seal 6 . This cooling of the fluid to be conveyed in the immediate vicinity of the mechanical seal 6 also significantly reduces the heat input into the seal 6 by the fluid to be conveyed, which corresponds to a cooling of the seal 6 .

Erfindungsgemäss sind nun das erste Wärmetauschsystem 41 und das zweite Wärmetauschsystem 42 zu dem integrierten gemeinsamen Wärmetauschsystem 40 verbunden. Dies hat zur Folge, dass es einen gemeinsamen fluiden Wärmeträger für das gemeinsame Wärmetauschsystem 40 geben muss. Während bei voneinander getrennten ersten und zweiten Wärmetauschsystemen für diese beiden getrennten Systeme auch unterschiedliche fluide Wärmeträger verwendet werden könnten, so ist bei der erfindungsgemässen Lösung ein gemeinsamer fluider Wärmeträger notwendig, der beispielsweise der gleiche Wärmeträger sein kann wie derjenige des ersten oder des zweiten Wärmetauschsystems.According to the invention, the first heat exchange system 41 and the second heat exchange system 42 are now connected to form the integrated common heat exchange system 40 . The consequence of this is that there must be a common fluid heat transfer medium for the common heat exchange system 40 . While different fluid heat carriers could also be used for these two separate systems in the case of separate first and second heat exchange systems, the solution according to the invention requires a common fluid heat carrier which, for example, can be the same heat carrier as that of the first or second heat exchange system.

Besonders bevorzugt ist als fluider Wärmeträger für das gemeinsame Wärmetauschsystem 40 die Sperrflüssigkeit 23 vorgesehen, die auch zur Schmierung und zur Kühlung des Motors 21 bzw der Antriebseinheit 2 verwendet wird. Dies hat den Vorteil, dass nur eine einzige Flüssigkeit vorgesehen sein muss, die sowohl als Sperrflüssigkeit 23 als auch als fluider Wärmeträger für das Wärmetauschsystem 40 verwendet wird. Gerade für Untersee-Anwendungen wirkt sich diese Massnahme im Hinblick auf den apparativen Aufwand sehr positiv aus.The sealing liquid 23 , which is also used for lubricating and cooling the motor 21 or the drive unit 2 , is particularly preferably provided as the fluid heat carrier for the common heat exchange system 40 . This has the advantage that only a single liquid has to be provided, which is used both as a sealing liquid 23 and as a fluid heat carrier for the heat exchange system 40 . Especially for subsea applications, this measure has a very positive effect in terms of the equipment required.

Als fluider Wärmeträger eignen sich insbesondere wasserbasierte Flüssigkeiten wie beispielsweise eine Mischung aus Wasser und Glykol.Water-based liquids such as a mixture of water and glycol are particularly suitable as a fluid heat transfer medium.

Wie dies in Fig. 1 dargestellt ist, ist das gemeinsame Wärmetauschsystem 40 als ein geschlossenes System ausgestaltet, also als ein Kühlsystem oder ein Kühlkreislauf, in welchem der fluide Wärmeträger zirkuliert wird. Zur Zirkulation des Wärmeträgers ist ein Flügelrad 44 vorgesehen, welches auf der Motorwelle 25 angeordnet ist und somit durch die Antriebseinheit 2, speziell durch die Rotation der Motorwelle 25 des Motors 21, angetrieben wird.Like this in 1 is shown, the common heat exchange system 40 is designed as a closed system, ie as a cooling system or a cooling circuit, in which the fluid heat transfer medium is circulated. An impeller 44 is provided for the circulation of the heat transfer medium, which is arranged on the motor shaft 25 and is thus driven by the drive unit 2, specifically by the rotation of the motor shaft 25 of the motor 21.

Das Flügelrad 44 fördert den Wärmeträger über eine Hauptleitung 45 zu einem Wärmetauscher 43, in welchem der Wärmeträger die an der mechanischen Dichtung 6 oder in der Antriebseinheit 2 oder im Lagerraum 35 aufgenommene Wärme abgibt und dadurch gekühlt wird. Stromabwärts des Wärmetauschers 43 zweigen nun mehrere Leitungen von der Hauptleitung 45 ab, zunächst eine erste Leitung 451, durch welche der Wärmeträger in das Motorengehäuse 22 eintritt, wie dies der Pfeil an der Leitung 451 symbolisch andeutet. Der Wärmeträger füllt das Motorengehäuse und dient hier als Sperrflüssigkeit 23.The impeller 44 conveys the heat transfer medium via a main line 45 to a heat exchanger 43 in which the heat transfer medium releases the heat absorbed at the mechanical seal 6 or in the drive unit 2 or in the storage space 35 and is thereby cooled. A plurality of lines now branch off from the main line 45 downstream of the heat exchanger 43, first a first line 451, through which the heat carrier enters the motor housing 22, as symbolically indicated by the arrow on the line 451. The heat carrier fills the motor housing and serves as a sealing liquid 23.

Weiter stromabwärts zweigt eine zweite Leitung 452 von der Hauptleitung 45 ab, durch welche der Wärmeträger zum Kühlsystem für die mechanische Dichtung 6 gelangt. Die zweite Leitung 452 verzweigt sich wiederum in einen Ast, der zum Einlass 423 (Fig. 2) des Kühlmantels 421 führt, und in einen Ast, der zur Einlassöffnung 64 des Dichtungsraums 63 führt. Von der Auslassöffnung (nicht dargestellt) aus dem Dichtungsraum 63 und dem Auslass 424 des Hohlraums 422 des Kühlmantels 421 gelangt der fluide Wärmeträger über jeweilige Leitungen, die zur Leitung 461 zusammengeführt werden, in die Rückführleitung 46.A second line 452 branches off from the main line 45 further downstream, through which the heat transfer medium reaches the cooling system for the mechanical seal 6 . The second line 452 in turn branches into a branch leading to the inlet 423 ( 2 ) of the cooling jacket 421, and into a branch leading to the inlet port 64 of the seal chamber 63. From the outlet opening (not shown) from the sealing chamber 63 and the outlet 424 of the cavity 422 of the cooling jacket 421, the fluid heat carrier reaches the return line 46 via respective lines, which are combined to form line 461.

Schliesslich geht die Hauptleitung 45 in eine dritte Leitung 453 über, durch welche der Wärmeträger zum Kühlsystem für die darstellungsgemäss untere mechanische Dichtung 6 gelangt. Die dritte Leitung 453 verzweigt sich wiederum in einen Ast, der zum Einlass 423 (Fig. 2) des Kühlmantels 421 führt, und in einen Ast, der zur Einlassöffnung 64 des Dichtungsraums 63 führt. Bei dem hier beschriebenen Ausführungsbeispiel ist dieser Dichtungsraum 63 mit dem Lagerraum 35 verbunden, sodass der Wärmeträger über die gleiche Leitung, die zur Einlassöffnung 64 des Dichtungsraums 63 führt, auch in den Lagerraum 35 gelangen kann. Von der Auslassöffnung aus dem Dichtungsraum 63 und dem Auslass 424 des Hohlraums 422 des Kühlmantels 421 gelangt der fluide Wärmeträger über jeweilige Leitungen, die zur Leitung 462 zusammengeführt werden, in die Rückführleitung 46.Finally, the main line 45 merges into a third line 453, through which the heat carrier reaches the cooling system for the lower mechanical seal 6 according to the illustration. The third line 453 in turn branches into a branch leading to the inlet 423 ( 2 ) of the cooling jacket 421, and into a branch leading to the inlet port 64 of the seal chamber 63. In the exemplary embodiment described here, this sealing space 63 is connected to the storage space 35 so that the heat transfer medium can also reach the storage space 35 via the same line that leads to the inlet opening 64 of the sealing space 63 . From the outlet opening from the sealing chamber 63 and the outlet 424 of the cavity 422 of the cooling jacket 421, the fluid heat carrier reaches the return line 46 via respective lines, which are combined to form line 462.

Durch die Rückführleitung 46 gelangt der Wärmeträger wieder in den Bereich des Flügelrads 44, welches die Zirkulation des Wärmeträgers in dem geschlossenen Kühlkreislauf antreibt. Auch der über die erste Leitung 451 in das Motorengehäuse 22 eingebrachte Wärmeträger wird durch die Wirkung des Flügelrads 44 rezirkuliert, wie dies der Pfeil mit dem Bezugszeichen 463 andeutet.The heat carrier returns through the return line 46 to the area of the impeller 44, which drives the circulation of the heat carrier in the closed cooling circuit. The heat transfer medium introduced into the motor housing 22 via the first line 451 is also recirculated by the action of the impeller 44, as indicated by the arrow with reference number 463.

Das Flügelrad 44 zur Zirkulation des fluiden Wärmeträgers ist vorzugsweise auf der dem Laufrad 31 der Pumpeneinheit 3 abgewandten Seite der Antriebseinheit 2 bzw . der dem Laufrad 31 abgewandten Seite des Motors 21 vorgesehen.The impeller 44 for circulating the fluid heat carrier is preferably on the side of the drive unit 2 or provided on the side of the motor 21 facing away from the impeller 31 .

Auf diese Weise sind das erste Wärmetauschsystem 41 für die mechanischen Dichtungen 6 und das zweite Wärmetauschsystem 42 für die mechanischen Dichtungen 6 zu einem gemeinsamen Wärmetauschsystem 40 verbunden, dass somit ein integrales Wärmetauschsystem für die mechanischen Dichtungen 6 bildet. Gleichzeitig dient das gemeinsame Wärmetauschsystem 40 auch noch dazu, das Motorengehäuse mit der Sperrflüssigkeit 23 zu versorgen, die identisch mit dem fluiden Wärmeträger ist.In this way, the first heat exchange system 41 for the mechanical seals 6 and the second heat exchange system 42 for the mechanical seals 6 are connected to form a common heat exchange system 40, which thus forms an integral heat exchange system for the mechanical seals 6. At the same time, the common heat exchange system 40 also serves to supply the motor housing with the sealing liquid 23, which is identical to the fluid heat transfer medium.

Wie dies insbesondere bei Untersee-Anwendungen bzw. bei Unterseepumpen üblich ist, wird die Sperrflüssigkeit 23 im Motorengehäuse 22 unter einem höheren Druck gehalten als das zu fördernde Fluid im Pumpengehäuse 32. Der Druck der Sperrflüssigkeit 23 im Motorengehäuse 22 ist beispielsweise 20-25 bar höher als der Druck im Pumpengehäuse 32.As is customary, particularly in subsea applications or in subsea pumps, the sealing liquid 23 in the motor housing 22 is kept under a higher pressure than the fluid to be pumped in the pump housing 32. The pressure of the sealing liquid 23 in the motor housing 22 is, for example, 20-25 bar higher than the pressure in the pump housing 32.

Das erfindungsgemässe Verfahren bzw. die erfindungsgemässe Rotationsmaschine eignen sich für eine Vielzahl von Anwendungen. So sind sie insbesondere für Hochtemperaturanwendungen und speziell für solche im Untersee-Bereich geeignet. Als Pumpe ausgestaltet kann die erfindungsgemässe Rotationsmaschine zur Förderung von Öl, Gas, Seewasser oder auch sogenanntem "produced water" eingesetzt werden. Die Pumpe kann als Einphasen-, als Mehrphasen- oder auch als Hybridpumpe ausgestaltet sein mit den entsprechend daran angepassten Laufrädern. Es sind sowohl Ausgestalltungen als einstufige wie auch als mehrstufige Pumpen möglich.The method according to the invention and the rotary machine according to the invention are suitable for a large number of applications. They are particularly suitable for high-temperature applications and especially for those in the subsea area. Designed as a pump, the rotary machine according to the invention can be used to pump oil, gas, seawater or so-called "produced water". The pump can be designed as a single-phase, multi-phase or hybrid pump with the impellers correspondingly adapted to it. Both configurations as single-stage as well as multi-stage pumps are possible.

Insbesondere für Untersee-Anwendungen stellt die erfindungsgemäss vorgeschlagene Lösung durch ihr integriertes Wärmetauschsystem eine effiziente, zuverlässige, apperativ einfache und kompakte Möglichkeit zur Kühlung bzw. zur Heizung von mechanischen Dichtungen dar.In particular for undersea applications, the solution proposed according to the invention, thanks to its integrated heat exchange system, represents an efficient, reliable, simple to use and compact option for cooling or heating mechanical seals.

Wie bereits erwähnt ist bei einer Ausgestaltung der Pumpe als Unterseepumpe eine vertikale Anordnung bevorzugt, bei welcher die Antriebseinheit 2 oberhalb der Pumpeneinheit 3 angeordnet ist. Natürlich sind auch horizontale Anordnungen möglich, bei denen die Antriebseinheit 2 und die Pumpeneinheit 3 nebeneinander angeordnet sind. Eine solche Anordnung ist häufig bevorzugt, wenn die Pumpe nicht im Unterseebetrieb eingesetzt wird, sondern beispielsweise an Land, oder auf Schiffen oder auf Bohrplattformen.As already mentioned, a vertical arrangement is preferred in an embodiment of the pump as a submersible pump, in which the drive unit 2 above the Pump unit 3 is arranged. Of course, horizontal arrangements are also possible, in which the drive unit 2 and the pump unit 3 are arranged next to one another. Such an arrangement is often preferred when the pump is not used in submarine operation but, for example, on land, or on ships or on drilling platforms.

Wie bereits erwähnt eignet sich die erfindungsgemässe Rotationsmaschine bzw. das erfindungsgemässe Verfahren auch für Tieftemperaturanwendungen, beispielsweise für das Pumpen von flüssigen Gasen in der Kryotechnik. Bei solchen Anwendungen werden die mechanischen Dichtungen durch den Wärmeträger erwärmt oder geheizt. Der Wärmetauscher 43 dient dann dazu, dem Wärmeträger Wärme zuzuführen, die dieser dann in sinngemäss gleicher Weise zu den mechanischen Dichtungen transportiert. Bei solchen Anwendungen ist dann der Wärmetauschmantel des zweiten Wärmetauschsystems auf der kälteren Seite der mechanischen Dichtung 6 angeordnet, also auf derjenigen Seite der mechanischen Dichtung 6, welche im Betriebszustand dem Bereich geringerer Temperatur zugewandt ist.As already mentioned, the rotary machine according to the invention and the method according to the invention are also suitable for low-temperature applications, for example for pumping liquid gases in cryogenics. In such applications, the mechanical seals are warmed or heated by the heat carrier. The heat exchanger 43 then serves to supply heat to the heat transfer medium, which heat is then transported to the mechanical seals in the same way. In such applications, the heat exchange jacket of the second heat exchange system is then arranged on the colder side of the mechanical seal 6, ie on that side of the mechanical seal 6 which faces the lower temperature range in the operating state.

Claims (13)

  1. A rotary machine for conveying a fluid, having a drive unit (2) for driving a shaft (5), having an impeller (31) arranged at the shaft (5) for conveying the fluid, having at least one mechanical seal (6) arranged in a sealing space (63) for sealing the shaft (5), having a first and a second heat exchange system (41; 42) for cooling or for heating the mechanical seal (6); wherein the first heat exchange system (41) is configured for the direct application of a fluid heat carrier at the mechanical seal (6) and the second heat exchange system (42) comprises a heat exchange jacket (421), wherein the heat exchange jacket (421) comprises a hollow space (422) which can be flowed through by a fluid heat carrier without direct contact with the mechanical seal (6), wherein the rotary machine is configured as a subsea pump, and the first and the second heat exchange systems (41; 42) form a common heat exchange system (40) which is configured as a closed system in which a common fluid heat carrier can be circulated, wherein a fan wheel (44) is provided for the circulation of the fluid heat carrier in the heat exchange system (40), characterized in that the fan wheel (44) conveys the heat carrier via a main line (45) to a heat exchanger (43), wherein the common heat exchange system (40) comprises a line (452) which branches away from the main line (45) downstream of the heat exchanger (43) and branches into a branch which leads to an inlet (423) of the heat exchange jacket (421) as well as into a branch which leads to an inlet opening (64) of the sealing space (63), wherein the heat exchange system (40) further comprises a return line (46) and the return line (46) is connected via respective lines to an outlet opening of the sealing space (63) and to an outlet (424) of the hollow space (422), and wherein the heat carrier again arrives in the region of the fan wheel (44) through the return line (46).
  2. A rotary machine in accordance with clam 1, which is configured as a pump, wherein the drive unit (2) comprises a motor (21) which is arranged in a motor housing (22).
  3. A rotary machine in accordance with claim 2, in which the impeller (31) is arranged in a pump housing (32) which is connected to the motor housing (22) to form a common housing (4).
  4. A rotary machine in accordance with any one of the preceding claims, in which the drive unit (2) is arranged above the pump unit (3) in the normal position of use.
  5. A rotary machine in accordance with any one of the claims 2 to 4, in which the motor housing (22) is filled with a sealing liquid (23) in the operating state.
  6. A rotary machine in accordance with claim 5, in which the sealing liquid (23) is provided as the fluid heat carrier.
  7. A rotary machine in accordance with any one of the preceding claims, wherein the fan wheel (44) is driven for the circulation of the heat carrier by the drive unit (2) and is preferably provided at the side of the drive unit (2) disposed remote from the impeller (31).
  8. Use of a rotary machine in accordance with any one of the preceding claims, for the conveyance of hot fluids whose temperature amounts to at least 150°C.
  9. A method for the heat exchange in a rotary machine for conveying a fluid, the rotary machine having a drive unit (2) for driving a shaft (5), an impeller (31) arranged at the shaft (5) for conveying the fluid, as well as at least one mechanical seal (6) arranged in a sealing space (63) for sealing the shaft (5), in which method the mechanical seal (6) is cooled or heated with a first and a second heat exchange system (41; 42), wherein the mechanical seal (6) is directly applied with a fluid heat carrier by means of the first heat exchange system (41); and a heat exchange jacket (421) comprises a hollow space (422), which hollow space (422) is flowed through by a fluid heat carrier without direct contact with the mechanical seal (6) in the second heat exchange system (42), wherein the rotary machine is configured as a subsea pump, and the first and the second heat exchange systems (41; 42) are connected to a common heat exchange system (40) which is configured as a closed system in which a common fluid heat carrier is circulated and the fluid heat carrier is circulated in the heat exchange system by a fan wheel (44), characterized in that the fan wheel (44) conveys the heat carrier via a main line (45) to a heat exchanger (43), wherein the common heat exchange system (40) comprises a line (452) which branches away from the main line (45) downstream of the heat exchanger (43) and branches into a branch which leads to an inlet (423) of the heat exchange jacket (421) as well as into a branch which leads to an inlet opening (64) of the sealing space (63), wherein the heat exchange system (40) further comprises a return line (46) and the return line (46) is connected via respective lines to an outlet opening of the sealing space (63) and to an outlet (424) of the hollow space (422), and wherein the heat carrier again arrives in the region of the fan wheel (44) through the return line (46).
  10. A method in accordance with claim 9, wherein the common heat exchange system is a cooling system.
  11. A method in accordance with one of the claims 9 or 10, wherein the rotary machine is a pump, wherein the drive unit (2) comprises a motor (21) which is arranged in a motor housing (22), wherein the fluid heat carrier is used as a sealing liquid (23) with which the motor housing (22) is filled and wherein the fan wheel (44) is preferably driven by the drive unit (2).
  12. A method in accordance with any one of the claims 9 to 11, wherein the fluid heat carrier is a water-based liquid.
  13. A method in accordance with any one of the claims 9 to 12, wherein the fluid to be conveyed has a temperature of at least 150°C.
EP15703933.0A 2014-02-19 2015-02-02 Rotary machine and method for heat exchange in a rotary machine Active EP3108145B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14155716 2014-02-19
PCT/EP2015/052089 WO2015124414A1 (en) 2014-02-19 2015-02-02 Rotary machine and method for the heat exchange in a rotary machine

Publications (3)

Publication Number Publication Date
EP3108145A1 EP3108145A1 (en) 2016-12-28
EP3108145B1 EP3108145B1 (en) 2019-10-02
EP3108145B2 true EP3108145B2 (en) 2022-07-27

Family

ID=50156575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15703933.0A Active EP3108145B2 (en) 2014-02-19 2015-02-02 Rotary machine and method for heat exchange in a rotary machine

Country Status (12)

Country Link
US (1) US10557474B2 (en)
EP (1) EP3108145B2 (en)
KR (1) KR20160124076A (en)
CN (1) CN105940225B (en)
AU (1) AU2015221121B2 (en)
BR (1) BR112016009943B1 (en)
CA (1) CA2926371A1 (en)
ES (1) ES2750312T5 (en)
MX (1) MX2016010065A (en)
RU (1) RU2670994C2 (en)
SG (1) SG11201602881XA (en)
WO (1) WO2015124414A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO345311B1 (en) * 2018-04-26 2020-12-07 Fsubsea As Pressure booster with integrated speed drive
CN108488073B (en) * 2018-05-18 2023-07-04 广州市昕恒泵业制造有限公司 Environment-friendly slurry circulating pump group
SG10201912904SA (en) * 2019-02-18 2020-09-29 Sulzer Management Ag Process fluid lubricated pump and seawater injection system
RU191959U1 (en) * 2019-04-16 2019-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Controllable cascade electric drive
EP3739215A1 (en) * 2020-04-20 2020-11-18 Sulzer Management AG Process fluid lubricated pump
DE102021129695A1 (en) * 2021-11-15 2023-05-17 KSB SE & Co. KGaA Centrifugal pump with cooling insert

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687096A (en) 1950-01-26 1954-08-24 Combustion Eng Seal in centrifugal pump
CH536955A (en) 1971-11-24 1973-05-15 Feodor Burgmann Jr Asbest Und Cooled mechanical seal
CH560341A5 (en) 1973-02-13 1975-03-27 Sulzer Ag Pump arrangement with slide ring seal - incorporates pressure increase element in front of blocking circuit

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1276451B (en) * 1962-03-23 1968-08-29 Friedrich Wilhelm Pleuger Centrifugal pump installed in a line and coupled with an electric motor
US3467396A (en) 1967-05-10 1969-09-16 Durametallic Corp Internally cooled seal assembly
US3459430A (en) * 1967-07-06 1969-08-05 Borg Warner Mechanical seal assembly
US3478689A (en) * 1967-08-02 1969-11-18 Borg Warner Circulating pump
DE1800254B2 (en) * 1968-01-24 1971-09-30 DEVICE TO ENSURE THE COOLING OF THE SHAFT SEALS AND MEDIUM-LUBRICATED WHEEL BEARINGS OF CIRCULATING PUMPS WORKING UNDER HIGH SYSTEM PRESSURES
JPS5443722B2 (en) * 1973-02-02 1979-12-21
US4558870A (en) * 1977-11-28 1985-12-17 Borg-Warner Corporation Mechanical seal assembly
DE3136721A1 (en) 1981-09-16 1983-03-31 Klein, Schanzlin & Becker Ag, 6710 Frankenthal METHOD FOR AVOIDING SHAFT INTERVENTIONS IN HORIZONTAL CENTRIFUGAL PUMPS FOR CONVEYING HOT MEDIA AND DEVICES FOR IMPLEMENTING THE METHOD
JP3752348B2 (en) * 1997-03-14 2006-03-08 株式会社 日立インダストリイズ Multistage centrifugal compressor apparatus and operation method thereof
RU41097U1 (en) * 2004-01-30 2004-10-10 Общество с ограниченной ответственностью Научно-производственный центр "Анод" SHAFT SEAL SHAFT
RU2410572C2 (en) * 2006-03-24 2011-01-27 Сименс Акциенгезелльшафт Compressor air unit
US8777596B2 (en) * 2008-05-06 2014-07-15 Fmc Technologies, Inc. Flushing system
RU2425256C2 (en) * 2009-08-11 2011-07-27 Открытое акционерное общество "Центральное конструкторское бюро машиностроения" Power unit
EP2481960B1 (en) * 2009-09-24 2016-09-21 Eagle Industry Co., Ltd. Mechanical seal
RU2418197C1 (en) * 2009-09-25 2011-05-10 Открытое акционерное общество "Центральное конструкторское бюро машиностроения" Primary circulation pump unit
JP5846967B2 (en) * 2012-03-02 2016-01-20 株式会社日立製作所 Centrifugal steam compressor and shaft seal system used therefor
FR2991736A1 (en) * 2012-06-06 2013-12-13 Alstom Technology Ltd DEVICE FOR SEALING A PUMP
US9664289B2 (en) * 2012-06-06 2017-05-30 General Electric Technology Gmbh Pump sealing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687096A (en) 1950-01-26 1954-08-24 Combustion Eng Seal in centrifugal pump
CH536955A (en) 1971-11-24 1973-05-15 Feodor Burgmann Jr Asbest Und Cooled mechanical seal
CH560341A5 (en) 1973-02-13 1975-03-27 Sulzer Ag Pump arrangement with slide ring seal - incorporates pressure increase element in front of blocking circuit

Also Published As

Publication number Publication date
SG11201602881XA (en) 2016-05-30
RU2016125738A (en) 2018-03-22
BR112016009943A2 (en) 2017-08-01
AU2015221121A1 (en) 2016-07-21
ES2750312T5 (en) 2022-10-07
CN105940225B (en) 2019-02-22
RU2670994C2 (en) 2018-10-29
BR112016009943B1 (en) 2022-08-02
CA2926371A1 (en) 2015-08-27
MX2016010065A (en) 2016-10-07
EP3108145B1 (en) 2019-10-02
KR20160124076A (en) 2016-10-26
RU2016125738A3 (en) 2018-09-18
CN105940225A (en) 2016-09-14
ES2750312T3 (en) 2020-03-25
AU2015221121B2 (en) 2018-11-08
EP3108145A1 (en) 2016-12-28
US10557474B2 (en) 2020-02-11
US20160348687A1 (en) 2016-12-01
WO2015124414A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
EP3108145B2 (en) Rotary machine and method for heat exchange in a rotary machine
DE102007021720B4 (en) Compressor system for underwater use in the offshore sector
EP0268015B1 (en) Canned motor pump or pump with an encased magnetic coupling
WO2007110281A1 (en) Compressor unit
EP3163086B1 (en) Pump drive unit for process fluid conveying
CH706860A2 (en) Supporting device for supporting a turbine rotor and a turbine housing.
DE2349978A1 (en) MECHANICAL SEALING ARRANGEMENT
DE102013012938A1 (en) Heat exchanger-type cooling device for a transformer
DE1058618B (en) Hermetically sealed electric motor pump suitable for pumping a medium of higher temperature
WO2020099239A1 (en) Electric motor
DE112012002650T5 (en) Waste heat power generator
DE2033711A1 (en) Process for improving the suction capacity of centrifugal pumps and pumps for carrying out the process
DE1901284A1 (en) Start-up lubrication device for a mechanical seal
EP3635259B1 (en) Centrifugal pump for conveying hot media
DE102012217361A1 (en) Electric machine i.e. unpackaged electric machine, has base body including stand and cooling passages, rotor supported at base body such that rotor is rotated around rotational axis, and heat exchanger formed in base body
DE102020003928A1 (en) Pump arrangement with temperature-controlled housing part
DE102008046890A1 (en) Rotary feedthrough for use with axial slide ring seals, has stationary housing with heat carrier medium inlet or outlet, and is arranged in atmosphere of room
DE69013212T2 (en) Pump with coolant for sealing.
DE3404964C2 (en) Keiselpump with a shaft seal
EP3714165A1 (en) Magnetic-drive pump comprising a mechanical face seal
WO2012013531A1 (en) Steam turbine and process for cooling such a steam turbine
DE2140096B2 (en) TURBO COMPRESSOR THAT SUCKS THE WORKING MEDIUM AT LOW TEMPERATURE
WO2018206157A1 (en) Bearing arrangement for mounting a turbine rotor of a turbomachine
EP1546563B1 (en) Support bearing for a vertical centrifugal pump
CH340106A (en) Turbomachine with a sealed shaft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171002

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20190730

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1186482

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010513

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191002

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2750312

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015010513

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200202

26 Opposition filed

Opponent name: KSB SE & CO. KGAA

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200202

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1186482

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

27A Patent maintained in amended form

Effective date: 20220727

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502015010513

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: TB2

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2750312

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20221007

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 10

Ref country code: GB

Payment date: 20240219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240222

Year of fee payment: 10

Ref country code: FR

Payment date: 20240221

Year of fee payment: 10