EP3105995B1 - Driver circuit for leds - Google Patents

Driver circuit for leds Download PDF

Info

Publication number
EP3105995B1
EP3105995B1 EP15701700.5A EP15701700A EP3105995B1 EP 3105995 B1 EP3105995 B1 EP 3105995B1 EP 15701700 A EP15701700 A EP 15701700A EP 3105995 B1 EP3105995 B1 EP 3105995B1
Authority
EP
European Patent Office
Prior art keywords
circuit
current
driver circuit
pwm
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15701700.5A
Other languages
German (de)
French (fr)
Other versions
EP3105995A1 (en
Inventor
Thomas KÜNG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3105995A1 publication Critical patent/EP3105995A1/en
Application granted granted Critical
Publication of EP3105995B1 publication Critical patent/EP3105995B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges

Definitions

  • the present invention relates to a control circuit and a converter for the operation of at least one light source, e.g. a driver circuit for the operation of at least one LED, and a corresponding method for operating a light source.
  • a control circuit and a converter for the operation of at least one light source e.g. a driver circuit for the operation of at least one LED, and a corresponding method for operating a light source.
  • the US 2013/0285565 A1 discloses a multichannel constant current source having two controllable stages for operating an array of light emitting diodes and a lighting source.
  • the WO 2013/072784 A1 discloses a system and method for controlling the maximum output operating voltage of a solid state lighting device.
  • a driver circuit for operating LEDs is basically known from the prior art.
  • Such a driver circuit is powered by an electrical supply source, and includes a resonant circuit, such as a resonant circuit.
  • an LLC converter which is responsible for transmitting power via a galvanic barrier or galvanic barrier from a primary side to a secondary side of the galvanic barrier. The purpose of this transfer of electrical energy is the supply of a switched on the secondary side LED track with electricity.
  • the invention is based on such an LLC topology, e.g. a half-bridge inverter with the following resonant circuit comprises.
  • the resonant circuit feeds a transformer, starting from the secondary side in turn an LED track can be supplied.
  • a known correction of this measurement is that the voltage across the LED path is measured on the secondary side and, if appropriate with further measured values, such as, for example, the temperature is sent from a secondary side microcontroller via the SELV barrier to the microcontroller on the primary side.
  • This microcontroller thus corrects the primary current measurement by this correction contribution, which is calculated using empirical, e.g. in a look-up table stored measured values is determined from the secondary-side LED voltage measurement.
  • the microcontroller controls the frequency of the half-bridge depending on the current and voltage measurement via an ASIC as manipulated variable.
  • the look-up table for determining the correction value can only approximately determine the correct correction contribution.
  • the solution is relatively expensive in terms of components, in particular to overcome the SELV barrier.
  • dimming of the LED path can be achieved by briefly switching off the high-frequency clocking of the switches of the half-bridge. This is achieved by a low-frequency PWM modulation.
  • PWM modulation it is problematic here that the levels of PWM modulation are limited.
  • the resolution of the stages of the PWM modulation, eg 7-bit, causes so-called dithering, ie the frequency of the LLC converter can not be controlled precisely enough. Consequently, the desired LED current and thus the desired brightness can only be approximately adjusted.
  • the invention is based on the technical problem of specifying a control circuit or driver circuit for operating light sources, in particular LEDs, in which a desired value for the brightness is better implemented.
  • a driver circuit for lighting means in particular for one or more LEDs.
  • the driver circuit comprises a voltage-supplyable circuit which is clocked by means of at least one switch and supplies a resonant circuit for supplying the lighting means with power.
  • the driver circuit further comprises a control circuit for controlling the luminous flux, comprising a regulator.
  • the controller generates a manipulated variable for controlling the luminous flux in response to a feedback signal representing the current through the luminous means and a signal representing a setpoint value for the luminous flux.
  • the driver circuit comprises a PWM modulator for modulating the manipulated variable with a PWM signal. The modulation of the manipulated variable by the PWM signal causes the control loop to be activated continuously and also in the switch-off periods of the PWM signal.
  • the drive circuit includes a PWM dimming unit for setting a duty ratio for the PWM modulation depending on a dimming command. Furthermore, the driver circuit has an amplitude dimming unit for determining the setpoint value for the luminous flux in dependence on the dimming command.
  • control loop is activated continuously and in particular also in the turn-off periods of the PWM signal.
  • modulation of the manipulated variable by the PWM signal leads to the control circuit being activated continuously, and in particular also during the switch-off periods of the PWM signal.
  • control circuit has a time constant that is slower than the time duration of a period of the PWM modulation.
  • the time constant of the control loop is much slower than the duration of a period of the PWM modulation, e.g. at least 5 times slower, especially between 5 and 10 times slower.
  • the driver circuit preferably has a low-pass filter for filtering the feedback signal.
  • the controller sets the manipulated variable depending on the low-pass filtered feedback signal.
  • the time constant of the low-pass filter is slower than the duration of a period of the PWM modulation.
  • the time constant of the control loop may be slower than the period of one period of the PWM modulation that the time constant of the low-pass filtering by the low-pass filter is slower than the period of one period of the PWM modulation.
  • the time constant of the control algorithm implemented in the controller is slower than the duration of a period of the PWM modulation.
  • the time constant of the control loop can thereby be slower than the time duration of a period of the PWM modulation that the time constant of the control algorithm implemented in the control algorithm is slower than the duration of a period of the PWM modulation.
  • the PWM modulation due to the slow time constant, in particular due to the slowdown by the low-pass filter, by the control loop is not adjustable.
  • the driver circuit has a PWM dimming unit for setting a duty ratio for the PWM modulation depending on a dimming command.
  • the duty cycle is preferably set independently of feedback variables, in particular from the area of the driver circuit.
  • the PWM modulation can be done in particular open-loop. That the PWM signal is modulated only by control and not by control on the manipulated variable. In other words, the PWM modulation is done without feedback.
  • the driver circuit has an amplitude dimming unit for determining the setpoint value for the luminous flux in dependence on the dimming command.
  • the setpoint can be set independently of the set duty cycle for the PWM modulation.
  • the duty cycle for the PWM modulation is 100%.
  • the duty cycle is reduced stepwise or continuously (continuously or quasi-continuously esp. In a digital embodiment).
  • a cascade control is provided.
  • the first control circuit comprising the regulator for regulating the luminous flux is interleaved with a second control circuit having a further regulator.
  • the second control loop may have a faster time constant than the first control loop.
  • the second control circuit can in particular serve to regulate a residual ripple of the voltage.
  • the driver circuit preferably has a transformer following the resonance circuit for transmitting electrical energy from a primary winding coupled to the resonance circuit to a secondary winding, from which the lighting means can be supplied with power.
  • the feedback signal indirectly reflects the luminous flux, in which it is inductively coupled out on the secondary side of the transformer.
  • the driver circuit preferably has a driver for output, based on the PWM-modulated manipulated variable, at least one on / off drive signal for the control of the at least one switch of the clocked circuit.
  • the manipulated variable preferably reproduces the frequency and / or the duty ratio of the control of the at least one switch of the clocked circuit.
  • a control unit for operating a driver circuit for lighting means, in particular for one or more LEDs, is disclosed.
  • the control unit comprises an input for a return signal representing the current through the lighting means.
  • the control unit comprises a control circuit for regulating the luminous flux, comprising a regulator.
  • the controller generates a manipulated variable for the regulation of the luminous flux as a function of the feedback signal and of a signal representing a setpoint value for the luminous flux.
  • the control unit comprises a PWM modulator for modulating the manipulated variable with a PWM signal.
  • control unit is in the form of an integrated circuit, in particular ASIC or microcontroller or a hybrid version thereof.
  • a method for regulating the current through lighting means, in particular by one or more LEDs.
  • a return signal representing the current through the lamps is tapped off.
  • a manipulated variable for the regulation of the luminous flux is generated.
  • a PWM signal is modulated onto the manipulated variable.
  • the modulation of the manipulated variable by the PWM signal causes the control loop to be activated continuously and also in the turn-off periods of the PWM signal; a duty cycle for the PWM modulation is set depending on a dimming command; and the setpoint for the illuminant current is set in response to the dimming command.
  • driver circuit The aspects mentioned above with respect to the driver circuit are also applicable to the control unit and to the method.
  • the invention thus preferably proposes that the PWM signal does not temporarily switch off the control loop or modulate the entire half-bridge driver, but rather modulate the output signal of the half-bridge control loop.
  • a control of the LED current by changing the frequency of the half-bridge drive is present.
  • This control loop runs constantly, ie also in the turn-off periods of the PWM modulation.
  • This control has a time constant that is significantly slower than the frequency / duration of the PWM modulation.
  • the targeted 'slowing down takes place by the low-pass filtering of the feedback signal before the comparator with the desired signal.
  • this time constant can also be implemented after the comparator or in the control algorithm itself.
  • a driver circuit 1 for the supply of lighting means is shown, in particular in the form of an LED converter for the supply of LEDs or an LED track.
  • the driver circuit 1 is fed on the input side by an input voltage Vdc.
  • the input voltage Vdc is preferably a rectified, and optionally filtered, AC voltage or mains voltage. Preferably, this rectified mains voltage is still supplied to a converter in the form of, for example, a power factor correction circuit (not shown) before it supplies the driver circuit 1.
  • the input voltage Vdc is in this case an approximately constant bus voltage possibly having a residual ripple. In the embodiment of Fig. 1
  • the input voltage Vdc has an amplitude of 400V.
  • the input voltage can also be called bus voltage or DC link voltage.
  • the input voltage Vdc may also be a DC voltage or a constant voltage such as a battery voltage.
  • a switching regulator is provided in the driver circuit 1, which is dependent on the input voltage Vdc is fed.
  • the input voltage Vdc supplies, in particular, a clocked circuit or an inverter, which can be designed, for example, in the form of a half-bridge circuit 2.
  • the half-bridge circuit 2 shown has a potential-lower switch LS and a higher-potential switch HS.
  • the inverter 2 has at least one switch.
  • a flyback converter (not shown) may be provided.
  • the series-connected switches LS, HS of the half-bridge circuit 2 may be implemented as transistors, e.g. FET or MOSFET be configured.
  • the switches LS, HS are controlled by respective control signals S / LS, S / HS, starting from a half-bridge driver 12 of a control unit ST.
  • the switches LS, HS are preferably switched on and off alternately by the control signals S / LS, S / HS and by the half-bridge driver 12.
  • the mean value of the current through the LEDs can be adjusted by changing the drive frequency ASF of the switches LS, HS, and / or by changing the duty cycle of the drive.
  • the potential-lower switch LS is connected to a primary-side ground. At the half-bridge circuit 2, the input voltage Vdc is applied.
  • a resonant circuit 3 in the form of, for example, a series resonant circuit is connected.
  • a parallel resonant circuit may also be connected at the midpoint of the half-bridge circuit 2.
  • the in Fig. 1 shown resonant circuit 3 is designed as a series resonant circuit and includes Inductance and capacitance elements.
  • a series circuit comprising a first coil Lr, a second coil La and a capacitor Cr.
  • the resonant circuit 3 is referred to in this case as the LLC resonant circuit.
  • the coil Lr and the capacitor Cr preferably form an LC resonant circuit and are referred to as a resonant coil and a resonant capacitor. 7
  • the second coil La connected in series with the coil Lr and the capacitor Cr is preferably the primary winding of a transformer T serving as a transformer for galvanic isolation.
  • the transformer T is an example of a galvanic barrier used in Fig. 1 is shown as a safety extra-low voltage barrier or SELV barrier 7 (Safety Extra Low Voltage).
  • SELV barrier 7 Safety Extra Low Voltage
  • the transformer T forms a total of a galvanic barrier between a primary side having the primary winding La and a secondary side comprising the secondary winding Lb of the transformer T.
  • the transformer T is shown as an ideal transformer, wherein the primary winding of the real transformer T can have a leakage inductance and a main inductance for guiding the magnetizing current.
  • the secondary winding Lb of the transformer T has a tapping, in particular a center tap or center tap, this center tap can serve as a secondary side ground.
  • the secondary winding Lb may consist of two separate windings, in which case the center of these separate windings corresponds to the center tap.
  • One terminal of the secondary winding Lb is connected to a first detection winding L1, and the other terminal of the secondary winding Lb is connected to a second detection winding L1 '.
  • the first detection winding L1 and the second detection winding L1 ' are preferably identical.
  • the respective number of turns nL1_sec, nL1'_sec of the detection windings L1, L1 ' are the same.
  • a first diode D1 is connected in series with the first detection winding L1 .
  • a second diode D1' is connected.
  • the detection coils L1, L1 ' are connected to the anode of the diodes D1, D1'.
  • an AC current i.e., AC current flows through the secondary winding Lb of the transistor T, preferably. an alternating current.
  • a current flows through the first diode D1 or through the second diode D1 '.
  • the rectifier is also referred to as the center rectifier.
  • the rectifier circuit 4 supplies a storage capacitor C2 on the output side.
  • This storage capacitor C2 is preferably connected between the connection point of the diodes D1, D1 'and the center tap of the secondary winding Lb.
  • an electrolytic capacitor can preferably be used because of its comparatively high capacity.
  • the secondary side current through the detection windings L1, L1 ' is thus rectified to operate the LEDs initially by the rectifier circuit 4 and then preferably filtered or low-pass filtered.
  • the lighting means preferably LEDs or an LED track
  • the driver circuit 1 has correspondingly two output terminals K1, K2 for connecting the LEDs.
  • the illustrated LED should be representative of one or more LEDs.
  • the LED circuit operated by the driver circuit 1 may comprise a series connection of a plurality of LEDs.
  • parallel LEDs or a combination of LEDs connected in parallel and in series can also be supplied.
  • a coil L2 shown at the output of the rectifier circuit 4 and the storage capacitor C2 further components may be provided for filtering.
  • a coil L2 shown at the output of the rectifier circuit 4 and the storage capacitor C2.
  • This coil L2 may preferably be arranged in series with the LEDs, this series circuit being connected in parallel with the capacitor C2.
  • the coil L2 is preferably connected between the output terminal K1 on the one hand and the connection point of the diodes D1, D1 'on the other hand.
  • the driver circuit may have a further storage or filter capacitor C3.
  • a resistor R3 may be provided between the output terminal K2 and the center tap of the secondary winding Lb.
  • the detection windings L1, L1 ' are coupled to a primary-side winding L1 ", and the alternating current flowing through the secondary winding Lb of the transistor T is thus supplied from the secondary side provided detection windings L1, L1 'transformed into a current flowing through the winding L1 "primary-side current .
  • These three windings L1, L1', L1" form a detection transformer or a preferably isolated sense transformer T1.
  • the current through the primary-side winding L1" is a representation of the mean value of the current through the LEDs.
  • the ratio of the number of turns of the corresponding primary and secondary windings to each other is taken into account.
  • the number of turns nL1 "_prim, nL1_sec, nL1'_sec of the primary and secondary side detection windings L1", L1, L1 ' are equal.
  • the secondary winding Lb on the one hand and the detection windings L1, L1 'on the other hand are formed as separate windings. That the secondary winding Lb and the sense windings L1, L1 'form two separate transformers.
  • the windings of the detection transformer are in particular designed to enable a detection of the secondary-side alternating current which is as loss-free as possible Current transformer formed detection transformer L1, L1 ', L1 "have the lowest possible impedance.
  • Evaluation circuit 6 is connected to the primary-side detection winding L1 "to generate a measured value Im for the current through the LEDs
  • This measurement value Im is fed back to the control circuit ST
  • the control circuit ST Based on the obtained feedback value Im, the control circuit ST generates the control signals S / LS, S / HS for the switches LS, HS Starting from the actual value Im, the control circuit ST performs a current regulation to a desired setpoint value ILS, in which the half-bridge circuit 2 is clocked accordingly.
  • the evaluation circuit 6 serves in principle to evaluate or process the information supplied by the detection winding L1 "about the current through the LEDs and then to return it to the control circuit ST.On the secondary side, a signal representing the current through the secondary side is inductively decoupled and applied to the signal Where it is rectified, averaged and then fed to the control circuit ST, the detection winding L1 "is connected to a rectifier 5 for this purpose.
  • the rectifier 5 may be e.g. in the form of a full-bridge rectifier having four diodes (not shown) configured.
  • a resistor or measuring resistor Rshunt is connected, which reproduces the current through the secondary side and through the LEDs.
  • the low-pass filter LPF can be configured, for example, as an RC element with a resistor and a capacitor, wherein the capacitor is preferably connected in parallel with the filtered signal Im.
  • This filtered actual value Im gives the mean value of the LED power again.
  • the analog average actual value Im of the LED current is preferably converted by an analog-to-digital converter ADC into a digital actual value.
  • the analog-to-digital converter ADC is preferably designed as a 12-bit converter.
  • the measured actual value Im of the LED current is subtracted from the control unit ST a setpoint value for the LED current ILS.
  • the control unit ST comprises means such as e.g. a comparator 9 for comparing the set value ILS and the actual value Im or for forming the difference of these values. This results in a control difference RDF for controlling the current through the LEDs.
  • the set value ILS for the LED current can be set internally by the control unit ST.
  • a dimming command B as in FIG Fig. 1 shown, externally specified.
  • the control unit ST may be connected to a line in order to receive the dimming command B via this line and to derive therefrom the current setpoint ILS.
  • this line may be a data line or a data bus for data transmission between the control unit ST and an external communication unit (not shown).
  • the data transmission can take place analogously or preferably digitally by means of a protocol for the control of photometric operating devices.
  • DALI Digital Addressable Lighting Interface
  • DSI Digital Serial Interface
  • the received dimming command B is converted or converted by an amplitude dimming unit 8 into the setpoint value ILS.
  • the amplitude dimming unit 8 preferably generates a desired value ILS in digital form, for example as a 12-bit value.
  • the control difference RDF is fed to a controller 10, in which a control algorithm for the regulation of the LED current is implemented.
  • the regulator 10 is preferably designed as a digital regulator and can be used e.g. be configured in the form of a PI controller.
  • the controller Depending on the supplied control difference RDF, the controller generates a control variable, by means of which the half-bridge driver 12 is driven.
  • As manipulated variable e.g. the drive frequency ASF of the switches LS, HS, and / or the duty cycle of the control of the switches LS, HS be provided.
  • the switches LS, HS of the half-bridge 2 are switched to high-frequency, typically in a frequency range of about 10 kHz.
  • the drive frequency ASF is thus typically higher than 10 kHz and may be e.g. up to a few MHz.
  • the control unit ST comprises parallel to the amplitude dimming unit 8 for determining the set value ILS for the LED current in response to the dimming command B nor a PWM dimming unit 8 '.
  • This PWM dimming unit 8 ' serves to convert the received dimming command B into a duty cycle TVH for PWM modulation (pulse width modulation).
  • the frequency of the PWM modulation is low-frequency compared with the drive frequency ASF, typically in the range of 100-1000 Hz.
  • the duty cycle TVH is fed to a PWM modulator 11.
  • the PWM modulator 11 receives on the input side, on the one hand, the value of the duty cycle TVH for the PWM modulation and, on the other hand, the manipulated variable ASF or a signal which reproduces this manipulated variable.
  • the duty cycle TVH is preferably dependent only on the dimming command B and in particular not on the set value ILS.
  • a look-up table may be provided, in which a suitable duty cycle TVH is stored for different dimming commands B.
  • the duty cycle TVH affects the PWM modulation by the PWM modulator 11, but not the current regulation by the controller 10.
  • the controller 10 receives as input only the set value ILS for the LED current and not the duty cycle TVH.
  • the controller 10 is also not turned off during a turn-off period of the PWM modulation.
  • the PWM dimming being done by modulating the PWM signal through the PWM modulator 11 and the AM dimming or amplitude dimming by controlling the amplitude of the LED Current through the controller 10 takes place.
  • the LED current is higher in the on-time periods than in true AM / PWM dimming, where the control is turned off in a PWM-off period.
  • the LED current remains substantially constant - except for a sawtooth ripple - resulting in improved color consistency of the LED path.
  • control loop of the LED current is selected, for example, between 5 and 10 times slower than the low-frequency PWM modulation of the operation of the inverter 2.
  • This PWM modulation is superimposed on the high-frequency operation of the half-bridge inverter for dimming the LED path.
  • the signal representing the LED current is, according to the invention, so low-pass filtered or averaged that the time constant is substantially slower than the frequency of the PWM signal.
  • the controller topology according to the invention now lies in the fact that the control loop with the actual value signal 'low-pass filtered LED current' and the manipulated variable 'frequency of the half-bridge inverter' is continuously activated, ie in particular in the turn-off of the PWM signal.
  • the PWM signal which thus stops the operation of the half-bridge during the switch-off periods, is applied to the output of the control algorithm.
  • the control loop is unable to correct the PWM modulation due to the slowdown due to the low-pass filtering of the feedback signal.
  • the low-pass filter LPF is provided outside the control unit ST.
  • the low-pass filter is designed analogously.
  • the low-pass filter can also be connected within the control unit ST.
  • the low-pass filter LPF may be after the analog-to-digital converter ADC, in which case the low-pass filter is implemented digitally.
  • the low-pass filter may be interconnected either between the analog-to-digital converter ADC and the comparator 9, or between the comparator 9 and the controller 10.
  • Fig. 2 shows an alternative embodiment for the secondary side of the driver circuit.
  • this Fig. 2 an alternative construction of the rectification of the secondary-side current is shown.
  • the detection winding L1 is, as in the embodiment of Fig. 1 , in series with the secondary winding Lb, which in contrast to the embodiment of the Fig. 1 is designed as a single winding without center tap.
  • the current through the secondary winding Lb is supplied to a rectifier circuit 20, which is thus coupled on the input side to the secondary winding Lb or to the series circuit of the secondary winding Lb and the detection winding L1.
  • the rectifier circuit 20 is designed as a bridge rectifier or full-bridge rectifier with four diodes (not shown).
  • the circuit at the output of the rectifier circuit 20 in turn corresponds to the circuit at the output of in Fig. 1 shown rectifier circuit 4.
  • the two output terminals of the rectifier circuit 20 are in particular connected to the storage capacitor C2.
  • the LEDs can be connected to terminals K1, K2.
  • Fig. 3 shows a further alternative embodiment for the secondary side of the driver circuit.
  • this Fig. 3 shown another alternative construction of the rectification of the secondary-side current.
  • the detection winding L1 is connected in series with the secondary winding Lb.
  • the terminal of the secondary winding Lb which is not connected to the detection winding L1 is connected to two diodes 30, 31, respectively.
  • the secondary winding Lb is connected to the anode of the first diode 30 and to the cathode of the second diode 31 connected.
  • a first storage capacitor C30 is connected between the cathode of the first diode 30 and the detection winding L1.
  • a second storage capacitor C31 is connected between the anode of the second diode 31 and the detection winding L1.
  • the diodes D30, D31 form a rectifier circuit 30, which the rectifier circuit 4 of Fig. 1 equivalent.
  • the storage capacitors C30, C31 are preferably the same and corresponding to the in Fig. 1 shown storage capacitor C2.
  • Fig. 4 shows an alternative embodiment of the detection of the current through the LEDs in the driver circuit according to the invention.
  • FIG Fig. 4 While in the embodiments of the Figs. 1 to 3 the secondary-side current is fed back to the primary side via a detection transformer T1, the embodiment of FIG Fig. 4 on the detection transformer T1 and thus on the secondary-side detection winding and secondary-side detection windings Lb.
  • a shunt or measuring resistor Rshunt connected in series with the LEDs is used here for current measurement.
  • a signal is tapped. that reflects the current through the LEDs.
  • This signal is preferably low-pass filtered, for example by an RC element consisting of a capacitor C40 and a resistor R40.
  • the tapped signal can be used to charge the capacitor C40 serving as an example of implementation of integration of the current.
  • the charging voltage of the capacitor C40 is supplied to a secondary-side control unit ST2 as a signal provided to the LEDs.
  • the secondary-side control unit ST2 which is thus arranged on the secondary side of the transformer T, comprises an analog-to-digital converter 40 for converting the measurement signal into digital data.
  • the analog-to-digital converter 40 is preferably designed as a 12-bit converter.
  • This digital data is e.g. returned to the primary side of the transformer 7 via an optocoupler 41 via the SELV barrier.
  • a digital isolator e.g. ADUM digital isolator.
  • the digital data representing current through the LEDs are fed back to the primary-side control unit ST, which in turn activates the half-bridge circuit 2 on the one hand by these feedback actual values of the LED current and on the other hand by the current setpoint ILS or by the dimming command B.
  • Fig. 5 shows an embodiment for the dimming by the amplitude dimming unit 8 and the PWM dimming unit 8.
  • a dimming of the LED track is now as follows: From dimming value 100% to a certain dimming value range DWB of, for example, 35%, the LED current is reduced continuously.
  • the duty cycle TVH preferably remains at 100%, so that the PWM modulator 11 has no influence on the manipulated variable.
  • the duty cycle of the PWM modulation is then set below 100%.
  • this threshold value DWB of 35% and a lower threshold value USW of, for example, 1% the duty cycle TVH is gradually reduced.
  • the PWM dimming unit 8 for example, the correspondence between dimming value B and duty cycle TVH is stored in a look-up table.
  • the duty cycle TVH remains constant for a specific dimming range. For example, in dimming range DWB - USW (35% -x%), the duty cycle is the value y% etc., s. Fig. 5 ,
  • a dimming value below the dimming value DWB for example, below 35%
  • a linearly decreasing setpoint for the LED current is fed to the controller.
  • the duty cycle of the PWM modulator is reduced starting at 100%.
  • the dimming value specification signal B is thus converted, on the one hand, into a variable PWM duty cycle and, on the other hand, supplied to the control algorithm as a continuously decreasing setpoint value for the time-averaged LED current.
  • the PWM duty cycle and the setpoint preferably do not affect each other. Rather, both values preferably depend only on the dimming value B. This is in Fig. 5 recognizable in which the setpoint ILS decreases linearly with the dimming value B.
  • the duty cycle TVH decreases gradually with the dimming value B, preferably from the dimming value DWB, for example, 35%.
  • Fig. 5 Figure 4 shows how the controller 10 attempts to control the PWM modulation in which the controller 10 attempts to average the LED current to the value ILED_R.
  • the setpoint value ILS for the current controller 10 is continuously reduced.
  • the current through the LEDs remains substantially constant over the turn-on periods of the PWM signal, except for a small sawtooth ripple.
  • this ripple is not present in the time course, but considered in continuous dimming, since the controller tries in the steadily shortening dimmer with longer dimming durations to control the average value of the current constant.
  • Fig. 6 shows a further embodiment of a driver circuit according to the present invention.
  • the driver circuit 60 of the Fig. 6 is basically based on the structure of Fig. 1 , Actual value ILED_ is the secondary-side LED current measured as in Fig. 4 shown. Similar to in Fig. 1 the actual value is subtracted from the desired value ILS by a comparator 61 and a controller 62, for example in the form of a P, PI or PID controller supplied. The output of the regulator 62 is supplied to a second comparator or subtractor 63. Alternatively, to measure the LED current, the feedback topology of the Fig. 1 be used with the detection transformer T1.
  • the AC on the primary side is passed through the LLC resonant circuit of e.g. a diode D60 rectified.
  • the rectified current value is then lowpass filtered by an RC element 64, i. averaged, and converted by an analog-to-digital converter 65 into a digital actual value, preferably into a 12-bit value.
  • the measured actual value of the primary-side current is subtracted from the output of the regulator 62 and fed to the controller 10.
  • the output of the regulator 10 is as in Fig. 1 the PWM modulator 11 and the half-bridge driver 12 supplied.
  • the input voltage Vdc may be of e.g. 400 V have a residual ripple.
  • the ripple of 100 Hz When rectifying a mains voltage results in particular a ripple of 100 Hz.
  • the first control loop with the regulator 62 preferably refers to a slow regulation of the LED current.
  • the influence of the temperature, in particular the influence of the ambient temperature on the LEDs be compensated.
  • the second interleaved loop with the controller 64 implements a faster algorithm, e.g. to correct the residual ripple of the input voltage Vdc.
  • the interleaving of the two control loops or by the cascade control thus results in even faster compensation options in addition to the relatively slow current control loop.
  • the Effect of the 100 Hz ripple in the bus voltage is detected and compensated or compensated.
  • the PWM modulation according to the invention can be used to limit the maximum switching frequency of the LLC resonant circuit.
  • the PWM modulation according to the invention can be used in combination or as an alternative to amplitude dimming without the need for additional circuitry.
  • the low resolution of the PWM modulation is compensated by controlling the mean value of the LED current.

Description

Die vorliegende Erfindung betrifft insbesondere eine Steuerschaltung und einen Konverter für den Betrieb wenigstens eines Leuchtmittels, z.B. eine Treiberschaltung für den Betrieb wenigstens einer LED, sowie ein entsprechendes Verfahren zum Betreiben eines Leuchtmittels.In particular, the present invention relates to a control circuit and a converter for the operation of at least one light source, e.g. a driver circuit for the operation of at least one LED, and a corresponding method for operating a light source.

Die US 2013/0285565 A1 offenbart eine Mehrkanal-Konstantstromquelle mit zwei steuerbaren Stufen zum Betrieb eines Arrays von Leuchtdioden sowie eine Beleuchtungsquelle.The US 2013/0285565 A1 discloses a multichannel constant current source having two controllable stages for operating an array of light emitting diodes and a lighting source.

Die WO 2013/072784 A1 offenbart ein System und ein Verfahren zur Steuerung der maximalen Ausgangsbetriebsspannung eines Festkörperbeleuchtungsgerätes.The WO 2013/072784 A1 discloses a system and method for controlling the maximum output operating voltage of a solid state lighting device.

Die Veröffentlichung " AN-9729. LED Application Design Guide Using Half-Bridge LLC Resonant Converter for 100W Street Lighting" (16. November 2012, Seiten 1-14, XP002707759 ) der Firma Fairchild offenbart ein LED-Betriebssystem unter Verwendung eines Halbbrücken-LLC-Resonanzkonverters für Hochleistungs-LED-Beleuchtungsanwendungen, wie z.B. Außenbereichs- oder Straßenbeleuchtung.The publication " AN-9729th LED Application Design Guide Using Half-Bridge LLC Resonant Converter for 100W Street Lighting "(November 16, 2012, pages 1-14, XP002707759 Fairchild discloses an LED operating system using a half-bridge LLC resonant converter for high power LED lighting applications such as outdoor or street lighting.

Eine Treiberschaltung zum Betreiben von LEDs ist aus dem Stand der Technik grundsätzlich bekannt. Eine solche Treiberschaltung wird von einer elektrischen Versorgungsquelle versorgt, und umfasst einen Resonanzkreis, wie z.B. einen LLC-Konverter, der dafür zuständig ist, Strom über eine galvanische Sperre bzw. galvanische Barriere von einer Primärseite auf eine Sekundärseite der galvanischen Sperre zu übertragen. Zweck dieser Übertragung von elektrischer Energie ist die Versorgung einer auf der Sekundärseite geschalteten LED-Strecke mit Strom.A driver circuit for operating LEDs is basically known from the prior art. Such a driver circuit is powered by an electrical supply source, and includes a resonant circuit, such as a resonant circuit. an LLC converter, which is responsible for transmitting power via a galvanic barrier or galvanic barrier from a primary side to a secondary side of the galvanic barrier. The purpose of this transfer of electrical energy is the supply of a switched on the secondary side LED track with electricity.

Die Erfindung geht von einer solchen LLC-Topologie aus, die z.B. ein Halbbrücken-Wechselrichter mit folgendem Resonanzkreis umfasst. Der Resonanzkreis speist einen Übertrager, ausgehend von dessen Sekundärseite wiederum eine LED-Strecke versorgbar ist.The invention is based on such an LLC topology, e.g. a half-bridge inverter with the following resonant circuit comprises. The resonant circuit feeds a transformer, starting from the secondary side in turn an LED track can be supplied.

Aus dem Stand der Technik ist es indessen bekannt, zur Konstantregelung des LED-Stroms den Strom durch die Primärseite des Übertragers als Istwert des LED-Stroms zu erfassen. Diese Messung ist allerdings behaftet mit der Unsicherheit des Magnetisierungstroms, dessen genaue Größe bei dieser Topologie nicht ermittelt wird.From the prior art, however, it is known to detect the current through the primary side of the transformer as the actual value of the LED current for constant control of the LED current. This measurement is, however, fraught with the Uncertainty of the magnetization current whose exact size is not determined in this topology.

Dabei besteht eine bekannte Korrektur dieser Messung darin, dass auf der Sekundärseite die Spannung über der LED-Strecke gemessen wird und, ggf. mit weiteren Messwerten wie z.B. der Temperatur, von einem sekundärseitigen Mikrocontroller über die SELV-Barriere zu dem Mikrocontroller auf der Primärseite gesandt wird. Dieser Mikrocontroller korrigiert somit die primärseitige Strommessung um diesen Korrekturbeitrag, der unter Verwendung empirischer, z.B. in einer Look-Up Tabelle gespeicherter Messwerte ausgehend von der sekundärseitigen LED-Spannungsmessung ermittelt wird. Schließlich steuert der Mikrocontroller über einen ASIC als Stellgröße die Frequenz der Halbbrücke abhängig von der Strom- und Spannungsmessung ein. Nachteilig ist dabei, dass die Look-Up Tabelle zur Ermittlung des Korrekturwerts nur näherungsweise den richtigen Korrekturbeitrag ermitteln kann. Darüber hinaus ist die Lösung hinsichtlich der Bauteile, insbesondere zur Überwindung der SELV-Barriere relativ aufwendig.In this case, a known correction of this measurement is that the voltage across the LED path is measured on the secondary side and, if appropriate with further measured values, such as, for example, the temperature is sent from a secondary side microcontroller via the SELV barrier to the microcontroller on the primary side. This microcontroller thus corrects the primary current measurement by this correction contribution, which is calculated using empirical, e.g. in a look-up table stored measured values is determined from the secondary-side LED voltage measurement. Finally, the microcontroller controls the frequency of the half-bridge depending on the current and voltage measurement via an ASIC as manipulated variable. The disadvantage here is that the look-up table for determining the correction value can only approximately determine the correct correction contribution. In addition, the solution is relatively expensive in terms of components, in particular to overcome the SELV barrier.

Bei einer derartigen Treiberschaltung kann ein Dimmen der LED-Strecke durch ein kurzzeitiges Abschalten der hochfrequenten Taktung der Schalter der Halbbrücke. Dies wird durch eine niederfrequente PWM-Modulation erreicht. Allerdings ist es hier problematisch, dass die Stufen der PWM-Modulation begrenzt sind. Die Auflösung der Stufen der PWM-Modulation, z.B. 7-bit, verursacht ein so-genanntes Dithering, d.h. die Frequenz des LLC-Konverters kann nicht präzise genug angesteuert werden. Folglich kann der gewünschte LED-Strom und somit die gewünschte Helligkeit nur näherungsweise eingestellt werden.With such a driver circuit, dimming of the LED path can be achieved by briefly switching off the high-frequency clocking of the switches of the half-bridge. This is achieved by a low-frequency PWM modulation. However, it is problematic here that the levels of PWM modulation are limited. The resolution of the stages of the PWM modulation, eg 7-bit, causes so-called dithering, ie the frequency of the LLC converter can not be controlled precisely enough. Consequently, the desired LED current and thus the desired brightness can only be approximately adjusted.

Der Erfindung liegt das technische Problem zugrunde, eine Steuerschaltung bzw. Treiberschaltung zum Betreiben von Leuchtmitteln, insbesondere LEDs, anzugeben, bei denen ein Sollwert für die Helligkeit besser umgesetzt wird.The invention is based on the technical problem of specifying a control circuit or driver circuit for operating light sources, in particular LEDs, in which a desired value for the brightness is better implemented.

Dieses der Erfindung zugrunde liegende Problem wird nunmehr durch die Kombination der Merkmale der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche bilden den zentralen Gedanken der Erfindung vorteilhaft weiter.This problem underlying the invention will now be solved by the combination of the features of the independent claims. The dependent claims further advantageously form the central idea of the invention.

Gemäß einem ersten Aspekt der Erfindung ist eine Treiberschaltung für Leuchtmittel vorgesehen, insbesondere für eine oder mehrere LEDs. Die Treiberschaltung umfasst eine mit Spannung versorgbare und mittels wenigstens eines Schalters getaktete Schaltung, die einen zum Versorgen der Leuchtmittel mit Strom dienenden Resonanzkreis speist. Die Treiberschaltung umfasst weiterhin einen Regelkreis zur Regelung des Leuchtmittel-Stroms aufweisend einen Regler. Der Regler erzeugt eine Stellgröße für die Regelung des Leuchtmittel-Stroms in Abhängigkeit von einem Rückführsignal, das den Strom durch die Leuchtmittel wiedergibt, und von einem Signal, das einen Sollwert für den Leuchtmittel-Strom wiedergibt. Die Treiberschaltung umfasst einen PWM-Modulator zum modulieren der Stellgröße mit einem PWM-Signal. Das Modulieren der Stellgröße durch das PWM-Signal führt dazu, dass der Regelkreis durchgehend und auch in den Ausschaltzeitdauern des PWM-Signals aktiviert ist.According to a first aspect of the invention, a driver circuit for lighting means is provided, in particular for one or more LEDs. The driver circuit comprises a voltage-supplyable circuit which is clocked by means of at least one switch and supplies a resonant circuit for supplying the lighting means with power. The driver circuit further comprises a control circuit for controlling the luminous flux, comprising a regulator. The controller generates a manipulated variable for controlling the luminous flux in response to a feedback signal representing the current through the luminous means and a signal representing a setpoint value for the luminous flux. The driver circuit comprises a PWM modulator for modulating the manipulated variable with a PWM signal. The modulation of the manipulated variable by the PWM signal causes the control loop to be activated continuously and also in the switch-off periods of the PWM signal.

Ferner weist die Treiberschaltung eine PWM-Dimm-Einheit zum Einstellen eines Tastverhältnisses für die PWM-Modulation abhängig von einem Dimm-Befehl auf. Des Weiteren weist die Treiberschaltung eine Amplituden-Dimm-Einheit zur Festlegung des Sollwerts für den Leuchtmittel-Strom in Abhängigkeit von dem Dimm-Befehl auf.Further, the drive circuit includes a PWM dimming unit for setting a duty ratio for the PWM modulation depending on a dimming command. Furthermore, the driver circuit has an amplitude dimming unit for determining the setpoint value for the luminous flux in dependence on the dimming command.

Vorzugsweise ist der Regelkreis durchgehend und insbesondere auch in den Ausschaltzeitdauern des PWM-Signals aktiviert. Wie bereits vorstehend ausgeführt, führt das Modulieren der Stellgröße durch das PWM-Signal dazu, dass der Regelkreis durchgehend und insbesondere auch in den Ausschaltzeitdauern des PWM-Signals aktiviert ist.Preferably, the control loop is activated continuously and in particular also in the turn-off periods of the PWM signal. As already stated above, the modulation of the manipulated variable by the PWM signal leads to the control circuit being activated continuously, and in particular also during the switch-off periods of the PWM signal.

Vorzugsweise weist der Regelkreis eine Zeitkonstante auf, die langsamer ist als die Zeitdauer einer Periode der PWM-Modulation.Preferably, the control circuit has a time constant that is slower than the time duration of a period of the PWM modulation.

Vorzugsweise ist die Zeitkonstante des Regelkreises wesentlich langsamer als die Zeitdauer einer Periode der PWM-Modulation, z.B. mindestens 5mal langsamer, insbesondere zwischen 5 und 10mal langsamer.Preferably, the time constant of the control loop is much slower than the duration of a period of the PWM modulation, e.g. at least 5 times slower, especially between 5 and 10 times slower.

Vorzugsweise weist die Treiberschaltung einen Tiefpass-Filter auf zum Filtern des Rückführsignals. Somit stellt der Regler abhängig von dem tiefpassgefilterten Rückführsignal die Stellgröße ein.The driver circuit preferably has a low-pass filter for filtering the feedback signal. Thus, the controller sets the manipulated variable depending on the low-pass filtered feedback signal.

Vorzugsweise ist die Zeitkonstante des Tiefpass-Filters langsamer als die Zeitdauer einer Periode der PWM-Modulation.Preferably, the time constant of the low-pass filter is slower than the duration of a period of the PWM modulation.

Dabei kann die Zeitkonstante des Regelkreises dadurch langsamer als die Zeitdauer einer Periode der PWM-Modulation sein, dass die Zeitkonstante der Tiefpass-Filterung durch den Tiefpass-Filter langsamer als die Zeitdauer einer Periode der PWM-Modulation ist.At this time, the time constant of the control loop may be slower than the period of one period of the PWM modulation that the time constant of the low-pass filtering by the low-pass filter is slower than the period of one period of the PWM modulation.

Vorzugsweise ist die Zeitkonstante des im Regler implementierten Regelalgorithmus langsamer als die Zeitdauer einer Periode der PWM-Modulation.Preferably, the time constant of the control algorithm implemented in the controller is slower than the duration of a period of the PWM modulation.

Dabei kann die Zeitkonstante des Regelkreises dadurch langsamer als die Zeitdauer einer Periode der PWM-Modulation sein, dass die Zeitkonstante des im Regler implementierten Regelalgorithmus langsamer als die Zeitdauer einer Periode der PWM-Modulation ist.The time constant of the control loop can thereby be slower than the time duration of a period of the PWM modulation that the time constant of the control algorithm implemented in the control algorithm is slower than the duration of a period of the PWM modulation.

Vorzugsweise ist die PWM-Modulation aufgrund der langsamen Zeitkonstante, insbesondere aufgrund der Verlangsamung durch den Tiefpass-Filter, durch den Regelkreis nicht ausregelbar.Preferably, the PWM modulation due to the slow time constant, in particular due to the slowdown by the low-pass filter, by the control loop is not adjustable.

Wie bereits vorstehend ausgeführt, weist die Treiberschaltung eine PWM-Dimm-Einheit auf zum Einstellen eines Tastverhältnisses für die PWM-Modulation abhängig von einem Dimm-Befehl. DB). Das Tastverhältnis wird vorzugsweise unabhängig von Rückführgrößen insbesondere aus dem Bereich der Treiberschaltung eingestellt.As already stated above, the driver circuit has a PWM dimming unit for setting a duty ratio for the PWM modulation depending on a dimming command. DB). The duty cycle is preferably set independently of feedback variables, in particular from the area of the driver circuit.

Dabei kann die PWM-Modulation insbesondere Open-Loop erfolgen. D.h. das PWM-Signal wird lediglich durch Steuerung und nicht durch Regelung auf die Stellgröße aufmoduliert. Mit anderen Worten erfolgt die PWM-Modulation ohne Rückkopplung.In this case, the PWM modulation can be done in particular open-loop. That the PWM signal is modulated only by control and not by control on the manipulated variable. In other words, the PWM modulation is done without feedback.

Wie bereits vorstehend ausgeführt, weist die Treiberschaltung eine Amplituden-Dimm-Einheit auf zur Festlegung des Sollwerts für den Leuchtmittel-Strom in Abhängigkeit von dem Dimm-Befehl.As already explained above, the driver circuit has an amplitude dimming unit for determining the setpoint value for the luminous flux in dependence on the dimming command.

Dabei kann der Sollwert unabhängig vom eingestellten Tastverhältnis für die PWM-Modulation festgelegt werden.The setpoint can be set independently of the set duty cycle for the PWM modulation.

Vorzugsweise liegt in einem ersten Dimm-Bereich des Dimm-Befehls das Tastverhältnis für die PWM-Modulation bei 100%. Vorzugsweise wird in einem zweiten Dimm-Bereich das Tastverhältnis stufenweise oder auch fortlaufend (kontinuierlich oder quasi-kontinuierlich insb. bei einer digitalen Ausgestaltung) herabgesetzt.Preferably, in a first dimming range of the dimming command, the duty cycle for the PWM modulation is 100%. Preferably, in a second dimming range, the duty cycle is reduced stepwise or continuously (continuously or quasi-continuously esp. In a digital embodiment).

Vorzugsweise ist eine Kaskadenregelung vorgesehen. Der erste Regelkreis aufweisend den Regler zur Regelung des Leuchtmittel-Stroms ist mit einem zweiten Regelkreis aufweisend einen weiteren Regler verschachtelt. Der zweite Regelkreis kann eine schnellere Zeitkonstante aufweisen als der erste Regelkreis. Der zweite Regelkreis kann insbesondere zur Ausregelung einer Restwelligkeit der Spannung dienen.Preferably, a cascade control is provided. The first control circuit comprising the regulator for regulating the luminous flux is interleaved with a second control circuit having a further regulator. The second control loop may have a faster time constant than the first control loop. The second control circuit can in particular serve to regulate a residual ripple of the voltage.

Vorzugsweise weist die Treiberschaltung einen auf den Resonanzkreis folgenden Übertrager auf zum Übertragen elektrischer Energie von einer mit dem Resonanzkreis gekoppelten Primärwicklung zu einer Sekundärwicklung, ausgehend von der die Leuchtmittel mit Strom versorgbar sind.The driver circuit preferably has a transformer following the resonance circuit for transmitting electrical energy from a primary winding coupled to the resonance circuit to a secondary winding, from which the lighting means can be supplied with power.

Vorzugsweise gibt das Rückführsignal indirekt den Leuchtmittel-Strom wieder, in dem es auf der Sekundärseite des Übertragers induktiv ausgekoppelt ist.Preferably, the feedback signal indirectly reflects the luminous flux, in which it is inductively coupled out on the secondary side of the transformer.

Vorzugsweise weist die Treiberschaltung einen Treiber auf zur Ausgabe, ausgehend von der PWM-modulierten Stellgröße, mindestens eines Ein/Aus-Ansteuersignals für die Steuerung des wenigstens eines Schalters der getakteten Schaltung.The driver circuit preferably has a driver for output, based on the PWM-modulated manipulated variable, at least one on / off drive signal for the control of the at least one switch of the clocked circuit.

Vorzugsweise gibt die Stellgröße die Frequenz und/oder das Tastverhältnis der Steuerung des wenigstens eines Schalters der getakteten Schaltung wieder.The manipulated variable preferably reproduces the frequency and / or the duty ratio of the control of the at least one switch of the clocked circuit.

Es wird ferner eine Steuereinheit zum Betreiben einer Treiberschaltung für Leuchtmittel, insbesondere für eine oder mehrere LEDs, offenbart. Die Steuereinheit umfasst einen Eingang für ein den Strom durch die Leuchtmittel wiedergebendes Rückführsignal. Die Steuereinheit umfasst einen Regelkreis zur Regelung des Leuchtmittel-Stroms aufweisend einen Regler. Der Regler erzeugt eine Stellgröße für die Regelung des Leuchtmittel-Stroms abhängig von dem Rückführsignal und von einem, einen Sollwert für den Leuchtmittel-Strom wiedergebenden Signal. Die Steuereinheit umfasst einen PWM-Modulator zum modulieren der Stellgröße mit einem PWM-Signal.Furthermore, a control unit for operating a driver circuit for lighting means, in particular for one or more LEDs, is disclosed. The control unit comprises an input for a return signal representing the current through the lighting means. The control unit comprises a control circuit for regulating the luminous flux, comprising a regulator. The controller generates a manipulated variable for the regulation of the luminous flux as a function of the feedback signal and of a signal representing a setpoint value for the luminous flux. The control unit comprises a PWM modulator for modulating the manipulated variable with a PWM signal.

Vorzugsweise ist die Steuereinheit in Form einer integrierten Schaltung, insbesondere ASIC oder Microcontroller oder einer Hybridversion davon.Preferably, the control unit is in the form of an integrated circuit, in particular ASIC or microcontroller or a hybrid version thereof.

Gemäß einem weiteren Aspekt der Erfindung ist ein Verfahren zur Regelung des Stroms durch Leuchtmittel, insbesondere durch eine oder mehrere LEDs, vorgesehen. Ein den Strom durch die Leuchtmittel wiedergebendes Rückführsignal wird abgegriffen. Abhängig von dem Rückführsignal und von einem, einen Sollwert für den Leuchtmittel-Strom wiedergebenden Signal wird eine Stellgröße für die Regelung des Leuchtmittel-Stroms erzeugt.In accordance with a further aspect of the invention, a method is provided for regulating the current through lighting means, in particular by one or more LEDs. A return signal representing the current through the lamps is tapped off. Depending on the feedback signal and of a signal representing a setpoint for the luminous flux, a manipulated variable for the regulation of the luminous flux is generated.

Ein PWM-Signal wird auf die Stellgröße aufmoduliert. Hierbei führt das Modulieren der Stellgröße durch das PWM-Signal dazu, dass der Regelkreis durchgehend und auch in den Ausschaltzeitdauern des PWM-Signals aktiviert ist; ein Tastverhältnis für die PWM-Modulation wird abhängig von einem Dimm-Befehl eingestellt; und der Sollwert für den Leuchtmittel-Strom wird in Abhängigkeit von dem Dimm-Befehl festgelegt.A PWM signal is modulated onto the manipulated variable. In this case, the modulation of the manipulated variable by the PWM signal causes the control loop to be activated continuously and also in the turn-off periods of the PWM signal; a duty cycle for the PWM modulation is set depending on a dimming command; and the setpoint for the illuminant current is set in response to the dimming command.

Die oben in Bezug auf die Treiberschaltung genannten Aspekte sind auch auf die Steuereinheit und auf das Verfahren anwendbar.The aspects mentioned above with respect to the driver circuit are also applicable to the control unit and to the method.

Die Erfindung schlägt somit vorzugsweise vor, dass das PWM-Signal nicht zeitweise die Regelschleife abschaltet bzw. den gesamten Halbbrückentreiber, sondern vielmehr das Ausgangssignal der Halbbrücken-Regelschleife moduliert.The invention thus preferably proposes that the PWM signal does not temporarily switch off the control loop or modulate the entire half-bridge driver, but rather modulate the output signal of the half-bridge control loop.

Vorzugsweise liegt eine Regelung des LED-Stroms durch Veränderung der Frequenz der Halbbrückenansteuerung vor. Diese Regelschleife läuft konstant, also auch in den Ausschaltzeitdauern der PWM-Modulation. Diese Regelung weist eine Zeitkonstante auf, die deutlich langsamer ist als die Frequenz/Zeitdauer der PWM-Modulation.Preferably, a control of the LED current by changing the frequency of the half-bridge drive is present. This control loop runs constantly, ie also in the turn-off periods of the PWM modulation. This control has a time constant that is significantly slower than the frequency / duration of the PWM modulation.

In einem bevorzugten Ausführungsbeispiel erfolgt die gezielte 'Verlangsamung durch die Tiefpaßfilterung des Rückführsignals vor dem Komparator mit dem Sollsignal. Indessen kann diese Zeitkonstante auch nach dem Komparator oder auch im Regelalgorithmus selbst implementiert sein.In a preferred embodiment, the targeted 'slowing down takes place by the low-pass filtering of the feedback signal before the comparator with the desired signal. However, this time constant can also be implemented after the comparator or in the control algorithm itself.

Insgesamt liegt vorzugsweise eine Art kombinierter PWM/AM-Dimmung vor. Da allerdings das Istwertsignal tiefpassgefiltert ist und die Regelschleife durchgehend aktiv ist, bleibt der LED-Strom über eine Periode der PWM-Modulation im wesentlichen konstant, was eine verbesserte Farbkonstanz der LED-Strecke ergibt.Overall, there is preferably a type of combined PWM / AM dimming. However, since the feedback signal is low-pass filtered and the control loop is continuously active, the LED current remains substantially constant over a period of PWM modulation, resulting in improved color continuity of the LED path.

Nachfolgend wird die Erfindung außerdem in Hinblick auf die Figuren beschrieben.

  • Fig. 1 zeigt schematisch den Aufbau einer erfindungsgemäßen Treiberschaltung zur Versorgung von Leuchtmitteln, insbesondere zur Versorgung von LEDs bzw. einer LED-Strecke,
  • Fig. 2 zeigt eine alternative Ausführungsform der erfindungsgemäßen Treiberschaltung,
  • Fig. 3 zeigt eine alternative Ausführungsform der erfindungsgemäßen Treiberschaltung,
  • Fig. 4 zeigt eine alternative Ausführungsform der Erfassung des Stroms durch die LEDs bei der erfindungsgemäßen Treiberschaltung
  • Fig. 5 zeigt den Einfluss eines Dimmwerts auf Parameter der erfindungsgemäßen Regelung, und
  • Fig. 6 ein weiteres Ausführungsbeispiel einer Treiberschaltung gemäß der vorliegenden Erfindung.
The invention will also be described below with reference to the figures.
  • Fig. 1 shows schematically the structure of a driver circuit according to the invention for the supply of lighting means, in particular for the supply of LEDs or an LED track,
  • Fig. 2 shows an alternative embodiment of the driver circuit according to the invention,
  • Fig. 3 shows an alternative embodiment of the driver circuit according to the invention,
  • Fig. 4 shows an alternative embodiment of the detection of the current through the LEDs in the driver circuit according to the invention
  • Fig. 5 shows the influence of a dimming value on parameters of the control according to the invention, and
  • Fig. 6 another embodiment of a driver circuit according to the present invention.

In Fig. 1 ist ein Ausführungsbeispiel einer Treiberschaltung 1 zur Versorgung von Leuchtmitteln gezeigt, insbesondere in Form eines LED-Konverters zur Versorgung von LEDs bzw. einer LED-Strecke.In Fig. 1 an embodiment of a driver circuit 1 for the supply of lighting means is shown, in particular in the form of an LED converter for the supply of LEDs or an LED track.

Die Treiberschaltung 1 wird eingangsseitig von einer Eingangsspannung Vdc gespeist. Die Eingangsspannung Vdc ist vorzugsweise eine gleichgerichtete, und gegebenenfalls gefilterte, Wechselspannung bzw. Netzspannung. Vorzugsweise wird diese gleichgerichtete Netzspannung noch einem Wandler in Form z.B. einer Leistungsfaktorkorrektur-Schaltung (nicht gezeigt) zugeführt, bevor sie die Treiberschaltung 1 versorgt. Die Eingangsspannung Vdc ist in diesem Fall eine näherungsweise konstante Busspannung gegebenenfalls aufweisend eine Restwelligkeit. Im Ausführungsbeispiel der Fig. 1 weist die Eingangsspannung Vdc eine Amplitude von 400 V auf. Die Eingangsspannung kann auch Busspannung oder Zwischenkreisspannung genannt werden. Alternativ kann die Eingangsspannung Vdc auch eine Gleichspannung bzw. eine konstante Spannung wie z.B. eine Batteriespannung.The driver circuit 1 is fed on the input side by an input voltage Vdc. The input voltage Vdc is preferably a rectified, and optionally filtered, AC voltage or mains voltage. Preferably, this rectified mains voltage is still supplied to a converter in the form of, for example, a power factor correction circuit (not shown) before it supplies the driver circuit 1. The input voltage Vdc is in this case an approximately constant bus voltage possibly having a residual ripple. In the embodiment of Fig. 1 The input voltage Vdc has an amplitude of 400V. The input voltage can also be called bus voltage or DC link voltage. Alternatively, the input voltage Vdc may also be a DC voltage or a constant voltage such as a battery voltage.

Eingangsseitig ist in der Treiberschaltung 1 ein Schaltregler vorgesehen, der von der Eingangsspannung Vdc gespeist wird. Die Eingangsspannung Vdc versorgt insbesondere eine getaktete Schaltung bzw. einen Wechselrichter, der z.B. in Form einer Halbbrückenschaltung 2 ausgestaltet sein kann. Die gezeigte Halbbrückenschaltung 2 weist einen potentialniedrigeren Schalter LS und einen potentialhöheren Schalter HS auf. Erfindungsgemäß weist der Wechselrichter 2 zumindest einen Schalter auf. Als Wechselrichter mit einem Schalter kann z.B. ein Flyback-Konverter (nicht gezeigt) vorgesehen sein.On the input side, a switching regulator is provided in the driver circuit 1, which is dependent on the input voltage Vdc is fed. The input voltage Vdc supplies, in particular, a clocked circuit or an inverter, which can be designed, for example, in the form of a half-bridge circuit 2. The half-bridge circuit 2 shown has a potential-lower switch LS and a higher-potential switch HS. According to the invention, the inverter 2 has at least one switch. As an inverter with a switch, for example, a flyback converter (not shown) may be provided.

Die in Serie geschalteten Schalter LS, HS der Halbbrückenschaltung 2 können als Transistoren, z.B. FET oder MOSFET, ausgestaltet sein. Die Schalter LS, HS werden von jeweiligen Steuersignalen S/LS, S/HS ausgehend von einem Halbbrückentreiber 12 einer Steuereinheit ST gesteuert. Vorzugsweise werden die Schalter LS, HS durch die Steuersignale S/LS, S/HS bzw. durch den Halbbrückentreiber 12 alternierend ein- und ausgeschaltet. Der Mittelwert des Stroms durch die LEDs kann durch Veränderung der Ansteuerfrequenz ASF der Schalter LS, HS, und/oder durch Veränderung des Tastverhältnisses der Ansteuerung angepasst werden. Der potentialniedrigere Schalter LS ist mit einer primärseitigen Masse verbunden. An der Halbbrückenschaltung 2 liegt die Eingangsspannung Vdc an.The series-connected switches LS, HS of the half-bridge circuit 2 may be implemented as transistors, e.g. FET or MOSFET be configured. The switches LS, HS are controlled by respective control signals S / LS, S / HS, starting from a half-bridge driver 12 of a control unit ST. The switches LS, HS are preferably switched on and off alternately by the control signals S / LS, S / HS and by the half-bridge driver 12. The mean value of the current through the LEDs can be adjusted by changing the drive frequency ASF of the switches LS, HS, and / or by changing the duty cycle of the drive. The potential-lower switch LS is connected to a primary-side ground. At the half-bridge circuit 2, the input voltage Vdc is applied.

Zwischen den zwei Schaltern LS, HS, d.h. am Mittelpunkt der Halbbrückenschaltung 2, ist ein Resonanzkreis 3 in Form z.B. eines Serienresonanzkreises angeschlossen. Alternativ kann am Mittelpunkt der Halbbrückenschaltung 2 erfindungsgemäß auch ein Parallelresonanzkreis angeschlossen sein. Der in Fig. 1 gezeigte Resonanzkreis 3 ist als Serienresonanzkreis ausgestaltet und umfasst Induktanz- und Kapazitätselemente. Insbesondere ist zwischen der primärseitigen Masse und dem Mittelpunkt der Halbbrückenschaltung 2 eine Serienschaltung aufweisend eine erste Spule Lr, eine zweite Spule La und einen Kondensator Cr. Der Resonanzkreis 3 wird in diesem Fall als LLC-Resonanzkreis bezeichnet. Die Spule Lr und der Kondensator Cr bilden vorzugsweise einen LC-Resonanzkreis und werden dann als Resonanzspule und Resonanzkondensator bezeichnet. 7Between the two switches LS, HS, ie at the midpoint of the half-bridge circuit 2, a resonant circuit 3 in the form of, for example, a series resonant circuit is connected. Alternatively, according to the invention, a parallel resonant circuit may also be connected at the midpoint of the half-bridge circuit 2. The in Fig. 1 shown resonant circuit 3 is designed as a series resonant circuit and includes Inductance and capacitance elements. In particular, between the primary-side ground and the center of the half-bridge circuit 2 is a series circuit comprising a first coil Lr, a second coil La and a capacitor Cr. The resonant circuit 3 is referred to in this case as the LLC resonant circuit. The coil Lr and the capacitor Cr preferably form an LC resonant circuit and are referred to as a resonant coil and a resonant capacitor. 7

Die in Serie zu der Spule Lr und dem Kondensator Cr geschaltete zweite Spule La ist vorzugsweise die Primärwicklung eines Transformators T, der als Übertrager zur galvanischen Trennung dient. Der Transformator T ist ein Beispiel einer galvanischen Sperre, die in Fig. 1 als Sicherheitskleinspannungs-Barriere bzw. SELV Barriere 7 (engl. Safety Extra Low Voltage) dargestellt ist. Der Transformator T bildet insgesamt eine galvanische Sperre zwischen einer Primärseite aufweisend die Primärwicklung La und einer Sekundärseite aufweisend die Sekundärwicklung Lb des Transformators T. In Fig. 1 ist der Transformator T als idealer Transformator dargestellt, wobei die Primärwicklung des realen Transformators T eine Streuinduktivität und eine Hauptinduktivität zum Führen des Magnetisierungsstroms aufweisen kann.The second coil La connected in series with the coil Lr and the capacitor Cr is preferably the primary winding of a transformer T serving as a transformer for galvanic isolation. The transformer T is an example of a galvanic barrier used in Fig. 1 is shown as a safety extra-low voltage barrier or SELV barrier 7 (Safety Extra Low Voltage). The transformer T forms a total of a galvanic barrier between a primary side having the primary winding La and a secondary side comprising the secondary winding Lb of the transformer T. In Fig. 1 the transformer T is shown as an ideal transformer, wherein the primary winding of the real transformer T can have a leakage inductance and a main inductance for guiding the magnetizing current.

Die Sekundärwicklung Lb des Transformators T weist eine Anzapfung bzw. Abzapfung, insbesondere eine Mittelanzapfung bzw. Mittelpunktanzapfung, wobei diese Mittelanzapfung als sekundärseitige Masse dienen kann. Alternativ kann die Sekundärwicklung Lb aus zwei getrennten Wicklungen bestehen, wobei dann der Mittelpunkt dieser getrennten Wicklungen der Mittelanzapfung entspricht.The secondary winding Lb of the transformer T has a tapping, in particular a center tap or center tap, this center tap can serve as a secondary side ground. Alternatively, the secondary winding Lb may consist of two separate windings, in which case the center of these separate windings corresponds to the center tap.

Eine Klemme der Sekundärwicklung Lb ist mit einer ersten Erfassungswicklung L1 verbunden, und die andere Klemme der Sekundärwicklung Lb mit einer zweiten Erfassungswicklung L1'. Die erste Erfassungswicklung L1 und die zweite Erfassungswicklung L1' sind vorzugsweise identisch. Vorzugsweise sind die jeweiligen Windungszahlen nL1_sec, nL1'_sec der Erfassungswicklungen L1, L1' gleich. In Serie zur ersten Erfassungswicklung L1 ist eine erste Diode D1 geschaltet. In Serie zur zweiten Erfassungswicklung L1' ist eine zweite Diode D1' geschaltet. Die Erfassungswicklungen L1, L1' sind mit der Anode der Dioden D1, D1' verbunden.One terminal of the secondary winding Lb is connected to a first detection winding L1, and the other terminal of the secondary winding Lb is connected to a second detection winding L1 '. The first detection winding L1 and the second detection winding L1 'are preferably identical. Preferably, the respective number of turns nL1_sec, nL1'_sec of the detection windings L1, L1 'are the same. In series with the first detection winding L1, a first diode D1 is connected. In series with the second detection winding L1 ', a second diode D1' is connected. The detection coils L1, L1 'are connected to the anode of the diodes D1, D1'.

Die jeweiligen Kathoden der Dioden D1, D1' sind zusammengeführt, so dass diese Dioden D1, D1' eine Gleichrichterschaltung 4 bilden. Durch die Sekundärwicklung Lb des Transistors T fließt im Betrieb vorzugsweise ein AC-Strom d.h. ein Wechselstrom. Je nach Richtung dieses Wechselstroms fließt ein Strom durch die erste Diode D1 oder durch die zweite Diode D1'. Am Ausgang der Gleichrichterschaltung 4, d.h. am Verbindungspunkt der Dioden D1, D1', fließt somit ein gleichgerichteter Strom. Der Gleichrichter wird auch als Mittelpunktgleichrichter bezeichnet.The respective cathodes of the diodes D1, D1 'are brought together, so that these diodes D1, D1' form a rectifier circuit 4. In operation, an AC current, i.e., AC current flows through the secondary winding Lb of the transistor T, preferably. an alternating current. Depending on the direction of this alternating current, a current flows through the first diode D1 or through the second diode D1 '. At the output of the rectifier circuit 4, i. at the connection point of the diodes D1, D1 'thus flows a rectified current. The rectifier is also referred to as the center rectifier.

Die Gleichrichterschaltung 4 speist ausgangsseitig einen Speicherkondensator C2. Dieser Speicherkondensator C2 ist vorzugsweise zwischen dem Verbindungspunkt der Dioden D1, D1' und der Mittelanzapfung der Sekundärwicklung Lb geschaltet. Als Speicherkondensator C2 kann aufgrund seiner vergleichsweise hohen Kapazität vorzugsweise ein Elektrolytkondensator eingesetzt werden. Der sekundärseitige Strom durch die Erfassungswicklungen L1, L1' wird also zum Betreiben der LEDs zunächst durch die Gleichrichterschaltung 4 gleichgerichtet und anschließend vorzugsweise gefiltert bzw. tiefpassgefiltert.The rectifier circuit 4 supplies a storage capacitor C2 on the output side. This storage capacitor C2 is preferably connected between the connection point of the diodes D1, D1 'and the center tap of the secondary winding Lb. As storage capacitor C2, an electrolytic capacitor can preferably be used because of its comparatively high capacity. The secondary side current through the detection windings L1, L1 'is thus rectified to operate the LEDs initially by the rectifier circuit 4 and then preferably filtered or low-pass filtered.

Parallel zum Speicherkondensator C2 sind die Leuchtmittel, vorzugsweise LEDs bzw. eine LED-Strecke, geschaltet. Die Treiberschaltung 1 weist entsprechend zwei Ausgangsklemmen K1, K2 zum Anschließen der LEDs. In Fig. 1 soll die dargestellte LED für eine oder mehrere LEDs repräsentativ sein. Vorzugsweise kann die von der Treiberschaltung 1 betriebene LED-Strecke eine Reihenschaltung von mehreren LEDs aufweisen. Alternativ können auch parallel angeordnete LEDs oder eine Kombination aus parallel und in Serie geschalteten LEDs versorgt werden.Parallel to the storage capacitor C2, the lighting means, preferably LEDs or an LED track, are connected. The driver circuit 1 has correspondingly two output terminals K1, K2 for connecting the LEDs. In Fig. 1 the illustrated LED should be representative of one or more LEDs. Preferably, the LED circuit operated by the driver circuit 1 may comprise a series connection of a plurality of LEDs. Alternatively, parallel LEDs or a combination of LEDs connected in parallel and in series can also be supplied.

Am Ausgang der Gleichrichterschaltung 4 bzw. des Speicherkondensators C2 können weitere Bauteile zur Filterung vorgesehen sein. Beispielhaft ist hierzu in Fig. 1 eine Spule L2 gezeigt. Diese Spule L2 kann vorzugsweise in Serie zu den LEDs angeordnet sein, wobei diese Serienschaltung parallel zum Kondensator C2 geschaltet ist. Die Spule L2 ist vorzugsweise zwischen der Ausgangsklemme K1 einerseits und dem Verbindungspunkt der Dioden D1, D1' andererseits geschaltet. Zwischen beiden Ausgangsklemmen K1, K2 kann die Treiberschaltung noch ein weiterer Speicher- bzw. Filterkondensator C3 aufweisen. Zwischen der Ausgangsklemme K2 und der Mittelanzapfung der Sekundärwicklung Lb kann zusätzlich ein Widerstand R3 vorgesehen sein.At the output of the rectifier circuit 4 and the storage capacitor C2, further components may be provided for filtering. Exemplary is in this Fig. 1 a coil L2 shown. This coil L2 may preferably be arranged in series with the LEDs, this series circuit being connected in parallel with the capacitor C2. The coil L2 is preferably connected between the output terminal K1 on the one hand and the connection point of the diodes D1, D1 'on the other hand. Between two output terminals K1, K2, the driver circuit may have a further storage or filter capacitor C3. In addition, a resistor R3 may be provided between the output terminal K2 and the center tap of the secondary winding Lb.

Die Erfassungswicklungen L1, L1' sind mit einer primärseitigen Wicklung L1" gekoppelt. Der durch die Sekundärwicklung Lb des Transistors T fließende Wechselstrom wird somit von den sekundärseitig vorgesehenen Erfassungswicklungen L1, L1' in einen durch die Wicklung L1" fließenden primärseitigen Strom transformiert. Diese drei Wicklungen L1, L1', L1" bilden einen Erfassungstransformator bzw. einen vorzugsweise potentialgetrennten Erfassungsübertragers T1. Der Strom durch die primärseitige Wicklung L1" gibt den Strom durch die sekundärseitigen Wicklungen L1, L1', d.h. auch den Strom durch die LEDs, wieder. Zumindest zeitlich gemittelt ist der Strom durch die primärseitige Wicklung L1" eine Wiedergabe des Mittelwerts des Stroms durch die LEDs. Dabei ist natürlich das Verhältnis der Windungszahlen der entsprechenden primär- und sekundärseitigen Wicklungen zueinander zu berücksichtigen. Vorzugsweise sind die Windungszahlen nL1"_prim, nL1_sec, nL1'_sec der primär- und sekundärseitigen Erfassungswicklungen L1", L1, L1' gleich.The detection windings L1, L1 'are coupled to a primary-side winding L1 ", and the alternating current flowing through the secondary winding Lb of the transistor T is thus supplied from the secondary side provided detection windings L1, L1 'transformed into a current flowing through the winding L1 "primary-side current .These three windings L1, L1', L1" form a detection transformer or a preferably isolated sense transformer T1. The current through the primary-side winding L1 "represents the current through the secondary-side windings L1, L1 ', ie also the current through the LEDs .. At least averaged over time, the current through the primary-side winding L1" is a representation of the mean value of the current through the LEDs. Of course, the ratio of the number of turns of the corresponding primary and secondary windings to each other is taken into account. Preferably, the number of turns nL1 "_prim, nL1_sec, nL1'_sec of the primary and secondary side detection windings L1", L1, L1 'are equal.

Vorzugsweise sind dabei die Sekundärwicklung Lb einerseits und die Erfassungswicklungen L1, L1' andererseits als separate Wicklungen ausgebildet. D.h. die Sekundärwicklung Lb und die Erfassungswicklungen L1, L1' bilden zwei separate Transformatoren. Dies ergibt sich insbesondere aus der Anforderung, dass der Erfassungstransformator L1, L1', L1" als Stromtransformator ausgebildet ist. Die Wicklungen des Erfassungstransformators sind insbesondere dazu ausgebildet, eine möglichst verlustfreie Erfassung des sekundärseitigen Wechselstroms zu ermöglichen. Durch geeignete Wahl der Wicklungen kann der als Stromtransformator ausgebildete Erfassungstransformator L1, L1', L1" eine möglichst geringe Impedanz aufweisen.Preferably, the secondary winding Lb on the one hand and the detection windings L1, L1 'on the other hand are formed as separate windings. That the secondary winding Lb and the sense windings L1, L1 'form two separate transformers. This results, in particular, from the requirement that the detection transformer L1, L1 ', L1 "is designed as a current transformer The windings of the detection transformer are in particular designed to enable a detection of the secondary-side alternating current which is as loss-free as possible Current transformer formed detection transformer L1, L1 ', L1 "have the lowest possible impedance.

Der Wechselstrom durch die Erfassungswicklungen L1, L1' erzeugt einen Wechselstrom in der gekoppelten primärseitigen Erfassungswicklung L1". Eine Auswerteschaltung 6 ist an der primärseitigen Erfassungswicklung L1" angeschlossen, um einen Messwert Im für den Strom durch die LEDs zu erzeugen. Dieser Messwert Im wird der Steuerschaltung ST zurückgeführt. Auf der Grundlage des erhaltenen Rückführwerts Im erzeugt die Steuerschaltung ST die Steuersignale S/LS, S/HS für die Schalter LS, HS. Ausgehend von dem Istwert Im führt die Steuerschaltung ST eine Stromregelung auf einen gewünschten Sollwert ILS durch, in dem die Halbbrückenschaltung 2 entsprechend getaktet wird.The alternating current through the detection windings L1, L1 'generates an alternating current in the coupled primary-side detection winding L1 " Evaluation circuit 6 is connected to the primary-side detection winding L1 "to generate a measured value Im for the current through the LEDs This measurement value Im is fed back to the control circuit ST Based on the obtained feedback value Im, the control circuit ST generates the control signals S / LS, S / HS for the switches LS, HS Starting from the actual value Im, the control circuit ST performs a current regulation to a desired setpoint value ILS, in which the half-bridge circuit 2 is clocked accordingly.

Die Auswerteschaltung 6 dient prinzipiell dazu, die von der Erfassungswicklung L1" gelieferte Information über den Strom durch die LEDs auszuwerten bzw. zu verarbeiten und anschließend zu der Steuerschaltung ST zurückzuführen. Sekundärseitig wird also induktiv ein den Strom durch die Sekundärseite wiedergebendes Signal ausgekoppelt und auf die Primärseite transferiert, wo es gleichgerichtet, gemittelt und dann der Steuerschaltung ST zugeführt wird. Die Erfassungswicklung L1" ist hierzu mit einem Gleichrichter 5 verschaltet. Der Gleichrichter 5 kann z.B. in Form eines Vollbrückengleichrichters aufweisend vier Dioden (nicht gezeigt) ausgestaltet sein.The evaluation circuit 6 serves in principle to evaluate or process the information supplied by the detection winding L1 "about the current through the LEDs and then to return it to the control circuit ST.On the secondary side, a signal representing the current through the secondary side is inductively decoupled and applied to the signal Where it is rectified, averaged and then fed to the control circuit ST, the detection winding L1 "is connected to a rectifier 5 for this purpose. The rectifier 5 may be e.g. in the form of a full-bridge rectifier having four diodes (not shown) configured.

Am Ausgang des Gleichrichters 5 ist wiederum ein Widerstand bzw. Messwiderstand Rshunt geschaltet, der den Strom durch die Sekundärseite und durch die LEDs wiedergibt. Nach einer Tiefpass-Filterung durch einen Tiefpass-Filter LPF wird das Istwert-Signal Im des LED-Stroms der Steuerschaltung ST zurückgeführt. Der Tiefpass-Filter LPF kann z.B. als RC-Glied mit einem Widerstand und einem Kondensator ausgestaltet sein, wobei der Kondensator vorzugsweise parallel zum gefilterten Signal Im geschaltet ist. Dieser gefilterte Istwert Im gibt den Mittelwert des LED-Stroms wieder. Der analoge gemittelte Istwert Im des LED-Stroms wird von einem Analog-Digital-Umsetzer ADC vorzugsweise in einen digitalen Istwert umgesetzt. Der Analog-Digital-Umsetzer ADC ist vorzugsweise als 12-bit Umsetzer ausgestaltet.At the output of the rectifier 5, in turn, a resistor or measuring resistor Rshunt is connected, which reproduces the current through the secondary side and through the LEDs. After a low-pass filtering by a low-pass filter LPF, the actual value signal Im of the LED current of the control circuit ST is fed back. The low-pass filter LPF can be configured, for example, as an RC element with a resistor and a capacitor, wherein the capacitor is preferably connected in parallel with the filtered signal Im. This filtered actual value Im gives the mean value of the LED power again. The analog average actual value Im of the LED current is preferably converted by an analog-to-digital converter ADC into a digital actual value. The analog-to-digital converter ADC is preferably designed as a 12-bit converter.

Der gemessene Istwert Im des LED-Stroms wird von der Steuereinheit ST einem Sollwert für den LED-Strom ILS abgezogen. Die Steuereinheit ST umfasst Mittel wie z.B. einen Komparator 9 zum Vergleichen des Sollwerts ILS und des Istwerts Im bzw. zum Bilden der Differenz dieser Werte. Daraus ergibt sich eine Regeldifferenz RDF zum Regeln des Stroms durch die LEDs.The measured actual value Im of the LED current is subtracted from the control unit ST a setpoint value for the LED current ILS. The control unit ST comprises means such as e.g. a comparator 9 for comparing the set value ILS and the actual value Im or for forming the difference of these values. This results in a control difference RDF for controlling the current through the LEDs.

Der Sollwert ILS für den LED-Strom kann indessen intern von der Steuereinheit ST festgelegt werden. Alternativ kann ein Dimm-Befehl B, wie in Fig. 1 gezeigt, extern vorgegeben werden. Z.B. kann die Steuereinheit ST an einer Leitung angeschlossen sein, um über diese Leitung den Dimm-Befehl B zu empfangen und daraus den Strom-Sollwert ILS abzuleiten. Insbesondere kann diese Leitung eine Daten-Leitung bzw. einen Daten-Bus zur Datenübertragung zwischen der Steuereinheit ST und einer externen Kommunikationseinheit (nicht gezeigt) sein. Die Datenübertragung kann analog oder vorzugsweise digital mittels eines Protokolls zur Steuerung von lichttechnischen Betriebsgeräten erfolgen. Als Protokoll kann z.B. DALI (Digital Addressable Lighting Interface) oder DSI (Digital Serial Interface) verwendet werden. Der empfangene Dimm-Befehl B wird von einer Amplituden-Dimm-Einheit 8 in den Sollwert ILS konvertiert bzw. umgewandelt. Die Amplituden-Dimm-Einheit 8 erzeugt vorzugsweise einen Sollwert ILS in digitaler Form, z.B. als 12-bit Wert.Meanwhile, the set value ILS for the LED current can be set internally by the control unit ST. Alternatively, a dimming command B, as in FIG Fig. 1 shown, externally specified. For example, the control unit ST may be connected to a line in order to receive the dimming command B via this line and to derive therefrom the current setpoint ILS. In particular, this line may be a data line or a data bus for data transmission between the control unit ST and an external communication unit (not shown). The data transmission can take place analogously or preferably digitally by means of a protocol for the control of photometric operating devices. For example, DALI (Digital Addressable Lighting Interface) or DSI (Digital Serial Interface) can be used as the protocol. The received dimming command B is converted or converted by an amplitude dimming unit 8 into the setpoint value ILS. The amplitude dimming unit 8 preferably generates a desired value ILS in digital form, for example as a 12-bit value.

Die Regeldifferenz RDF wird einem Regler 10 zugeführt, in welchem ein Regelalgorithmus für die Regelung des LED-Stroms implementiert ist. Der Regler 10 ist vorzugsweise als Digitalregler ausgestaltet und kann z.B. in Form eines PI-Reglers konfiguriert sein. Abhängig von der zugeführten Regeldifferenz RDF erzeugt der Regler eine Stellgröße, mittels der der Halbbrückentreiber 12 angesteuert wird. Als Stellgröße kann z.B. die Ansteuerfrequenz ASF der Schalter LS, HS, und/oder das Tastverhältnis der Ansteuerung der Schalter LS, HS vorgesehen sein. Dabei werden die Schalter LS, HS der Halbbrücke 2 hochfrequent geschaltet, typischerweise in einem Frequenzbereich von über 10 kHz. Die Ansteuerfrequenz ASF ist also typischerweise höher als 10 kHz und kann z.B. bis zu einigen MHz betragen.The control difference RDF is fed to a controller 10, in which a control algorithm for the regulation of the LED current is implemented. The regulator 10 is preferably designed as a digital regulator and can be used e.g. be configured in the form of a PI controller. Depending on the supplied control difference RDF, the controller generates a control variable, by means of which the half-bridge driver 12 is driven. As manipulated variable, e.g. the drive frequency ASF of the switches LS, HS, and / or the duty cycle of the control of the switches LS, HS be provided. In this case, the switches LS, HS of the half-bridge 2 are switched to high-frequency, typically in a frequency range of about 10 kHz. The drive frequency ASF is thus typically higher than 10 kHz and may be e.g. up to a few MHz.

Die Steuereinheit ST umfasst parallel zur Amplituden-Dimm-Einheit 8 zur Festlegung des Sollwerts ILS für den LED-Strom in Abhängigkeit vom Dimm-Befehl B noch eine PWM-Dimm-Einheit 8'. Diese PWM-Dimm-Einheit 8' dient dazu, den empfangenen Dimm-Befehl B in ein Tastverhältnis TVH für eine PWM-Modulation (Pulsweitenmodulation) umzuwandeln. Die Frequenz der PWM-Modulation ist gegenüber der Ansteuerfrequenz ASF niederfrequent, typischerweise im Bereich von 100-1000 Hz. Das Tastverhältnis TVH wird einem PWM-Modulator 11 zugeführt.The control unit ST comprises parallel to the amplitude dimming unit 8 for determining the set value ILS for the LED current in response to the dimming command B nor a PWM dimming unit 8 '. This PWM dimming unit 8 'serves to convert the received dimming command B into a duty cycle TVH for PWM modulation (pulse width modulation). The frequency of the PWM modulation is low-frequency compared with the drive frequency ASF, typically in the range of 100-1000 Hz. The duty cycle TVH is fed to a PWM modulator 11.

Der PWM-Modulator 11 erhält eingangsseitig einerseits den Wert des Tastverhältnisses TVH für die PWM-Modulation und andererseits die Stellgröße ASF bzw. ein Signal, das diese Stellgröße wiedergibt.The PWM modulator 11 receives on the input side, on the one hand, the value of the duty cycle TVH for the PWM modulation and, on the other hand, the manipulated variable ASF or a signal which reproduces this manipulated variable.

Das Tastverhältnis TVH ist vorzugsweise abhängig nur von dem Dimm-Befehl B und insbesondere nicht von dem Sollwert ILS. In der PWM-Dimm-Einheit 8' kann eine Look-Up-Tabelle vorgesehen sein, in welcher für verschiedene Dimm-Befehle B ein passendes Tastverhältnis TVH gespeichert ist.The duty cycle TVH is preferably dependent only on the dimming command B and in particular not on the set value ILS. In the PWM dimming unit 8 ', a look-up table may be provided, in which a suitable duty cycle TVH is stored for different dimming commands B.

Das Tastverhältnis TVH beeinflusst die PWM-Modulation durch den PWM-Modulator 11, nicht aber die Strom-Regulation durch den Regler 10. Mit anderen Worten erhält der Regler 10 als Eingangsgröße nur den Sollwert ILS für den LED-Strom und nicht das Tastverhältnis TVH. Somit wird der Regler 10 während einer Ausschaltzeitdauer der PWM-Modulation auch nicht ausgeschaltet.The duty cycle TVH affects the PWM modulation by the PWM modulator 11, but not the current regulation by the controller 10. In other words, the controller 10 receives as input only the set value ILS for the LED current and not the duty cycle TVH. Thus, the controller 10 is also not turned off during a turn-off period of the PWM modulation.

Es liegt somit eine Art kombinierter PWM/AM-Dimmung vor, wobei die PWM-Dimmung durch das Aufmodulieren des PWM-Signals durch den PWM-Modulator 11 erfolgt und die AM-Dimmung - oder Amplituden-Dimmung - durch die Regelung der Amplitude des LED-Stroms durch den Regler 10 erfolgt. Da allerdings das Istwertsignal Im tiefpaßgefiltert ist und die Regelschleife durchgehend aktiv ist, ist der LED-Strom in den Einschaltzeitdauern höher als bei einem echten AM/PWM-Dimmen, wo die Regelung in einer Ausschaltzeitdauer der PWM-Modulation ausgeschaltet wird. Somit bleibt der LED-Strom im Wesentlichen konstant - bis auf einen Sägezahnrippel -, was eine verbesserte Farbkonstanz der LED-Strecke ergibt.Thus, there is a kind of combined PWM / AM dimming, the PWM dimming being done by modulating the PWM signal through the PWM modulator 11 and the AM dimming or amplitude dimming by controlling the amplitude of the LED Current through the controller 10 takes place. However, since the actual value signal Im is low-pass filtered and the control loop is continuously active, the LED current is higher in the on-time periods than in true AM / PWM dimming, where the control is turned off in a PWM-off period. Thus, the LED current remains substantially constant - except for a sawtooth ripple - resulting in improved color consistency of the LED path.

Erfindungsgemäß ist die Regelschleife des LED-Stroms beispielsweise zwischen 5 und 10mal langsamer gewählt als die PWM-Modulation mit niedriger Frequenz des Betriebs des Wechselrichters 2. Diese PWM-Modulation wird zum Dimmen der LED-Strecke dem hochfrequenten Betrieb des Halbbrückenwechselrichters überlagert.According to the invention, the control loop of the LED current is selected, for example, between 5 and 10 times slower than the low-frequency PWM modulation of the operation of the inverter 2. This PWM modulation is superimposed on the high-frequency operation of the half-bridge inverter for dimming the LED path.

Das den LED-Strom wiedergebende Signal ist erfindungsgemäß derart tiefpaßgefiltert oder gemittelt, dass die Zeitkonstante wesentlich langsamer ist als die Frequenz des PWM-Signals.The signal representing the LED current is, according to the invention, so low-pass filtered or averaged that the time constant is substantially slower than the frequency of the PWM signal.

Die erfindungsgemäße Reglertopologie liegt nunmehr darin, dass die Regelschleife mit dem Istwertsignal 'tiefpaßgefilterter LED-Strom' und der Stellgröße 'Frequenz des Halbbrücken-Wechselrichters' durchgehend aktiviert ist, also insbesondere auch in den Ausschaltzeitdauern des PWM-Signals.The controller topology according to the invention now lies in the fact that the control loop with the actual value signal 'low-pass filtered LED current' and the manipulated variable 'frequency of the half-bridge inverter' is continuously activated, ie in particular in the turn-off of the PWM signal.

Das PWM-Signal, das also in den Ausschaltzeitdauern den Betrieb der Halbbrücke stoppt, wird dem Ausgang des Regelalgorithmus beaufschlagt. Die Regelschleife ist aufgrund der Verlangsamung durch die Tiefpassfilterung des Istwert-Signals nicht in der Lage, die PWM-Modulation auszuregeln.The PWM signal, which thus stops the operation of the half-bridge during the switch-off periods, is applied to the output of the control algorithm. The control loop is unable to correct the PWM modulation due to the slowdown due to the low-pass filtering of the feedback signal.

Im Ausführungsbeispiel der Fig. 1 ist der Tiefpass-Filter LPF außerhalb der Steuereinheit ST vorgesehen. Vorzugsweise ist der Tiefpass-Filter analog ausgestaltet. Alternativ kann der Tiefpass-Filter auch innerhalb der Steuereinheit ST geschaltet sein. Z.B. kann der Tiefpass-Filter LPF nach dem Analog-Digital-Umsetzer ADC vorgehen sein, wobei dann der Tiefpass-Filter digital ausgeführt ist. In diesem Fall kann der Tiefpass-Filter entweder zwischen dem Analog-Digital-Umsetzer ADC und dem Komparator 9 verschaltet sein, oder zwischen dem Komparator 9 und dem Regler 10.In the embodiment of Fig. 1 the low-pass filter LPF is provided outside the control unit ST. Preferably, the low-pass filter is designed analogously. Alternatively, the low-pass filter can also be connected within the control unit ST. For example, the low-pass filter LPF may be after the analog-to-digital converter ADC, in which case the low-pass filter is implemented digitally. In this case, the low-pass filter may be interconnected either between the analog-to-digital converter ADC and the comparator 9, or between the comparator 9 and the controller 10.

Fig. 2 zeigt eine alternative Ausführungsform für die Sekundärseite der Treiberschaltung. Insbesondere wird in dieser Fig. 2 ein alternativer Aufbau der Gleichrichtung des sekundärseitigen Stroms gezeigt. Fig. 2 shows an alternative embodiment for the secondary side of the driver circuit. In particular, in this Fig. 2 an alternative construction of the rectification of the secondary-side current is shown.

Die Erfassungswicklung L1 ist, wie in der Ausführungsform der Fig. 1, in Serie zur Sekundärwicklung Lb geschaltet, die im Gegensatz zur Ausführungsform der Fig. 1 als eine einzige Wicklung ohne Mittelanzapfung ausgestaltet ist. Der Strom durch die Sekundärwicklung Lb wird einer Gleichrichterschaltung 20 zugeführt, die also eingangsseitig mit der Sekundärwicklung Lb bzw. mit der Reihenschaltung aus der Sekundärwicklung Lb und der Erfassungswicklung L1 gekoppelt ist. Die Gleichrichterschaltung 20 ist als Brückengleichrichter bzw. Vollbrückengleichrichter mit vier Dioden (nicht gezeigt) ausgestaltet.The detection winding L1 is, as in the embodiment of Fig. 1 , in series with the secondary winding Lb, which in contrast to the embodiment of the Fig. 1 is designed as a single winding without center tap. The current through the secondary winding Lb is supplied to a rectifier circuit 20, which is thus coupled on the input side to the secondary winding Lb or to the series circuit of the secondary winding Lb and the detection winding L1. The rectifier circuit 20 is designed as a bridge rectifier or full-bridge rectifier with four diodes (not shown).

Der Schaltung am Ausgang der Gleichrichterschaltung 20 entspricht wiederum der Schaltung am Ausgang der in Fig. 1 gezeigten Gleichrichterschaltung 4. Die zwei Ausgangsklemmen der Gleichrichterschaltung 20 sind insbesondere mit dem Speicherkondensator C2 verbunden. An den Klemmen K1, K2 sind die LEDs anschließbar.The circuit at the output of the rectifier circuit 20 in turn corresponds to the circuit at the output of in Fig. 1 shown rectifier circuit 4. The two output terminals of the rectifier circuit 20 are in particular connected to the storage capacitor C2. The LEDs can be connected to terminals K1, K2.

Fig. 3 zeigt eine weitere alternative Ausführungsform für die Sekundärseite der Treiberschaltung. Insbesondere wird in dieser Fig. 3 ein weiterer alternativer Aufbau der Gleichrichtung des sekundärseitigen Stroms gezeigt. Fig. 3 shows a further alternative embodiment for the secondary side of the driver circuit. In particular, in this Fig. 3 shown another alternative construction of the rectification of the secondary-side current.

Ähnlich wie in Fig. 2 ist die Erfassungswicklung L1 in Serie zur Sekundärwicklung Lb geschaltet. Die Klemme der Sekundärwicklung Lb, die nicht an der Erfassungswicklung L1 angeschlossen ist, ist jeweils mit zwei Dioden 30, 31 verbunden. Die Sekundärwicklung Lb ist mit der Anode der ersten Diode 30 und mit der Kathode der zweiten Diode 31 verbunden. Ein erster Speicherkondensator C30 ist zwischen der Kathode der ersten Diode 30 und der Erfassungswicklung L1 geschaltet. Ein zweiter Speicherkondensator C31 ist zwischen der Anode der zweiten Diode 31 und der Erfassungswicklung L1 geschaltet. Die Dioden D30, D31 bilden eine Gleichrichterschaltung 30, die der Gleichrichterschaltung 4 der Fig. 1 entspricht. Je nach Fließrichtung des durch die Sekundärwicklung Lb fließenden Stroms sperrt die erste oder die zweite Diode D30, D31. Die Speicherkondensatoren C30, C31 sind vorzugsweise gleich und entsprechend dem in Fig. 1 gezeigten Speicherkondensator C2.Similar to in Fig. 2 the detection winding L1 is connected in series with the secondary winding Lb. The terminal of the secondary winding Lb which is not connected to the detection winding L1 is connected to two diodes 30, 31, respectively. The secondary winding Lb is connected to the anode of the first diode 30 and to the cathode of the second diode 31 connected. A first storage capacitor C30 is connected between the cathode of the first diode 30 and the detection winding L1. A second storage capacitor C31 is connected between the anode of the second diode 31 and the detection winding L1. The diodes D30, D31 form a rectifier circuit 30, which the rectifier circuit 4 of Fig. 1 equivalent. Depending on the direction of flow of the current flowing through the secondary winding Lb current blocks the first or the second diode D30, D31. The storage capacitors C30, C31 are preferably the same and corresponding to the in Fig. 1 shown storage capacitor C2.

Fig. 4 zeigt eine alternative Ausführungsform der Erfassung des Stroms durch die LEDs bei der erfindungsgemäßen Treiberschaltung. Fig. 4 shows an alternative embodiment of the detection of the current through the LEDs in the driver circuit according to the invention.

Während in den Ausführungsformen der Figs. 1 bis 3 der sekundärseitige Strom über einen Erfassungsübertragers T1 zur Primärseite zurückgeführt wird, verzichtet die Ausführungsform der Fig. 4 auf den Erfassungsübertrager T1 und somit auf die sekundärseitige Erfassungswicklung bzw. sekundärseitigen Erfassungswicklungen Lb. Ein in Serie zu den LEDs geschalteter Shunt bzw. Messwiderstand Rshunt wird hier zur Strommessung verwendet.While in the embodiments of the Figs. 1 to 3 the secondary-side current is fed back to the primary side via a detection transformer T1, the embodiment of FIG Fig. 4 on the detection transformer T1 and thus on the secondary-side detection winding and secondary-side detection windings Lb. A shunt or measuring resistor Rshunt connected in series with the LEDs is used here for current measurement.

An dem Messwiderstand Rshunt wird ein Signal abgegriffen. das den Strom durch die LEDs wiedergibt. Dieses Signal wird vorzugsweise tiefpassgefiltert, z.B. durch ein RC-Glied bestehend aus einem Kondensators C40 und einem Widerstand R40. Das abgegriffene Signal kann nämlich zum Laden des Kondensators C40 verwendet werden, der als ein Beispiel einer Implementierung einer Integration des Stroms dient.At the measuring resistor Rshunt a signal is tapped. that reflects the current through the LEDs. This signal is preferably low-pass filtered, for example by an RC element consisting of a capacitor C40 and a resistor R40. Namely, the tapped signal can be used to charge the capacitor C40 serving as an example of implementation of integration of the current.

Die Ladespannung des Kondensators C40 wird als ein den LEDs zur Verfügung gestellten Strom wiedergebendes Signal einer sekundärseitigen Steuereinheit ST2 zugeführt. Die sekundärseitigen Steuereinheit ST2, die also auf der Sekundärseite des Übertragers T angeordnet ist, umfasst einen Analog-Digital-Umsetzer 40 zur Umwandlung des Messsignals in digitale Daten. Der Analog-Digital-Umsetzer 40 ist vorzugsweise als 12-bit Umsetzer ausgestaltet. Diese digitalen Daten werden z.B. über eine Optokoppler 41 über die SELV-Barriere auf die Primärseite des Übertragers 7 zurückgeführt. Alternativ zum Optokoppler 41 kann auch z.B. ein Digital-Isolator, wie z.B. ADUM Digital-Isolator, eingesetzt werden. Insbesondere werden die digitalen Daten, die Strom durch die LEDs wiedergeben, der primärseitigen Steuereinheit ST zurückgeführt, die wiederum die Halbbrückenschaltung 2 abhängig einerseits von diesen zurückgeführten Istwerten des LED-Stroms und andererseits von dem Strom-Sollwert ILS bzw. von dem Dimmbefehl B ansteuert.The charging voltage of the capacitor C40 is supplied to a secondary-side control unit ST2 as a signal provided to the LEDs. The secondary-side control unit ST2, which is thus arranged on the secondary side of the transformer T, comprises an analog-to-digital converter 40 for converting the measurement signal into digital data. The analog-to-digital converter 40 is preferably designed as a 12-bit converter. This digital data is e.g. returned to the primary side of the transformer 7 via an optocoupler 41 via the SELV barrier. Alternatively to the optocoupler 41, e.g. a digital isolator, e.g. ADUM digital isolator. In particular, the digital data representing current through the LEDs are fed back to the primary-side control unit ST, which in turn activates the half-bridge circuit 2 on the one hand by these feedback actual values of the LED current and on the other hand by the current setpoint ILS or by the dimming command B.

Fig. 5 zeigt ein Ausführungsbeispiel für das Dimmen durch die Amplituden-Dimm-Einheit 8 und die PWM-Dimm-Einheit 8. Fig. 5 shows an embodiment for the dimming by the amplitude dimming unit 8 and the PWM dimming unit 8.

Bevorzugt verläuft nunmehr ein Dimmen der LED-Strecke wie folgt:
Von Dimmwert 100% bis zu einem bestimmten Dimmwertbereich DWB von beispielsweise 35% wird der LED-Strom kontinuierlich verringert. Hier bleibt vorzugsweise das Tastverhältnis TVH auf 100%, so dass der PWM-Modulator 11 keinen Einfluss auf die Stellgröße hat.
Preferably, a dimming of the LED track is now as follows:
From dimming value 100% to a certain dimming value range DWB of, for example, 35%, the LED current is reduced continuously. Here, the duty cycle TVH preferably remains at 100%, so that the PWM modulator 11 has no influence on the manipulated variable.

Ab einem bestimmten Dimmwert DWB von beispielsweise 35% wird dann das Tastverhältnis der PWM-Modulation auf unter 100% gesetzt. D.h. zwischen diesem Schwellwert DWB von 35% und einem unteren Schwellwert USW von z.B. 1% wird das Tastverhältnis TVH schrittweise reduziert. In der PWM-Dimm-Einheit 8 ist z.B. in einer Look-Up-Tabelle die Korrespondenz zwischen Dimmwert B und Tastverhältnis TVH abgespeichert. Das Tastverhältnis TVH bleibt jeweils für einen bestimmten Dimmbereich konstant. Z.B. im Dimmbereich DWB - USW (35%-x%) beträgt das Tastverhältnis den Wert y% usw., s. Fig. 5.From a certain dimming value DWB of, for example, 35%, the duty cycle of the PWM modulation is then set below 100%. In other words, between this threshold value DWB of 35% and a lower threshold value USW of, for example, 1%, the duty cycle TVH is gradually reduced. In the PWM dimming unit 8, for example, the correspondence between dimming value B and duty cycle TVH is stored in a look-up table. The duty cycle TVH remains constant for a specific dimming range. For example, in dimming range DWB - USW (35% -x%), the duty cycle is the value y% etc., s. Fig. 5 ,

Wenn also ein Dimmwert unterhalb des Dimmwerts DWB, beispielsweise unter 35% vorgegeben wird, wird ein sich linear verringernder Sollwert für den LED-Strom den Regler zugeführt. Gleichzeitig wird ab diesem Dimmwert das Tastverhältnis des PWM-Modulators bei 100% startend herabgesetzt.Thus, if a dimming value below the dimming value DWB, for example, below 35% is specified, a linearly decreasing setpoint for the LED current is fed to the controller. At the same time starting from this dimming value, the duty cycle of the PWM modulator is reduced starting at 100%.

Das Dimmwert-Vorgabesignal B wird also einerseits in ein variables PWM-Tastverhältnis umgesetzt, und andererseits als stetig verringernder Sollwert für den zeitlich gemittelten LED-Strom dem Regelalgorithmus zugeführt. Das PWM-Tastverhältnis und der Sollwert beeinflussen sich vorzugsweise nicht. Beide Werte hängen vielmehr vorzugsweise nur vom Dimmwert B ab. Dies ist in Fig. 5 erkennbar, in dem der Sollwert ILS linear mit dem Dimmwert B abnimmt. Das Tastverhältnis TVH nimmt hingegen stufenweise mit dem Dimmwert B ab, und zwar vorzugsweise ab dem Dimmwert DWB, beispielsweise 35%.The dimming value specification signal B is thus converted, on the one hand, into a variable PWM duty cycle and, on the other hand, supplied to the control algorithm as a continuously decreasing setpoint value for the time-averaged LED current. The PWM duty cycle and the setpoint preferably do not affect each other. Rather, both values preferably depend only on the dimming value B. This is in Fig. 5 recognizable in which the setpoint ILS decreases linearly with the dimming value B. The duty cycle TVH, however, decreases gradually with the dimming value B, preferably from the dimming value DWB, for example, 35%.

Die PWM-Modulation wird also Open-Loop aufmoduliert. Der stetig laufende Regler 10 versucht diese Art von Störung auszuregeln, allerdings ist diesem Ausregeln enge Grenzen gesetzt aufgrund der Tiefpass-Filterung beispielsweise des Istwertsignals. Fig. 5 zeigt wie der Regler 10 die PWM-Modulation versucht auszuregeln, in dem der Regler 10 den Mittelwert des LED-Stroms auf den Wert ILED_R versucht, zu erhöhen.The PWM modulation is thus modulated open loop. The steadily running controller 10 tries to correct this type of disturbance, but this Ausregeling narrow limits set due to the low-pass filtering, for example, the actual value signal. Fig. 5 Figure 4 shows how the controller 10 attempts to control the PWM modulation in which the controller 10 attempts to average the LED current to the value ILED_R.

Es wird also der Sollwert ILS für den Stromregler 10 kontinuierlich verringert. Allerdings bleibt der Strom durch die LEDs in den Einschaltzeitdauern des PWM-Signals im Wesentlichen konstant, abgesehen von einem kleinen sägezahnförmigen Rippel. Dieser Rippel ist allerdings nicht im zeitlichen Verlauf vorhanden, sondern bei kontinuierlichem Dimmen betrachtet, da ja der Regler in den bei stärkerem Dimmen stetig verkürzenden Einschaltzeitdauern versucht, den Mittelwert des Stroms konstant zu regeln.Thus, the setpoint value ILS for the current controller 10 is continuously reduced. However, the current through the LEDs remains substantially constant over the turn-on periods of the PWM signal, except for a small sawtooth ripple. However, this ripple is not present in the time course, but considered in continuous dimming, since the controller tries in the steadily shortening dimmer with longer dimming durations to control the average value of the current constant.

Fig. 6 zeigt ein weiteres Ausführungsbeispiel einer Treiberschaltung gemäß der vorliegenden Erfindung. Fig. 6 shows a further embodiment of a driver circuit according to the present invention.

Die Treiberschaltung 60 der Fig. 6 basiert grundsätzlich auf dem Aufbau der Fig. 1. Als Istwert ILED_ist wird der sekundärseitige LED-Strom gemessen, wie in Fig. 4 gezeigt. Ähnlich wie in Fig. 1 wird der Istwert vom Sollwert ILS durch einen Komparator 61 abgezogen und einem Regler 62, z.B. in Form eines P-, PI- oder PID-Reglers, zugeführt. Der Ausgang des Reglers 62 wird einem zweiten Komparator bzw. Subtraktor 63 zugeführt. Alternativ kann zur Messung des LED-Stroms die Rückführ-Topologie der Fig. 1 mit dem Erfassungsübertrager T1 verwendet werden.The driver circuit 60 of the Fig. 6 is basically based on the structure of Fig. 1 , Actual value ILED_ is the secondary-side LED current measured as in Fig. 4 shown. Similar to in Fig. 1 the actual value is subtracted from the desired value ILS by a comparator 61 and a controller 62, for example in the form of a P, PI or PID controller supplied. The output of the regulator 62 is supplied to a second comparator or subtractor 63. Alternatively, to measure the LED current, the feedback topology of the Fig. 1 be used with the detection transformer T1.

Ein Istwert für den Strom durch den LLC-Resonanzkreis, bzw. für den Strom durch die Spule Lr, die Primärwicklung La oder durch den Kondensator Cr, wird gemessen.An actual value for the current through the LLC resonant circuit, or for the current through the coil Lr, the primary winding La or through the capacitor Cr, is measured.

Insbesondere wird der primärseitige Wechselstrom durch den LLC-Resonanzkreis von z.B. einer Diode D60 gleichgerichtet. Der gleichgerichtete Stromwert wird anschließend durch ein RC-Glied 64 tiefpassgefiltert, d.h. gemittelt, und von einem Analog-Digital-Umsetzer 65 in einen digitalen Istwert, vorzugsweise in einen 12-bit Wert, umgesetzt.In particular, the AC on the primary side is passed through the LLC resonant circuit of e.g. a diode D60 rectified. The rectified current value is then lowpass filtered by an RC element 64, i. averaged, and converted by an analog-to-digital converter 65 into a digital actual value, preferably into a 12-bit value.

Der gemessene Istwert des primärseitigen Stroms wird vom Ausgang des Reglers 62 abgezogen und dem Regler 10 zugeführt. Der Ausgang des Reglers 10 wird wie in Fig. 1 dem PWM-Modulator 11 und dem Halbbrückentreiber 12 zugeführt.The measured actual value of the primary-side current is subtracted from the output of the regulator 62 and fed to the controller 10. The output of the regulator 10 is as in Fig. 1 the PWM modulator 11 and the half-bridge driver 12 supplied.

Wie eingangs erläutert, kann die Eingangsspannung Vdc von z.B. 400 V eine Restwelligkeit aufweisen. Bei Gleichrichtung einer Netzspannung ergibt sich insbesondere eine Restwelligkeit von 100 Hz.As explained in the beginning, the input voltage Vdc may be of e.g. 400 V have a residual ripple. When rectifying a mains voltage results in particular a ripple of 100 Hz.

Der erste Regelkreis mit dem Regler 62 bezieht sich vorzugsweise auf eine langsame Regelung des LED-Stroms. Hierdurch kann z.B. der Einfluss der Temperatur, insbesondere der Einfluss der Umgebungstemperatur auf die LEDs, kompensiert werden.The first control loop with the regulator 62 preferably refers to a slow regulation of the LED current. As a result, e.g. the influence of the temperature, in particular the influence of the ambient temperature on the LEDs, be compensated.

Der zweite, verschachtelte Regelkreis mit dem Regler 64 implementiert hingegen einen schnelleren Algorithmus, um z.B. die Restwelligkeit der Eingangsspannung Vdc auszuregeln.The second interleaved loop with the controller 64, on the other hand, implements a faster algorithm, e.g. to correct the residual ripple of the input voltage Vdc.

Durch die Verschachtelung der zwei Regelkreise bzw. durch die Kaskadenregelung ergeben sich also noch schnellere Kompensationsmöglichkeiten zusätzlich zu der relativ langsamen Stromregelschleife. Beispielsweise kann die Auswirkung des 100Hz-Rippels in der Busspannung erfasst und kompensiert bzw. ausgeregelt werden.The interleaving of the two control loops or by the cascade control thus results in even faster compensation options in addition to the relatively slow current control loop. For example, the Effect of the 100 Hz ripple in the bus voltage is detected and compensated or compensated.

Vorteilhafterweise kann die erfindungsgemäße PWM-Modulation zur Begrenzung der maximalen Schaltfrequenz des LLC-Resonanzkreises benutzt werden.Advantageously, the PWM modulation according to the invention can be used to limit the maximum switching frequency of the LLC resonant circuit.

Mit der erfindungsgemäßen PWM-Modulation kann eine bessere Effizienz des Konverters bzw. des LLC-Resonanzkreises erzielt werden.With the PWM modulation according to the invention, a better efficiency of the converter or the LLC resonant circuit can be achieved.

Die erfindungsgemäße PWM-Modulation kann in Kombination oder als Alternative zum Amplituden-Dimmen benutzt werden, ohne dass zusätzliche Schaltungen erforderlich wären.The PWM modulation according to the invention can be used in combination or as an alternative to amplitude dimming without the need for additional circuitry.

Beim Einsetzen der erfindungsgemäßen PWM-Modulation werden Farbverschiebungen vermieden, insbesondere im Bereich von niedrigen Dimmwerten. Dies deshalb weil der Regler 10 auf einen höheren LED-Strom regelt. Dies ist z.B. in Fig. 5 erkennbar, wo auf einen Strom ILED_R geregelt wird, der deutlich höher als der Sollwert ILS ist, so dass die bei niedrigen Stromwerten auftretenden Farbverschiebungen erfindungsgemäß vermieden werden können.When employing the PWM modulation according to the invention, color shifts are avoided, in particular in the range of low dimming values. This is because the controller 10 regulates to a higher LED current. This is eg in Fig. 5 can be seen where is regulated to a current ILED_R, which is significantly higher than the setpoint ILS, so that the occurring at low current values color shifts can be avoided according to the invention.

Die niedrige Auflösung der PWM-Modulation wird durch die Regelung des Mittelwerts des LED-Stroms kompensiert.The low resolution of the PWM modulation is compensated by controlling the mean value of the LED current.

Claims (12)

  1. A driver circuit (1) for lamps, in particular for one or several LEDs, comprising:
    - a circuit (2) that can be supplied with voltage (Vdc) and is clocked by means of at least one switch (LS, HS), which circuit feeds a resonance circuit (3) serving to supply the lamps with current,
    - a control circuit for controlling the lamp current having a controller (10), wherein the controller (10), depending on a feedback signal (lm), that reproduces the current through the lamp, and depending on a signal (ILS) that reproduces a target value for the lamp current, generates a control variable (ASF) for controlling the lamp current, and
    - a PWM modulator (11) for modulating the control variable (ASF) with a PWM signal;
    characterized in that
    - the modulation of the control variable (ASF) by the PWM signal leads to the control circuit being activated continuously and even in the switched-off time durations of the PWM signal,
    - the driver circuit has a PWM dimming unit (8') for adjusting a duty cycle (TVH) for the PWM modulation depending on a dimming command (B), and
    - the driver circuit has an amplitude-dimming unit (8) for establishing the target value (ILS) for the lamp current depending on the dimming command (B).
  2. The driver circuit (1) according to Claim 1,
    wherein the control circuit has a time constant, which is slower than the time duration of a period of the PWM modulation.
  3. The driver circuit (1) according to Claim 2,
    wherein the time constant of the control circuit is substantially slower than the time duration of a period of the PWM modulation, for example, at least 5 times slower, in particular, between 5 and 10 times slower.
  4. The driver circuit (1) according to any one of the preceding claims,
    having a low-pass filter (LPF) for filtering the feedback signal (lm), so that the controller (10) adjusts the control variable (ASF) depending on the low-pass filtered feedback signal (lm).
  5. The driver circuit (1) according to Claim 4,
    wherein the time constant of the low-pass filter (LPF) is slower than the time duration of a period of the PWM modulation.
  6. The driver circuit (1) according to any one of the preceding claims,
    wherein the time constant of the control algorithm implemented in the controller (10) is slower than the time duration of a period of the PWM modulation.
  7. The driver circuit (1) according to any one of the preceding claims,
    wherein the duty cycle (TVH) is adjusted independent of the feedback variables in particular from the region of the driver circuit (1).
  8. The driver circuit (1) according to any one of the preceding claims,
    wherein in a first dimming range (100%-DWB) of the dimming command (B) the duty cycle (TVH) for the PWM modulation is 100%, and in a second dimming range (DWB-USW) the duty cycle (TVH) is reduced preferably step-by-step.
  9. The driver circuit (1) according to any one of the preceding claims,
    wherein the first control circuit having the controller (10) for controlling the lamp current is interleaved with a second control circuit having a further controller (64), wherein the second control circuit has a faster time constant than the first control circuit, and serves for correcting a residual ripple of the voltage (Vdc).
  10. The driver circuit (1) according to any one of the preceding claims,
    having the resonance circuit (3) and a transmitter (T) following the resonance circuit (3) for transmitting electrical energy from a primary winding (La) coupled with the resonance circuit (3) to a secondary winding (Lb), based upon which the lamps can be supplied with current.
  11. The driver circuit (1) according to any one of the preceding claims,
    wherein the control variable (ASF) reproduces the frequency and/or the duty cycle of the control of the at least one switch (LS, HS) of the clocked circuit (2).
  12. A method for controlling the current through lamps, in particular through one or several LEDs, in which
    - a feedback signal (lm) reproducing the current through the lamps is tapped,
    - depending on the feedback signal (lm) and a signal (ILS) reproducing a target value for the lamp current a control variable (ASF) for the control of the lamp current is generated, and
    - a PWM signal is modulated onto the control variable (ASF),
    characterized in that
    - the modulation of the control variable (ASF) by the PWM signal leads to the control circuit being activated continuously and even in the switched-off time durations of the PWM signal,
    - a duty cycle (TVH) for the PWM modulation is adjusted depending on a dimming command (B), and
    - the target value (ILS) for the lamp current is established depending on the dimming command (B).
EP15701700.5A 2014-02-13 2015-01-14 Driver circuit for leds Active EP3105995B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014202665.2A DE102014202665A1 (en) 2014-02-13 2014-02-13 Driver circuit for LEDs
PCT/EP2015/050529 WO2015121011A1 (en) 2014-02-13 2015-01-14 Driver circuit for leds

Publications (2)

Publication Number Publication Date
EP3105995A1 EP3105995A1 (en) 2016-12-21
EP3105995B1 true EP3105995B1 (en) 2019-10-09

Family

ID=52434746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15701700.5A Active EP3105995B1 (en) 2014-02-13 2015-01-14 Driver circuit for leds

Country Status (3)

Country Link
EP (1) EP3105995B1 (en)
DE (1) DE102014202665A1 (en)
WO (1) WO2015121011A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018201878A1 (en) * 2018-02-07 2019-08-08 Tridonic Gmbh & Co Kg Synchronous converter with overcurrent and undercurrent protection
DE102018114271A1 (en) * 2018-06-14 2019-12-19 Tridonic Gmbh & Co Kg Operating circuits for LED loads having a half-bridge circuit
WO2019238879A1 (en) * 2018-06-14 2019-12-19 Tridonic Gmbh & Co Kg Operating circuits for led loads comprising a half-bridge circuit
EP3900494B1 (en) * 2018-10-29 2023-09-20 Tridonic GmbH & Co. KG Power supply for lamp
EP3890445A1 (en) * 2020-03-31 2021-10-06 Tridonic GmbH & Co. KG Primary side switched converter for providing a voltage supply to an led load
EP3902378A1 (en) * 2020-04-23 2021-10-27 Tridonic GmbH & Co. KG Isolated converter with improved current sensing
US11924944B1 (en) * 2021-10-12 2024-03-05 Fourstar Group Inc. System and method for voice-activated lighting control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000673B2 (en) * 2010-05-25 2015-04-07 Virginia Tech Intellectual Properties, Inc. Multi-channel two-stage controllable constant current source and illumination source
JP2012216766A (en) * 2011-03-30 2012-11-08 Sanken Electric Co Ltd Led drive device and led lighting apparatus
TW201249256A (en) * 2011-05-18 2012-12-01 Delta Electronics Inc Frequency-variable dimming control apparatus for light-emitting diodes and method for operating the same
CN103947289B (en) * 2011-11-14 2017-03-01 皇家飞利浦有限公司 System and method for being controlled to the maximum output driving voltage of solid state illumination device
DE102012007449B4 (en) * 2012-04-13 2024-02-22 Tridonic Gmbh & Co Kg Method for operating an LLC resonant converter for a lamp, converter and LED converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015121011A9 (en) 2016-09-29
DE102014202665A1 (en) 2015-08-27
EP3105995A1 (en) 2016-12-21
WO2015121011A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
EP3105995B1 (en) Driver circuit for leds
EP2829157B1 (en) Operating circuit for leds, having dimming signal comprising high-frequency modulated pulse packet signal with harmonised frequencies
EP3308604B1 (en) Clocked flyback converter circuit
EP2795998B1 (en) Led driver with resonant converter
WO2011124723A1 (en) Modular led lighting system having emergency light function
EP2425680B1 (en) Operating circuit for light-emitting diodes
DE102012111853B4 (en) Switching power supply device and use of such
EP2548410A1 (en) Low-voltage power supply for an led lighting system
EP2548295A2 (en) Led operating circuit comprising an adaptive insulating dc/dc-converter
EP2837265B1 (en) Transformer for a lamp, led converter, and method for operating an llc resonant transformer
EP2885863B1 (en) Switched voltage converter
WO2012045475A1 (en) Operating circuit for light-emitting diodes
DE102016107578B4 (en) Operating circuit and method for operating at least one light source
WO2019238879A1 (en) Operating circuits for led loads comprising a half-bridge circuit
DE102014208169A1 (en) Driver circuit for LEDs with secondary-side selectively switchable bridging path
AT14316U1 (en) Driver circuit for LEDs
AT17349U1 (en) Step-down converter for a light-emitting diode
EP3231253B1 (en) Driver circuit with llc start-up control
WO2013152370A1 (en) Transformer for a lamp, led converter, and llc resonant transformer operation method
DE102014215835A1 (en) Primary-side controlled constant current converter for lighting equipment
EP3069571B1 (en) Led converter and method for controlling a converter circuit of a led-converter
DE102016202323A1 (en) Driver circuit and method for driving an LED track
WO2014075117A2 (en) Operating device for a lighting means and method for dimming a lighting means

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190729

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONIC GMBH & CO KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010592

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1190351

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015010592

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010592

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200710

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1190351

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502015010592

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230124

Year of fee payment: 9

Ref country code: DE

Payment date: 20230127

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530