EP3103920A1 - Feuille de tissu absorbant crêpé ayant un poids de base local variable - Google Patents

Feuille de tissu absorbant crêpé ayant un poids de base local variable Download PDF

Info

Publication number
EP3103920A1
EP3103920A1 EP16181988.3A EP16181988A EP3103920A1 EP 3103920 A1 EP3103920 A1 EP 3103920A1 EP 16181988 A EP16181988 A EP 16181988A EP 3103920 A1 EP3103920 A1 EP 3103920A1
Authority
EP
European Patent Office
Prior art keywords
fabric
web
creping
basis weight
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16181988.3A
Other languages
German (de)
English (en)
Other versions
EP3103920B1 (fr
Inventor
Steven L. Edwards
Guy H. Super
Stephen J. Mccullough
Ronald R. Reeb
Hung Liang Chou
Kang Chang Yeh
John H. Dwiggins
Frank D. Harper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GPCP IP Holdings LLC
Original Assignee
Georgia Pacific Consumer Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/451,111 external-priority patent/US7585389B2/en
Application filed by Georgia Pacific Consumer Products LP filed Critical Georgia Pacific Consumer Products LP
Priority to PL16181988T priority Critical patent/PL3103920T3/pl
Publication of EP3103920A1 publication Critical patent/EP3103920A1/fr
Application granted granted Critical
Publication of EP3103920B1 publication Critical patent/EP3103920B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • D21H27/008Tissue paper; Absorbent paper characterised by inhomogeneous distribution or incomplete coverage of properties, e.g. obtained by using materials of chemical compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/14Making cellulose wadding, filter or blotting paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/14Making cellulose wadding, filter or blotting paper
    • D21F11/145Making cellulose wadding, filter or blotting paper including a through-drying process
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • D21H27/004Tissue paper; Absorbent paper characterised by specific parameters
    • D21H27/005Tissue paper; Absorbent paper characterised by specific parameters relating to physical or mechanical properties, e.g. tensile strength, stretch, softness
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/02Patterned paper

Definitions

  • This application relates generally to absorbent sheet for paper towel and tissue.
  • Typical products have variable local basis weight with (i) elongated densified regions oriented along the machine direction of the product having relatively low basis weight and (ii) fiber-enriched regions of relatively high basis weight between the densified regions.
  • Methods of making paper tissue, towel, and the like are well known, including various features such as Yankee drying, throughdrying, fabric creping, dry creping, wet creping and so forth.
  • Conventional wet pressing (CWP) processes have certain advantages over conventional through-air drying (TAD) processes including: (1) lower energy costs associated with the mechanical removal of water rather than transpiration drying with hot air; and (2) higher production speeds which are more readily achieved with processes which utilize wet pressing to form a web.
  • through-air drying processes have become the method of choice for new capital investment, particularly for the production of soft, bulky, premium quality towel products.
  • Fabric creping has been employed in connection with papermaking processes which include mechanical or compactive dewatering of the paper web as a means to influence product properties. See, United States Patent Nos. 4,689,119 and 4,551,199 of Weldon; 4,849,054 of Klowak; and 6,287,426 of Edwards et al. Operation of fabric creping processes has been hampered by the difficulty of effectively transferring a web of high or intermediate consistency to a dryer. Further patents relating to fabric creping include the following: 4,834,838 ; 4,482,429 as well as 4,445,638 . Note also, United States Patent No. 6,350,349 to Hermans et al. which discloses wet transfer of a web from a rotating transfer surface to a fabric.
  • United States Patent No. 5,503,715 to Trokhan et al. discloses a cellulosic fibrous structure having multiple regions distinguished from one another by basis weight.
  • the structure is reported as having an essentially continuous high basis weight network, and discrete regions of low basis weight which circumscribe discrete regions of intermediate basis weight.
  • the cellulosic fibers forming the low basis weight regions may be radially oriented relative to the centers of the regions.
  • the paper may be formed by using a forming belt having zones with different flow resistances.
  • the basis weight of a region of the paper is generally inversely proportional to the flow resistance of the zone of the forming belt, upon which such region was formed.
  • the zones of different flow resistances provide for selectively draining a liquid carrier having suspended cellulosic fibers through the different zones of the forming belt.
  • a similar structure is reported in United States Patent No. 5,935,381 also to Trokhan et al. where the features are achieved by using different fiber types.
  • creped products are disclosed in the following patents: United States Patent No. 3,994,771 to Morgan, Jr. et al. ; United States Patent No. 4,102,737 to Morton ; and United States Patent No. 4,529,480 to Trokhan .
  • the processes described in these patents comprise, very generally, forming a web on a foraminous support, thermally pre-drying the web, applying the web to a Yankee dryer with a nip defined, in part, by an impression fabric, and creping the product from the Yankee dryer.
  • a relatively uniformly permeable web is typically required, making it difficult to employ recycle furnish at levels which may be desired. Transfer to the Yankee typically takes place at web consistencies of from about 60% to about 70%.
  • the present invention provides absorbent paper sheet products of variable local basis weight which may be made by compactively dewatering a furnish and wet-creping the resulting web into a fabric chosen such that the absorbent sheet is provided with a plurality of elongated, machine-direction oriented densified regions of relatively low basis weight and a plurality of fiber-enriched regions of relatively high local basis weight which occupy most of the area of the sheet.
  • the products are produced in a variety of forms suitable for paper tissue or paper towel and have remarkable absorbency over a wide range of basis weights exhibiting, for example, Porofil® void volumes of over 7g/g even at high basis weights.
  • tissue products the sheet of the invention has surprising softness at high tensile, offering a combination of properties particularly sought in the industry.
  • towel products the absorbent sheet of the invention makes it possible to employ large amounts of recycle fiber without abandoning softness or absorbency requirements; again, a significant advance over existing art.
  • papermachine efficiency is enhanced by providing a sheet to the Yankee exhibiting greater Caliper Gain/Reel Crepe ratios which make lesser demands on wet-end speed - a production bottleneck for many papermachines.
  • Figure 1 is a photomicrograph of an absorbent sheet 10 of the invention and Figure 2 is a cross-section showing the structure of the sheet along the machine direction.
  • inventive sheet 10 includes a plurality of cross machine direction (CD) extending, fiber-enriched pileated or crested regions 12 of relatively high local basis weight interconnected by a plurality of elongated densified regions 14 having relatively low local basis weight which are generally oriented along the machine direction (MD) of the sheet.
  • the elongated densified regions extend in the MD the length 18 and they extend in the CD a length 20.
  • the elongated densified regions are characterized by a MD/CD aspect ratio i.e.
  • FIG. 2 is an enlarged photomicrograph of a section of the sheet taken along line X-S#1 of Figure 1 .
  • the pileated regions 12 include a large concentration of fiber having a fiber orientation bias toward the cross-machine direction (CD) as evidenced by the cut fiber ends seen in the photograph.
  • This fiber orientation bias is further seen in the high CD stretch and tensile strengths discussed hereinafter.
  • the elongated densified regions 14 include highly compressed fiber 16 which also has fiber bias in the cross direction as evidenced by cut fiber ends.
  • Fiber orientation bias is likewise illustrated in Figure 1 wherein it is seen that the fiber-enriched, pileated regions 12 are bordered at lateral extremities by CD aligned elongated densified regions 14 and that regions 12 generally extend in the CD direction between aligned densified regions, being linked thereto by CD-extending fibers. See also, Figures 16-18 .
  • magnifications reported herein are approximate except when presented as part of a scanning electron micrograph where an absolute scale is shown.
  • an absorbent cellulosic sheet having variable local basis weight comprising a papermaking-fiber reticulum provided with (i) a plurality of cross-machine direction (CD) extending, fiber-enriched pileated regions of relatively high local basis weight interconnected by (ii) a plurality of elongated densified regions of compressed papermaking fibers, the elongated densified regions having relatively low local basis weight and being generally oriented along the machine direction (MD) of the sheet.
  • the elongated densified regions are further characterized by an MD/CD aspect ratio of at least 1.5.
  • the sheet has a specific bulk of greater than 5.5 ((mils/8 plies)/(lb/ream)) (greater than 0.085 (mm/8plies/gsm) and has a void volume of 9 grams/gram or greater when it has a basis weight of 23 lb/ream (37.5 gsm) or less or has a void volume of 7 grams/gram or greater when it has a basis weight of greater than 23 lbs/ream (37.5 gsm).
  • the MD/CD aspect ratios of the densified regions are greater than 5 or greater than 6; generally between about 6 and 10.
  • the fiber-enriched, pileated regions have fiber orientation bias toward the CD of the sheet and the densified regions of relatively low basis weight extend in the machine direction and also have fiber orientation bias along the CD of the sheet.
  • the fiber-enriched pileated regions are bordered at lateral extremities by a laterally-spaced pair of CD-aligned densified regions; and the fiber-enriched regions are at least partially-bordered intermediate the lateral extremities thereof at longitudinal portions by a longitudinally-spaced, CD-staggered pair of densified regions.
  • the sheet has a basis weight of from 8 lbs per 3000 square-foot ream (13 gsm) to 35 lbs per 3000 square-foot ream (57.0 gsm) and a void volume of 7 grams/gram or greater.
  • a sheet may have a void volume of equal to or greater than 7 grams/gram and perhaps up to 15 grams/gram.
  • a suitable void volume of equal to or greater than 8 grams/gram and up to 12 grams/gram is seen in Figure 3 .
  • the present invention provides products of relatively high Porofil® void volume, even at high basis weights.
  • the sheet has a basis weight of from 20 lbs per 3000 square foot ream (32.5 gsm) to 35 lbs per 3000 square-foot ream (57.0 gsm) and a void volume of 7 grams/gram or more and perhaps up to 15 grams/gram.
  • the void volume is equal to or greater than 8 or 9 grams/gram and up to 12 grams/gram.
  • Salient features of the invention likewise include high CD stretch and the ability to employ recycle furnish in premium products.
  • a CD stretch of from 5% to 10% is typical. At least 5%, at least 7% or at least 8% is preferred in some cases.
  • the papermaking fiber may be 50% by weight fiber of recycle fiber or more. At least 10%, 25%, 35% or 45% is used depending upon availability and suitability for the product.
  • the inventive absorbent sheet may be in the form of a tissue base sheet wherein the fiber is predominantly hardwood fiber and the sheet has a bulk of at least 6 ((mils/8plies)/(lb/ream)), (0.093 (mm/8plies)/(gsm)) or in the form of a tissue base sheet wherein the fiber is predominantly hardwood fiber and the sheet has a bulk of at least 6.5 ((mils/8plies)/(lb/ream)) (at least 0.1 (mm/8plies)/(gsm)).
  • the sheet has a bulk of equal to or greater than 6.5 and up to about 8 ((mils/8plies)/(lb/ream)) (greater than 0.1 up to about 0.125 (mm/8plies)/(gsm)) and is incorporated into a two-ply tissue product.
  • the invention sheet is likewise provided in the form of a tissue base sheet wherein the fiber is predominantly hardwood fiber and the sheet has a normalized GM tensile strength of greater than 21 ((g/3")/(lbs/ream)) (greater than 1.69 (g/cm)/(gsm)) and a bulk of at least 5 ((mils/8plies)/(lb/ream)) (at least 0.08 (mm/8plies)/(gsm)) up to about 10 ((mils/8plies)/(lb/ream)) (to about 0.15 (mm/8plies)/(gsm)).
  • GM tensile strength of greater than 21 ((g/3")/(lbs/ream)) (greater than 1.69 (g/cm)/(gsm)) and a bulk of at least 5 ((mils/8plies)/(lb/ream)) (at least 0.08 (mm/8plies)/(gsm)) up to about 10 ((mils/8
  • the tissue sheet has a normalized GM tensile of greater than 21 ((g/3")/(lbs/ream)) (greater than 1.69 (g/cm)/(gsm)) and up to about 30 ((g/3")/(lbs/ream)) (or 2.42 (g/cm)/(gsm)).
  • the base sheet may have a normalized GM tensile of 25 ((g/3")/(lbs/ream)) (of 2 (g/cm)/(gsm)) or greater and be incorporated into a two-ply tissue product.
  • the inventive products are produced in the form of a towel base sheet incorporating mechanical pulp and wherein at least 40% by weight of the papermaking fiber is softwood fiber or in the form of a towel base sheet wherein at least 40% by weight of the papermaking fiber is softwood fiber and at least 20% by weight of the papermaking fiber is recycle fiber. At least 30%, at least 40% or at least 50% of the papermaking fiber may be recycle fiber. As much as 75% or 100% of the fiber may be recycle fiber in some cases.
  • a typical towel base sheet for two-ply toweling has a basis weight in the range of from 12 to 22 lbs per 3000 square-foot ream and an 8-sheet caliper of greater than.90 mils, up to about 120 mils (from 19.5 to 35.8 gsm and an 8-sheet caliper of greater than 2.3 mm, up to about 3.1 mm).
  • Base sheet may be converted into a towel with a CD stretch of at least about 6%. Typically, a CD stretch in the range of from 6% to 10% is provided, sometimes a CD stretch of at least 7% is preferred.
  • the present invention is likewise suitable for manufacturing towel base sheet for use in automatic towel dispensers.
  • the product is provided in the form of a towel base sheet wherein at least 40% by weight of the papermaking fiber is softwood fiber and at least 20% by weight of the papermaking fiber is recycle fiber, and wherein the MD bending length of the base sheet is from about 3.5 cm to about 5 cm.
  • An MD bending length of the base sheet in the range of from about 3.75 cm to about 4.5 cm is typical.
  • Such sheets may include at least 30% recycle fiber, at least 40% recycle fiber. In some cases, at least 50% by weight of the fiber is recycle fiber. As much as 75% or 100% by weight recycle fiber may be employed.
  • the base sheet has a bulk of greater than 2.5 ((mils/8plies)/(lb/ream)) (greater than 0.039 (mm/8plies)/(gsm)), such as a bulk of greater than 2.5 ((mils/8plies)/(lb/ream)) (greater than 0.039 (mm/8plies)/(gsm)) up to about 3 ((mils/8plies)/(lb/ream)) (to about 0.047 (mm/8plies)/(gsm). In some cases having a bulk of at least 2.75 ((mils/8plies)/(lb/ream)) (at least 0.043 (mm/8plies)/(gsm)) is desirable.
  • a further aspect of the invention is an absorbent cellulosic sheet having variable local basis weight comprising a patterned papermaking-fiber reticulum provided with: (a) a plurality of generally machine direction (MD) oriented elongated densified regions of compressed papermaking fibers having a relatively low local basis weight as well as leading and trailing edges, the densified regions being arranged in a repeating pattern of a plurality of generally parallel linear arrays which are longitudinally staggered with respect to each other such that a plurality of intervening linear arrays are disposed between a pair of CD-aligned densified regions; and (b) a plurality of fiber-enriched, pileated regions having a relatively high local basis weight interspersed between and connected with the densified regions, the pileated regions having crests extending generally in the cross-machine direction of the sheet; wherein the generally parallel, longitudinal arrays of densified regions are positioned and configured such that a fiber-enriched region between a pair of CD-aligned densified regions extends
  • the generally parallel, longitudinal arrays of densified regions are positioned and configured such that a fiber-enriched region between a pair of CD-aligned densified regions extends in the CD unobstructed by leading or trailing edges of densified regions of at least two intervening linear arrays.
  • the generally parallel, longitudinal arrays of densified regions are positioned and configured such that a fiber-enriched region between a pair of CD-aligned densified regions is at least partially truncated in the MD and at least partially bordered in the MD by the leading or trailing edges of densified regions of at least one intervening linear array of the sheet at an MD position intermediate an MD position of the leading and trailing edges of the CD-aligned densified regions.
  • the generally parallel, longitudinal arrays of densified regions are positioned and configured such that a fiber-enriched region between a pair of CD-aligned densified regions is at least partially truncated in the MD and at least partially bordered in the MD by the leading or trailing edges of densified regions of at least two intervening linear arrays of the sheet at an MD position intermediate an MD position of the leading and trailing edges of the CD-aligned densified regions.
  • the leading and trailing MD edges of the fiber-enriched pileated regions are generally inwardly concave such that a central MD span of the fiber-enriched regions is less than an MD span at the lateral extremities of the fiber-enriched areas.
  • the elongated densified regions occupy from about 5% to about 30% of the area of the sheet; more typically, the elongated densified regions occupy from about 5% to about 25% of the area of the sheet or the elongated densified regions occupy from about 7.5% to about 20% of the area of the sheet.
  • the fiber-enriched, pileated regions typically occupy from about 95% to about 50% of the area of the sheet, such as from about 90% to about 60% of the area of the sheet.
  • the linear arrays of densified regions have an MD repeat frequency of from about 50 meter -1 to about 200 meter -1 , such as an MD repeat frequency of from about 75 meter -1 to about 175 meter -1 or an MD repeat frequency of from about 90 meter -1 to about 150 meter -1 .
  • the densified regions of the linear arrays of the sheet have a CD repeat frequency of from about 100 meter -1 to about 500 meter -1 ; typically a CD repeat frequency of from about 150 meter -1 to about 300 meter -1 ; such as a CD repeat frequency of from about 175 meter -1 to about 250 meter -1 .
  • an absorbent cellulosic sheet having variable local basis weight comprising a papermaking fiber reticulum provided with: (a) a plurality of elongated densified regions of compressed papermaking fiber, the densified regions being oriented generally along the machine direction (MD) of the sheet and having a relatively low local basis weight as well as leading and trailing edges at their longitudinal extremities; and (b) a plurality of fiber-enriched, pileated regions connected with the plurality of elongated densified regions, the pileated regions having (i) a relatively high local basis weight and (ii) a plurality of cross-machine direction (CD) extending crests having concamerated CD profiles with respect to the leading and trailing edges of the plurality of elongated densified regions.
  • MD machine direction
  • CD cross-machine direction
  • an absorbent cellulosic sheet having variable local basis weight comprising a papermaking-fiber reticulum provided with (i) a plurality of cross-machine direction (CD) extending, fiber-enriched pileated regions of relatively high local basis weight having fiber bias along the CD of the sheet adjacent (ii) a plurality of densified regions of compressed papermaking fibers, the densified regions having relatively low local basis weight and being disposed between pileated regions.
  • a papermaking-fiber reticulum provided with (i) a plurality of cross-machine direction (CD) extending, fiber-enriched pileated regions of relatively high local basis weight having fiber bias along the CD of the sheet adjacent (ii) a plurality of densified regions of compressed papermaking fibers, the densified regions having relatively low local basis weight and being disposed between pileated regions.
  • CD cross-machine direction
  • an absorbent cellulosic sheet having variable local basis weight comprising (i) a plurality of cross-machine direction (CD) extending fiber-enriched regions of relatively high local basis weight and (ii) a plurality of low basis weight regions interspersed with the high basis weight regions, wherein representative areas within the relatively high basis weight regions exhibit a characteristic local basis weight at least 25% higher than a characteristic local basis weight of representative areas within the low basis weight regions.
  • CD cross-machine direction
  • the characteristic local basis weight of representative areas within the relatively high basis weight regions is at least 35% higher than the characteristic local basis weight of representative areas within the low basis weight regions; while in still others, the characteristic local basis weight of representative areas within the relatively high basis weight regions is at least 50% higher than the characteristic local basis weight of representative areas within the low basis weight regions. In some embodiments, the characteristic local basis weight of representative areas within the relatively high basis weight regions is at least 75% higher than the characteristic low basis weight of representative areas within the local basis weight regions or at least 100% higher than the characteristic local basis weight of the low basis weight regions.
  • the characteristic local basis weight of representative areas within the relatively high basis weight regions may be at least 150% higher than the characteristic local basis weight of representative areas within the low basis weight regions; generally, the characteristic local basis weight of representative areas within the relatively high basis weight regions is from 25% to 200% higher than the characteristic local basis weight of representative areas within the low basis weight regions.
  • an absorbent cellulosic sheet having variable local basis weight comprising (i) a plurality of cross-machine direction (CD) extending fiber-enriched regions of relatively high local basis weight and (ii) a plurality of elongated low basis weight regions generally oriented in the machine direction (MD), wherein the regions of relatively high local basis weight extend in the CD generally a distance of from about 0.25 to about 3 times a distance that the elongated relatively low basis weight regions extend in the MD.
  • the fiber-enriched regions are pileated regions having a plurality of macrofolds
  • the elongated low basis weight regions have an MD/CD aspect ratio of greater than 2 or 3, usually between about 2 and 10 such as between 2 and 6.
  • the present invention also includes methods of producing absorbent sheet.
  • a method of making a belt-creped absorbent cellulosic sheet comprising: (a) compactively dewatering a papermaking furnish to form a nascent web having an apparently random distribution of papermaking fiber orientation; (b) applying the dewatered web having the apparently random distribution of fiber orientation to a translating transfer surface moving at a first speed; (c) belt-creping the web from the transfer surface at a consistency of from about 30% to about 60% utilizing a patterned creping belt, the creping step occurring under pressure in a belt creping nip defined between the transfer surface and the creping belt wherein the belt is traveling at a second speed slower than the speed of said transfer surface.
  • the belt pattern, nip parameters, velocity delta and web consistency are selected such that the web is creped from the transfer surface and redistributed on the creping belt to form a web with a reticulum having a plurality of interconnected regions of different local basis weights including at least (i) a plurality of fiber-enriched pileated regions of high local basis weight, interconnected by way of (ii) a plurality of elongated densified regions of compressed papermaking fiber.
  • the elongated densified regions have relatively low local basis weight and are generally oriented along the machine direction (MD) of the sheet.
  • the elongated densified regions are further characterized by an MD/CD aspect ratio of at least 1.5; and the process further includes (d) drying the web.
  • the creping belt is a fabric.
  • the process may yet further include applying suction to the creped web while it is disposed in the creping fabric.
  • the creping belt is a woven creping fabric with prominent MD warp knuckles which project into the creping nip to a greater extent than weft knuckles of the fabric and the creping fabric is a multilayer fabric.
  • the pileated regions include drawable macrofolds which may be expanded by drawing the web along the MD of the sheet.
  • the pileated regions include drawable macrofolds and nested therein drawable microfolds and the process further includes the step of drawing the microfolds of the pileated regions by application of suction.
  • the pileated regions include a plurality of overlapping crests inclined with respect to the MD of the sheet.
  • An additional aspect of the invention is a method of making a fabric-creped absorbent cellulosic sheet with improved dispensing characteristics comprising: a) compactively dewatering a papermaking furnish to form a nascent web; b) applying the dewatered web to a translating transfer surface moving at a first speed; c) fabric-creping the web from the transfer surface at a consistency of from about 30% to about 60% utilizing a patterned creping fabric, the creping step occurring under pressure in a fabric creping nip defined between the transfer surface and the creping fabric wherein the fabric is traveling at a second speed slower than the speed of said transfer surface.
  • the fabric pattern, nip parameters, velocity delta and web consistency are selected such that the web is creped from the transfer surface and transferred to the creping fabric.
  • the process also includes d) adhering the web to a drying cylinder with a resinous adhesive coating composition; e) drying the web on the drying cylinder; and f) peeling the web from the drying cylinder; wherein the furnish, creping fabric and creping adhesive are selected and the velocity delta, nip parameters and web consistency, caliper and basis weight are controlled such that the MD bending length of the dried web is at least about 3.5 cm and the web has a papermaking-fiber reticulum provided with (i) a plurality of cross-machine direction (CD) extending, fiber-enriched pileated regions of relatively high local basis weight interconnected by (ii) a plurality of elongated densified regions of compressed papermaking fibers.
  • CD cross-machine direction
  • the elongated densified regions have relatively low local basis weight and are generally oriented along the machine direction (MD) of the sheet; the elongated densified regions are further characterized by an MD/CD aspect ratio of at least 1.5.
  • the MD bending length of the dried web is from about 3.5 cm to about 5 cm in many cases, such as from about 3.75 cm to about 4.5 cm.
  • the process may be operated at a fabric crepe of from about 2% to about 20% and is operated at a fabric crepe of from about 3% to about 10% in a typical embodiment.
  • a still further aspect of the invention is a method of making fabric-creped absorbent cellulosic sheet comprising: a) compactively dewatering a papermaking furnish to form a nascent web having an apparently random distribution of papermaking fiber orientation; b) applying the dewatered web having the apparently random distribution of fiber orientation to a translating transfer surface moving at a first speed; c) fabric-creping the web from the transfer surface at a consistency of from about 30% to about 60%, the creping step occurring under pressure in a fabric creping nip defined between the transfer surface and the creping fabric wherein the fabric is traveling at a second speed slower than the speed of said transfer surface.
  • the fabric pattern, nip parameters, velocity delta and web consistency are selected such that the web is creped from the transfer surface and redistributed on the creping fabric to form a web with a drawable reticulum having a plurality of interconnected regions of different local basis weights including at least (i) a plurality of fiber-enriched regions of high local basis weight, interconnected by way of (ii) a plurality of elongated densified regions of compressed papermaking fibers, the elongated densified regions having relatively low local basis weight and being generally oriented along the machine direction (MD) of the sheet.
  • the elongated densified regions are further characterized by an MD/CD aspect ratio of at least 1.5.
  • the process further includes d) drying the web; and thereafter e) drawing the web along its MD, wherein the drawable reticulum of the web is characterized in that it comprises a cohesive fiber matrix which exhibits elevated void volume upon drawing.
  • the at least partially dried web is drawn along its MD at least about 10% after fabric-creping or the web is drawn in the machine direction at least about 15% after fabric-creping.
  • the web may be drawn in its MD at least about 30% after fabric-creping; at least about 45% after fabric-creping; and the web may be drawn in its MD up to about 75% or more after fabric-creping, provided that a sufficient amount of fabric crepe has been applied.
  • Another method of making fabric-creped absorbent cellulosic sheet of the invention includes: a) compactively dewatering a papermaking furnish to form a nascent web having an apparently random distribution of papermaking fiber orientation; b) applying the dewatered web having the apparently random distribution of fiber orientation to a translating transfer surface moving at a first speed; c) fabric-creping the web from the transfer surface at a consistency of from about 30% to about 60%, the creping step occurring under pressure in a fabric creping nip defined between the transfer surface and the creping fabric wherein the fabric is traveling at a second speed slower than the speed of said transfer surface; d) applying the web to a Yankee dryer; e) creping the web from the Yankee dryer; and f) winding the web on a reel; the fabric pattern, nip parameters, velocity delta and web consistency and composition being selected such that: i) the web is creped from the transfer surface and redistributed on the creping fabric to form a web with local basis weight variation including at least (A
  • the process exhibits a Caliper Gain/% Reel Crepe ratio of at least 2; such as a Caliper Gain/% Reel Crepe ratio of at least 2.5 or 3.
  • the process exhibits a Caliper Gain/% Reel Crepe ratio of from about 1.5 to about 5 and is operated at a Fabric Crepe/Reel Crepe ratio of from about 1 to about 20.
  • the process may be operated at a Fabric Crepe/Reel Crepe ratio of from about 2 to about 10, such as at a Fabric Crepe/Reel Crepe ratio of from about 2.5 to about 5.
  • the creping adhesive "add-on" rate is calculated by dividing the rate of application of adhesive (mg/min) by surface area of the drying cylinder passing under a spray applicator boom (m 2 /min).
  • the resinous adhesive composition most preferably consists essentially of a polyvinyl alcohol resin and a polyamide-epichlorohydrin resin wherein the weight ratio of polyvinyl alcohol resin to polyamide-epichlorohydrin resin is from about 2 to about 4.
  • the creping adhesive may also include modifier sufficient to maintain good transfer between the creping fabric and the Yankee cylinder; generally less than 5% by weight modifier and more preferably less than about 2% by weight modifier, for peeled products. For blade creped products, 15%-25% modifier or more may be used.
  • Basis weight refers to the weight of a 3000 square-foot (279 m 2 ) ream of product.
  • ream means 3000 square-foot ream (279 m 2 ) unless otherwise specified, for example in grams per square meter (gsm).
  • Consistency refers to % solids of a nascent web, for example, calculated on a bone dry basis.
  • Air dry means including residual moisture, by convention up to about 10% moisture for pulp and up to about 6% for paper. A nascent web having 50% water and 50% bone dry pulp has a consistency of 50%.
  • cellulosic cellulosic sheet
  • papermaking fibers include virgin pulps or recycle (secondary) cellulosic fibers or fiber mixes comprising cellulosic fibers.
  • Fibers suitable for making the webs of this invention include: nonwood fibers, such as cotton fibers or cotton derivatives, abaca, kenaf, sabai grass, flax, esparto grass, straw, jute hemp, bagasse, milkweed floss fibers, and pineapple leaf fibers; and wood fibers such as those obtained from deciduous and coniferous trees, including softwood fibers, such as northern and southern softwood kraft fibers; hardwood fibers, such as eucalyptus, maple, birch, aspen, or the like.
  • Papermaking fibers can be liberated from their source material by any one of a number of chemical pulping processes familiar to one experienced in the art including sulfate, sulfite, polysulfide, soda pulping, etc.
  • the pulp can be bleached if desired by chemical means including the use of chlorine, chlorine dioxide, oxygen, alkaline peroxide and so forth.
  • the products of the present invention may comprise a blend of conventional fibers (whether derived from virgin pulp or recycle sources) and high coarseness lignin-rich tubular fibers, mechanical pulps such as bleached chemical thermomechanical pulp (BCTMP).
  • Recycle fiber is typically more than 50% by weight hardwood fiber and may be 75%-80% or more hardwood fiber.
  • compactively dewatering the web or furnish refers to mechanical dewatering by wet pressing on a dewatering felt, for example, in some embodiments by use of mechanical pressure applied continuously over the web surface as in a nip between a press roll and a press shoe wherein the web is in contact with a papermaking felt.
  • the terminology "compactively dewatering" is used to distinguish from processes wherein the initial dewatering of the web is carried out largely by thermal means as is the case, for example, in United States Patent No. 4,529,480 to Trokhan and United States Patent No. 5,607,551 to Farrington et al. .
  • Compactively dewatering a web thus refers, for example, to removing water from a nascent web having a consistency of less than 30% or so by application of pressure thereto and/or increasing the consistency of the web by about 15% or more by application of pressure thereto; that is, increasing the consistency, for example, from 30% to 45%.
  • Creping fabric and like terminology refers to a fabric or belt which bears a pattern suitable for practicing the process of the present invention and preferably is permeable enough such that the web may be dried while it is held in the creping fabric. In cases where the web is transferred to another fabric or surface (other than the creping fabric) for drying, the creping fabric may have lower permeability.
  • Fabric side and like terminology refers to the side of the web which is in contact with the creping fabric.
  • Dryer side or “Yankee side” is the side of the web in contact with the drying cylinder, typically opposite the fabric side of the web.
  • Fpm refers to feet per minute (data is also sometimes expressed in meters per minute (m/min); while fps refers to feet per second.
  • MD machine direction
  • CD cross-machine direction
  • Nip parameters include, without limitation, nip pressure, nip width, backing roll hardness, creping roll hardness, fabric approach angle, fabric takeaway angle, uniformity, nip penetration and velocity delta between surfaces of the nip.
  • Nip width means the MD length over which the nip surfaces are in contact.
  • Predominantly means more than 50% of the specified component, by weight unless otherwise indicated.
  • a translating transfer surface refers to the surface from which the web is creped into the creping fabric.
  • the translating transfer surface may be the surface of a rotating drum as described hereafter, or may be the surface of a continuous smooth moving belt or another moving fabric which may have surface texture and so forth.
  • the translating transfer surface needs to support the web and facilitate the high solids creping as will be appreciated from the discussion which follows.
  • Calipers and or bulk reported herein may be measured at 8 or 16 sheet calipers as specified.
  • the sheets are stacked and the caliper measurement taken about the central portion of the stack.
  • the test samples are conditioned in an atmosphere of 23° ⁇ 1.0°C (73.4° ⁇ 1.8°F) at 50% relative humidity for at least about 2 hours and then measured with a Thwing-Albert Model 89-II-JR or Progage Electronic Thickness Tester with 2-in (50.8-mm) diameter anvils, 539 ⁇ 10 grams dead weight load, and 0.231 in./sec (5.87 mm/sec) descent rate.
  • each sheet of product to be tested must have the same number of plies as the product is sold.
  • each sheet to be tested must have the same number of plies as produced off the winder.
  • base sheet testing off of the papermachine reel single plies must be used. Sheets are stacked together aligned in the MD. On custom embossed or printed product, try to avoid taking measurements in these areas if at all possible. Bulk may also be expressed in units of volume/weight by dividing caliper by basis weight.
  • Characteristic local basis weights and differences therebetween are calculated by measuring the local basis weight at 2 or more representative low basis weight areas within the low basis weight regions and comparing the average basis weight to the average basis weight at two or more representative areas within the relatively high local basis weight regions. For example, if the representative areas within low basis weight regions have an average basis weight of 15 lbs/3000 ft 2 ream (24.4 gsm) and the average measured local basis weight for the representative areas within the relatively high local basis regions is 20 lbs/3000 ft 2 ream (32.5 gsm), the representative areas within high local basis weight regions have a characteristic basis weight of ((20-15)/15) X 100% or 33% higher than the representative areas within low basis weight regions.
  • the local basis weight is measured using a beta particle attenuation technique as described herein.
  • MD bending length (cm) is determined in accordance with ASTM test method D 1388-96, cantilever option. Reported bending lengths refer to MD bending lengths unless a CD bending length is expressly specified.
  • the MD bending length test was performed with a Cantilever Bending Tester available from Research Dimensions, 1720 Oakridge Road, Neenah, Wisconsin, 54956 which is substantially the apparatus shown in the ASTM test method, item 6.
  • the instrument is placed on a level stable surface, horizontal position being confirmed by a built-in leveling bubble.
  • the bend angle indicator is set at 41.5° below the level of the sample table. This is accomplished by setting the knife edge appropriately.
  • the sample is cut with a one inch (2.54 cm) JD strip cutter available from Thwing-Albert Instrument Company, 14 Collins Avenue, W. Berlin, NJ 08091.
  • Six (6) samples are cut 1 inch x 8 inch (2.54 cm x 20.32 cm) machine direction specimens. Samples are conditioned at 23°C ⁇ 1°C (73.4°F ⁇ 1.8°F) at 50% relative humidity for at least two hours. For machine direction specimens the longer dimension is parallel to the machine direction. The specimens should be flat, free of wrinkles, bends or tears. The Yankee side of the specimens is also labeled. The specimen is placed on the horizontal platform of the tester aligning the edge of the specimen with the right hand edge.
  • the movable slide is placed on the specimen, being careful not to change its initial position.
  • the right edge of the sample and the movable slide should be set at the right edge of the horizontal platform.
  • the movable slide is displaced to the right in a smooth, slow manner at approximately 5 inch/minute (12.7 cm/minute) until the specimen touches the knife edge.
  • the overhang length is recorded to the nearest 0.1 cm. This is done by reading the left edge of the movable slide.
  • Three specimens are preferably run with the Yankee side up and three specimens are preferably run with the Yankee side down on the horizontal platform.
  • the MD bending length is reported as the average overhang length in centimeters divided by two to account for bending axis location.
  • Water absorbency rate or WAR is measured in seconds and is the time it takes for a sample to absorb a 0.1 gram droplet of water disposed on its surface by way of an automated syringe.
  • the test specimens are preferably conditioned at 23° C ⁇ 1°C (73.4 ⁇ 1.8°F) at 50 % relative humidity for 2 hours.
  • 4 3x3 inch (7.62 x 7.62 cm) test specimens are prepared. Each specimen is placed in a sample holder such that a high intensity lamp is directed toward the specimen. 0.1 ml of water is deposited on the specimen surface and a stop watch is started. When the water is absorbed, as indicated by lack of further reflection of light from the drop, the stopwatch is stopped and the time recorded to the nearest 0.1 seconds. The procedure is repeated for each specimen and the results averaged for the sample. WAR is measured in accordance with TAPPI method T-432 cm-99.
  • Dry tensile strengths (MD and CD), stretch, ratios thereof, modulus, break modulus, stress and strain are measured with a standard Instron test device or other suitable elongation tensile tester which may be configured in various ways, typically using 3 or 1 inch (7.62 or 2.54 cm) wide strips of tissue or towel, conditioned in an atmosphere of 23° ⁇ 1°C (73.4° ⁇ 1°F) at 50% relative humidity for 2 hours.
  • the tensile test is run at a crosshead speed of 2 in/min (5.1 cm/min).
  • Break modulus is expressed in grams/3 inches/ %strain ((grams/cm)/ %strain).
  • % strain is dimensionless and need not be specified. Unless otherwise indicated, values are break values.
  • GM refers to the square root of the product of the MD and CD values for a particular product.
  • Tensile ratios are simply ratios of the values determined by way of the foregoing methods. Unless otherwise specified, a tensile property is a dry sheet property.
  • the wet tensile of the tissue of the present invention is measured using a three-inch (7.62 cm) wide strip of tissue that is folded into a loop, clamped in a special fixture termed a Finch Cup, then immersed in a water.
  • the Finch Cup which is available from the Thwing-Albert Instrument Company of Philadelphia, Pa., is mounted onto a tensile tester equipped with a 2.0 pound (0.907 kg) load cell with the flange of the Finch Cup clamped by the tester's lower jaw and the ends of tissue loop clamped into the upper jaw of the tensile tester.
  • the sample is immersed in water that has been adjusted to a pH of 7.0+- 0.1 and the tensile is tested after a 5 second immersion time.
  • the results are expressed in g/3" (g/cm), dividing by two to account for the loop as appropriate.
  • a web creped from a transfer cylinder with a surface speed of 750 fpm (228.8 m/min) to a fabric with a velocity of 500 fpm (152.5 m/min) has a fabric crepe ratio of 1.5 and a fabric crepe of 50%.
  • reel crepe ratio is typically calculated as the Yankee speed divided by reel speed. To express reel crepe as a percentage, 1 is subtracted from the reel crepe ratio and the result multiplied by 100%.
  • the fabric crepe/reel crepe ratio is calculated by dividing the fabric crepe by the reel crepe.
  • the Caliper Gain/% Reel Crepe ratio is calculated by dividing the observed caliper gain in mils/8 sheets (mm/8 sheets) by the % reel crepe. To this end, the gain in caliper is determined by comparison with like operating conditions with no reel crepe. See Table 13, below.
  • the line or overall crepe ratio is calculated as the ratio of the forming wire speed to the reel speed and a % total crepe is:
  • Line Crepe Line Crepe Ratio ⁇ 1 ⁇ 100
  • a process with a forming wire speed of 2000 fpm (610 m/min) and a reel speed of 1000 fpm (305 m/min) has a line or total crepe ratio of 2 and a total crepe of 100%.
  • PLI or pli means pounds force per linear inch (kg force per linear centimeter (plcm)).
  • the process employed is distinguished from other processes, in part, because fabric creping is carried out under pressure in a creping nip.
  • rush transfers are carried out using suction to assist in detaching the web from the donor fabric and thereafter attaching it to the receiving or receptor fabric.
  • suction is not required in a fabric creping step, so accordingly when we refer to fabric creping as being "under pressure” we are referring to loading of the receptor fabric against the transfer surface although suction assist can be employed at the expense of further complication of the system so long as the amount of suction is not sufficient to undesirably interfere with rearrangement or redistribution of the fiber.
  • Pusey and Jones (P&J) hardness is measured in accordance with ASTM D 531, and refers to the indentation number (standard specimen and conditions).
  • Velocity delta means a difference in linear speed
  • the void volume and /or void volume ratio as referred to hereafter, are determined by saturating a sheet with a nonpolar POROFIL ® liquid and measuring the amount of liquid absorbed.
  • the volume of liquid absorbed is equivalent to the void volume within the sheet structure.
  • the % weight increase (PWI) is expressed as grams of liquid absorbed per gram of fiber in the sheet structure times 100, as noted hereinafter. More specifically, for each single-ply sheet sample to be tested, select 8 sheets and cut out a 1 inch by 1 inch square (1 inch in the machine direction and 1 inch in the cross-machine direction) (2.54 cm by 2.54 cm square (2.54 cm in the machine direction and 2.54 cm in the cross-machine direction).
  • each ply is measured as a separate entity. Multiple samples should be separated into individual single plies and 8 sheets from each ply position used for testing. Weigh and record the dry weight of each test specimen to the nearest 0.0001 gram. Place the specimen in a dish containing POROFIL ® liquid having a specific gravity of about 1.93 grams per cubic centimeter, available from Coulter Electronics Ltd., Northwell Drive, Luton, Beds, England; Part No. 9902458.) After 10 seconds, grasp the specimen at the very edge (1-2 millimeters in) of one corner with tweezers and remove from the liquid. Hold the specimen with that corner uppermost and allow excess liquid to drip for 30 seconds.
  • the PWI for all eight individual specimens is determined as described above and the average of the eight specimens is the PWI for the sample.
  • the void volume ratio is calculated by dividing the PWI by 1.9 (density of fluid) to express the ratio as a percentage, whereas the void volume (gms/gm) is simply the weight increase ratio; that is, PWI divided by 100.
  • the creping adhesive used to secure the web to the Yankee drying cylinder is preferably a hygroscopic, re-wettable, substantially non-crosslinking adhesive.
  • preferred adhesives are those which include poly(vinyl alcohol) of the general class described in United States Patent No. 4,528,316 to Soerens et al.
  • Other suitable adhesives are disclosed in co-pending United States Provisional Patent Application Serial No. 60/372,255, filed April 12, 2002 , entitled "Improved Creping Adhesive Modifier and Process for Producing Paper Products" (Attorney Docket No. 2394).
  • Suitable adhesives are optionally provided with modifiers and so forth. It is preferred to use crosslinker and/or modifier sparingly or not at all in the adhesive.
  • Creping adhesives may comprise a thermosetting or non-thermosetting resin, a film-forming semi-crystalline polymer and optionally an inorganic cross-linking agent as well as modifiers.
  • the creping adhesive of the present invention may also include other components, including, but not limited to, hydrocarbons oils, surfactants, or plasticizers. Further details as to creping adhesives useful in connection with the present invention are found in copending Provisional Application No. 60/779,614, filed March 6, 2006 (Attorney Docket No. 20140; GP-06-1), the disclosure of which is incorporated herein by reference.
  • the creping adhesive may be applied as a single composition or may be applied in its component parts. More particularly, the polyamide resin may be applied separately from the polyvinyl alcohol (PVOH) and the modifier.
  • PVOH polyvinyl alcohol
  • a normal coating package is suitably applied at a total coating rate (add-on as calculated above) of 54 mg/m 2 with 32 mg/m 2 of PVOH (Celvol 523)/ 11.3 mg/m 2 of PAE (Hercules 1145) and 10.5 mg/m 2 of modifier (Hercules 4609VF).
  • a preferred coating for a peeling process may be applied at a rate of 20 mg/m 2 with 14.52 mg/m 2 of PVOH (Celvol 523)/ 5.10 mg/m 2 of PAE (Hercules 1145) and 0.38 mg/m 2 of modifier (Hercules 4609VF).
  • an absorbent paper web is made by dispersing papermaking fibers into aqueous furnish (slurry) and depositing the aqueous furnish onto the forming wire of a papermaking machine.
  • Any suitable forming scheme might be used.
  • an extensive but non-exhaustive list in addition to Fourdrinier formers includes a crescent former, a C-wrap twin wire former, an S-wrap twin wire former, or a suction breast roll former.
  • the forming fabric can be any suitable foraminous member including single layer fabrics, double layer fabrics, triple layer fabrics, photopolymer fabrics, and the like.
  • Non-exhaustive background art in the forming fabric area includes United States Patent Nos.
  • Foam-forming of the aqueous furnish on a forming wire or fabric may be employed as a means for controlling the permeability or void volume of the sheet upon fabric-creping. Foam-forming techniques are disclosed in United States Patent No. 4,543,156 and Canadian Patent No. 2,053,505 , the disclosures of which are incorporated herein by reference.
  • the foamed fiber furnish is made up from an aqueous slurry of fibers mixed with a foamed liquid carrier just prior to its introduction to the headbox.
  • the pulp slurry supplied to the system has a consistency in the range of from about 0.5 to about 7 weight % fibers, preferably in the range of from about 2.5 to about 4.5 weight %.
  • the pulp slurry is added to a foamed liquid comprising water, air and surfactant containing 50 to 80% air by volume forming a foamed fiber furnish having a consistency in the range of from about 0.1 to about 3 weight % fiber by simple mixing from natural turbulence and mixing inherent in the process elements.
  • the addition of the pulp as a low consistency slurry results in excess foamed liquid recovered from the forming wires.
  • the excess foamed liquid is discharged from the system and may be used elsewhere or treated for recovery of surfactant therefrom.
  • the furnish may contain chemical additives to alter the physical properties of the paper produced. These chemistries are well understood by the skilled artisan and may be used in any known combination. Such additives may be surface modifiers, softeners, debonders, strength aids, latexes, opacifiers, optical brighteners, dyes, pigments, sizing agents, barrier chemicals, retention aids, insolubilizers, organic or inorganic crosslinkers, or combinations thereof; said chemicals optionally comprising polyols, starches, PPG esters, PEG esters, phospholipids, surfactants, polyamines, HMCP (Hydrophobically Modified Cationic Polymers), HMAP (Hydrophobically Modified Anionic Polymers) or the like.
  • additives may be surface modifiers, softeners, debonders, strength aids, latexes, opacifiers, optical brighteners, dyes, pigments, sizing agents, barrier chemicals, retention aids, insolubilizers, organic
  • the pulp can be mixed with strength adjusting agents such as wet strength agents, dry strength agents and debonders/softeners and so forth. Suitable wet strength agents are known to the skilled artisan.
  • strength adjusting agents such as wet strength agents, dry strength agents and debonders/softeners and so forth.
  • Suitable wet strength agents are known to the skilled artisan.
  • a comprehensive but non-exhaustive list of useful strength aids include urea-formaldehyde resins, melamine formaldehyde resins, glyoxylated polyacrylamide resins, polyamide-epichlorohydrin resins and the like.
  • Thermosetting polyacrylamides are produced by reacting acrylamide with diallyl dimethyl ammonium chloride (DADMAC) to produce a cationic polyacrylamide copolymer which is ultimately reacted with glyoxal to produce a cationic cross-linking wet strength resin, glyoxylated polyacrylamide.
  • DMDMAC diallyl dimethyl ammonium chloride
  • a cationic polyacrylamide copolymer which is ultimately reacted with glyoxal to produce a cationic cross-linking wet strength resin, glyoxylated polyacrylamide.
  • acrylamide/-DADMAC/glyoxal can be used to produce cross-linking resins, which are useful as wet strength agents.
  • dialdehydes can be substituted for glyoxal to produce thermosetting wet strength characteristics.
  • polyamide-epichlorohydrin wet strength resins an example of which is sold under the trade names Kymene 557LX and Kymene 557H by Hercules Incorporated of Wilmington, Delaware and Amres® from Georgia-Pacific Resins, Inc. These resins and the process for making the resins are described in United States Patent No. 3,700,623 and United States Patent No. 3,772,076 each of which is incorporated herein by reference in its entirety.
  • Suitable temporary wet strength agents may likewise be included, particularly in applications where disposable towel, or more typically, tissue with permanent wet strength resin is to be avoided.
  • a comprehensive but non-exhaustive list of useful temporary wet strength agents includes aliphatic and aromatic aldehydes including glyoxal, malonic dialdehyde, succinic dialdehyde, glutaraldehyde and dialdehyde starches, as well as substituted or reacted starches, disaccharides, polysaccharides, chitosan, or other reacted polymeric reaction products of monomers or polymers having aldehyde groups, and optionally, nitrogen groups.
  • Representative nitrogen containing polymers which can suitably be reacted with the aldehyde containing monomers or polymers, includes vinyl-amides, acrylamides and related nitrogen containing polymers. These polymers impart a positive charge to the aldehyde containing reaction product.
  • other commercially available temporary wet strength agents such as, PAREZ 745, manufactured by Bayer can be used, along with those disclosed, for example in United States Patent No. 4,605,702 .
  • the temporary wet strength resin may be any one of a variety of watersoluble organic polymers comprising aldehydic units and cationic units used to increase dry and wet tensile strength of a paper product. Such resins are described in United States Patent Nos. 4,675,394 ; 5,240,562 ; 5,138,002 ; 5,085,736 ; 4,981,557 ; 5,008,344 ; 4,603,176 ; 4,983,748 ; 4,866,151 ; 4,804,769 and 5,217,576 . Modified starches sold under the trademarks CO-BOND® 1000 and CO-BOND® 1000 Plus, by National Starch and Chemical Company of Bridgewater, N.J. may be used.
  • the cationic aldehydic water soluble polymer can be prepared by preheating an aqueous slurry of approximately 5% solids maintained at a temperature of approximately 240 degrees Fahrenheit (116 degrees Celsius) and a pH of about 2.7 for approximately 3.5 minutes. Finally, the slurry can be quenched and diluted by adding water to produce a mixture of approximately 1.0% solids at less than about 130 degrees Fahrenheit (116 degrees Celsius).
  • Suitable dry strength agents include starch, guar gum, polyacrylamides, carboxymethyl cellulose and the like. Of particular utility is carboxymethyl cellulose, an example of which is sold under the trade name Hercules CMC, by Hercules Incorporated of Wilmington, Delaware.
  • the pulp may contain from about 0 to about 15 lb/ton (from about 0 to about 7.5 kg/mton) of dry strength agent.
  • the pulp may contain from about 1 to about 5 lbs/ton (from about 0.5 to about 2.5 kg/mton) of dry strength agent.
  • Suitable debonders are likewise known to the skilled artisan. Debonders or softeners may also be incorporated into the pulp or sprayed upon the web after its formation. The present invention may also be used with softener materials including but not limited to the class of amido amine salts derived from partially acid neutralized amines. Such materials are disclosed in United States Patent No. 4,720,383 . Evans, Chemistry and Industry, 5 July 1969, pp. 893-903 ; Egan, J.Am. Oil Chemist's Soc., Vol. 55 (1978), pp. 118-121 ; and Trivedi et al., J.Am. Oil Chemist's Soc., June 1981, pp. 754-756 , incorporated by reference in their entirety, indicate that softeners are often available commercially only as complex mixtures rather than as single compounds. While the following discussion will focus on the predominant species, it should be understood that commercially available mixtures would generally be used in practice.
  • Quasoft 202-JR is a suitable softener material, which may be derived by alkylating a condensation product of oleic acid and diethylenetriamine. Synthesis conditions using a deficiency of alkylation agent (e.g., diethyl sulfate) and only one alkylating step, followed by pH adjustment to protonate the non-ethylated species, result in a mixture consisting of cationic ethylated and cationic non-ethylated species. A minor proportion (e.g., about 10%) of the resulting amido amine cyclize to imidazoline compounds.
  • alkylation agent e.g., diethyl sulfate
  • the compositions as a whole are pH-sensitive. Therefore, in the practice of the present invention with this class of chemicals, the pH in the head box should be approximately 6 to 8, more preferably 6 to 7 and most preferably 6.5 to 7.
  • Quaternary ammonium compounds such as dialkyl dimethyl quaternary ammonium salts are also suitable particularly when the alkyl groups contain from about 10 to 24 carbon atoms. These compounds have the advantage of being relatively insensitive to pH.
  • Biodegradable softeners can be utilized. Representative biodegradable cationic softeners/debonders are disclosed in United States Patent Nos. 5,312,522 ; 5,415,737 ; 5,262,007 ; 5,264,082 ; and 5,223,096 , all of which are incorporated herein by reference in their entirety.
  • the compounds are biodegradable diesters of quaternary ammonia compounds, quaternized amine-esters, and biodegradable vegetable oil based esters functional with quaternary ammonium chloride and diester dierucyldimethyl ammonium chloride and are representative biodegradable softeners.
  • a particularly preferred debonder composition includes a quaternary amine component as well as a nonionic surfactant.
  • the nascent web may be compactively dewatered on a papermaking felt.
  • Any suitable felt may be used.
  • felts can have double-layer base weaves, triple-layer base weaves, or laminated base weaves.
  • Preferred felts are those having the laminated base weave design.
  • a wet-press-felt which may be particularly useful with the present invention is Vector 3 made by Voith Fabric. Background art in the press felt area includes United States Patent Nos. 5,657,797 ; 5,368,696 ; 4,973,512 ; 5,023,132 ; 5,225,269 ; 5,182,164 ; 5,372,876 ; and 5,618,612 .
  • a differential pressing felt as is disclosed in United States Patent No. 4,533,437 to Curran et al. may likewise be utilized.
  • Suitable creping or textured fabrics include single layer or multi-layer, or composite preferably open meshed structures. Fabric construction per se is of less importance than the topography of the creping surface in the creping nip as discussed in more detail below. Long MD knuckles with slightly lowered CD knuckles are greatly preferred for many products.
  • Fabrics may have at least one of the following characteristics: (1) on the side of the creping fabric that is in contact with the wet web (the "top” side), the number of machine direction (MD) strands per inch (mesh) is from 10 to 200 (strands per cm (mesh) is from 3 to 18) and the number of cross-direction (CD) strands per inch (count) is also from 10 to 200 (strands per cm (count) is from 3 to 18); (2) The strand diameter is typically smaller than 0.050 inch (0.13 cm); (3) on the top side, the distance between the highest point of the MD knuckles and the highest point on the CD knuckles is from about 0.001 to about 0.02 or 0.03 inch (from about 0.0025 to about 0.05 or 0.08 cm); (4) In between these two levels there can be knuckles formed either by MD or CD strands that give the topography a three dimensional hill/valley appearance which is imparted to the sheet; (5) The fabric may be oriented in any suitable way so as
  • a wet web is creped into a textured fabric and expanded within the textured fabric by suction, for example.
  • the nascent web may be conditioned with suction boxes and a steam shroud until it reaches a solids content suitable for transferring to a dewatering felt.
  • the nascent web may be transferred with suction assistance to the felt.
  • suction assist is unnecessary as the nascent web is formed between the forming fabric and the felt.
  • a preferred mode of making the inventive products involves compactively dewatering a papermaking furnish having an apparently random distribution of fiber orientation and fabric creping the web so as to redistribute the furnish in order to achieve the desired properties.
  • Salient features of a typical apparatus 40 for producing the inventive products are shown in Figure 4 .
  • Apparatus 40 includes a papermaking felt 42, a suction roll 46, a press shoe 50, and a backing roll 52.
  • felt 42 conveys a nascent web 44 around a suction roll 46 into a press nip 48.
  • press nip 48 the web is compactively dewatered and transferred to a backing roll 52 (sometimes referred to as a transfer roll hereinafter) where the web is conveyed to the creping fabric.
  • a creping nip 64 web 44 is transferred into fabric 60 as discussed in more detail hereinafter.
  • the creping nip is defined between backing roll 52 and creping fabric 60 which is pressed against roll 52 by creping roll 62 which may be a soft covered roll as is also discussed hereinafter.
  • a suction box 66 may be used to apply suction to the sheet in order to draw out microfolds if so desired.
  • a papermachine suitable for making the product of the invention may have various configurations as is seen in Figures 5 and 6 discussed below.
  • Papermachine 110 for use in connection with the present invention.
  • Papermachine 110 is a three fabric loop machine having a forming section 112 generally referred to in the art as a crescent former.
  • Forming section 112 includes a forming wire 122 supported by a plurality of rolls such as rolls 132, 135.
  • the forming section also includes a forming roll 138 which supports papermaking felt 42 such that web 44 is formed directly on felt 42.
  • Felt run 114 extends to a shoe press section 116 wherein the moist web is deposited on a backing roll 52 and wet-pressed concurrently with the transfer.
  • web 44 is creped onto fabric 60 in fabric crepe nip 64 before being deposited on Yankee dryer 120 in another press nip 182 using a creping adhesive as noted above.
  • the system includes a suction turning roll 46, in some embodiments; however, the three loop system may be configured in a variety of ways wherein a turning roll is not necessary. This feature is particularly important in connection with the rebuild of a papermachine inasmuch as the expense of relocating associated equipment i.e. pulping or fiber processing equipment and/or the large and expensive drying equipment such as the Yankee dryer or plurality of can dryers would make a rebuild prohibitively expensive unless the improvements could be configured to be compatible with the existing facility.
  • Paper machine 210 includes a forming section 212, a press section 40, a crepe roll 62, as well as a can dryer section 218.
  • Forming section 212 includes: a head box 220, a forming fabric or wire 222, which is supported on a plurality of rolls to provide a forming table 212. There is thus provided forming roll 224, support rolls 226, 228 as well as a transfer roll 230.
  • Press section 40 includes a papermaking felt 42 supported on rollers 234, 236, 238, 240 and shoe press roll 242.
  • Shoe press roll 242 includes a shoe 244 for pressing the web against transfer drum or roll 52.
  • Transfer roll or drum 52 may be heated if so desired.
  • the temperature is controlled so as to maintain a moisture profile in the web so a sided sheet is prepared, having a local variation in basis weight which does not extend to the surface of the web in contact with cylinder 52.
  • steam is used to heat cylinder 52 as is noted in United States Patent No. 6,379,496 of Edwards et al.
  • Roll 52 includes a transfer surface 248 upon which the web is deposited during manufacture.
  • Crepe roll 62 supports, in part, a creping fabric 60 which is also supported on a plurality of rolls 252, 54 and 256.
  • Dryer section 218 also includes a plurality of can dryers 258, 260, 262, 264, 266, 268, and 270 as shown in the diagram, wherein cans 266, 268 and 270 are in a first tier and cans 258, 260, 262 and 264 are in a second tier. Cans 266, 268 and 270 directly contact the web, whereas cans in the other tier contact the fabric. In this two tier arrangement where the web is separated from cans 260 and 262 by the fabric, it is sometimes advantageous to provide impingement air dryers at 260 and 262, which may be drilled cans, such that air flow is indicated schematically at 261 and 263.
  • reel section 272 which includes a guide roll 274 and a take up reel 276 shown schematically in the diagram.
  • Paper machine 210 is operated such that the web travels in the machine direction indicated by arrows 278, 282, 284, 286 and 288 as is seen in Figure 6 .
  • a papermaking furnish at low consistency, less than 5%, is deposited on fabric or wire 222 to form a web 44 on table 212 as is shown in the diagram.
  • Web 44 is conveyed in the machine direction to press section 40 and transferred onto a press felt 42.
  • the web is typically dewatered to a consistency of between about 10 and 15% on wire 222 before being transferred to the felt.
  • roll 234 may be a suction roll to assist in transfer to the felt 42.
  • web 44 is dewatered to a consistency typically of from about 20 to about 25% prior to entering a press nip indicated at 290.
  • nip 290 the web is pressed onto cylinder 52 by way of shoe press roll 242.
  • the shoe 244 exerts pressure where upon the web is transferred to surface 248 of roll 52 at a consistency of from about 40 to 50% on the transfer roll.
  • Transfer roll 52 translates in the machine direction indicated by 284 at a first speed.
  • Fabric 60 travels in the direction indicated by arrow 286 and picks up web 44 in the creping nip indicated at 64. Fabric 60 is traveling at second speed slower than the first speed of the transfer surface 248 of roll 52. Thus, the web is provided with a Fabric Crepe typically in an amount of from about 10 to about 100% in the machine direction.
  • the creping fabric defines a creping nip over the distance in which creping fabric 60 is adapted to contact surface 248 of roll 52; that is, applies significant pressure to the web against the transfer cylinder.
  • creping roll 62 may be provided with a soft deformable surface which will increase the width of the creping nip and increase the fabric creping angle between the fabric and the sheet at the point of contact or a shoe press roll or similar device could be used as roll 52 or 62 to increase effective contact with the web in high impact fabric creping nip 64 where web 44 is transferred to fabric 60 and advanced in the machine-direction.
  • a cover on roll 62 having a Pusey and Jones hardness of from about 25 to about 90 may be used.
  • the creping nip parameters can influence the distribution of fiber in the web in a variety of directions, including inducing changes in the z-direction as well as the MD and CD.
  • the transfer from the transfer cylinder to the creping fabric is high impact in that the fabric is traveling slower than the web and a significant velocity change occurs.
  • the web is creped anywhere from 5-60% and even higher during transfer from the transfer cylinder to the fabric.
  • Creping nip 64 generally extends over a fabric creping nip distance or width of anywhere from about 1/8" to about 2", typically 1 ⁇ 2" to 2" (from about 0.3 to about 5.1 cm, typically 1.3 to 5.1 cm). For a creping fabric with 32 CD strands per inch (12.5 CD strands per centimeter), web 44 thus will encounter anywhere from about 4 to 64 weft filaments in the nip.
  • nip pressure in nip 64 that is, the loading between creping roll 62 and transfer roll 52 is suitably 20-100, preferably 40-70 pounds (suitably 9-45, preferably 18-32 kg) per linear inch (PLI) (suitably 3.6-17.9 kg, preferably 7.1-12.5 kg per linear cm (plcm)).
  • drying section 218 the web is dried to a consistency of from about 92 to 98% before being wound up on reel 276.
  • the drying cans or rolls 266, 268, and 270 are steam heated to an elevated temperature operative to dry the web.
  • Rolls 258, 260, 262 and 264 are likewise heated although these rolls contact the fabric directly and not the web directly.
  • a suction box 66 which can be used to expand the web within the fabric to increase caliper as noted above.
  • FIG. 7 is a gray scale topographical photo image of creping fabric 60
  • Figure 8 is an enhanced two-dimensional topographical color image of the creping fabric shown in Figure 7
  • Fabric 60 is mounted in the apparatus of Figures 4 , 5 , or 6 such that its MD knuckles 300, 302, 304, 306, 308, 310, and so forth, extend along the machine direction of the paper machine. It will be appreciated from Figures 7 and 8 that fabric 60 is a multi-layer fabric having creping pockets 320,322,324, and so forth, between the MD knuckles of the fabric.
  • CD knuckles 330,332, 334 and so forth which may be preferably recessed slightly with respect to the MD knuckles of the creping fabric.
  • the CD knuckles may be recessed with respect to the MD knuckles a distance of from about 0.1 mm to about 0.3 mm.
  • This geometry creates a unique distribution of fiber when the web is wet creped from a transfer roll as will be appreciated from Figure 9 and following. Without intending to be bound by theory, it is believed the structure illustrated, with relatively large recessed "pockets" and limited knuckle length and height in the CD redistributes the fiber upon high impact creping to produce sheet which is especially suitable for recycle furnish and provides surprising caliper.
  • FIGs 9 through 12 there is shown schematically a creping nip 64 wherein a web 44 is transferred from a transfer or backing roll 52 into creping fabric 60.
  • Fabric 60 has a plurality of warp filaments such as filaments 350 as well as a plurality of weft filaments as will be appreciated from the Figures discussed above.
  • the weft filaments are arranged in a first level 352 as well as a second level 354 as shown in the diagrams.
  • the various filaments or strands may be of any suitable dimensions, typically a weft strand would have a diameter of 0.50 mm while a warp strand would be somewhat smaller, perhaps 0.35 mm.
  • the warp filaments extend around both levels of weft filaments such that the elongated knuckles such as knuckle 300 contacts the web as it is disposed on transfer roll 52 as shown in the various diagrams.
  • the warp strands also may have smaller knuckles distal to the creping surface if so desired.
  • the nip width at 100 pli (17.9 plcm) is approximately 34.8 mm when used in connection with the crepe roll cover having a 45 P&J hardness.
  • the nip penetration is calculated as 0.49 mm using the Deshpande method, assuming a 1" (2.54 cm) thick sleeve. A 2" (5.08 cm) thick sleeve is likewise suitable.
  • a suitable fabric for use in connection with the present invention is a WO-13 fabric available from Albany International. This fabric provides MD knuckles having a MD length of about 1.7 mm as shown in Figure 11 .
  • creping from transfer roll 52 and redistribution of the papermaking fiber into the pockets of the creping fabric occurs as shown in Figures 9 through 12 . That is to say the trailing edge of the knuckles contacts the web first where upon the web buckles from the backing roll into the relatively deep creping pockets of the fabric away from the backing roll. Note particularly Figure 12 .
  • the creping process with this fabric produces a unique product of the invention which is described in connection with Figures 13 and 14 .
  • Figures 13 and 14 There is illustrated schematically (and photographically) in Figures 13 and 14 a pattern with a plurality of repeating linear arrays 1, 2, 3, 4, 5, 6, 7, 8 of compressed densified regions 14 which are oriented in the machine direction. These regions form a repeating pattern 375 corresponding to the MD knuckles of fabric 60.
  • pattern 375 is presented schematically in Figure 13 and the lower part of Figure 14 as warp arrays 1-8 and weft bars 1a-8a; the top of Figure 14 is a photomicrograph of a sheet produced with this pattern.
  • Pattern 375 thus includes a plurality of generally machine direction (MD) oriented elongated densified regions 14 of compressed papermaking fibers having a relatively low local basis weight as well as leading and trailing edges 380, 382, the densified regions being arranged in a repeating pattern of a plurality of generally parallel linear arrays 1-8 which are longitudinally staggered with respect to each other such that a plurality of intervening linear arrays are disposed between a pair of CD-aligned densified regions 384,386.
  • the generally parallel, longitudinal arrays of densified regions 14 are positioned and configured such that a fiber-enriched region 12 between a pair of CD-aligned densified regions extends in the CD unobstructed by leading or trailing edges 380, 382 of densified regions of at least one intervening linear array thereof. As shown, the generally parallel, longitudinal arrays of densified regions are positioned and configured such that a fiber-enriched region 12 between a pair of CD-aligned densified regions 14 extends in the CD unobstructed by leading or trailing edges of densified regions of at least two intervening linear arrays.
  • a fiber-enriched region 12 between a pair of CD-aligned densified regions 384, 386 is at least partially truncated and at least partially bordered in the MD by the leading or trailing edges of densified regions of at least one or two intervening linear arrays of the sheet at MD position 388 intermediate MD positions 380, 390 of the leading and trailing edges of the CD-aligned densified regions.
  • the leading and trailing MD edges 392, 394 of the fiber-enriched pileated regions are generally inwardly concave such that a central MD span 396 of the fiber-enriched regions is less than an MD span 398 at the lateral extremities of the fiber-enriched areas.
  • the elongated densified regions occupy from about 5% to about 30% of the area of the sheet and are estimated as corresponding to the MD knuckle area of the fabric employed.
  • the pileated regions occupy from about 95% to about 50% of the area of the sheet and are estimated by the recessed areas of the fabric.
  • the distance 400 between CD-aligned densified regions is 4.41 mm, such that the linear arrays of densified regions have an MD repeat frequency of about 225 meter -1 .
  • the densified elements of the arrays are spaced a distance 402 of about 8.8 mm, thus having an MD repeat frequency of about 110 meter -1 .
  • the fiber-enriched regions have a concamerated structure, wherein the crests of the pileated regions are arched around the leading and trailing edges of the densified regions as is seen particularly at the top of Figure 14 .
  • the product thus has the attributes shown and described above in connection with Figures 1 and 2 .
  • Figure 15 is a photomicrograph of a web similar to that shown in Figure 2 wherein the web has been pulled in the machine direction. Here it is seen that the pileated region 12 has been expanded to a much greater degree of void volume, enhancing the absorbency of the sheet.
  • Figure 16 is a photomicrograph of a base sheet similar to that shown in Figure 1 indicating the cross section shown in Figure 17.
  • Figure 17 is a cross section of a pileated, fiber-enriched region where it is seen that the macrofolds have not been densified by the knuckle. In Figure 17 it is seen that the sheet is extremely "sided". If it is desired to reduce this sidedness, the web can be transferred to another surface during drying so that the fabric side of the web (prior to transfer) contacts drying cans thereafter.
  • Figure 18 is a magnified photomicrograph showing a knuckle impression of a MD knuckle of the creping fabric wherein it is seen that the fiber of the compressed, MD region, has a CD orientation bias and that the fiber-enriched, pileated regions, have a concamerated structure around the MD extending compressed region.
  • Figures 19 and 20 are X-ray negative images of the absorbent sheet of the invention wherein the light portions represent high basis weight regions and the darker portions represent relatively lower basis weight regions. These images were made by placing sheet samples on plates and exposing the specimens to a 6kV X-ray source for 1 hour.
  • Figure 19 is an X-ray image made without suction, while Figure 20 was made with suction applied to the sheet.
  • Figures 19 and 20 confirm the local basis weight variation seen in the SEMs and other photomicrographs, especially the relatively orthogonal relationship between the low basis weight regions and the high basis weight regions.
  • Figures 21A through 21D Further product options are seen in Figures 21A through 21D.
  • Figures 21A and B respectively are photomicrographs of the fabric side and Yankee side of a 25 pound basis weight (41gsm) sheet at a fabric creped ratio of 1.3.
  • Figures 21C and 21D are photomicrographs of another 25 pound basis weight sheet produced at a fabric creped ratio of 1.3. Where suction is indicated on the legends of the Figures, that is, Figures 21C , 21D the sheet was suction drawn after fabric creping.
  • Figures 22 and 23 show the affect of suction when making the inventive sheet.
  • Figure 22 is a photomicrograph along the MD of a cellulosic sheet produced in accordance with the present invention, Yankee side up produced with no suction.
  • Figure 23 is a photomicrograph of a cellulosic sheet made in accordance with the invention wherein suction box 66 was turned on. It will be appreciated from these Figures that suction enhances the bulk (and absorbency) of the sheet. In Figure 22 it is seen that there are micro-folds embedded within the macro-folds of the sheet. In Figure 23 , the micro-folds are no longer evident.
  • Figure 24 a corresponding cross-sectional view along the machine direction of a CWP base sheet. Here it is seen that the fiber is relatively dense and does not exhibit the enhanced and uniform bulk of products of the invention.
  • Beta particles are produced when an unstable nucleus with either too many protons or neutrons spontaneously decays to yield a more stable element. This process can produce either positive or negative particles.
  • a radioactive element with too many protons undergoes beta decay a proton is converted into a neutron, emitting a positively charged beta particle or positron ( ⁇ + ) and a neutrino.
  • a radioactive element with too may neutrons undergoes beta decay by converting a neutron to a proton, emitting a negatively charged beta particle or negatron ( ⁇ - ) and an antineutrino.
  • Promethium 147 61 Pm undergoes negative beta decay.
  • Beta gauging is based on the process of counting the number of beta particles that penetrate the specimen and impinge upon a detector positioned opposite the source over some period of time.
  • the trajectories of beta particles deviate wildly as they interact with matter; some coming to rest within it, others penetrating or being backscattered after partial energy loss and ultimately exiting the solid at a wide range of angles.
  • inventive products and process for making them are extremely useful in connection with a wide variety of products. For example, there is shown in Figure 27 a comparison of panel softness for various two-ply bathroom tissue products.
  • the 2005 product was made with a single layer fabric, while the 2006 product was made with a multi-layer fabric of the invention. Note that the products made with a multi-layer fabric exhibited much enhanced softness at a given tensile. This data is also shown in Figure 28 .
  • the 44M fabric is a single layer fabric while the WO13 fabric is the multilayer fabric discussed in connection with Figures 7 and following.
  • Table 3 - Comparison of Base Sheet and Finished Product Properties Fabric 2005 2006 44M (MD)
  • WO13 (MD) Fiber 75% euc 60% euc Forming Blended Bl. and Lay.
  • the present invention also provides a unique combination of properties for making single ply towel and makes it possible to use elevated amounts of recycled fiber without negatively affecting product performance or hand feel.
  • furnish blends containing recycle fiber were evaluated. Results are summarized in Tables 7, 8 and 9.
  • Figure 29 illustrates that the base sheets produced with the multi-layer fabric exhibited elevated caliper with respect to base sheets produced with single layer creping fabrics.
  • the surprising bulk is readily apparent when comparing the products to TAD products or products made with a singe layer fabric.
  • Figures 30A through 30F there are shown various base sheets.
  • Figures 30A and 30D are respectively, photomicrographs of a Yankee side and a fabric side of a base sheet produced with a single layer fabric produced in accordance with the process described above in connection with Figure 5 .
  • Figures 30B and 30E are photomicrographs of the Yankee side and fabric side of a base sheet produced with a double layer creping fabric in accordance with the invention utilizing the process described generally in connection with Figure 5 above.
  • Figures 30C and 30F are photomicrographs of the Yankee side and fabric side of a base sheet prepared by a conventional TAD process. It is appreciated from the photomicrographs of Figures 30B and 30E that the base sheet of the invention produced with a double layer fabric produces a higher loft than the other material, shown in Figures 30A , D, C and F. This observation is consistent with Figure 31 which shows the relative softness of the products of Figures 30A and Figure 30D (single layer fabric) and other products made with increasing levels of recycled fiber in accordance with the invention. It is seen from Figure 31 that it is possible to produce towel base sheet with equivalent softness while using up to 50% recycled fiber. This is a significant advance in as much as towel can be produced without utilizing expensive virgin Douglas fir furnish, for example.
  • the products and process of the present invention are thus likewise suitable for use in connection with touchless automated towel dispensers of the class described in co-pending United States Provisional Application Nos. 60/779,614, filed March 6, 2006 and United States Provisional Patent Application No. 60/693,699, filed June 24, 2005 ; the disclosures of which are incorporated herein by reference.
  • the base sheet is suitably produced on a paper machine of the class shown in Figure 32 .
  • Figure 32 is a schematic diagram of a papermachine 410 having a conventional twin wire forming section 412, a felt run 414, a shoe press section 416 a creping fabric 60 and a Yankee dryer 420 suitable for practicing the present invention.
  • Forming section 412 includes a pair of forming fabrics 422, 424 supported by a plurality of rolls 426, 428, 430, 432, 434, 436 and a forming roll 438.
  • a headbox 440 provides papermaking furnish issuing therefrom as a jet in the machine direction to a nip 442 between forming roll 438 and roll 426 and the fabrics.
  • the furnish forms a nascent web 444 which is dewatered on the fabrics with the assistance of suction, for example, by way of suction box 446.
  • the nascent web is advanced to a papermaking felt 42 which is supported by a plurality of rolls 450, 452, 454, 455 and the felt is in contact with a shoe press roll 456.
  • the web is of low consistency as it is transferred to the felt. Transfer may be assisted by suction, for example roll 450 may be a suction roll if so desired or a pickup or suction shoe as is known in the art.
  • roll 450 may be a suction roll if so desired or a pickup or suction shoe as is known in the art.
  • Transfer roll 52 may be a heated roll if so desired.
  • Suitable steam pressure may be about 95 psig or so, bearing in mind that roll 52 is a crowned roll and roll 62 has a negative crown to match such that the contact area between the rolls is influenced by the pressure in roll 52. Thus, care must be exercised to maintain matching contact between rolls 52, 62 when elevated pressure is employed.
  • roll 456 could be a conventional suction pressure roll. If a shoe press is employed, it is desirable and preferred that roll 454 is a suction roll effective to remove water from the felt prior to the felt entering the shoe press nip since water from the furnish will be pressed into the felt in the shoe press nip. In any case, using a suction roll at 454 is typically desirable to ensure the web remains in contact with the felt during the direction change as one of skill in the art will appreciate from the diagram.
  • Web 444 is wet-pressed on the felt in nip 458 with the assistance of pressure shoe 50.
  • the web is thus compactively dewatered at 458, typically by increasing the consistency by 15 or more points at this stage of the process.
  • the configuration shown at 458 is generally termed a shoe press; in connection with the present invention, cylinder 52 is operative as a transfer cylinder which operates to convey web 444 at high speed, typically 1000 fpm-6000 fpm (305 m/min-1830 m/min), to the creping fabric.
  • Cylinder 52 has a smooth surface 464 which may be provided with adhesive (the same as the creping adhesive used on the Yankee cylinder) and/or release agents if needed. Web 444 is adhered to transfer surface 464 of cylinder 52 which is rotating at a high angular velocity as the web continues to advance in the machine-direction indicated by arrows 466. On the cylinder, web 444 has a generally random apparent distribution of fiber orientation.
  • Direction 466 is referred to as the machine-direction (MD) of the web as well as that of papermachine 410; whereas the cross-machine-direction (CD) is the direction in the plane of the web perpendicular to the MD.
  • MD machine-direction
  • CD cross-machine-direction
  • Web 444 enters nip 458 typically at consistencies of 10-25% or so and is dewatered and dried to consistencies of from about 25 to about 70 by the time it is transferred to creping fabric 60 as shown in the diagram.
  • Fabric 60 is supported on a plurality of rolls 468, 472 and a press nip roll 474 and forms a fabric crepe nip 64 with transfer cylinder 52 as shown.
  • the creping fabric defines a creping nip over the distance in which creping fabric 60 is adapted to contact roll 52; that is, applies significant pressure to the web against the transfer cylinder.
  • creping roll 62 may be provided with a soft deformable surface which will increase the width of the creping nip and increase the fabric creping angle between the fabric and the sheet and the point of contact or a shoe press roll could be used as roll 62 to increase effective contact with the web in high impact fabric creping nip 64 where web 444 is transferred to fabric 60 and advanced in the machine-direction.
  • Creping nip 64 generally extends over a fabric creping nip distance or width of anywhere from about 1/8" to about 2", typically 1 ⁇ 2" to 2"(from about 0.3 to about 5.1 cm, typically 1.3 to 5.1 cm). For a creping fabric with 32 CD strands per inch (12.5 CD strands per centimeter), web 444 thus will encounter anywhere from about 4 to 64 weft filaments in the nip.
  • nip pressure in nip 64 that is, the loading between creping roll 62 and transfer roll 52 is suitably 20-200 (9-91 kg), preferably 40-70pounds (18-32 kg) per linear inch (PLI) (suitably 3.6-36 kg, preferably 7-13 kg per linear cm (plcm)).
  • the web continues to advance along MD 466 where it is wet-pressed onto Yankee cylinder 480 in transfer nip 482.
  • suction is applied to the web by way of a suction box 66.
  • Transfer at nip 482 occurs at a web consistency of generally from about 25 to about 70%. At these consistencies, it is difficult to adhere the web to surface 484 of cylinder 480 firmly enough to remove the web from the fabric thoroughly. This aspect of the process is important, particularly when it is desired to use a high velocity drying hood.
  • a poly(vinyl alcohol)/polyamide adhesive composition as noted above is applied at 486 as needed, preferably at a rate of less than about 40mg/m 2 of sheet. Build-up is controlled as hereinafter described.
  • the web is dried on Yankee cylinder 480 which is a heated cylinder and by high jet velocity impingement air in Yankee hood 488.
  • Hood 488 is capable of variable temperature. During operation, temperature may be monitored at wet-end A of the Hood and dry end B of the hood using an infra-red detector or any other suitable means if so desired.
  • Reel 490 may be operated 5-30 fpm or 1.5-9.1 m/min (preferably 10-20 fpm; 3-6 m/min) faster than the Yankee cylinder at steady-state when the line speed is 2100 fpm (640.5 m/min), for example.
  • a creping doctor C is normally used and a cleaning doctor D mounted for intermittent engagement is used to control build up.
  • a cleaning doctor D mounted for intermittent engagement is used to control build up.
  • the web may be creped from dryer cylinder 480 using a creping doctor such as creping doctor C, if so desired.
  • the present invention makes it possible to employ elevated levels of recycled fiber in the towel without compromising product quality. Also, a reduced add-on rate of Yankee coatings was preferred when running 100% recycled-fiber. The addition of recycled fiber also made it possible to reduce the use of dry strength resin.
  • the multilayer fabric illustrated and described in connection with Figures 7 and 8 is capable of providing much enhanced reel crepe response with many products. This feature allows production flexibility and more efficient papermachine operation since more caliper can be achieved at a given line crepe and/or wet-end speed (a production bottleneck on many machines) can be more fully utilized as will be appreciated from the discussion which follows.
  • Towel base sheets were made from a furnish consisting of 100% Southern Softwood Kraft pulp.
  • the base sheets were all made to the same targeted basis weight (15 Ibs/3000 ft 2 ream; 24.4 gsm), tensile strength (1400 g/3 inches geometric mean tensile; 184 g/cm geometric mean tensile), and tensile ratio (1.0).
  • the base sheets were creped using several fabrics. For the single layer fabrics, sheets were creped using both sides of the fabric.
  • the notation "MD” or "CD” in the fabric designation indicates whether the fabric's machine direction or cross direction knuckles were contacting the base sheet. The purpose of the experiment was to determine the level of fabric crepe beyond which no increases in base sheet caliper would be realized.
  • fabric crepe can be reduced 3 times as fast as reel crepe and still maintain caliper. For example, if a process is operating achieving 100 caliper with the WO13 fabric at 1.35 total crepe ratio (30% fabric crepe and 4% reel crepe for a 35% overall crepe) and it is desired to increase tensile capability while maintaining caliper, one could do the following: reduce fabric crepe to 21% (tensiles will likely rise) and then increase reel crepe at 7% for an overall ratio of 1.295 or 29.5% overall crepe; thus generating both more tensile and maintaining caliper (less crepe, and much less fabric crepe which is believed more destructive to tensile than reel crepe).
  • a papermachine can be made much more productive. For example, on a 15 Ib (24.5 gsm) towel base sheet using a 44 M fabric 57% line crepe was required for a final caliper of 94.
  • the multilayer WO13 fabric produced a caliper of 103 at about 34% line crepe.
  • a paper machine with a 6000 fpm (1830 m/min) wet-end speed limit would have a speed limit of 3825 fpm (1167 m/min) at the reel to meet a 94 caliper target for the base sheet with the 44M fabric.
  • use of the WO13 fabric can yield nearly 10 points of caliper which should make it possible to speed up the reel to 4475 (6000/1.34 versus 6000/1.57) fpm (1365 m/min).
  • the multilayer fabric with the long MD knuckles makes it possible to reduce basis weight and maintain caliper and tensiles.
  • Less fabric crepe calls for less refining to meet tensiles even at a given line crepe (again assuming reel crepe is much less destructive of tensile than fabric crepe).
  • As the product weight goes down fabric crepe can be reduced 3 percentage points for every percentage increase in reel crepe thereby making it easier to maintain caliper and retain tensile.
  • Figure 36 depicts a web with 25% fabric crepe and no reel crepe.
  • Figure 37 depicts a web made with 25% reel crepe and 7% fabric crepe where it is seen the crepe is dramatically more prominent then in Figure 36.
  • Figure 38 depicts a web with 35% fabric crepe and no reel crepe. The web of Figure 37 appears to have significantly more crepe than that of Figure 38 despite having been made with about the same line crepe.
EP16181988.3A 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé ayant un poids de base local variable Active EP3103920B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16181988T PL3103920T3 (pl) 2006-05-26 2007-05-16 Krepowany tkaniną arkusz chłonny o lokalnie zmiennej gramaturze

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US80886306P 2006-05-26 2006-05-26
US11/451,111 US7585389B2 (en) 2005-06-24 2006-06-12 Method of making fabric-creped sheet for dispensers
EP14001776.5A EP2792790B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable
PCT/US2007/011967 WO2007139726A1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé présentant un poids de base local variable
EP07795053.3A EP2035220B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé présentant un poids de base local variable

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP07795053.3A Division EP2035220B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé présentant un poids de base local variable
EP14001776.5A Division EP2792790B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable
EP14001776.5A Division-Into EP2792790B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable

Publications (2)

Publication Number Publication Date
EP3103920A1 true EP3103920A1 (fr) 2016-12-14
EP3103920B1 EP3103920B1 (fr) 2019-07-10

Family

ID=38778972

Family Applications (4)

Application Number Title Priority Date Filing Date
EP07795053.3A Active EP2035220B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé présentant un poids de base local variable
EP14001775.7A Active EP2792789B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable
EP16181988.3A Active EP3103920B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé ayant un poids de base local variable
EP14001776.5A Active EP2792790B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP07795053.3A Active EP2035220B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé présentant un poids de base local variable
EP14001775.7A Active EP2792789B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14001776.5A Active EP2792790B1 (fr) 2006-05-26 2007-05-16 Feuille de tissu absorbant crêpé avec un poids de base local variable

Country Status (8)

Country Link
EP (4) EP2035220B1 (fr)
CA (1) CA2652814C (fr)
CY (2) CY1118108T1 (fr)
DK (1) DK2792789T3 (fr)
PL (3) PL2792789T3 (fr)
RU (1) RU2419546C2 (fr)
SI (2) SI2792790T1 (fr)
WO (1) WO2007139726A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494563B2 (en) 2002-10-07 2009-02-24 Georgia-Pacific Consumer Products Lp Fabric creped absorbent sheet with variable local basis weight
US7585389B2 (en) * 2005-06-24 2009-09-08 Georgia-Pacific Consumer Products Lp Method of making fabric-creped sheet for dispensers
US7442278B2 (en) 2002-10-07 2008-10-28 Georgia-Pacific Consumer Products Lp Fabric crepe and in fabric drying process for producing absorbent sheet
US7789995B2 (en) 2002-10-07 2010-09-07 Georgia-Pacific Consumer Products, LP Fabric crepe/draw process for producing absorbent sheet
US8394236B2 (en) 2002-10-07 2013-03-12 Georgia-Pacific Consumer Products Lp Absorbent sheet of cellulosic fibers
WO2004033793A2 (fr) * 2002-10-07 2004-04-22 Fort James Corporation Procede de crepage de tissu permettant de fabriquer une feuille absorbante
US7588660B2 (en) * 2002-10-07 2009-09-15 Georgia-Pacific Consumer Products Lp Wet-pressed tissue and towel products with elevated CD stretch and low tensile ratios made with a high solids fabric crepe process
US8293072B2 (en) 2009-01-28 2012-10-23 Georgia-Pacific Consumer Products Lp Belt-creped, variable local basis weight absorbent sheet prepared with perforated polymeric belt
US8540846B2 (en) 2009-01-28 2013-09-24 Georgia-Pacific Consumer Products Lp Belt-creped, variable local basis weight multi-ply sheet with cellulose microfiber prepared with perforated polymeric belt
CA2735867C (fr) 2008-09-16 2017-12-05 Dixie Consumer Products Llc Feuille de base d'emballage alimentaire a microfibre de cellulose regeneree
DE102018104823A1 (de) * 2018-03-02 2019-09-05 Delfortgroup Ag Rauchartikel mit steifem umühllungsmaterial

Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3545705A (en) 1967-04-14 1970-12-08 Jwi Ltd Stainless steel fourdrinier cloth
US3549742A (en) 1967-09-29 1970-12-22 Scott Paper Co Method of making a foraminous drainage member
US3556932A (en) 1965-07-12 1971-01-19 American Cyanamid Co Water-soluble,ionic,glyoxylated,vinylamide,wet-strength resin and paper made therewith
US3556933A (en) 1969-04-02 1971-01-19 American Cyanamid Co Regeneration of aged-deteriorated wet strength resins
US3700623A (en) 1970-04-22 1972-10-24 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
US3772076A (en) 1970-01-26 1973-11-13 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
US3858623A (en) 1969-06-10 1975-01-07 Huyck Corp Papermakers fabrics
US3994771A (en) 1975-05-30 1976-11-30 The Procter & Gamble Company Process for forming a layered paper web having improved bulk, tactile impression and absorbency and paper thereof
US4041989A (en) 1974-10-10 1977-08-16 Nordiska Maskinfilt Aktiebolaget Forming fabric and a method for its manufacture
US4071050A (en) 1972-09-01 1978-01-31 Nordiska Maskinfilt Aktiebolaget Double-layer forming fabric
US4102737A (en) 1977-05-16 1978-07-25 The Procter & Gamble Company Process and apparatus for forming a paper web having improved bulk and absorptive capacity
US4112982A (en) 1976-02-24 1978-09-12 Nordiska Maskinfilt Aktiebolaget Forming wire for use in paper-making, cellulose and similar machines
US4149571A (en) 1978-03-03 1979-04-17 Huyck Corporation Papermaking fabrics
US4157276A (en) 1975-04-18 1979-06-05 Hermann Wangner Paper machine fabric in an atlas binding
US4161195A (en) 1978-02-16 1979-07-17 Albany International Corp. Non-twill paperforming fabric
US4182381A (en) 1976-08-10 1980-01-08 Scapa-Porritt Limited Papermakers fabrics
US4184519A (en) 1978-08-04 1980-01-22 Wisconsin Wires, Inc. Fabrics for papermaking machines
US4314589A (en) 1978-10-23 1982-02-09 Jwi Ltd. Duplex forming fabric
US4359069A (en) 1980-08-28 1982-11-16 Albany International Corp. Low density multilayer papermaking fabric
US4376455A (en) 1980-12-29 1983-03-15 Albany International Corp. Eight harness papermaking fabric
US4379735A (en) 1981-08-06 1983-04-12 Jwi Ltd. Three-layer forming fabric
US4445638A (en) 1982-09-20 1984-05-01 Honeywell Inc. Hydronic antitrust operating system
US4453573A (en) 1980-02-11 1984-06-12 Huyck Corporation Papermakers forming fabric
US4482429A (en) 1980-08-29 1984-11-13 James River-Norwalk, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4528316A (en) 1983-10-18 1985-07-09 Kimberly-Clark Corporation Creping adhesives containing polyvinyl alcohol and cationic polyamide resins
US4529480A (en) 1983-08-23 1985-07-16 The Procter & Gamble Company Tissue paper
US4533437A (en) 1982-11-16 1985-08-06 Scott Paper Company Papermaking machine
US4543156A (en) 1982-05-19 1985-09-24 James River-Norwalk, Inc. Method for manufacture of a non-woven fibrous web
US4551199A (en) 1982-07-01 1985-11-05 Crown Zellerbach Corporation Apparatus and process for treating web material
US4564052A (en) 1981-11-23 1986-01-14 Hermann Wangner Gmbh & Co. Kg Double-layer fabric for paper machine screen
US4592395A (en) 1983-03-01 1986-06-03 Hermann Wangner - Gmbh & Co. Kg Papermachine clothing in a fabric weave having no axis of symmetry in the length direction
US4603176A (en) 1985-06-25 1986-07-29 The Procter & Gamble Company Temporary wet strength resins
US4605585A (en) 1982-04-26 1986-08-12 Nordiskafilt Ab Forming fabric
US4605702A (en) 1984-06-27 1986-08-12 American Cyanamid Company Temporary wet strength resin
US4611639A (en) 1983-02-23 1986-09-16 Nordiskafilt Ab Forming fabric of double-layer type
US4637859A (en) 1983-08-23 1987-01-20 The Procter & Gamble Company Tissue paper
US4640741A (en) 1983-11-30 1987-02-03 Nippon Filcon Co., Ltd. Forming fabric for use in a papermaking machine
US4675394A (en) 1984-08-17 1987-06-23 National Starch And Chemical Corporation Polysaccharide derivatives containing aldehyde groups, their preparation from the corresponding acetals and use as paper additives
US4689119A (en) 1982-07-01 1987-08-25 James River Corporation Of Nevada Apparatus for treating web material
US4709732A (en) 1986-05-13 1987-12-01 Huyck Corporation Fourteen harness dual layer weave
US4720383A (en) 1986-05-16 1988-01-19 Quaker Chemical Corporation Softening and conditioning fibers with imidazolinium compounds
US4759976A (en) 1987-04-30 1988-07-26 Albany International Corp. Forming fabric structure to resist rewet of the paper sheet
US4759391A (en) 1986-01-10 1988-07-26 Wangner Gmbh & Co. Kg Two layer papermachine embossing fabric with depressions in the upper fabric layer for the production of tissue paper
US4804769A (en) 1986-02-14 1989-02-14 National Starch And Chemical Corporation Acetals useful for the preparation of polysaccharide derivatives
US4834838A (en) 1987-02-20 1989-05-30 James River Corporation Fibrous tape base material
US4849054A (en) 1985-12-04 1989-07-18 James River-Norwalk, Inc. High bulk, embossed fiber sheet material and apparatus and method of manufacturing the same
US4866151A (en) 1987-03-25 1989-09-12 National Starch And Chemical Corporation Polysaccharide graft polymers containing acetal groups and their conversion to aldehyde groups
US4942077A (en) 1989-05-23 1990-07-17 Kimberly-Clark Corporation Tissue webs having a regular pattern of densified areas
US4967085A (en) 1989-02-03 1990-10-30 Eastman Kodak Company X-ray intensifying screen including a titanium activated hafnium dioxide phosphor containing neodymium to reduce afterglow
US4973512A (en) 1990-04-03 1990-11-27 Mount Vernon Mills, Inc. Press felt for use in papermaking machine
US4981557A (en) 1988-07-05 1991-01-01 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US4983748A (en) 1984-08-17 1991-01-08 National Starch And Chemical Investment Holding Corporation Acetals useful for the preparation of polysaccharide derivatives
US4998568A (en) 1987-04-22 1991-03-12 F. Oberdorfer Gmbh & Co. Kg Industriegewebe-Technik Double layered papermaking fabric with high paper side cross thread density
US5008344A (en) 1988-07-05 1991-04-16 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5016678A (en) 1988-05-19 1991-05-21 Hermann Wangner Gmbh & Co. Double-layer papermaking fabric having a single system of non-symmetrically extending longitudinal threads
US5023132A (en) 1990-04-03 1991-06-11 Mount Vernon Mills, Inc. Press felt for use in papermaking machine
US5054525A (en) 1989-06-23 1991-10-08 F. Oberdorfer Gmbh & Co. Double layer forming wire fabric
US5066532A (en) 1985-08-05 1991-11-19 Hermann Wangner Gmbh & Co. Woven multilayer papermaking fabric having increased stability and permeability and method
US5085736A (en) 1988-07-05 1992-02-04 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5098519A (en) 1989-10-30 1992-03-24 James River Corporation Method for producing a high bulk paper web and product obtained thereby
US5103874A (en) 1990-06-06 1992-04-14 Asten Group, Inc. Papermakers fabric with stacked machine direction yarns
CA2053505A1 (fr) 1990-10-17 1992-04-18 John Henry Dwiggins Methode et appareil de production de mousse
US5114777A (en) 1985-08-05 1992-05-19 Wangner Systems Corporation Woven multilayer papermaking fabric having increased stability and permeability and method
US5138002A (en) 1988-07-05 1992-08-11 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US5167261A (en) 1990-06-06 1992-12-01 Asten Group, Inc. Papermakers fabric with stacked machine direction yarns of a high warp fill
US5182164A (en) 1988-06-09 1993-01-26 Nordiskafilt Ab Wet press felt to be used in papermaking machine
US5199467A (en) 1990-06-06 1993-04-06 Asten Group, Inc. Papermakers fabric with stacked machine direction yarns
US5199261A (en) 1990-08-10 1993-04-06 Cummins Engine Company, Inc. Internal combustion engine with turbocharger system
US5211815A (en) 1989-10-30 1993-05-18 James River Corporation Forming fabric for use in producing a high bulk paper web
US5217576A (en) 1991-11-01 1993-06-08 Dean Van Phan Soft absorbent tissue paper with high temporary wet strength
US5219004A (en) 1992-02-06 1993-06-15 Lindsay Wire, Inc. Multi-ply papermaking fabric with binder warps
US5223096A (en) 1991-11-01 1993-06-29 Procter & Gamble Company Soft absorbent tissue paper with high permanent wet strength
US5225269A (en) 1989-06-28 1993-07-06 Scandiafelt Ab Press felt
US5240562A (en) 1992-10-27 1993-08-31 Procter & Gamble Company Paper products containing a chemical softening composition
US5245025A (en) 1991-06-28 1993-09-14 The Procter & Gamble Company Method and apparatus for making cellulosic fibrous structures by selectively obturated drainage and cellulosic fibrous structures produced thereby
US5262007A (en) 1992-04-09 1993-11-16 Procter & Gamble Company Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a temporary wet strength resin
US5264082A (en) 1992-04-09 1993-11-23 Procter & Gamble Company Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a permanent wet strength resin
US5277761A (en) 1991-06-28 1994-01-11 The Procter & Gamble Company Cellulosic fibrous structures having at least three regions distinguished by intensive properties
US5312522A (en) 1993-01-14 1994-05-17 Procter & Gamble Company Paper products containing a biodegradable chemical softening composition
US5328565A (en) 1991-06-19 1994-07-12 The Procter & Gamble Company Tissue paper having large scale, aesthetically discernible patterns
US5368696A (en) 1992-10-02 1994-11-29 Asten Group, Inc. Papermakers wet press felt having high contact, resilient base fabric with hollow monofilaments
US5372876A (en) 1993-06-02 1994-12-13 Appleton Mills Papermaking felt with hydrophobic layer
US5415737A (en) 1994-09-20 1995-05-16 The Procter & Gamble Company Paper products containing a biodegradable vegetable oil based chemical softening composition
US5508818A (en) 1994-09-23 1996-04-16 Scan-Code, Inc. Mixed mail transport
US5593545A (en) 1995-02-06 1997-01-14 Kimberly-Clark Corporation Method for making uncreped throughdried tissue products without an open draw
US5607551A (en) 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5618612A (en) 1995-05-30 1997-04-08 Huyck Licensco, Inc. Press felt having fine base fabric
US5657797A (en) 1996-02-02 1997-08-19 Asten, Inc. Press felt resistant to nip rejection
US5672248A (en) 1994-04-12 1997-09-30 Kimberly-Clark Worldwide, Inc. Method of making soft tissue products
US5935381A (en) 1997-06-06 1999-08-10 The Procter & Gamble Company Differential density cellulosic structure and process for making same
US6017417A (en) 1994-04-12 2000-01-25 Kimberly-Clark Worldwide, Inc. Method of making soft tissue products
US6287426B1 (en) 1998-09-09 2001-09-11 Valmet-Karlstad Ab Paper machine for manufacturing structured soft paper
US6350349B1 (en) 1996-05-10 2002-02-26 Kimberly-Clark Worldwide, Inc. Method for making high bulk wet-pressed tissue
US6379496B2 (en) 1999-07-13 2002-04-30 Fort James Corporation Wet creping process
US20030000664A1 (en) 2000-05-12 2003-01-02 Drew Robert A. Process for increasing the softness of base webs and products made therefrom
US6610173B1 (en) 2000-11-03 2003-08-26 Kimberly-Clark Worldwide, Inc. Three-dimensional tissue and methods for making the same
US20040238135A1 (en) 2002-10-07 2004-12-02 Edwards Steven L. Fabric crepe process for making absorbent sheet
US20050217814A1 (en) 2002-10-07 2005-10-06 Super Guy H Fabric crepe/draw process for producing absorbent sheet
US20050241786A1 (en) 2002-10-07 2005-11-03 Edwards Steven L Wet-pressed tissue and towel products with elevated CD stretch and low tensile ratios made with a high solids fabric crepe process
US20050241787A1 (en) 2002-10-07 2005-11-03 Murray Frank C Fabric crepe and in fabric drying process for producing absorbent sheet
US20050279471A1 (en) 2004-06-18 2005-12-22 Murray Frank C High solids fabric crepe process for producing absorbent sheet with in-fabric drying
US20060237154A1 (en) 2005-04-21 2006-10-26 Edwards Steven L Multi-ply paper towel with absorbent core
US20060289134A1 (en) 2005-06-24 2006-12-28 Yeh Kang C Method of making fabric-creped sheet for dispensers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324561A (en) * 1992-10-02 1994-06-28 The Procter & Gamble Company Porous, absorbent macrostructures of bonded absorbent particles surface crosslinked with cationic amino-epichlorohydrin adducts
US6423180B1 (en) * 1998-12-30 2002-07-23 Kimberly-Clark Worldwide, Inc. Soft and tough paper product with high bulk
JP3553025B2 (ja) * 2001-03-30 2004-08-11 株式会社加貫ローラ製作所 印刷機シリンダ用の洗浄シートとその製造方法

Patent Citations (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556932A (en) 1965-07-12 1971-01-19 American Cyanamid Co Water-soluble,ionic,glyoxylated,vinylamide,wet-strength resin and paper made therewith
US3545705A (en) 1967-04-14 1970-12-08 Jwi Ltd Stainless steel fourdrinier cloth
US3549742A (en) 1967-09-29 1970-12-22 Scott Paper Co Method of making a foraminous drainage member
US3556933A (en) 1969-04-02 1971-01-19 American Cyanamid Co Regeneration of aged-deteriorated wet strength resins
US3858623A (en) 1969-06-10 1975-01-07 Huyck Corp Papermakers fabrics
US3772076A (en) 1970-01-26 1973-11-13 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
US3700623A (en) 1970-04-22 1972-10-24 Hercules Inc Reaction products of epihalohydrin and polymers of diallylamine and their use in paper
US4071050A (en) 1972-09-01 1978-01-31 Nordiska Maskinfilt Aktiebolaget Double-layer forming fabric
US4041989A (en) 1974-10-10 1977-08-16 Nordiska Maskinfilt Aktiebolaget Forming fabric and a method for its manufacture
US4157276A (en) 1975-04-18 1979-06-05 Hermann Wangner Paper machine fabric in an atlas binding
US4157276B1 (fr) 1975-04-18 1986-02-11
US3994771A (en) 1975-05-30 1976-11-30 The Procter & Gamble Company Process for forming a layered paper web having improved bulk, tactile impression and absorbency and paper thereof
US4112982A (en) 1976-02-24 1978-09-12 Nordiska Maskinfilt Aktiebolaget Forming wire for use in paper-making, cellulose and similar machines
US4182381A (en) 1976-08-10 1980-01-08 Scapa-Porritt Limited Papermakers fabrics
US4102737A (en) 1977-05-16 1978-07-25 The Procter & Gamble Company Process and apparatus for forming a paper web having improved bulk and absorptive capacity
US4161195A (en) 1978-02-16 1979-07-17 Albany International Corp. Non-twill paperforming fabric
US4149571A (en) 1978-03-03 1979-04-17 Huyck Corporation Papermaking fabrics
US4184519A (en) 1978-08-04 1980-01-22 Wisconsin Wires, Inc. Fabrics for papermaking machines
US4314589A (en) 1978-10-23 1982-02-09 Jwi Ltd. Duplex forming fabric
US4453573A (en) 1980-02-11 1984-06-12 Huyck Corporation Papermakers forming fabric
US4359069A (en) 1980-08-28 1982-11-16 Albany International Corp. Low density multilayer papermaking fabric
US4482429A (en) 1980-08-29 1984-11-13 James River-Norwalk, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4376455A (en) 1980-12-29 1983-03-15 Albany International Corp. Eight harness papermaking fabric
US4379735A (en) 1981-08-06 1983-04-12 Jwi Ltd. Three-layer forming fabric
US4564052A (en) 1981-11-23 1986-01-14 Hermann Wangner Gmbh & Co. Kg Double-layer fabric for paper machine screen
US4605585A (en) 1982-04-26 1986-08-12 Nordiskafilt Ab Forming fabric
US4543156A (en) 1982-05-19 1985-09-24 James River-Norwalk, Inc. Method for manufacture of a non-woven fibrous web
US4689119A (en) 1982-07-01 1987-08-25 James River Corporation Of Nevada Apparatus for treating web material
US4551199A (en) 1982-07-01 1985-11-05 Crown Zellerbach Corporation Apparatus and process for treating web material
US4445638A (en) 1982-09-20 1984-05-01 Honeywell Inc. Hydronic antitrust operating system
US4533437A (en) 1982-11-16 1985-08-06 Scott Paper Company Papermaking machine
US4611639A (en) 1983-02-23 1986-09-16 Nordiskafilt Ab Forming fabric of double-layer type
US4592395A (en) 1983-03-01 1986-06-03 Hermann Wangner - Gmbh & Co. Kg Papermachine clothing in a fabric weave having no axis of symmetry in the length direction
US4529480A (en) 1983-08-23 1985-07-16 The Procter & Gamble Company Tissue paper
US4637859A (en) 1983-08-23 1987-01-20 The Procter & Gamble Company Tissue paper
US4528316A (en) 1983-10-18 1985-07-09 Kimberly-Clark Corporation Creping adhesives containing polyvinyl alcohol and cationic polyamide resins
US4640741A (en) 1983-11-30 1987-02-03 Nippon Filcon Co., Ltd. Forming fabric for use in a papermaking machine
US4605702A (en) 1984-06-27 1986-08-12 American Cyanamid Company Temporary wet strength resin
US4675394A (en) 1984-08-17 1987-06-23 National Starch And Chemical Corporation Polysaccharide derivatives containing aldehyde groups, their preparation from the corresponding acetals and use as paper additives
US4983748A (en) 1984-08-17 1991-01-08 National Starch And Chemical Investment Holding Corporation Acetals useful for the preparation of polysaccharide derivatives
US4603176A (en) 1985-06-25 1986-07-29 The Procter & Gamble Company Temporary wet strength resins
US5066532A (en) 1985-08-05 1991-11-19 Hermann Wangner Gmbh & Co. Woven multilayer papermaking fabric having increased stability and permeability and method
US5114777A (en) 1985-08-05 1992-05-19 Wangner Systems Corporation Woven multilayer papermaking fabric having increased stability and permeability and method
US5114777B1 (en) 1985-08-05 1995-07-18 Wangner Systems Woven multilayer papermaking fabric having increased stability and method
US5114777B2 (en) 1985-08-05 1997-11-18 Wangner Systems Corp Woven multilayer papermaking fabric having increased stability and permeability and method
US4849054A (en) 1985-12-04 1989-07-18 James River-Norwalk, Inc. High bulk, embossed fiber sheet material and apparatus and method of manufacturing the same
US4759391A (en) 1986-01-10 1988-07-26 Wangner Gmbh & Co. Kg Two layer papermachine embossing fabric with depressions in the upper fabric layer for the production of tissue paper
US4804769A (en) 1986-02-14 1989-02-14 National Starch And Chemical Corporation Acetals useful for the preparation of polysaccharide derivatives
US4709732A (en) 1986-05-13 1987-12-01 Huyck Corporation Fourteen harness dual layer weave
US4720383A (en) 1986-05-16 1988-01-19 Quaker Chemical Corporation Softening and conditioning fibers with imidazolinium compounds
US4834838A (en) 1987-02-20 1989-05-30 James River Corporation Fibrous tape base material
US4866151A (en) 1987-03-25 1989-09-12 National Starch And Chemical Corporation Polysaccharide graft polymers containing acetal groups and their conversion to aldehyde groups
US4998568A (en) 1987-04-22 1991-03-12 F. Oberdorfer Gmbh & Co. Kg Industriegewebe-Technik Double layered papermaking fabric with high paper side cross thread density
US4759976A (en) 1987-04-30 1988-07-26 Albany International Corp. Forming fabric structure to resist rewet of the paper sheet
US5016678A (en) 1988-05-19 1991-05-21 Hermann Wangner Gmbh & Co. Double-layer papermaking fabric having a single system of non-symmetrically extending longitudinal threads
US5182164A (en) 1988-06-09 1993-01-26 Nordiskafilt Ab Wet press felt to be used in papermaking machine
US4981557A (en) 1988-07-05 1991-01-01 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US5085736A (en) 1988-07-05 1992-02-04 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5008344A (en) 1988-07-05 1991-04-16 The Procter & Gamble Company Temporary wet strength resins and paper products containing same
US5138002A (en) 1988-07-05 1992-08-11 The Procter & Gamble Company Temporary wet strength resins with nitrogen heterocyclic nonnucleophilic functionalities and paper products containing same
US4967085A (en) 1989-02-03 1990-10-30 Eastman Kodak Company X-ray intensifying screen including a titanium activated hafnium dioxide phosphor containing neodymium to reduce afterglow
US4942077A (en) 1989-05-23 1990-07-17 Kimberly-Clark Corporation Tissue webs having a regular pattern of densified areas
US5054525A (en) 1989-06-23 1991-10-08 F. Oberdorfer Gmbh & Co. Double layer forming wire fabric
US5225269A (en) 1989-06-28 1993-07-06 Scandiafelt Ab Press felt
US5098519A (en) 1989-10-30 1992-03-24 James River Corporation Method for producing a high bulk paper web and product obtained thereby
US5211815A (en) 1989-10-30 1993-05-18 James River Corporation Forming fabric for use in producing a high bulk paper web
US4973512A (en) 1990-04-03 1990-11-27 Mount Vernon Mills, Inc. Press felt for use in papermaking machine
US5023132A (en) 1990-04-03 1991-06-11 Mount Vernon Mills, Inc. Press felt for use in papermaking machine
US5199467A (en) 1990-06-06 1993-04-06 Asten Group, Inc. Papermakers fabric with stacked machine direction yarns
US5167261A (en) 1990-06-06 1992-12-01 Asten Group, Inc. Papermakers fabric with stacked machine direction yarns of a high warp fill
US5103874A (en) 1990-06-06 1992-04-14 Asten Group, Inc. Papermakers fabric with stacked machine direction yarns
US5199261A (en) 1990-08-10 1993-04-06 Cummins Engine Company, Inc. Internal combustion engine with turbocharger system
CA2053505A1 (fr) 1990-10-17 1992-04-18 John Henry Dwiggins Methode et appareil de production de mousse
US5328565A (en) 1991-06-19 1994-07-12 The Procter & Gamble Company Tissue paper having large scale, aesthetically discernible patterns
US5245025A (en) 1991-06-28 1993-09-14 The Procter & Gamble Company Method and apparatus for making cellulosic fibrous structures by selectively obturated drainage and cellulosic fibrous structures produced thereby
US5277761A (en) 1991-06-28 1994-01-11 The Procter & Gamble Company Cellulosic fibrous structures having at least three regions distinguished by intensive properties
US5503715A (en) 1991-06-28 1996-04-02 The Procter & Gamble Company Method and apparatus for making cellulosic fibrous structures by selectively obturated drainage and cellulosic fibrous structures produced thereby
US5223096A (en) 1991-11-01 1993-06-29 Procter & Gamble Company Soft absorbent tissue paper with high permanent wet strength
US5217576A (en) 1991-11-01 1993-06-08 Dean Van Phan Soft absorbent tissue paper with high temporary wet strength
US5219004A (en) 1992-02-06 1993-06-15 Lindsay Wire, Inc. Multi-ply papermaking fabric with binder warps
US5379808A (en) 1992-02-06 1995-01-10 Lindsay Wire, Inc. Multi-ply papermaking fabric with ovate binder yarns
US5262007A (en) 1992-04-09 1993-11-16 Procter & Gamble Company Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a temporary wet strength resin
US5264082A (en) 1992-04-09 1993-11-23 Procter & Gamble Company Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a permanent wet strength resin
US5368696A (en) 1992-10-02 1994-11-29 Asten Group, Inc. Papermakers wet press felt having high contact, resilient base fabric with hollow monofilaments
US5240562A (en) 1992-10-27 1993-08-31 Procter & Gamble Company Paper products containing a chemical softening composition
US5312522A (en) 1993-01-14 1994-05-17 Procter & Gamble Company Paper products containing a biodegradable chemical softening composition
US5372876A (en) 1993-06-02 1994-12-13 Appleton Mills Papermaking felt with hydrophobic layer
US5607551A (en) 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5672248A (en) 1994-04-12 1997-09-30 Kimberly-Clark Worldwide, Inc. Method of making soft tissue products
US6017417A (en) 1994-04-12 2000-01-25 Kimberly-Clark Worldwide, Inc. Method of making soft tissue products
US5415737A (en) 1994-09-20 1995-05-16 The Procter & Gamble Company Paper products containing a biodegradable vegetable oil based chemical softening composition
US5508818A (en) 1994-09-23 1996-04-16 Scan-Code, Inc. Mixed mail transport
US5593545A (en) 1995-02-06 1997-01-14 Kimberly-Clark Corporation Method for making uncreped throughdried tissue products without an open draw
US5618612A (en) 1995-05-30 1997-04-08 Huyck Licensco, Inc. Press felt having fine base fabric
US5657797A (en) 1996-02-02 1997-08-19 Asten, Inc. Press felt resistant to nip rejection
US6350349B1 (en) 1996-05-10 2002-02-26 Kimberly-Clark Worldwide, Inc. Method for making high bulk wet-pressed tissue
US5935381A (en) 1997-06-06 1999-08-10 The Procter & Gamble Company Differential density cellulosic structure and process for making same
US6287426B1 (en) 1998-09-09 2001-09-11 Valmet-Karlstad Ab Paper machine for manufacturing structured soft paper
US6379496B2 (en) 1999-07-13 2002-04-30 Fort James Corporation Wet creping process
US20030000664A1 (en) 2000-05-12 2003-01-02 Drew Robert A. Process for increasing the softness of base webs and products made therefrom
US6585855B2 (en) 2000-05-12 2003-07-01 Kimberly-Clark Worldwide, Inc. Paper product having improved fuzz-on-edge property
US6610173B1 (en) 2000-11-03 2003-08-26 Kimberly-Clark Worldwide, Inc. Three-dimensional tissue and methods for making the same
US20040238135A1 (en) 2002-10-07 2004-12-02 Edwards Steven L. Fabric crepe process for making absorbent sheet
US20050217814A1 (en) 2002-10-07 2005-10-06 Super Guy H Fabric crepe/draw process for producing absorbent sheet
US20050241786A1 (en) 2002-10-07 2005-11-03 Edwards Steven L Wet-pressed tissue and towel products with elevated CD stretch and low tensile ratios made with a high solids fabric crepe process
US20050241787A1 (en) 2002-10-07 2005-11-03 Murray Frank C Fabric crepe and in fabric drying process for producing absorbent sheet
US20050279471A1 (en) 2004-06-18 2005-12-22 Murray Frank C High solids fabric crepe process for producing absorbent sheet with in-fabric drying
US20060237154A1 (en) 2005-04-21 2006-10-26 Edwards Steven L Multi-ply paper towel with absorbent core
US20060289134A1 (en) 2005-06-24 2006-12-28 Yeh Kang C Method of making fabric-creped sheet for dispensers
US20060289133A1 (en) 2005-06-24 2006-12-28 Yeh Kang C Fabric-creped sheet for dispensers

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDERSON, D. W.: "Absorption of Ionizing Radiation", 1984, UNIVERSITY PARK PRESS, pages: 69
EGAN, J.AM. OIL CHEMIST'S SOC., vol. 55, 1978, pages 118 - 121
EVANS, CHEMISTRY AND INDUSTRY, 5 July 1969 (1969-07-05), pages 893 - 903
L. CHAN,: "Wet Strength Resins and Their Application", 1994, ESPY, article "Alkaline-Curing Polymeric Amine-Epichlorohvdrin"
TRIVEDI ET AL., J.AM. OIL CHEMIST'S SOC., June 1981 (1981-06-01), pages 754 - 756
WESTFELT, CELLULOSE CHEMISTRY AND TECHNOLOGY, vol. 13, 1979, pages 813

Also Published As

Publication number Publication date
EP2035220A1 (fr) 2009-03-18
DK2792789T3 (en) 2017-10-16
CA2652814C (fr) 2017-02-28
WO2007139726A1 (fr) 2007-12-06
PL3103920T3 (pl) 2019-11-29
EP2792789B1 (fr) 2017-08-30
EP3103920B1 (fr) 2019-07-10
RU2419546C2 (ru) 2011-05-27
SI2792790T1 (sl) 2017-01-31
EP2792790B1 (fr) 2016-09-21
PL2792789T3 (pl) 2017-12-29
EP2792789A1 (fr) 2014-10-22
SI2792789T1 (sl) 2017-11-30
PL2035220T3 (pl) 2014-09-30
EP2035220B1 (fr) 2014-06-25
EP2035220A4 (fr) 2012-08-01
CY1119329T1 (el) 2018-02-14
EP2792790A1 (fr) 2014-10-22
CA2652814A1 (fr) 2007-12-06
CY1118108T1 (el) 2017-06-28
RU2008151711A (ru) 2010-07-10

Similar Documents

Publication Publication Date Title
US9279219B2 (en) Multi-ply absorbent sheet of cellulosic fibers
US7494563B2 (en) Fabric creped absorbent sheet with variable local basis weight
EP3103920B1 (fr) Feuille de tissu absorbant crêpé ayant un poids de base local variable
EP2057016B1 (fr) Serviette en papier multicouche
EP1907625B1 (fr) Feuille en toile crepee pour distributeurs
HUE033654T2 (en) Textile creped absorbent sheet with varying local rice weight

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2792790

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2035220

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170614

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1226452

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GPCP IP HOLDINGS LLC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2792790

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2035220

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1153695

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007058832

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E045844

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2741827

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007058832

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1153695

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190710

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230310

Year of fee payment: 17

Ref country code: PL

Payment date: 20230315

Year of fee payment: 17

Ref country code: GB

Payment date: 20230323

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230314

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 17

Ref country code: ES

Payment date: 20230602

Year of fee payment: 17

Ref country code: DE

Payment date: 20230321

Year of fee payment: 17

Ref country code: CZ

Payment date: 20230428

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230515

Year of fee payment: 17

Ref country code: HU

Payment date: 20230405

Year of fee payment: 17

Ref country code: FI

Payment date: 20230513

Year of fee payment: 17

Ref country code: AT

Payment date: 20230425

Year of fee payment: 17

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1226452

Country of ref document: HK