EP3102360A1 - Method for producing a thermal barrier coating on a component - Google Patents

Method for producing a thermal barrier coating on a component

Info

Publication number
EP3102360A1
EP3102360A1 EP15741839.3A EP15741839A EP3102360A1 EP 3102360 A1 EP3102360 A1 EP 3102360A1 EP 15741839 A EP15741839 A EP 15741839A EP 3102360 A1 EP3102360 A1 EP 3102360A1
Authority
EP
European Patent Office
Prior art keywords
barrier coating
thermal barrier
structures
laser
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15741839.3A
Other languages
German (de)
French (fr)
Inventor
Jens Dietrich
Jan Münzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3102360A1 publication Critical patent/EP3102360A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/386Removing material by boring or cutting by boring of blind holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment

Definitions

  • the present invention relates to a method for the manufacture ⁇ development a thermal barrier coating on a component, in particular a turbine component, and preferably at a turbine blade, is provided in which the component with the thermal barrier coating and then into the outer surface of the thermal barrier coating by a laser removal process structures are introduced to segment the surface of the thermal barrier coating.
  • Turbomachines in particular gas turbine plants, comprise a gas turbine in which a hot gas, which was previously compressed in a compressor and heated in a combustion chamber, is released for work recovery.
  • gas turbines are designed in the Axialbauweise, wherein the gas turbine is formed by a plurality of successively in the flow direction blade rings.
  • the blade rings have circumferentially disposed blades and vanes with the blades secured to a rotor and the vanes secured to the housing of the gas turbine.
  • thermodynamic efficiency of turbine systems and in particular gas turbine systems increases with increasing inlet temperature of the hot gas into the gas turbine.
  • the height of the inlet temperature are sets limits ⁇ ge by the thermal load of the turbine blades. Accordingly, an objective is to provide Turbi ⁇ nenschaufeln, which have sufficient for the operation of the guest Rubine mechanical strength even at high thermal loads.
  • Such turbine blades consist of a turbine blade body, which is made of a superalloy, in particular a nickel-based or cobalt-based superalloy.
  • a superalloy is characterized by high Festig ⁇ ability and low tendency to fatigue and high mechanical strength even at high temperatures, especially at temperatures between 800 ° C and 1200 ° C.
  • the structure of the superalloy may be microcrystalline, columnar in the form of a bundle of parallel crystallites or monocrystalline.
  • the superalloy is designed in view of its relevant mechanical properties, but not in terms of its behavior by the load with the hot gases to which the turbine blade is exposed during operation.
  • a thermal barrier coating system (termal barrier coating, TBC) is provided, which measures will be seen on the outer surface of the turbine blade body ⁇ , to protect the turbine blade body to excessive thermal stress and corrosion and oxidation by constituents of flowing around the hot gas.
  • TBC thermal barrier coating
  • a sol ⁇ ches thermal barrier coating system comprises a coating applied to the turbine blade body metallic adhesion layer and provided thereon a ceramic thermal barrier coating.
  • the adhesive layer consists of a resistant to corrosion and Oxi ⁇ -oxidation at high temperature alloy, especially an alloy of the type MCrAlY.
  • M stands for one or more elements Fe, Ni or Co and Y for yttrium and / or one or more elements of the rare earths.
  • Such an adhesive layer has the advantage that it continues to provide protection against corrosion and oxidation in case of failure of the ceramic thermal barrier coating.
  • the thermal barrier coating usually consists of a stabili ⁇ overbased or partially stabilized zirconium oxide, which by means of physical vapor deposition with electron beam (elec- tron beam physical vapor deposition, EB-PVD) is applied.
  • the thermal barrier coating may be applied to the turbine blade body by atmo ⁇ spherical plasma spraying (air-plasma spraying, APS).
  • air-plasma spraying APS
  • film cooling is a very effective and reliable method for cooling highly stressed turbine blades. Cooling air is tapped from the compressor and fed into the turbine blades provided with internal coolant fluid channels.
  • thermal barrier coating systems with a ceramic thermal barrier coating is subject to the problem that the ceramic material is brittle. Due to the brittleness, it can never be completely ruled out that cracks in the thermal barrier coating system and spalling of the ceramic occur during operation. Under certain circumstances, the metallic
  • any existing metalli ⁇ specific adhesive layer provides some protection against oxidation and corrosion, particularly when the adhesive layer consists of an MCrAlY alloy or an aluminide. The elimination of the thermal insulation, however, the adhesive layer is exposed to extreme thermal stress, so that can be expected with a prompt failure of the adhesive layer.
  • the outer surface of the ceramic layer is partially coordinatedschmol ⁇ zen by means of a continuous wave C02 laser.
  • a variety of benign microcracks of the ceramic layer are formed due to shrinkage during consolidation of the molten regions.
  • Object of the present invention is therefore to provide a method for producing a thermal barrier coating, which has an increased life.
  • This object is achieved in a method according to the present invention in that the structures are introduced into the surface of the thermal barrier coating by an ultrashort pulse laser, in particular a femtosecond laser.
  • ultrashort pulse lasers are used to introduce the engraving-like structures in the surface of the thermal barrier coating.
  • Ultrashort pulse lasers are laser beam sources which emit pulsed laser light with pulse duration in the range of picoseconds and femtoseconds. These include picosecond lasers and femtosecond lasers, which are usually mode-locked
  • Ultrashort pulse lasers operate with lower pulse energy compared to conventional CO 2 or YAG lasers, so that the thermal penetration depth is comparatively low.
  • the pulse durations are below the relaxation time of the ceramic material of the thermal insulation ⁇ layer. As a result, the ceramic material is not melted in the production of engraving-like structures as in the use of CO 2 - or YAG lasers, but there is a cold, melting-free removal takes place.
  • the ultrashort pulse laser has an optical system which includes a galvo or microscanner in order to deflect the laser beam generated in the desired direction. In this way, high feed rates in the range of a few millimeters / second to more than 1000 millimeters / second can be generated.
  • the laser beam generated by the ultrashort pulse laser is guided several times along a structure line to be generated, with tracks staggered in the width direction of the structure being generated.
  • a track offset is used for the production of an engraving.
  • An engraving is thus made by several, parallel staggered tracks.
  • Another possibility for adjusting the track width and / or the track geometry is the method of the wobble, in which the feed movement of the laser beam is superimposed on a transverse thereto directed deflection movement.
  • discontinuous struc ⁇ can ren / structure line are brought a ⁇ in the surface of the thermal barrier coating by the inventive method.
  • the discontinuous structures may comprise blind-hole microbores, which are introduced into the surface of the heat ⁇ layer with a defined distance, diameter and depth.
  • the discontinuous ⁇ union structures V- or U-shaped structures can include.
  • Figure 1 shows a structure for segmentation of the surface
  • Figure 2 shows an embodiment of a structure with continu ⁇ ous intersecting engraved lines
  • Figure 3 shows an embodiment of a structure for segmenting the surface of a thermal barrier coating having a plurality of discontinuous engraved lines
  • one embodiment of a structure with bag ⁇ holes for generating a Kunststoffporostician
  • Figure 5 shows an embodiment of a structure for segmenting the surface of a thermal barrier coating, which is produced by wobble
  • FIG. 6 shows a schematic representation in which the scanning movement of a laser radiation for producing a wide engraving line is shown.
  • the structure shows an example of a structure is presented to the surface of a thermal barrier coating to segmen ⁇ animals.
  • the structure consists here of several kontinuierli chen structure or engraving lines 1, which extend parallel zuein other and straight.
  • the engraving lines 1 can also be formed, for example, serpentine. It is essential that the engraving lines 1 do not intersect.
  • mutually parallel engraving lines 2 are provided, wherein Forming of crossing points a grid-like engraving line structure is generated.
  • a plurality of Z-like engraving lines 3 are provided, which are arranged distributed along the surface of a thermal barrier coating, without cutting.
  • the Z-shaped engraving lines 3 are parallel to each other, but positioned offset in the longitudinal and transverse directions against each other. The arrangement is made such that the extension regions of adjacent Z-förmi ⁇ gene engraving lines 3 overlap.
  • structures in the form of blind-hole bores 5 for producing an artificial porosity are provided in the surface of a thermal barrier coating 4, wherein the blind bores have a defined depth T and a defined diameter D.
  • Track width and geometry can be generated by Wobbein.
  • ⁇ at the advance movement which is indicated by an arrow f, is a transversely directed to deflection movement, which is indicated by a double arrow A superimposed.
  • the deflection movement A, and possibly also the feed motion f is generated by a galvo or micro scanner wel ⁇ cher deflects the laser beam generated by an ultrashort pulse laser accordingly.
  • FIG. 6 shows how, as an alternative to the wobble, an engraving line 7 with a large width can be produced.
  • a laser beam L is traversed a plurality of times along the engraving line to be generated, wherein in the width direction of the engraving line 7 staggered tracks are generated.
  • the laser beam L is deflected by a suitable Galvo or microscanner accordingly, as indicated by an arrow S.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a method for producing a thermal barrier coating on a component, more particularly on a turbine component and preferably on a turbine blade, wherein the component is provided with the thermal barrier coating and structures are then created in the outer surface of the thermal barrier coating using a laser ablation process so as to segment the surface of the thermal barrier coating, the structures being created in the surface of the thermal barrier coating by an ultrashort pulse laser, more particularly a femtosecond laser.

Description

Verfahren zur Herstellung einer Wärmedämmschicht an einem  Process for producing a thermal barrier coating on a
Bauteil  component
Die vorliegende Erfindung betrifft ein Verfahren zur Herstel¬ lung einer Wärmedämmschicht an einem Bauteil, insbesondere an einem Turbinenbauteil und vorzugsweise an einer Turbinen¬ schaufel, bei welchem das Bauteil mit der Wärmedämmschicht versehen wird und anschließend in die Außenoberfläche der Wärmedämmschicht durch ein Laser-Abtragverfahren Strukturen eingebracht werden, um die Oberfläche der Wärmedämmschicht zu segmentieren . The present invention relates to a method for the manufacture ¬ development a thermal barrier coating on a component, in particular a turbine component, and preferably at a turbine blade, is provided in which the component with the thermal barrier coating and then into the outer surface of the thermal barrier coating by a laser removal process structures are introduced to segment the surface of the thermal barrier coating.
Strömungsmaschinen, insbesondere Gasturbinenanlagen umfassen eine Gasturbine, in der ein Heißgas, welches zuvor in einem Verdichter komprimiert und in einer Brennkammer erhitzt wurde, zur Arbeitsgewinnung entspannt wird. Für hohe Massenströme des Heißgases und damit hohe Leistungsbereiche sind Gasturbinen in der Axialbauweise ausgeführt, wobei die Gas- turbine von mehreren in Durchströmungsrichtung hintereinander liegenden Schaufelkränzen gebildet ist. Die Schaufelkränze weisen über ihren Umfang angeordnete Laufschaufeln und Leitschaufeln auf, wobei die Laufschaufeln an einem Rotor und die Leitschaufeln an dem Gehäuse der Gasturbine festsitzen. Turbomachines, in particular gas turbine plants, comprise a gas turbine in which a hot gas, which was previously compressed in a compressor and heated in a combustion chamber, is released for work recovery. For high mass flows of the hot gas and thus high power ranges gas turbines are designed in the Axialbauweise, wherein the gas turbine is formed by a plurality of successively in the flow direction blade rings. The blade rings have circumferentially disposed blades and vanes with the blades secured to a rotor and the vanes secured to the housing of the gas turbine.
Es ist bekannt, dass der thermodynamische Wirkungsgrad von Turbinenanlagen und insbesondere Gasturbinenanlagen mit zunehmender Eintrittstemperatur des Heißgases in die Gasturbine steigt. Der Höhe der Eintrittstemperatur sind jedoch Grenzen durch die thermische Belastbarkeit der Turbinenschaufeln ge¬ setzt. Dementsprechend besteht eine Zielsetzung darin, Turbi¬ nenschaufeln zu schaffen, die auch bei hohen thermischen Belastungen eine für den Betrieb der Gastrubine ausreichende mechanische Festigkeit besitzen. It is known that the thermodynamic efficiency of turbine systems and in particular gas turbine systems increases with increasing inlet temperature of the hot gas into the gas turbine. However, the height of the inlet temperature are sets limits ¬ ge by the thermal load of the turbine blades. Accordingly, an objective is to provide Turbi ¬ nenschaufeln, which have sufficient for the operation of the guest Rubine mechanical strength even at high thermal loads.
Solche Turbinenschaufeln bestehen aus einem Turbinenschaufel- körper, welcher aus einer Superlegierung, insbesondere einer Nickelbasis- oder Kobaltbasis-Superlegierung hergestellt ist. Eine solche Superlegierung zeichnet sich durch hohe Festig¬ keit und geringe Ermüdungsneigung sowie eine hohe mechanische Belastbarkeit auch bei hohen Temperaturen, insbesondere bei Temperaturen zwischen 800°C und 1200°C aus. Die Struktur der Superlegierung kann dabei mikrokristallin, stängelkristallin in der Form eines Bündels aus parallel zueinander gerichteten Kristalliten oder einkristallin sein. Such turbine blades consist of a turbine blade body, which is made of a superalloy, in particular a nickel-based or cobalt-based superalloy. Such a superalloy is characterized by high Festig ¬ ability and low tendency to fatigue and high mechanical strength even at high temperatures, especially at temperatures between 800 ° C and 1200 ° C. The structure of the superalloy may be microcrystalline, columnar in the form of a bundle of parallel crystallites or monocrystalline.
Die Superlegierung wird dabei im Hinblick auf ihre relevanten mechanischen Eigenschaften, nicht jedoch im Hinblick auf ihr Verhalten durch die Belastung mit den Heißgasen, welchen die Turbinenschaufel im Betrieb ausgesetzt ist, ausgelegt. Inso¬ fern wird der Turbinenschaufelkörper mit einem Wärmedämmschichtsystem (termal barrier coating, TBC) versehen, welches auf der Außenoberfläche des Turbinenschaufelkörpers vorge¬ sehen wird, um den Turbinenschaufelkörper um übermäßiger thermischer Belastung sowie Korrosion und Oxidation durch Bestandteile des umströmenden Heißgases zu schützen. Ein sol¬ ches Wärmedämmschichtsystem umfasst in der Regel eine auf den Turbinenschaufelkörper aufgebrachte metallische Haftschicht und eine darauf vorgesehene keramische Wärmedämmschicht. Die Haftschicht besteht dabei aus einer gegen Korrosion und Oxi¬ dation bei hohen Temperaturen resistenten Legierung, insbesondere einer Legierung des Typs MCrAlY. Hierin steht M für ein oder mehrere Elemente Fe, Ni oder Co und Y für Yttrium und/oder eines oder mehrere Elemente der seltenen Erden. Eine solche Haftschicht hat den Vorteil, dass sie beim Ausfall der keramischen Wärmedämmschicht weiterhin einen Schutz gegen Korrosion und Oxidation gewährleistet. The superalloy is designed in view of its relevant mechanical properties, but not in terms of its behavior by the load with the hot gases to which the turbine blade is exposed during operation. Inso ¬ away of the turbine blade body is provided with a thermal barrier coating system (termal barrier coating, TBC) is provided, which measures will be seen on the outer surface of the turbine blade body ¬, to protect the turbine blade body to excessive thermal stress and corrosion and oxidation by constituents of flowing around the hot gas. Usually a sol ¬ ches thermal barrier coating system comprises a coating applied to the turbine blade body metallic adhesion layer and provided thereon a ceramic thermal barrier coating. The adhesive layer consists of a resistant to corrosion and Oxi ¬-oxidation at high temperature alloy, especially an alloy of the type MCrAlY. Herein M stands for one or more elements Fe, Ni or Co and Y for yttrium and / or one or more elements of the rare earths. Such an adhesive layer has the advantage that it continues to provide protection against corrosion and oxidation in case of failure of the ceramic thermal barrier coating.
Die Wärmedämmschicht besteht üblicherweise aus einem stabili¬ sierten oder teilstabilisierten Zirkonoxid, das mittels physikalischer Gasphasenabscheidung mit Elektronenstrahl (elec- tron beam physical vapor deposition, EB-PVD) aufgebracht wird. Alternativ kann die Wärmedämmschicht auch durch atmo¬ sphärisches Plasmaspritzen (air-plasma spraying, APS) auf den Turbinenschaufelkörper aufgebracht werden. Zur weiteren Erhöhung der zulässigen Turbineneintrittstemperatur werden Turbinenschaufeln im Betrieb der Gasturbine gekühlt. Hierbei stellt die Filmkühlung eine sehr wirksame und zuverlässige Methode zur Kühlung von hochbeanspruchten Turbi- nenschaufeln dar. Dabei wird Kühlluft aus dem Verdichter abgezapft und in die mit internen Kühlfluidkanälen versehenen Turbinenschaufeln geführt. Nach einer konvektiven Kühlung des Materials von der Innenseite der Turbinenschaufeln her wird die Luft durch die Kühlfluidkanäle auf die Außenoberfläche der Turbinenschaufel geleitet. Dort bildet sie einen Film, der entlang der Außenoberfläche der Turbinenschaufel strömt und diese kühlt sowie gleichzeitig vor der heißen Strömung schützt . Der Einsatz von Wärmedämmschichtsystemen mit einer keramischen Wärmedämmschicht ist mit dem Problem belastet, dass das Keramikmaterial spröde ist. Aufgrund der Sprödigkeit kann nie ganz ausgeschlossen werden, dass es im Rahmen des Betriebs zu Rissen in dem Wärmedämmschichtsystem und zum Abplatzen der Keramik kommt. Dabei wird unter Umständen die metallischeThe thermal barrier coating usually consists of a stabili ¬ overbased or partially stabilized zirconium oxide, which by means of physical vapor deposition with electron beam (elec- tron beam physical vapor deposition, EB-PVD) is applied. Alternatively, the thermal barrier coating may be applied to the turbine blade body by atmo ¬ spherical plasma spraying (air-plasma spraying, APS). To further increase the allowable turbine inlet temperature turbine blades are cooled during operation of the gas turbine. Here, film cooling is a very effective and reliable method for cooling highly stressed turbine blades. Cooling air is tapped from the compressor and fed into the turbine blades provided with internal coolant fluid channels. After convective cooling of the material from the inside of the turbine blades, the air is directed through the cooling fluid passages to the outer surface of the turbine blade. There it forms a film that flows along the outer surface of the turbine blade and cools it, while protecting it from the hot flow. The use of thermal barrier coating systems with a ceramic thermal barrier coating is subject to the problem that the ceramic material is brittle. Due to the brittleness, it can never be completely ruled out that cracks in the thermal barrier coating system and spalling of the ceramic occur during operation. Under certain circumstances, the metallic
Unterlage der Keramik freigelegt und dem Heißgasstrom ausge¬ setzt. Zwar gewährleistet eine eventuell vorhandene metalli¬ sche Haftschicht einen gewissen Schutz gegen Oxidation und Korrosion, insbesondere dann, wenn die Haftschicht aus einer MCrAlY-Legierung oder einem Aluminid besteht. Durch den Wegfall der thermischen Isolation wird die Haftschicht allerdings einer extremen thermischen Belastung ausgesetzt, so dass mit einem alsbaldigen Versagen der Haftschicht gerechnet werden kann. Pad of the ceramic exposed and the hot gas flow out ¬ sets. Although any existing metalli ¬ specific adhesive layer provides some protection against oxidation and corrosion, particularly when the adhesive layer consists of an MCrAlY alloy or an aluminide. The elimination of the thermal insulation, however, the adhesive layer is exposed to extreme thermal stress, so that can be expected with a prompt failure of the adhesive layer.
Um dieser Problematik zu begegnen ist beispielsweise aus der DE 602 08 274 T2 bekannt, eine Wärmedämmschicht mit einer Segmentierung der Oberfläche herzustellen, um die mit der Temperaturwechselbeständigkeit zusammenhängenden Eigenschaf- ten der Wärmedämmschicht zu verbessern. In order to counter this problem it is known, for example from DE 602 08 274 T2, to produce a thermal barrier coating with a segmentation of the surface in order to improve the properties of the thermal barrier coating that are associated with the thermal shock resistance.
Konkret werden mittels eines YAG-Lasers Strukturen in die Außenoberfläche einer Wärmedämmschicht eingraviert, um Unter- brechungen in der Oberfläche zu bilden, welche einer ungewünschten Rissbildung aufgrund von Spannungen in der Wärmedämmschicht entgegenwirken. Ferner ist aus der US 4,377,371 A bekannt, in einer durchSpecifically, structures are engraved in the outer surface of a thermal barrier coating by means of a YAG laser in order to To form cracks in the surface, which counteract undesirable cracking due to stresses in the thermal barrier coating. It is also known from US 4,377,371 A, in a by
Plasmaspritzen aufgebrachten Keramikschicht absichtlich Risse zu erzeugen. Dabei wird mit Hilfe eines C02-Dauerstrichlasers die Außenoberfläche der Keramikschicht partiell aufgeschmol¬ zen. Wenn sich die geschmolzenen Bereiche abkühlen und wieder verfestigen, wird infolge der Schrumpfung während der Festigung der geschmolzenen Bereiche eine Vielzahl von gutartigen Mikrorissen der Keramikschicht gebildet. Plasma spraying applied ceramic layer to deliberately create cracks. The outer surface of the ceramic layer is partially aufgeschmol ¬ zen by means of a continuous wave C02 laser. As the molten regions cool and resolidify, a variety of benign microcracks of the ceramic layer are formed due to shrinkage during consolidation of the molten regions.
Es hat sich gezeigt, dass durch die Einbringung von gravur- artigen Strukturen in die Oberfläche einer Wärmedämmschicht deren Lebensdauer verlängert werden kann. Die Bestrebungen gehen jedoch dahin, die Lebensdauer von Wärmedämmschichten weiter zu erhöhen. Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung einer Wärmedämmschicht anzugeben, welche eine erhöhte Lebensdauer besitzt. It has been shown that the introduction of engraving-like structures into the surface of a thermal barrier coating can extend their service life. The efforts are, however, to further increase the life of thermal barrier coatings. Object of the present invention is therefore to provide a method for producing a thermal barrier coating, which has an increased life.
Diese Aufgabe ist bei einem Verfahren gemäß der vorliegenden Erfindung dadurch gelöst, dass die Strukturen in die Oberfläche der Wärmedämmschicht durch einen Ultrakurzpulslaser, insbesondere einen Femtosekundenlaser eingebracht werden. This object is achieved in a method according to the present invention in that the structures are introduced into the surface of the thermal barrier coating by an ultrashort pulse laser, in particular a femtosecond laser.
Erfindungsgemäß werden Ultrakurzpulslaser eingesetzt, um die gravurartigen Strukturen in die Oberfläche der Wärmedämmschicht einzubringen. Als Ultrakurzpulslaser werden Laserstrahlquellen bezeichnet, die gepulstes Laserlicht mit Puls¬ dauern im Bereich von Pikosekunden und Femtosekunden aussenden. Hierunter fallen Pikosekundenlaser und Femtosekunden- laser, bei denen es sich in der Regel um modengekoppelteAccording to the invention ultrashort pulse lasers are used to introduce the engraving-like structures in the surface of the thermal barrier coating. Ultrashort pulse lasers are laser beam sources which emit pulsed laser light with pulse duration in the range of picoseconds and femtoseconds. These include picosecond lasers and femtosecond lasers, which are usually mode-locked
Laser handelt. Es wurden in der Forschung aber auch bereits Attosekundenlaser (1000 Attosekunden = 1 Femtosekunde) entwickelt. Diese zählen nach derzeitigem Sprachgebrauch eben- falls zu den Ultrakurzpulslasern. Ultrakurzpulslaser arbeiten im Vergleich zu herkömmlichen CO2- oder YAG-Lasern mit einer geringeren Pulsenergie, so dass die thermische Eindringtiefe vergleichsweise gering ist. Dabei liegen die Pulsdauern unterhalb der Relaxationszeit des Keramikmaterials der Wärme¬ dämmschicht. Im Ergebnis wird das Keramikmaterial bei der Herstellung der gravurartigen Strukturen nicht wie beim Einsatz von CO2- oder YAG-Lasern aufgeschmolzen, sondern es findet ein kalter, schmelzfreier Abtrag statt. Es hat sich gezeigt, dass hierdurch eine Spannungsbildung in der Oberfläche der Wärmedämmschicht vermieden oder zumindest reduziert werden kann mit der Folge, dass sich die Lebensdauer der Wärmedämmschicht erhöht. Der Einsatz von Ultrakurzpulslasern bringt den weiteren Vorteil mit sich, dass der Abtrag pro Übertrag nur wenige Mikro¬ meter beträgt. Gewünschte Gravurtiefen können daher mit hoher Präzision hergestellt werden. Ebenso können Strukturen in die Oberfläche der Wärmedämmschicht eingebracht werden, die wenigstens teilweise eine Tiefe von wenigstens 300 ym, insbe¬ sondere wenigstens 500 ym und vorzugsweise über 1000 ym auf¬ weisen . Laser acts. Attosecond lasers (1000 attoseconds = 1 femtosecond) have already been developed in research. According to current usage, these also count if to the ultrashort pulse lasers. Ultrashort pulse lasers operate with lower pulse energy compared to conventional CO 2 or YAG lasers, so that the thermal penetration depth is comparatively low. The pulse durations are below the relaxation time of the ceramic material of the thermal insulation ¬ layer. As a result, the ceramic material is not melted in the production of engraving-like structures as in the use of CO 2 - or YAG lasers, but there is a cold, melting-free removal takes place. It has been shown that as a result, a formation of stress in the surface of the thermal barrier coating can be avoided or at least reduced with the result that increases the life of the thermal barrier coating. The use of ultrashort pulse lasers has the further advantage that the removal per carry is only a few micrometers . Desired engraving depths can therefore be produced with high precision. Similarly, structures can be introduced in the surface of the thermal barrier coating at least partially a depth of at least 300 .mu.m, in particular ¬ sondere least 500 ym, preferably over 1000 ym have ¬.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass der Ultrakurzpulslaser eine Optik aufweist, die einen Galvo- oder Mikroscanner umfasst, um den erzeugten Laserstrahl in der gewünschten Richtung abzulenken. Auf diese Weise können hohe Vorschubgeschwindigkeiten im Bereich von wenigen Millimetern/Sekunde bis weiter über 1000 Millime- tern/Sekunde erzeugt werden. According to one embodiment of the invention, it is provided that the ultrashort pulse laser has an optical system which includes a galvo or microscanner in order to deflect the laser beam generated in the desired direction. In this way, high feed rates in the range of a few millimeters / second to more than 1000 millimeters / second can be generated.
In Ausgestaltung der Erfindung ist vorgesehen, dass zur Herstellung einer Struktur/Strukturlinie vorgegebener Breite der vom Ultrakurzpulslaser erzeugte Laserstrahl mehrfach entlang einer zu erzeugenden Strukturlinie geführt wird, wobei in der Breitenrichtung der Struktur zueinander versetzte Spuren erzeugt werden. Im Gegensatz zum Stand der Technik, bei dem die Gravurgeometrie durch Aufweitung des Fokus des Laserstrahls erzielt wird, wird bei dieser Ausführungsform ein Spurversatz für die Herstellung einer Gravur verwendet. Eine Gravur wird also durch mehrere, parallel versetzte Spuren gefertigt. Eine weitere Möglichkeit zur Einstellung der Spurbreite und/oder der Spurgeometrie ist die Methode des Wobbeins, bei welcher der Vorschubbewegung des Laserstrahls eine quer dazu gerichtete Auslenkbewegung überlagert wird. In an sich bekannter Weise können durch das erfindungsgemäße Verfahren kontinuierliche oder diskontinuierliche Struktu¬ ren/Strukturlinie in die Oberfläche der Wärmedämmschicht ein¬ gebracht werden. Dabei können die diskontinuierlichen Strukturen Sackloch-Mikrobohrungen umfassen, die mit definiertem Abstand, Durchmesser und Tiefe in die Oberfläche der Wärme¬ schicht eingebracht werden. Ebenso können die diskontinuier¬ lichen Strukturen V- oder U-förmige Strukturen umfassen. In an embodiment of the invention, it is provided that for producing a structure / structure line of predetermined width, the laser beam generated by the ultrashort pulse laser is guided several times along a structure line to be generated, with tracks staggered in the width direction of the structure being generated. In contrast to the prior art, in which the engraving geometry by widening the focus of the laser beam is achieved, in this embodiment, a track offset is used for the production of an engraving. An engraving is thus made by several, parallel staggered tracks. Another possibility for adjusting the track width and / or the track geometry is the method of the wobble, in which the feed movement of the laser beam is superimposed on a transverse thereto directed deflection movement. In a known manner, continuous or discontinuous struc ¬ can ren / structure line are brought a ¬ in the surface of the thermal barrier coating by the inventive method. In this case, the discontinuous structures may comprise blind-hole microbores, which are introduced into the surface of the heat ¬ layer with a defined distance, diameter and depth. Also, the discontinuous ¬ union structures V- or U-shaped structures can include.
Durch solche diskontinuierlichen Gravuren können bei maximaler räumlicher Abdeckung Kreuzungspunkte von Gravuren und die damit verbundene unerwünschte Erhöhung der Gravurtiefe ver¬ mieden werden. Grundsätzlich ist es aber auch möglich, einander kreuzende Strukturen in die Oberfläche der Wärmedämmschicht einzubringen. Die gravierten Spuren bzw. Gravurlinien können im Querschnitt U-förmig sein. Alternativ ist es aber auch möglich, im Querschnitt V-förmige Spuren zu erzeugen. Diese lassen sich durch den geringen Volumenabtrag, der bei einer Bearbeitung durch einen Ultrakurzpulslaser stattfindet, hochgenau und mit einer vergleichsweise hohen Tiefe fertigen. By such discontinuous points of intersection engravings engravings and the associated undesirable increase in the engraving depth ver ¬ can be avoided at maximum spatial coverage. In principle, however, it is also possible to introduce intersecting structures into the surface of the thermal barrier coating. The engraved tracks or engraving lines can be U-shaped in cross section. Alternatively, it is also possible to produce cross-sectionally V-shaped tracks. These can be produced with high precision and with a comparatively high depth by the low volume removal that takes place during processing by an ultrashort pulse laser.
In der Zeichnung sind Ausführungsbeispiele von Gravur artigen Strukturen dargestellt, die sich durch das erfindungsgemäße Verfahren, d.h. durch Laserabtrag mittels Ultrakurzpulslaser herstellen lassen. Darin zeigt In the drawing, embodiments of engraving-like structures are shown, which can be produced by the inventive method, ie by laser ablation using ultrashort pulse laser. It shows
Figur 1 eine Struktur zur Segmentierung der Oberfläche Figure 1 shows a structure for segmentation of the surface
einer Wärmedämmschicht mit kontinuierlichen Struk- tur- bzw. Gravurlinien,  a thermal barrier coating with continuous structure or engraving lines,
Figur 2 ein Ausführungsbeispiel einer Struktur mit kontinu¬ ierlichen, sich schneidenden Gravurlinien, Figur 3 ein Ausführungsbeispiel einer Struktur zur Segmentierung der Oberfläche einer Wärmedämmschicht mit mehreren, diskontinuierlichen Gravurlinien, ein Ausführungsbeispiel einer Struktur mit Sack¬ lochbohrungen zur Erzeugung einer Kunstporosität, 2 shows an embodiment of a structure with continu ¬ ous intersecting engraved lines, Figure 3 shows an embodiment of a structure for segmenting the surface of a thermal barrier coating having a plurality of discontinuous engraved lines, one embodiment of a structure with bag ¬ holes for generating a Kunstporosität,
Figur 5 ein Ausführungsbeispiel einer Struktur zur Segmentierung der Oberfläche einer Wärmedämmschicht, die durch Wobbein erzeugt wird, und Figure 5 shows an embodiment of a structure for segmenting the surface of a thermal barrier coating, which is produced by wobble, and
Figur 6 eine Prinzipdarstellung, in welcher die Scan-Bewegung einer Laserstrahlung zur Herstellung einer breiten Gravurlinie gezeigt ist. FIG. 6 shows a schematic representation in which the scanning movement of a laser radiation for producing a wide engraving line is shown.
In der Figur 1 ist ein Beispiel für eine Struktur dargestellt, um die Oberfläche einer Wärmedämmschicht zu segmen¬ tieren. Die Struktur besteht hier aus mehreren kontinuierli chen Struktur- bzw. Gravurlinien 1, die sich parallel zuein ander und gradlinig erstrecken. Die Gravurlinien 1 können aber auch beispielsweise schlangenlinienförmig ausgebildet sein. Wesentlich ist, dass sich die Gravurlinien 1 nicht schneiden . Bei dem Ausführungsbeispiel der Figur 2 sind neben den paral¬ lel zueinander laufenden Gravurlinien 1 des in Figur 1 dargestellten Ausführungsbeispiels quer dazu orientierte, parallel zueinander verlaufende Gravurlinien 2 vorgesehen, wobei unter Bildung von Kreuzungspunkten eine gitterartige Gravurlinienstruktur erzeugt wird. 1 shows an example of a structure is presented to the surface of a thermal barrier coating to segmen ¬ animals. The structure consists here of several kontinuierli chen structure or engraving lines 1, which extend parallel zuein other and straight. The engraving lines 1 can also be formed, for example, serpentine. It is essential that the engraving lines 1 do not intersect. In the embodiment of Figure 2 are in addition to the paral ¬ lel each other running engraving lines 1 of the embodiment shown in Figure 1 oriented transversely thereto, mutually parallel engraving lines 2 are provided, wherein Forming of crossing points a grid-like engraving line structure is generated.
Bei dem Ausführungsbeispiel der Figur 3 sind mehrere Z-artige Gravurlinien 3 vorgesehen, die entlang der Oberfläche einer Wärmedämmschicht verteilt angeordnet sind, ohne sich zu schneiden. Die Z-förmigen Gravurlinien 3 sind dabei parallel zueinander, jedoch in Längs- und Querrichtung gegeneinander versetzt positioniert. Die Anordnung ist dabei so getroffen, dass sich die Erstreckungsbereiche von benachbarten Z-förmi¬ gen Gravurlinien 3 überlappen. In the embodiment of Figure 3, a plurality of Z-like engraving lines 3 are provided, which are arranged distributed along the surface of a thermal barrier coating, without cutting. The Z-shaped engraving lines 3 are parallel to each other, but positioned offset in the longitudinal and transverse directions against each other. The arrangement is made such that the extension regions of adjacent Z-förmi ¬ gene engraving lines 3 overlap.
Bei dem in Figur 4 dargestellten Ausführungsbeispiel sind in der Oberfläche einer Wärmedämmschicht 4 Strukturen in Form von Sacklochbohrungen 5 zur Erzeugung einer Kunstporosität vorgesehen, wobei die Sacklochbohrungen eine definierte Tiefe T und einen definierten Durchmesser D aufweisen. In the exemplary embodiment illustrated in FIG. 4, structures in the form of blind-hole bores 5 for producing an artificial porosity are provided in the surface of a thermal barrier coating 4, wherein the blind bores have a defined depth T and a defined diameter D.
Bei dem in Figur 5 dargestellten Ausführungsbeispiel ist dar- gestellt, dass Gravurlinien zur Erzeugung einer gewünschtenIn the exemplary embodiment illustrated in FIG. 5, it is shown that engraving lines are used to produce a desired
Spurbreite und -geometrie durch Wobbein erzeugt werden. Hier¬ bei wird der Vorschubbewegung, die durch einen Pfeil f angedeutet ist, eine quer dazu gerichtete Auslenkungsbewegung, welche durch einen Doppelpfeil A angedeutet ist, überlagert. Die Auslenkbewegung A und ggf. auch die Vorschubbewegung f wird dabei durch einen Galvo- oder Mikroscanner erzeugt, wel¬ cher den von einem Ultrakurzpulslaser erzeugten Laserstrahl entsprechend ablenkt. Schließlich ist in Figur 6 dargestellt, wie alternativ zum Wobbein eine Gravurlinie 7 mit einer großen Breite erzeugt werden kann. Hier wird ein Laserstrahl L mehrfach entlang der zu erzeugenden Gravurlinie verfahren, wobei in der Breitenrichtung der Gravurlinie 7 zueinander versetzte Spuren er- zeugt werden. Hierzu wird der Laserstrahl L durch einen geeigneten Galvo- oder Mikroscanner entsprechend abgelenkt, wie durch einen Pfeil S angedeutet ist. Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so is die Erfindung nicht durch die offenbarten Beispiele einge¬ schränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen . Track width and geometry can be generated by Wobbein. Here ¬ at the advance movement, which is indicated by an arrow f, is a transversely directed to deflection movement, which is indicated by a double arrow A superimposed. The deflection movement A, and possibly also the feed motion f is generated by a galvo or micro scanner wel ¬ cher deflects the laser beam generated by an ultrashort pulse laser accordingly. Finally, FIG. 6 shows how, as an alternative to the wobble, an engraving line 7 with a large width can be produced. Here, a laser beam L is traversed a plurality of times along the engraving line to be generated, wherein in the width direction of the engraving line 7 staggered tracks are generated. For this purpose, the laser beam L is deflected by a suitable Galvo or microscanner accordingly, as indicated by an arrow S. Although the invention in detail by the preferred embodiment has been illustrated and described in detail, as not ¬ limited by the disclosed examples is the invention, and other variations can be derived therefrom by the skilled artisan without departing from the scope of the invention.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer Wärmedämmschicht an einem Bauteil, 1. A method for producing a thermal barrier coating on a component,
insbesondere an einem Turbinenbauteil und vorzugsweise an einer Turbinenschaufel,  in particular on a turbine component and preferably on a turbine blade,
bei welchem das Bauteil mit der Wärmedämmschicht versehen wird und anschließend in die Außenoberfläche der Wärmedämm- schicht durch ein Laser-Abtragverfahren Strukturen eingebracht werden, um die Oberfläche der Wärmedämmschicht zu segmentieren,  in which the component is provided with the thermal barrier coating and subsequently structures are introduced into the outer surface of the thermal barrier coating by a laser ablation process in order to segment the surface of the thermal barrier coating,
dadurch gekennzeichnet, dass  characterized in that
die Strukturen in die Oberfläche der Wärmedämmschicht durch einen Ultrakurzpulslaser, insbesondere einen Femtosekunden- laser eingebracht werden.  the structures are introduced into the surface of the thermal barrier coating by an ultrashort pulse laser, in particular a femtosecond laser.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
dadurch gekennzeichnet, dass  characterized in that
der Ultrakurzpulslaser eine Optik aufweist, die einen  the ultrashort pulse laser has an optic which has a
Galvo- oder Mikroscanner umfasst.  Galvo or microscanner includes.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
dadurch gekennzeichnet, dass  characterized in that
zur Herstellung der Strukturen die Methode des Wobbeins eingesetzt wird, bei welcher der Vorschubbewegung des  for the production of structures the method of the wobble is used, in which the advancing movement of the
Laserstrahls eine quer dazu gerichtete Bewegung überlagert wird .  Laser beam is superimposed on a transversely directed movement.
4. Verfahren nach einem der vorherigen Ansprüche, 4. Method according to one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
zur Herstellung einer Struktur vorgegebener Breite der vom Ultrakurzpulslaser erzeugte Laserstrahl mehrfach entlang einer zu erzeugenden Strukturlinie geführt wird,  for producing a structure of predetermined width of the laser beam generated by the ultrashort pulse laser is performed several times along a structure line to be generated,
wobei in der Breitenrichtung der Struktur zueinander versetzte Spuren erzeugt werden. wherein tracks offset from one another in the width direction of the structure are generated.
5. Verfahren nach einem der vorherigen Ansprüche, 5. Method according to one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
mehrere kontinuierliche Strukturen in die Oberfläche der Wärmedämmschicht eingebracht werden.  several continuous structures are introduced into the surface of the thermal barrier coating.
6. Verfahren nach einem der vorherigen Ansprüche, 6. The method according to any one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
diskontinuierliche Strukturen in die Oberfläche der Wärme¬ dämmschicht eingebracht werden. discontinuous structures are introduced into the surface of the heat insulating layer ¬.
7. Verfahren nach Anspruch 6, 7. The method according to claim 6,
dadurch gekennzeichnet, dass  characterized in that
die diskontinuierlichen Strukturen Sackloch-Mikrobohrungen umfassen, die mit definiertem Abstand, Durchmesser und Tiefe in die Oberfläche der Wärmedämmschicht eingebracht sind .  the discontinuous structures include blind hole microbores, which are introduced with a defined distance, diameter and depth in the surface of the thermal barrier coating.
8. Verfahren nach Anspruch 6, 8. The method according to claim 6,
dadurch gekennzeichnet, dass  characterized in that
die diskontinuierlichen Strukturen V-oder U-förmige Strukturen umfassen.  the discontinuous structures comprise V- or U-shaped structures.
9. Verfahren nach einem der vorherigen Ansprüche, 9. Method according to one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
einander kreuzende Strukturen in die Oberfläche der Wärme¬ dämmschicht eingebracht werden. intersecting structures are introduced into the surface of the heat insulating layer ¬.
10. Verfahren nach einem der vorherigen Ansprüche, 10. The method according to any one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
Strukturen in die Oberfläche der Wärmedämmschicht einge¬ bracht werden, die wenigstens teilweise eine Tiefe von wenigstens 300 ym, insbesondere wenigstens 500 ym und vor¬ zugsweise über 1000 ym aufweisen. Structures in the surface of the thermal barrier coating ¬ be introduced, which at least partially have a depth of at least 300 ym, in particular at least 500 ym and preferably ¬ over 1000 ym.
EP15741839.3A 2014-04-25 2015-03-26 Method for producing a thermal barrier coating on a component Withdrawn EP3102360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014207789.3A DE102014207789A1 (en) 2014-04-25 2014-04-25 Method for producing a thermal barrier coating on a component
PCT/EP2015/056520 WO2015161981A1 (en) 2014-04-25 2015-03-26 Method for producing a thermal barrier coating on a component

Publications (1)

Publication Number Publication Date
EP3102360A1 true EP3102360A1 (en) 2016-12-14

Family

ID=53724253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15741839.3A Withdrawn EP3102360A1 (en) 2014-04-25 2015-03-26 Method for producing a thermal barrier coating on a component

Country Status (4)

Country Link
US (1) US20170216969A1 (en)
EP (1) EP3102360A1 (en)
DE (1) DE102014207789A1 (en)
WO (1) WO2015161981A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170240985A1 (en) * 2016-02-24 2017-08-24 General Electric Company Method of treatment, turbine component, and turbine system
DE102017208046A1 (en) * 2017-05-12 2018-11-15 Siemens Aktiengesellschaft Ceramic surface, CMC component and method of manufacture
DE102018119608A1 (en) * 2018-08-13 2020-02-13 Forschungszentrum Jülich GmbH Component with an adhesive structure for a turbomachine, method for producing a component with an adhesive structure for a turbomachine and turbomachine with a component with an adhesive structure
CN113652687B (en) * 2021-08-16 2022-09-20 西南交通大学 Thermal barrier coating textured anti-sticking surface and preparation method thereof
CN117127140A (en) * 2023-08-30 2023-11-28 西南科技大学 Crack-free remelting-free gas film cooling hole with thermal barrier coating, and preparation and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4377371A (en) 1981-03-11 1983-03-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laser surface fusion of plasma sprayed ceramic turbine seals
US6703137B2 (en) * 2001-08-02 2004-03-09 Siemens Westinghouse Power Corporation Segmented thermal barrier coating and method of manufacturing the same
DE10357536B4 (en) * 2003-12-10 2013-10-02 Mtu Aero Engines Gmbh Method of repairing thermal barrier coatings with local damage
EP1810774A1 (en) * 2006-01-24 2007-07-25 Siemens Aktiengesellschaft Process for the fabrication of a hole
US20090045179A1 (en) * 2007-08-15 2009-02-19 Ellen Marie Kosik Williams Method and system for cutting solid materials using short pulsed laser
DE202007016590U1 (en) * 2007-11-24 2008-02-07 Hochschule Mittweida (Fh) Device for high-performance micro-machining of a body or a powder layer with a laser of high brilliance
US8319146B2 (en) * 2009-05-05 2012-11-27 General Electric Company Method and apparatus for laser cutting a trench
US8857055B2 (en) * 2010-01-29 2014-10-14 General Electric Company Process and system for forming shaped air holes
EP2597259A1 (en) * 2011-11-24 2013-05-29 Siemens Aktiengesellschaft Modified surface around a hole
DE102012212278B4 (en) * 2012-07-13 2016-12-15 Arges Gmbh Arrangement for producing holes or welds

Also Published As

Publication number Publication date
WO2015161981A1 (en) 2015-10-29
DE102014207789A1 (en) 2015-10-29
US20170216969A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
EP3102360A1 (en) Method for producing a thermal barrier coating on a component
EP1712739A1 (en) Component with film cooling hole
EP1973688A1 (en) Method of making a hole
DE102014103000A1 (en) Component with micro-cooled laser-deposited material layer and method for the production
EP1670612A1 (en) Method for the production of a hole and device
DE112014004040T5 (en) A method of forming three-dimensional anchoring structures on a surface by propagating energy through a multi-core fiber
DE102014101973A1 (en) Cooled gas turbine component
WO2015121000A1 (en) Compressor blade having an erosion-resistant hard material coating
EP1816316B1 (en) Method for Repairing a Component
EP3500395B1 (en) 3-step method of producing air cooling holes using a nanosecond and millisecond laser and workpiece
EP2373824A1 (en) Method for coating a component with film cooling holes, and component
EP2230041B1 (en) Process for the fabrication of a hole
DE102008016170A1 (en) Component with overlapping welds and a method of manufacture
WO2006069822A1 (en) Method for the production of a hole
DE102013111874A1 (en) Manufacturing method of component for gas turbine engine involves forming grooves, each with cross-sectional are in predetermined ranged with respect to area derived from product of width of opening and depth of re-entrant shaped groove
EP4031310A1 (en) Method for the layer-by-layer additive manufacturing of a composite material
Petronic et al. Influence of picosecond laser pulses on the microstructure of austenitic materials
EP2761057B1 (en) Coating system with structured substrate surface and method for manufacture
WO2018024759A1 (en) Method for producing a channel structure and component
EP1867749A1 (en) Method to deposit a material on to a workpiece
EP1930115A1 (en) Wire, use of a wire and welding process
WO2007082793A1 (en) Component having a coating and process for producing a coating
WO2007134916A1 (en) Method for preparing a component consisting of an electroconductive base material in order to carry out an erosive process
DE102021200321A1 (en) Thermal barrier system and method of manufacture
EP2602352A1 (en) Component with film cooling holes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191001