EP3104373B1 - Hochstromkabel und verfahren zur ermittlung des verschleissgrades von hochstromkabeln - Google Patents

Hochstromkabel und verfahren zur ermittlung des verschleissgrades von hochstromkabeln Download PDF

Info

Publication number
EP3104373B1
EP3104373B1 EP16171148.6A EP16171148A EP3104373B1 EP 3104373 B1 EP3104373 B1 EP 3104373B1 EP 16171148 A EP16171148 A EP 16171148A EP 3104373 B1 EP3104373 B1 EP 3104373B1
Authority
EP
European Patent Office
Prior art keywords
high current
current cable
measuring
current
conducting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16171148.6A
Other languages
English (en)
French (fr)
Other versions
EP3104373A1 (de
Inventor
Arndt Dung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL16171148T priority Critical patent/PL3104373T3/pl
Publication of EP3104373A1 publication Critical patent/EP3104373A1/de
Application granted granted Critical
Publication of EP3104373B1 publication Critical patent/EP3104373B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/001Power supply cables for the electrodes of electric-welding apparatus or electric-arc furnaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks

Definitions

  • the invention relates to a high-current cable for electrically operated furnaces, plants for electroslag remelting and reduction furnaces and a method for determining the degree of wear of a high-current cable for electrically operated furnaces and electroslag remelting.
  • High-current cables are in a variety of configurations from the prior art, for example from the DE 10 2011 016 966 A1 known.
  • corresponding high-current cables are used in particular to connect the secondary side of a transformer of a corresponding high-current system with an electrode or a support arm for an electrode of a ladle or electric arc furnace or another component operated with high current.
  • Small ladle furnaces typically have three phases and are connected with two high current cables per phase. Larger ovens typically use up to four high-current cables per phase.
  • the invention is therefore based on the object to provide a simple method and a high-current cable that allows trouble-free and cost-effective operation, protects the system from damage and makes a routine replacement of high-current cables not necessary and thus leads to lower operating costs.
  • the high-current cable for electrically operated furnaces and systems for electroslag remelting method has at least one electrical line element, a feed line arranged at a first position of the line element for a measuring current and a return line for the measuring current arranged at a second position of the line element.
  • a first and a second measuring point are arranged on the line element, wherein a first transmission means for a first measuring signal are connected to the first measuring point and to the second measuring point a second transmission means for a second measuring signal.
  • the high-current cable according to the invention advantageously allows a regular measurement of the condition of the line element, whereby the wear of the high-current cable can be determined in a particularly simple manner without having to remove the high-current cable from the system, resulting in a considerable increase in operating costs the downtime of the plant would result.
  • the stationary arrangement of the measuring points and the feed line and the return line allows a particularly precise and easily reproducible measurement of the individual High power cable.
  • the feed line and / or the return line are at least partially arranged in an insulation or a sheathing of the high-current cable, resulting in a particularly easy handling of the high-current cable and at the same time a change in the measurement signals due to different in relation to each other running, current-carrying lines is avoided .
  • a high current is initially switched off for operating the furnace or the system and introducing a measuring current via a feed line connected to a line element of the high-current cable at a first position and by means of a arranged at a second position of the conduit member return line.
  • a measurement of at least one measurement signal is carried out at two spaced, arranged on the line element measuring points and finally an evaluation of the measurement signal and a determination of the degree of wear of the high current cable is made.
  • the inventive method makes it possible advantageously to measure the high-current cable during operation or in short breaks, for example, to fill the furnace, regularly and thus to determine the already occurred wear of the high-current cable.
  • unwanted operational failures due to failures of a high-current cable are prevented and at the same time the life of all high-current cables avoided by the absence of current or voltage spikes due to the failure of a single high-current cable.
  • the high-current cable can be used over its maximum operating time, so that premature replacement is unnecessary and thus the operating costs can be reduced.
  • the fixed arrangement of the feed line and the return line as well as the two measuring points on the high-current cable allows particularly precise measurements, which are not possible in the devices of the prior art, since on the one hand the measurement of a conventional high current cable within a system, the changing contact resistance the cable opposite to the plant and on the other hand by a small variation of the measuring positions a number of precise, reproducible measurements is not possible.
  • a high-current cable is basically understood any cable that is suitable to conduct a high current, in particular with a current greater than 0.5 kA, preferably greater than 1 kA, more preferably greater than 5 kA and most preferably greater than 10 kA.
  • the high-current cable can initially be configured in any desired manner.
  • the high current cable can be uncooled, water cooled or air cooled.
  • the high-current cable can be formed both from an electrical line element, as well as comprise an electrical line element and an insulation or a sheath.
  • a high-current cable can initially have any desired length, but the length of a high-current cable is preferably 1-15 m, particularly preferably 2.5-12.5 m and very particularly preferably 4-10 m.
  • the electrical conduction element is a component or an assembly of the high-current cable which is or is provided for conducting the high current.
  • the electrical conduction element is preferably formed essentially of metal, particularly preferably of a copper alloy and very particularly preferably essentially of pure copper.
  • the electrical conduction element can have any shape, in particular an arbitrary cross section.
  • the electrical line element preferably has a round cross section whose diameter is between 100 mm 2 and 10,000 mm 2 , preferably between 200 mm 2 and 9,000 mm 2 and particularly preferably between 250 mm 2 and 7,500 mm 2 .
  • an electrically operated furnace any system in which a high current is used for operation to produce high temperatures inside the plant or which can be used to process a metal or a metal-containing substance under the action of high temperatures.
  • these are systems for melting and treating metal, in particular ladle furnaces or electric arc furnaces and / or systems for carrying out an electroslag remelting process.
  • the feed line and the return line are each a component which is intended to conduct an electric current.
  • the feed line and the return line are each essentially formed by an electrical conductor, in particular preferably by a metallic cable.
  • the metallic cable is preferably formed from copper or a copper alloy and particularly preferably has an insulation and / or a sheathing, in particular made of a plastic or a lacquer layer.
  • the diameter of the feed line and the Return each between 20 mm 2 and 100 mm 2 , more preferably between 25 mm 2 and 75 mm 2 and most preferably between 35 mm 2 and 50 mm 2 .
  • the feed line and the return line can be formed both single-core and multi-core.
  • the feed line and the return line are at least partially formed as a single, two-core cable, in particular each at an end facing away from the line element of the feed line and the return line.
  • the feed line and the return line are electrically conductively connected to the line element and can form a circuit together with at least one section of the line element.
  • the feed line and the return line are fixed directly and fixed to the line element.
  • the measuring current can initially be any desired electrical current. This is preferably a constant current introduced for a certain duration, the duration preferably being between 500 ms and 30 s, more preferably between 1 s and 15 s, and very particularly preferably between 2.5 s and 7.5 s ,
  • the measuring current can be both a direct current and an alternating current.
  • the current intensity is preferably between 50 A and 1.5 kA, particularly preferably between 100 A and 1 kA, and very particularly preferably between 250 A and 750 A.
  • the frequency is preferred 50-60 Hz or alternatively preferably between 100 Hz and 1 kHz, more preferably between 250 Hz and 1 kHz.
  • a measuring point it is initially only a fixed, stationary position on the line element at which a measurement signal can be determined.
  • the first and the second measuring point are preferably arranged on the first and / or the second position or between the first and second position.
  • a means for receiving or measuring a measuring signal is fixedly arranged at the measuring point.
  • the means for receiving a measurement signal is in the simplest case a wire or cable, but may also comprise a circuit.
  • the transmission means is directly or indirectly via another component, for example a means for receiving, measuring and / or processing a measuring signal, for example a transmitter, connected to one of the measuring points and formed such that the transmission means can forward or transmit a signal measured at the measuring point or data obtained by processing.
  • a measuring signal for example a transmitter
  • the measurement signal may initially be any physical quantity or any physical property.
  • the measurement signal may be an electrical current.
  • a measurement of the measurement signal is understood as the detection of a corresponding physical property, for example an electrical current.
  • the measurement of a measurement signal may already include first steps of an evaluation or data processing, for example the determination of typical electrical parameters or properties of an electrical conductor, such as current, voltage, resistance, voltage difference with respect to another component, in particular grounding, or Properties of the resulting magnetic field.
  • the evaluation of the measurement signal is understood to mean at least the process in which a value or a characteristic number is determined from at least one, preferably a plurality of measurement signals and / or variables derived therefrom, which provides information about the state of the high-current cable, in particular of the line element of the high-current cable.
  • the degree of wear is a value for describing the condition of the high-current cable, in particular the line element of the high-current cable, wherein the degree of wear describes the degree of wear or wear with increasing operating time of a high-current cable.
  • the shutdown of the high-current cable comprises a complete shutdown, particularly preferably a physical separation of at least one end of the high-current cable from the power supply for operating the furnace, in particular from the secondary side of a transformer. This can in particular by means of a switch or other mechanical or electronic switching device respectively.
  • the introduction of a measuring current basically means any adjustment of the current intensity in the line element of the high-current cable to the current intensity of the measuring current.
  • the introduction of the measuring current is independent of and / or from a power source other than the power supply for operating the furnace, in particular the secondary side of a transformer for operating the furnace.
  • the first and the second measuring point along the line element forming a measuring section are spaced from each other, is fixed by the stationary arrangement of the two measuring points the measuring section and thus precisely reproducible measurements of the line element are made possible in a particularly simple manner ,
  • the measuring section has a length between 95% and 85%, preferably between 95% and 90% and particularly preferably 95% of the length of the line element, whereby a particularly simple and precise measurement of known as particularly burdened Sections of the high current cable can be made.
  • the length of the measuring section corresponds to the length of the line element and the two measuring points are arranged in the region of one end of the line element.
  • the first measuring point is arranged at the first position and / or the second measuring point at the second position, whereby particularly precise measurements are made possible, since the positions of the input or return line of the measuring current correspond to the points of the line element of the High current cable correspond to where the measurement signals are detected.
  • the first position along the line element from the second position at least a distance between 10% and 100%, preferably between 25% and 90% and more preferably between 35% and 65% of the length of the conduit element.
  • the feed line and / or the return line extend on the section of the high-current cable within an insulation or a sheathing, in which the feed line and / or the return line are guided parallel to the line element of the high-current cable.
  • both the feed line and the return line emerge from the insulation or the sheathing of the high-current cable at a common position, wherein the feed line and the return line are particularly preferably formed as a two-core cable.
  • both the feed line and the return line are conductively connected to the line element of the high-current cable only at the first or second position.
  • the first and / or the second transmission means are at least partially arranged in an insulation or a sheathing of the high-current cable, resulting in a particularly easy handling of the high-current cable and at the same time a change of the measurement signals due to different with respect to each other extending, current-carrying lines is avoided.
  • both transfer means emerge from the insulation or the sheathing of the high current cable at a common position, so that both transmission means can be connected in a particularly simple manner to a device for detecting and / or evaluating the measurement signal.
  • the high-current cable comprises at least one, preferably both transmission means an electrical measuring line, which preferably comprises a core of metal, in particular copper, for example copper wire or copper wire and particularly preferably further comprises an insulation.
  • the diameter of the metal core is between 0.5 mm 2 and 10 mm 2 , more preferably between 1 mm 2 and 5 mm 2, and most preferably 2.5 mm 2 .
  • the high-current cable comprises at least one, preferably both of the transmission means an optical conductor, in particular a fiber optic cable, more preferably at each optical conductor, a transducer for converting an electrical signal into an optical signal is arranged, whereby a particularly fast and, for example By induction uninfluenced data transfer is made possible in an advantageous manner and thus the accuracy of the measurement is improved.
  • the transmitter is arranged in the region of the measuring point, and particularly preferably the transmitter is arranged completely within a casing or insulation of the high-current cable.
  • connection element for a measuring device or a measuring line which is in electrical contact with the line element of the high-current cable is arranged at the first and / or second measuring point, whereby further measurements or the acquisition of further measured values are made possible in a particularly simple manner
  • a connection element is understood to mean first any device which is provided to connect a measuring line or a measuring device.
  • the connection element preferably comprises a region which is in electrical contact with the line element and a closure device which completely covers this area and can be opened, which in the closed state isolates the closure device, allowing electrical access to the line element, in particular by insulation and / or a jacket of the high-current cable ,
  • a Rogowski coil or a Rogowski belt is arranged surrounding the line element, wherein the Rogowski coil is particularly preferably arranged within an insulation or sheathing of the high-current cable.
  • the shutdown of the high current by means of a contactor wherein particularly preferably by means of Sagittarius at the same time the introduction of the measuring current is switched.
  • Particularly preferred is a potential separation between the high current circuit for operating the system and the measuring circuit.
  • the measurement comprises a detection of a voltage drop, a voltage difference and / or an inductive reactance, whereby a change in the structure of the high current cable, in particular of the line element of the high current cable can be detected in a particularly simple manner.
  • the evaluation comprises an observation of a signal change over a time interval and / or with respect to a reference, in particular with respect to values measured at a shielded ground.
  • a measure of the connected high-current cable is made during pauses in operation of the system, for example between the melting of various metal alloys in an electrically operated oven and examined for a change in the measured values over time, indicating an alteration of the high-current cable, in particular may indicate a wear of the line element.
  • a plurality of mutually insulated line elements of a high-current cable or several high-current cables of an electrical high-current system, in particular an electrically operated furnace are measured in sequence and then the measurement signals for each line element or each high-current cable individually and / or in relation evaluated each other.
  • the first embodiment of a high-current cable 1 has an electrical line element 2 and a surrounding the electrical line element 2 sheath 9.
  • the electrical line element 2 is formed of a copper alloy and has a round cross-section with a diameter of 7,500 mm 2.
  • the length of the electrical conduction element 2 is 8 m.
  • a feed line 3 formed of copper and having a diameter of 50 mm 2 is connected in a stationary manner to the electrical line element 2 directly at a first position 5 a.
  • the feed line 3 has a length of 2 m and is provided to introduce a measuring current with a current of 100 A into the electrical line element 2.
  • a return line 4 is stationary and arranged directly on the line element at a second position 5b, wherein the return line 4 in particular in diameter and in the material of the feed line 3.
  • the return line has a length of about 8 m.
  • the feed line 3 and the return line 4 are both arranged at the respective electrical line element 2 facing ends within the casing 9 of the high current cable 1, in particular the return line 4 over a distance of about 6 m parallel to the electrical line element 2 within the casing 9 of the high current cable 1 is guided to the feed line 3, so that the feed line 3 and the return line 4 leave the sheath 9 of the high-current cable 1 at a common position.
  • the outside of the casing 9 of the high-current cable 1 located part of the feed line 3 and the return line 4 is a single, two-core cable surrounded by an insulation 10 surrounded by plastic, said part of the feed line 3 and the return line 4 has a length of about 1.8 m having.
  • the distance of the first position 5a from the second position 5b along the electrical line element 2 is about 6 m and thus 80% of the length of the electrical line element second
  • a first measuring point 6a is arranged, at which a first measuring transducer 11 arranged inside the casing 9 of the high-current cable 1 is connected in an electrically conductive manner to the electrical conducting element 2.
  • a second measuring point 6b is arranged with a second measuring transducer 12, so that the distance between the first measuring point 6a and the second measuring point 6b along the longitudinal axis of the electrical conducting element 2 is 6 m.
  • the two transducers 11, 12 thereby convert an electrical signal picked up by the electrical line element 2 at the two measuring points 6a, 6b into an optical signal.
  • the optical signal is then introduced by the first transmitter 11 in a first transmission means 7 and the second transmitter 12 in a second transmission means 8, wherein both transmission means 7, 8 are formed by optical fiber cable.
  • the two transmission means 7, 8 extend in sections to the transmitters 11, 12 facing ends within the casing 9 of the high-current cable 1, in particular the second transmission means 8 parallel to the electrical line element 2 within the casing 9 of the high-current cable 1 to the first transmission means 7 to in that the first transmission means 7 and the second transmission means 8 emerge at a common position from the jacket 9 of the high-current cable 1.
  • a measurement for determining the degree of wear of the high-current cable 1 takes place by first switching off a high current on the high-current cable 1 which is necessary for the operation of a corresponding system and subsequently via the supply line 3 and the return line 4 a measuring current with a current of 100 A for a duration of at least 5 s is initiated.
  • the measuring current is applied to the electrical line element 2, in particular between the first position 5a and the second position 5b, at least the voltage is at each of the first and the second measuring point 6a, 6b through the two measuring transducers 11, 12 determined at the electrical line element 2 with respect to a shielded ground, each converted into an optical signal and forwarded by means of the two transmission means 7, 8 to an evaluation unit.
  • the measured signals are then evaluated and an index of the degree of wear of the high current cable 1 is determined, wherein the evaluation is based at least on the change over time of a determined in a variety of measurements voltage drop between the first measuring point 6a and the second measuring point 6b.
  • the measurement signals and / or the characteristics of the individual high-current cable 1 can be set in relation to each other in order to obtain information about the state of the entire system beyond a single high-current cable 1.

Landscapes

  • Testing Relating To Insulation (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

  • Die Erfindung betrifft ein Hochstromkabel für elektrisch betriebene Öfen, Anlagen für Elektroschlacke-Umschmelzverfahren und Reduktionsöfen sowie ein Verfahren zur Ermittlung des Verschleißgrades eines Hochstromkabels für elektrisch betriebene Öfen und Elektroschlacke-Umschmelzanlagen.
  • Hochstromkabel sind in vielfältiger Ausgestaltung aus dem Stand der Technik, beispielsweise aus der DE 10 2011 016 966 A1 bekannt. Dabei werden entsprechende Hochstromkabel insbesondere verwendet, die Sekundärseite eines Transformators einer entsprechenden Hochstromanlage mit einer Elektrode bzw. einem Tragarm für eine Elektrode eines Pfannen- oder Lichtbogenofens oder einem anderen mit Starkstrom betriebenen Bauteil zu verbinden. Dabei weisen kleinere Pfannenöfen typischerweise drei Phasen auf und sind mit zwei Hochstromkabeln pro Phase angeschlossen. Bei größeren Öfen werden gewöhnlich bis zu vier Hochstromkabel pro Phase verwendet.
  • Dabei ist es insbesondere für größere Anlagen wichtig, dass der Betrieb ohne Ausfälle und damit verbundene, unerwünschte Betriebspausen erfolgt, da zum einen solche Unterbrechungen die Kosteneffizienz der Anlagen verringern und zum anderen auch zu Betriebsunterbrechungen der nachfolgenden Verarbeitungsschritte, beispielsweise einer Gießanlage und somit zu hohen finanziellen Verlusten führen. Die Anlagen des Standes der Technik werden bislang betrieben, bis es zu einem Kabelausfall, für gewöhnlich in Form des Bruches eines solchen Hochstromkabels kommt.
  • Dies führt jedoch nicht nur zu regelmäßigen Betriebsunterbrechung, sondern kann auch zu einer Beschädigung der gesamten Anlage führen. Insbesondere steigt die Belastung der übrigen Hochstromkabel beim Ausfall eines der Hochstromkabel sprunghaft an, was wenigstens zu einem erhöhten Verschleiß und sogar zum Ausfall weiterer Hochstromkabel führen kann.
  • Eine alternative Lösung des Problems regelmäßig ausfallender Hochstromkabel des Standes der Technik besteht in einem routinemäßigen Austausch sämtlicher Hochstromkabel nach einer vorgegebenen Anzahl an Betriebsstunden. Um jedoch einen Kabelausfall sicher zu verhindern, ist ein Austausch der Kabel deutlich vor der Einreichung einer möglichen Belastungsgrenze notwendig. Ein solcher häufiger Austausch sämtlicher Hochstromkabel führt jedoch zu einer unerwünschten Erhöhung der Betriebskosten.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein einfaches Verfahren sowie ein Hochstromkabel bereitzustellen, das einen störungsfreien und kosteneffizienten Betrieb ermöglicht, die Anlage vor Beschädigungen schützt sowie einen routinemäßigen Austausch von Hochstromkabeln nicht notwendig macht und somit zu geringeren Betriebskosten führt.
  • Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung gemäß Anspruch 1 sowie ein Verfahren gemäß Anspruch 12 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Das Hochstromkabel für elektrisch betriebene Öfen und Anlagen für Elektroschlacke-Umschmelzverfahren weist wenigstens ein elektrisches Leitungselement, eine an einer ersten Position des Leitungselements angeordnete Einspeisleitung für einen Messstrom sowie eine an einer zweiten Position des Leitungselements angeordnete Rückleitung für den Messstrom auf. Darüber hinaus sind an dem Leitungselement ein erster sowie ein zweiter Messpunkt angeordnet, wobei mit dem ersten Messpunkt ein erstes Übertragungsmittel für ein erstes Messsignal sowie mit dem zweiten Messpunkt ein zweites Übertragungsmittel für ein zweites Messsignal verbunden sind.
  • Dabei ermöglicht es das erfindungsgemäße Hochstromkabel in vorteilhafter Weise eine regelmäßige Messung des Zustandes des Leitungselements, wodurch in besonders einfacher Weise der Verschleiß des Hochstromkabels ermittelt werden kann, ohne dass dafür das Hochstromkabel aus der Anlage ausgebaut werden muss, was zu einer erheblichen Erhöhung der Betriebskosten sowie der Ausfallzeiten der Anlage führen würde. Weiterhin ermöglicht die ortsfeste Anordnung der Messpunkte sowie der Einspeisleitung und der Rückleitung eine besonders präzise und gut reproduzierbare Messbarkeit des individuellen Hochstromkabels. In dem erfindungsgemäßen Hochstromkabel sind die Einspeisleitung und/oder die Rückleitung wenigstens abschnittsweise in einer Isolierung oder einer Ummantelung des Hochstromkabels angeordnet, wodurch sich eine besonders leichte Handhabbarkeit des Hochstromkabels ergibt und zugleich eine Veränderung der Messsignale aufgrund unterschiedlich in Bezug zueinander verlaufender, stromführender Leitungen vermieden wird.
    Bei dem erfindungsgemäßen Verfahren zur Ermittlung des Verschleißgrades eines Hochstromkabels für elektrisch betriebene Öfen oder für Elektroschlacke-Umschmelzanlagen erfolgt zunächst eine Abschaltung eines Hochstroms zum Betrieb des Ofens oder der Anlage sowie ein Einleiten eines Messstroms über eine mit einem Leitungselement des Hochstromkabels an einer ersten Position verbundenen Einspeisleitung sowie mittels einer an einer zweiten Position des Leitungselements angeordneten Rückleitung. Anschließend wird eine Messung wenigstens eines Messsignals an zwei voneinander beabstandeten, an dem Leitungselement angeordneten Messpunkten durchgeführt und schließlich werden eine Auswertung des Messsignals und eine Ermittlung des Verschleißgrades des Hochstromkabels vorgenommen.
  • Das erfindungsgemäße Verfahren ermöglicht es in vorteilhafter Weise, das Hochstromkabel während des Betriebs bzw. in kurzen Betriebspausen, beispielsweise zur Befüllung des Ofens, regelmäßig zu messen und somit den bereits eingetretenen Verschleiß des Hochstromkabels zu ermitteln. Dadurch werden zum einen unerwünschte Betriebsausfälle aufgrund von Ausfällen eines Hochstromkabels verhindert und dabei zugleich die Lebensdauer sämtlicher Hochstromkabel durch das Ausbleiben von Strom- bzw. Spannungsspitzen aufgrund des Ausfalls eines einzelnen Hochstromkabels vermieden. Zum anderen kann das Hochstromkabel über seine maximale Betriebsdauer genutzt werden, so dass ein vorzeitiger Austausch unnötig ist und somit die Betriebskosten gesenkt werden können. Schließlich ermöglicht die feste Anordnung der Einspeisleitung und der Rückleitung sowie der beiden Messpunkte am Hochstromkabel besonders präzise Messungen, die bei den Vorrichtungen des Standes der Technik nicht möglich sind, da zum einen der Messung eines herkömmlichen Hochstromkabels innerhalb einer Anlage die sich verändernden Kontaktwiderstände des Kabels gegenüber der Anlage entgegenstehen und zum anderen durch geringfügige Variationen der Messpositionen eine Reihe präziser, reproduzierbarer Messungen nicht möglich ist.
  • Unter einem Hochstromkabel wird grundsätzlich jedes Kabel verstanden, das geeignet ist, einen Starkstrom zu leiten, insbesondere mit einer Stromstärke größer als 0,5 kA, bevorzugt größer als 1 kA, besonders bevorzugt größer als 5 kA und ganz besonders bevorzugt größer als 10 kA. Dabei kann das Hochstromkabel zunächst in beliebiger Weise ausgestaltet sein. So kann das Hochstromkabel ungekühlt, wassergekühlt oder luftgekühlt sein. Weiterhin kann das Hochstromkabel sowohl aus einem elektrischen Leitungselement gebildet sein, als auch ein elektrisches Leitungselement sowie eine Isolierung oder einer Ummantelung umfassen. Grundsätzlich kann ein Hochstromkabel zunächst eine beliebige Länge aufweisen, bevorzugt beträgt die Länge eines Hochstromkabels jedoch 1 - 15m, besonders bevorzugt 2,5 - 12,5 m und ganz besonders bevorzugt 4 - 10 m.
  • Bei dem elektrischen Leitungselement handelt es sich grundsätzlich um ein Bauelement bzw. eine Baugruppe des Hochstromkabels, welches bzw. welche zur Leitung des Hochstroms vorgesehen ist. Dazu ist das elektrische Leitungselement bevorzugt im Wesentlichen aus Metall, besonders bevorzugt aus einer Kupferlegierung und ganz besonders bevorzugt im Wesentlichen aus reinem Kupfer gebildet. Grundsätzlich kann das elektrische Leitungselement eine beliebige Form, insbesondere einen beliebigen Querschnitt aufweisen. Bevorzugt weist das elektrische Leitungselement jedoch einen runden Querschnitt auf, dessen Durchmesser zwischen 100 mm2 und 10.000 mm2, bevorzugt zwischen 200 mm2, und 9.000 mm2 und besonders bevorzugt zwischen 250 mm2 und 7.500 mm2 beträgt.
  • Unter einem elektrisch betriebenen Ofen wird zunächst jede Anlage verstanden, in der ein Hochstrom zum Betrieb verwendet wird, um hohe Temperaturen im Inneren der Anlage zu erzeugen bzw. die zur Verarbeitung eines Metalls oder einer metallhaltigen Substanz unter Einwirkung hoher Temperaturen verwendet werden kann. Insbesondere handelt es sich dabei um Anlagen zum Schmelzen und Behandeln von Metall, insbesondere Pfannenöfen oder Lichtbogenöfen und/oder Anlagen zur Durchführung eines Elektroschlacke-Umschmelzverfahrens.
  • Bei der Einspeisleitung und der Rückleitung handelt es sich jeweils um ein Bauteil, das vorgesehen ist, einen elektrischen Strom zu leiten. Bevorzugt sind die Einspeisleitung und die Rückleitung jeweils im Wesentlichen durch einen elektrischen Leiter, insbesondere bevorzugt durch ein metallisches Kabel gebildet. Das metallische Kabel ist dabei bevorzugt aus Kupfer oder einer Kupferlegierung gebildet und weist besonders bevorzugt eine Isolierung und/oder einer Ummantelung, insbesondere aus einem Kunststoff oder einer Lackschicht auf. Ebenfalls bevorzugt beträgt der Durchmesser der Einspeisleitung und der Rückleitung jeweils zwischen 20 mm2 und 100 mm2, besonders bevorzugt zwischen 25 mm2 und 75 mm2 und ganz besonders bevorzugt zwischen 35 mm2 und 50 mm2. Dabei können die Einspeisleitung und die Rückleitung grundsätzlich sowohl einadrig als auch mehradrig gebildet sein. Bei einer besonders bevorzugten Ausgestaltung der Erfindung sind die Einspeisleitung und die Rückleitung zumindest abschnittsweise als ein einziges, zweiadriges Kabel gebildet, insbesondere jeweils an einem dem Leitungselement abgewandten Ende der Einspeisleitung und der Rückleitung.
  • Erfindungsgemäß sind die Einspeisleitung und die Rückleitung elektrisch leitend mit dem Leitungselement verbunden und können gemeinsam mit wenigstens einem Abschnitt des Leitungselements einen Stromkreis bilden. Bevorzugt sind die Einspeisleitung und die Rückleitung unmittelbar und ortsfest am Leitungselement festgelegt.
  • Bei dem Messstrom kann es sich zunächst grundsätzlich um einen beliebigen elektrischen Strom handeln. Bevorzugt handelt es sich dabei um einen gleichbleibenden, für eine gewisse Dauer eingeleiteten Strom, wobei die Dauer bevorzugt zwischen 500 ms und 30 s, besonders bevorzugt zwischen 1 s und 15 s und ganz besonders bevorzugt zwischen 2,5 s und 7,5 s beträgt. Dabei kann es sich bei dem Messstrom sowohl um einen Gleichstrom als auch um einen Wechselstrom handeln. Bei einem Messstrom in Form eines Gleichstroms beträgt die Stromstärke bevorzugt zwischen 50 A und 1,5 kA, besonders bevorzugt zwischen 100 A und 1 kA und ganz besonders bevorzugt zwischen 250 A und 750 A. Bei einem Messstrom in Form eines Wechselstroms beträgt die Frequenz bevorzugt 50 - 60 Hz oder alternativ bevorzugt zwischen 100 Hz und 1 kHz, besonders bevorzugt zwischen 250 Hz und 1 kHz.
  • Bei einem Messpunkt handelt es sich zunächst lediglich um eine festgelegte, ortsfeste Position an dem Leitungselement, an der ein Messsignal ermittelt werden kann. Dabei sind der erste und der zweite Messpunkt bevorzugt auf der ersten und/oder der zweiten Position bzw. zwischen der ersten und zweiten Position angeordnet. Ebenfalls bevorzugt ist am Messpunkt ortsfest ein Mittel zur Aufnahme bzw. Messung eines Messsignals angeordnet. Das Mittel zur Aufnahme eines Messsignals ist im einfachsten Fall ein Draht oder Kabel, kann jedoch auch einen Schaltkreis umfassen.
  • Das Übertragungsmittel ist unmittelbar oder mittelbar über ein weiteres Bauteil, beispielsweise ein Mittel zur Aufnahme, zur Messung und/oder zur Verarbeitung eines Messsignals, beispielsweise einem Messumformer, mit einem der Messpunkte verbunden und derart gebildet, dass das Übertragungsmittel ein am Messpunkt gemessenes Signal bzw. durch Verarbeitung gewonnene Daten weiterleiten bzw. übertragen kann.
  • Bei dem Messsignal kann es sich zunächst um eine beliebige physikalische Größe oder eine beliebige physikalische Eigenschaft handeln. Insbesondere kann es sich bei dem Messsignal um einen elektrischen Strom handeln. Entsprechend wird unter einer Messung des Messsignals die Erfassung einer entsprechenden physikalischen Eigenschaft, beispielsweise eines elektrischen Stromes verstanden. Grundsätzlich kann jedoch die Messung eines Messsignals auch schon erste Schritte einer Auswertung bzw. Datenverarbeitung enthalten, beispielsweise die Ermittlung typischer elektrischer Größen bzw. Eigenschaften eines elektrischen Leiters, beispielsweise Stromstärke, Spannung, Widerstand, Spannungsdifferenz gegenüber einem anderen Bauteil, insbesondere einer Erdung, bzw. Eigenschaften des resultierenden Magnetfeldes.
  • Unter der Auswertung des Messsignals wird wenigstens der Vorgang verstanden, bei dem aus wenigstens einem, bevorzugt mehreren Messsignalen und/oder daraus abgeleiteten Größen ein Wert oder eine Kennzahl ermittelt wird, die Aufschluss über den Zustand des Hochstromkabels, insbesondere des Leitungselements des Hochstromkabels liefert.
  • Bei dem Verschleißgrad handelt es sich um einen Wert zur Beschreibung des Zustandes des Hochstromkabels, insbesondere des Leitungselements des Hochstromkabels, wobei der Verschleißgrad das Maß der Abnutzung bzw. des Verschleißes mit zunehmender Betriebszeit eines Hochstromkabels beschreibt.
  • Unter der Abschaltung des Hochstroms wird zunächst grundsätzlich jede Abschaltung oder Senkung der Stromstärke im Leitungselement des Hochstromkabels auf oder unter die Stromstärke des Messstroms verstanden. Bevorzugt umfasst die Abschaltung des Hochstromkabels eine vollständige Abschaltung, besonders bevorzugt eine physikalische Trennung wenigstens eines Endes des Hochstromkabels von der Stromversorgung zum Betrieb des Ofens, insbesondere von der Sekundärseite eines Transformators. Dies kann insbesondere mittels eines Schalters bzw. einer anderen mechanischen oder elektronischen Schaltvorrichtung erfolgen.
  • Unter der Einleitung eines Messstroms wird zunächst grundsätzlich jede Einstellung der Stromstärke im Leitungselement des Hochstromkabels auf die Stromstärke des Messstroms verstanden. Bevorzugt erfolgt die Einleitung des Messstroms unabhängig von und/oder aus einer anderen Stromquelle als der Stromversorgung zum Betrieb des Ofens, insbesondere der Sekundärseite eines Transformators zum Betrieb des Ofens.
  • Nach einer vorteilhaften Ausgestaltung des erfindungsgemäßen Hochstromkabels sind der erste und der zweite Messpunkt entlang des Leitungselements eine Messstrecke bildend voneinander beabstandet angeordnet, wobei durch die ortsfeste Anordnung der beiden Messpunkte die Messstrecke gleichbleibend festgelegt ist und somit in besonders einfacher Weise präzise wiederholbare Messungen des Leitungselements ermöglicht werden.
  • Nach einer besonders vorteilhaften Ausgestaltung des erfindungsgemäßen Hochstromkabels weist die Messstrecke eine Länge zwischen 95 % und 85 %, bevorzugt zwischen 95 % und 90 % und besonders bevorzugt 95 % der Länge des Leitungselements auf, wodurch eine besonders einfache und präzise Messung der als besonders belastet bekannten Abschnitte des Hochstromkabels erfolgen kann. Gemäß einer weiteren möglichen Ausgestaltung entspricht die Länge der Messstrecke der Länge des Leitungselements und die beiden Messpunkte sind im Bereich jeweils eines Endes des Leitungselements angeordnet.
  • Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Hochstromkabels ist der erste Messpunkt an der ersten Position und/oder der zweite Messpunkt an der zweiten Position angeordnet, wodurch besonders präzise Messungen ermöglicht werden, da die Positionen der Ein- bzw. Rückleitung des Messstromes den Stellen des Leitungselements des Hochstromkabels entsprechen, an denen die Messsignale erfasst werden.
  • Nach einer vorteilhaften Ausgestaltung des erfindungsgemäßen Hochstromkabels weist die erste Position entlang des Leitungselements von der zweiten Position wenigstens einen Abstand zwischen 10 % und 100 %, bevorzugt zwischen 25 % und 90 % und besonders bevorzugt zwischen 35 % und 65 % der Länge des Leitungselements auf.
  • Besonders bevorzugt verlaufen die Einspeisleitung und/oder die Rückleitung auf dem Abschnitt des Hochstromkabels innerhalb einer Isolierung oder einer Ummantelung, in dem die Einspeisleitung und/oder die Rückleitung parallel zum Leitungselement des Hochstromkabels geführt sind. Weiterhin bevorzugt treten sowohl die Einspeisleitung als auch die Rückleitung aus der Isolierung oder der Ummantelung des Hochstromkabels an einer gemeinsamen Position aus, wobei die Einspeisleitung und die Rückleitung dabei besonders bevorzugt als ein zweiadriges Kabel gebildet sind. Grundsätzlich sind sowohl die Einspeisleitung als auch die Rückleitung jedoch nur an der ersten bzw. zweiten Position leitend mit dem Leitungselement des Hochstromkabels verbunden.
  • Gemäß einer ebenfalls besonders bevorzugten Weiterbildung des erfindungsgemäßen Hochstromkabels sind das erste und/oder das zweite Übertragungsmittel wenigstens abschnittsweise in einer Isolierung oder einer Ummantelung des Hochstromkabels angeordnet, wodurch sich eine besonders leichte Handhabbarkeit des Hochstromkabels ergibt und zugleich eine Veränderung der Messsignale aufgrund unterschiedlich in Bezug zueinander verlaufender, stromführender Leitungen vermieden wird. Ebenfalls bevorzugt treten beide Übertragungsmittel aus der Isolierung oder der Ummantelung des Hochstromkabels an einer gemeinsamen Position aus, so dass beide Übertragungsmittel in besonders einfacher Weise mit einer Vorrichtung zur Erfassung und/oder zur Auswertung des Messsignals verbunden werden können.
  • Nach einer vorteilhaften Ausgestaltung des erfindungsgemäßen Hochstromkabels umfasst wenigstens eines, bevorzugt beide Übertragungsmittel eine elektrische Messleitung, die bevorzugt einen Kern aus Metall, insbesondere Kupfer, beispielsweise Kupferdraht oder Kupferlitze umfasst und besonders bevorzugt weiterhin eine Isolierung aufweist. Ebenfalls bevorzugt beträgt der Durchmesser des Kerns aus Metall zwischen 0,5 mm2 und 10 mm2, besonders bevorzugt zwischen 1 mm2 und 5 mm2 und ganz besonders bevorzugt 2,5 mm2.
  • Nach einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Hochstromkabels umfasst wenigstens eines, bevorzugt beide der Übertragungsmittel einen optischen Leiter, insbesondere ein Glasfaserkabel, wobei besonders bevorzugt an jedem optischen Leiter ein Messumformer zur Wandlung eines elektrischen in ein optisches Signal angeordnet ist, wodurch eine besonders schnelle und beispielsweise durch Induktion unbeeinflusste Datenübertragung in vorteilhafter Weise ermöglicht wird und somit die Genauigkeit der Messung verbessert wird. Ebenfalls bevorzugt ist der Messumformer im Bereich des Messpunktes angeordnet und besonders bevorzugt ist der Messumformer vollständig innerhalb einer Ummantelung oder Isolierung des Hochstromkabels angeordnet.
  • Nach einer bevorzugten Ausgestaltung des erfindungsgemäßen Hochstromkabels sind am ersten und/oder am zweiten Messpunkt ein im elektrischen Kontakt mit dem Leitungselement des Hochstromkabels befindliches Anschlusselement für ein Messgerät oder eine Messeleitung angeordnet, wodurch in besonders einfacher Weise weitere Messungen bzw. die Erfassung weiterer Messwerte ermöglicht wird. Unter einem Anschlusselemente wird dabei zunächst jede Vorrichtung verstanden, die vorgesehen ist, eine Messeleitung oder ein Messgerät anzuschließen. Insbesondere bevorzugt umfasst das Anschlusselement einen im elektrischen Kontakt mit dem Leitungselement stehenden Bereich sowie eine diesen Bereich vollständig abdeckende, öffenbare, im geschlossenen Zustand isolierende Verschlussvorrichtung, wobei die Verschlussvorrichtung einen elektrischen Zugang zum Leitungselement, insbesondere durch eine Isolierung und/oder einer Ummantelung des Hochstromkabels ermöglicht.
  • Nach einer vorteilhaften Weiterbildung des erfindungsgemäßen Hochstromkabels ist eine Rogowski-Spule bzw. ein Rogowski-Gürtel das Leitungselement umgebend angeordnet, wobei die Rogowski-Spule besonders bevorzugt innerhalb einer Isolierung oder Ummantelung des Hochstromkabels angeordnet ist. Dies ermöglicht in vorteilhafter Weise die Erfassung weiterer Messwerte, insbesondere der Stromstärke des von einem Messstrom oder einem Hochstrom im Betrieb durchflossen Hochstromkabels.
  • Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens erfolgt die Abschaltung des Hochstroms mittels einer Schütze, wobei besonders bevorzugt mittels der Schütze zugleich die Einleitung des Messstroms geschaltet wird. Dies ermöglicht in vorteilhafter Weise in einem gemeinsamen Verfahrensschritt die Abschaltung des Hochstroms sowie die Einleitung des Messstroms. Besonders bevorzugt liegt dabei eine Potentialtrennung zwischen dem Hochstromkreis zum Betrieb der Anlage und dem Messstromkreis vor.
  • Nach einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens umfasst die Messung eine Erfassung eines Spannungsabfalls, einer Spannungsdifferenz und/oder eines induktiven Blindwiderstandes, wodurch in besonders einfacher Weise eine Veränderung der Struktur des Hochstromkabels, insbesondere des Leitungselements des Hochstromkabels erfasst werden kann.
  • Gemäß einer ebenfalls bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens umfasst die Auswertung eine Beobachtung einer Signaländerung über ein Zeitintervall und/oder gegenüber einer Referenz, insbesondere gegenüber an einer abgeschirmten Erdung gemessenen Werten. Ganz besonders bevorzugt wird in Betriebspausen der Anlage, beispielsweise zwischen dem Schmelzen verschiedener Metalllegierungen in einem elektrisch betriebenen Ofen, jeweils eine Messung des angeschlossenen Hochstromkabels vorgenommen und auf eine Änderung der Messwerte über die Zeit hin untersucht, die einen Hinweis auf eine Veränderung des Hochstromkabels, insbesondere einen Verschleiß des Leitungselements hinweisen kann.
  • Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens werden mehrere, voneinander isolierte Leitungselemente eines Hochstromkabels bzw. mehrere Hochstromkabel einer elektrischen Hochstromanlage, insbesondere eines elektrisch betriebenen Ofens, der Reihe nach gemessen und anschließend die Messsignale für jedes Leitungselement bzw. jedes Hochstromkabel einzeln und/oder in Bezug zueinander ausgewertet.
  • Ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung sowie des erfindungsgemäßen Verfahrens wird nachstehend mit Bezug auf die Zeichnung näher erläutert. In der Figur zeigt:
  • Fig. 1
    eine schematische Darstellung eines Hochstromkabels.
  • Die in Figur 1 dargestellte, erste Ausführungsform eines Hochstromkabels 1 weist ein elektrisches Leitungselement 2 sowie eine das elektrische Leitungselement 2 umgebende Ummantelung 9 auf.
  • Das elektrische Leitungselement 2 ist dabei aus einer Kupferlegierung gebildet und weist einen runden Querschnitt mit einem Durchmesser von 7.500 mm2 auf. Die Länge des elektrischen Leitungselements 2 beträgt 8 m.
  • Im Bereich eines ersten Endes des Hochstromkabels 1 ist eine aus Kupfer gebildete, einen Durchmesser von 50 mm2 aufweisende Einspeisleitung 3 ortsfest mit dem elektrischen Leitungselement 2 unmittelbar an einer ersten Position 5a verbunden. Die Einspeisleitung 3 weist eine Länge von 2 m auf und ist vorgesehen, um einen Messstrom mit einer Stromstärke von 100 A in das elektrische Leitungselement 2 einzuleiten.
  • Im Bereich eines zweiten Endes des Hochstromkabels 1 ist eine Rückleitung 4 ortsfest und unmittelbar am Leitungselement an einer zweiten Position 5b angeordnet, wobei die Rückleitung 4 insbesondere im Durchmesser und im Material der Einspeisleitung 3 gleicht. Die Rückleitung weist dabei eine Länge von etwa 8 m auf.
  • Die Einspeisleitung 3 und die Rückleitung 4 sind beide an den jeweils dem elektrischen Leitungselement 2 zugewandten Enden innerhalb der Ummantelung 9 des Hochstromkabels 1 angeordnet, wobei insbesondere die Rückleitung 4 über eine Strecke von etwa 6 m parallel zum elektrischen Leitungselement 2 innerhalb der Ummantelung 9 des Hochstromkabels 1 auf die Einspeisleitung 3 hinzu geführt ist, so dass die Einspeisleitung 3 und die Rückleitung 4 die Ummantelung 9 des Hochstromkabels 1 an einer gemeinsamen Position verlassen. Der außerhalb der Ummantelung 9 des Hochstromkabels 1 befindliche Teil der Einspeisleitung 3 und der Rückleitung 4 ist ein einziges, zweiadriges Kabel bildend von einer Isolierung 10 aus Kunststoff umgeben, wobei dieser Teil der Einspeisleitung 3 und der Rückleitung 4 eine Länge von etwa 1,8 m aufweist.
  • Der Abstand der ersten Position 5a von der zweiten Position 5b entlang dem elektrischen Leitungselement 2 beträgt dabei etwa 6 m und somit 80 % der Länge des elektrischen Leitungselements 2.
  • Im Bereich des ersten Endes des Hochstromkabels 1 und an der ersten Position 5a ist ein erster Messpunkt 6a angeordnet, an dem ein innerhalb der Ummantelung 9 des Hochstromkabels 1 angeordneter, erster Messumformer 11 elektrisch leitend mit dem elektrischen Leitungselement 2 verbunden ist.
  • Im Bereich des zweiten Endes des Hochstromkabels 1 ist ein zweiter Messpunkt 6b mit einem zweiten Messumformer 12 angeordnet, so dass der Abstand zwischen dem ersten Messpunkt 6a und dem zweiten Messpunkt 6b entlang der Längsachse des elektrischen Leitungselements 2 6 m beträgt.
  • Die beiden Messumformer 11, 12 wandeln dabei ein vom elektrischen Leitungselement 2 an den beiden Messpunkten 6a, 6b jeweils aufgenommenes elektrisches Signal in ein optisches Signal um. Das optische Signal wird dann vom ersten Messumformer 11 in ein erstes Übertragungsmittel 7 und vom zweiten Messumformer 12 in ein zweites Übertragungsmittel 8 eingeleitet, wobei beide Übertragungsmittel 7, 8 durch Glasfaserleitung gebildet werden.
  • Die beiden Übertragungsmittel 7, 8 verlaufen abschnittsweise an den den Messumformern 11, 12 zugewandten Enden innerhalb der Ummantelung 9 des Hochstromkabels 1, wobei insbesondere das zweite Übertragungsmittel 8 parallel zum elektrischen Leitungselements 2 innerhalb der Ummantelung 9 des Hochstromkabels 1 auf das erst Übertragungsmittel 7 zu verläuft, so dass das erste Übertragungsmittel 7 und das zweite Übertragungsmittel 8 an einer gemeinsamen Position aus der Ummantelung 9 des Hochstromkabels 1 austreten.
  • Eine Messung zur Ermittlung des Verschleißgrades des Hochstromkabels 1 erfolgt, indem zunächst ein für den Betrieb einer entsprechenden Anlage notwendiger Hochstrom auf dem Hochstromkabel 1 abgeschaltet wird und nachfolgend über die Einspeisleitung 3 sowie die Rückleitung 4 einen Messstrom mit einer Stromstärke von 100 A für eine Dauer von wenigstens 5 s eingeleitet wird.
  • Während der Messstrom am elektrischen Leitungselement 2, insbesondere zwischen der ersten Position 5a und der zweiten Position 5b anliegt, wird jeweils am ersten und am zweiten Messpunkt 6a, 6b durch die beiden Messumformer 11, 12 wenigstens die Spannung am elektrischen Leitungselement 2 gegenüber einer abgeschirmten Erdung ermittelt, jeweils in ein optisches Signal gewandelt und mittels der beide Übertragungsmittel 7, 8 an eine Auswertungseinheit weitergeleitet.
  • In der Auswertungseinheit werden anschließend die gemessenen Signale ausgewertet und eine Kennzahl für den Grad des Verschleißes des Hochstromkabels 1 ermittelt, wobei die Auswertung wenigstens auf der zeitlichen Änderung eines im Rahmen mehrerer verschiedener Messungen ermittelten Spannungsabfalls zwischen dem ersten Messpunkt 6a und dem zweiten Messpunkt 6b beruht.
  • Weiterhin ist im Rahmen der Auswertung vorgesehen, sämtliche in der Anlage verbauten Hochstromkabel 1 zunächst einzelnen und nacheinander zu messen sowie zunächst für jedes Hochstromkabel 1 unabhängig von den weiteren Hochstromkabel 1 die jeweilige Kennzahl für den Verschleißgrad des Hochstromkabels 1 zu bestimmen. Nachfolgend können darüber hinaus auch die Messsignale und/oder die Kennzahlen der einzelnen Hochstromkabel 1 zueinander in Bezug gesetzt werden, um über ein einzelnes Hochstromkabel 1 hinausgehende Informationen über den Zustand der gesamten Anlage zu erhalten.
  • Bezugszeichen
  • 1
    Hochstromkabel
    2
    elektrisches Leitungselement
    3
    Einspeisleitung
    4
    Rückleitung
    5a
    erste Position
    5b
    zweite Position
    6a
    erster Messpunkt
    6b
    zweite Messpunkt
    7
    erstes Übertragungsmittel
    8
    zweites Übertragungsmittel
    9
    Ummantelung
    10
    Isolierung
    11
    erster Messumformer
    12
    zweiter Messumformer

Claims (15)

  1. Hochstromkabel (1) für elektrisch betriebene Öfen, Anlagen für Elektroschlacke-Umschmelzverfahren und Reduktionsöfen, mit
    - wenigstens einem elektrischen Leitungselement (2),
    - einer an einer ersten Position (5a) des Leitungselements (2) angeordneten Einspeisleitung (3) für einen Messstrom und
    - einer an einer zweiten Position (5b) des Leitungselements (2) angeordneten Rückleitung (4) für den Messstrom,
    - einem ersten und einem zweiten, an dem Leitungselement angeordneten Messpunkt (6a, b) sowie
    - einem ersten, mit dem ersten Messpunkt (6a) verbundenen Übertragungsmittel (7) für ein erstes Messsignal sowie einem zweiten, mit dem zweiten Messpunkt (6b) verbundenen Übertragungsmittel (8) für ein zweites Messsignal
    dadurch gekennzeichnet, dass
    die Einspeisleitung (3) und/oder die Rückleitung (4) wenigstens abschnittsweise in einer Isolierung oder einer Ummantelung (9) des Hochstromkabels (1) angeordnet sind.
  2. Hochstromkabel nach Anspruch 1, dadurch gekennzeichnet, dass der erste und der zweite Messpunkt (6a, b) entlang des Leitungselements (2) eine Messstrecke bildend voneinander beabstandet angeordnet sind.
  3. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messstrecke eine Länge zwischen 10 % und 100 %, bevorzugt zwischen 25 % und 90 % und besonders bevorzugt zwischen 35 % und 65 % der Länge des Leitungselements (2) aufweist.
  4. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Messpunkt (6a) an der ersten Position (5a) und/oder der zweite Messpunkt (6b) an der zweiten Position (5b) angeordnet ist.
  5. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Position (5a) entlang des Leitungselements (2) von der zweiten Position (5b) wenigstens einen Abstand zwischen 10 % und 100 %, bevorzugt zwischen 25 % und 90 % und besonders bevorzugt zwischen 35 % und 65 % der Länge des Leitungselements (2) aufweist.
  6. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sowohl die Einspeisleitung (3) als auch die Rückleitung (4) aus der Isolierung oder der Ummantelung (9) des Hochstromkabels (1) an einer gemeinsamen Position austreten.
  7. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste und/oder das zweite Übertragungsmittel (7, 8) wenigstens abschnittsweise in einer Isolierung oder einer Ummantelung (9) des Hochstromkabels (1) angeordnet sind und dabei bevorzugt beide Übertragungsmittel (7, 8) aus der Isolierung oder der Ummantelung (9) des Hochstromkabels (1) an einer gemeinsamen Position austreten.
  8. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines, bevorzugt beide Übertragungsmittel (7, 8) einen elektrischen Leiter umfassen.
  9. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines, bevorzugt beide der Übertragungsmittel (7, 8) einen optischen Leiter, insbesondere ein Glasfaserkabel umfassen, wobei bevorzugt an jedem optischen Leiter ein Messumformer (11, 12) zur Wandlung eines elektrischen in ein optisches Signal angeordnet ist.
  10. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am ersten und/oder am zweiten Messpunkt (6a, b) ein im elektrischen Kontakt mit dem Leitungselement (2) des Hochstromkabels (1) befindliches Anschlusselement für ein Messgerät oder eine Messeleitung angeordnet sind.
  11. Hochstromkabel nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Rogowski-Spule das Leitungselement (2) umgebend angeordnet ist, wobei die Rogowski-Spule bevorzugt innerhalb einer Isolierung oder Ummantelung (9) des Hochstromkabels (1) angeordnet ist.
  12. Verfahren zur Ermittlung des Verschleißgrades eines Hochstromkabels für elektrisch betriebene Öfen und für Elektroschlacke-Umschmelzanlagen, mit den Schritten
    - Abschaltung eines Hochstroms zum Betrieb des Ofens oder der Anlage,
    - Einleiten eines Messstroms über eine mit einem Leitungselement des Hochstromkabels an einer ersten Position verbundenen Einspeisleitung sowie mittels einer an einer zweiten Position des Leitungselements angeordneten Rückleitung,
    - Messung wenigstens eines Messsignals an zwei voneinander beabstandeten, an dem Leitungselement angeordneten Messpunkten,
    - Auswertung des Messsignals und Ermittlung des Verschleißgrades des Hochstromkabels.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Abschaltung des Hochstroms mittels einer Schütze erfolgt, wobei bevorzugt mittels der Schütze zugleich die Einleitung des Messstroms geschaltet wird.
  14. Verfahren nach wenigstens einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Messung eine Erfassung eines Spannungsabfalls, einer Spannungsdifferenz und/oder eines induktiven Blindwiderstandes umfasst.
  15. Verfahren nach wenigstens einem der Ansprüche 12 - 14, dadurch gekennzeichnet, dass die Auswertung eine Beobachtung einer Signaländerung über ein Zeitintervall und/oder gegenüber einer Referenz, insbesondere gegenüber an einer abgeschirmten Erdung gemessenen Werten umfasst.
EP16171148.6A 2015-06-10 2016-05-24 Hochstromkabel und verfahren zur ermittlung des verschleissgrades von hochstromkabeln Active EP3104373B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16171148T PL3104373T3 (pl) 2015-06-10 2016-05-24 Przewód wysokoprądowy i sposób określania stopnia zużycia przewodów wysokoprądowych

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015109194.1A DE102015109194B4 (de) 2015-06-10 2015-06-10 Hochstromkabel und Verfahren zur Ermittlung des Verschleißgrades von Hochstromkabeln

Publications (2)

Publication Number Publication Date
EP3104373A1 EP3104373A1 (de) 2016-12-14
EP3104373B1 true EP3104373B1 (de) 2018-01-03

Family

ID=56087137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16171148.6A Active EP3104373B1 (de) 2015-06-10 2016-05-24 Hochstromkabel und verfahren zur ermittlung des verschleissgrades von hochstromkabeln

Country Status (4)

Country Link
EP (1) EP3104373B1 (de)
DE (1) DE102015109194B4 (de)
ES (1) ES2663919T3 (de)
PL (1) PL3104373T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017203153A1 (de) 2017-02-27 2018-08-30 Siemens Aktiengesellschaft Starres, elektrisch leitendes Verbindungselement und Verfahren zum Herstellen eines starren, elektrisch leitenden Verbindungselementes
CN114740244B (zh) * 2022-04-01 2023-06-20 核工业西南物理研究院 一种用于等离子体电流分布诊断的罗氏线圈探针

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2333897C3 (de) * 1973-06-29 1978-10-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen Schaltungsanordnung zur Überwachung beweglicher elektrischer Leitungen auf Isolationsfehler
DE3615557A1 (de) * 1986-05-09 1987-11-12 Felten & Guilleaume Energie Einrichtung zur strommessung bei einem energiekabel unter einsatz von lichtwellenleitern (lwl)
DE102011016966A1 (de) * 2011-04-13 2012-10-18 Saveway Gmbh & Co. Kg Kühlkanal und Stromkabel
FR3007188B1 (fr) * 2013-06-14 2015-06-05 Commissariat Energie Atomique Systeme pour controler l'usure d'un cable electrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015109194B4 (de) 2017-03-23
DE102015109194A1 (de) 2016-12-15
ES2663919T3 (es) 2018-04-17
PL3104373T3 (pl) 2018-07-31
EP3104373A1 (de) 2016-12-14

Similar Documents

Publication Publication Date Title
EP3472629B1 (de) Messanordnung zur messung eines elektrischen stroms im hochstrombereich
DE102013227051B4 (de) Messanordnung und Verfahren zur Temperaturmessung sowie Sensorkabel für eine derartige Messanordnung
DE3837605C2 (de)
EP3861359B1 (de) Verfahren zum bestimmen eines kurzschlusses mit auftreten eines lichtbogens an einem elektrischen leiter
DE102013207775B4 (de) Vorrichtung zum Erkennen einer Störung einer elektrischen Leitung
EP2295996A1 (de) System zur Überwachung eines Transformators
EP2054732A1 (de) Verfahren zur überprüfung des stromflusses durch einzeldrähte eines litzendrahtes sowie vorrichtung zur durchführung des verfahrens
EP3776612B1 (de) Kondensatorbank
EP3104373B1 (de) Hochstromkabel und verfahren zur ermittlung des verschleissgrades von hochstromkabeln
DE102017221298A1 (de) Messvorrichtung und Verfahren zur Erfassung einer von einer Ladestation übergebenen elektrischen Energie
EP0662220B1 (de) Auskopplung eines hochfrequenten fehlersignals aus einem hochfrequenten elektromagnetischen feld in einer elektrischen grossmaschine
EP0787305A1 (de) Schaltgerät mit überwachung des abbrandes wenigstens eines kontaktstückes
EP0942291B1 (de) Vorrichtung zur Messung der Kapazität von elektrischen Adern
DE102009015280A1 (de) Vorrichtung zur Diagnose von Messobjekten unter Verwendung einer Messspannung
EP3001204A1 (de) Durchführung wenigstens eines elektrischen Leiters durch eine Öffnung
WO2017178327A1 (de) Kabel zum prüfen eines prüflings, prüfvorrichtung und verfahren zum prüfen eines prüflings
DE19602249A1 (de) Vorwarneinrichtung für Induktionsschmelzöfen
DE102012020520B4 (de) Verfahren und Messvorrichtung zur Quantifizierung der Oxidationsstabilität eines Kraftstoffs
DE102011016966A1 (de) Kühlkanal und Stromkabel
DE4322463A1 (de) Vorwarneinrichtung für Induktionsschmelzöfen
EP3269015B1 (de) Verfahren zur zustandsbestimmung und fehlerortung an installierten isolierten ableitungen im äusseren blitzschutz
EP3977142B1 (de) Anordnung zum ermitteln eines durch eine stromschiene fliessenden stroms
DE102018101933B3 (de) Verfahren zur Bewertung elektromechanischer Verbindungseigenschaften und Messvorrichtung
EP3729031A1 (de) Thermoelement, temperaturmesssystem und verfahren zur herstellung eines thermoelements
CH711878B1 (de) Verfahren und Vorrichtung zum Bestimmen des spezifischen Längenwiderstandes einer mehrdrähtigen Leitung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170530

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 960976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016000436

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2663919

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180417

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016000436

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190626

Year of fee payment: 13

Ref country code: ES

Payment date: 20190619

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190514

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160524

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 8

Ref country code: FR

Payment date: 20230517

Year of fee payment: 8

Ref country code: DE

Payment date: 20230524

Year of fee payment: 8