EP3094702A1 - Method for producing a composite material containing luminescent molecules, for rendering sustainable the electromagnetic characteristics of said material - Google Patents

Method for producing a composite material containing luminescent molecules, for rendering sustainable the electromagnetic characteristics of said material

Info

Publication number
EP3094702A1
EP3094702A1 EP15703466.1A EP15703466A EP3094702A1 EP 3094702 A1 EP3094702 A1 EP 3094702A1 EP 15703466 A EP15703466 A EP 15703466A EP 3094702 A1 EP3094702 A1 EP 3094702A1
Authority
EP
European Patent Office
Prior art keywords
luminescent
molecules
type
optically active
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15703466.1A
Other languages
German (de)
French (fr)
Inventor
Philippe Gravisse
Marc Schiffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lrpl (laboratoire De Physiquedu Rayonnement Et de la Lummiere)
Cascade SAS
Original Assignee
Lrpl (laboratoire De Physiquedu Rayonnement Et de la Lummiere)
Cascade SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lrpl (laboratoire De Physiquedu Rayonnement Et de la Lummiere), Cascade SAS filed Critical Lrpl (laboratoire De Physiquedu Rayonnement Et de la Lummiere)
Publication of EP3094702A1 publication Critical patent/EP3094702A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1077Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a method of manufacturing a composite material containing luminescent molecules to make the electromagnetic characteristics of this material durable and to a product obtained by this method.
  • MOAs optically active molecules
  • Luminescent or optically active molecules are molecules that can emit light after passing their peripheral electrons in an excited state caused by a physical factor (light absorption), mechanical (friction) or chemical.
  • An excited molecule can transmit its excitation energy to another neighboring molecule in a non-radiative manner by coupling between the electronic orbitals of the two molecules. This phenomenon is called resonance energy transfer resulting from a dipole-dipole interaction between two molecules. Resonance energy transfer is possible if the emission spectrum of one molecule partially overlaps the absorption spectrum of the other molecule.
  • This type of energy transfer known as the Fôster type, is commonly known as FRET, an acronym for "Fôster résonance energy transfert".
  • the term "light cascade” will be understood to mean the transfer of energy occurring by the combination of a series of optically active molecules (MOAs) of two distinct groups chosen in such a way that the spectrum of emission of the first group of MOAs partially overlaps the absorption spectrum of the second group of MOAs successively, each of the two groups of MOAs being defined by a re-emission wavelength different from the absorption wavelength of the group MOAs considered.
  • MOAs optically active molecules
  • the "light cascade” within the meaning of this patent may further incorporate “Stokes type MOAs” whose retransmission wavelength is greater than the absorption wavelength and the "anti-type MOAs". - Stokes "whose retransmission wavelength is less than the absorption wavelength.
  • the invention also relates to the manufacture of luminescent (or optically active) particles including luminescent (or optically active) molecules mixed in a protective material.
  • optically active particles are dispersed in various types of polymers forming optically active composite materials, for example in film form, for different industrial uses.
  • a use such as photovoltaics (PV) can be obtained by a lamination technique - under a certain pressure and heat - with an encapsulating material such as polyethylene vinyl acetate (EVA) and all other related matrices. , or by the casting technique with polymethyl methacrylate (PMMA) and all other related matrices.
  • PV photovoltaics
  • EVA polyethylene vinyl acetate
  • PMMA polymethyl methacrylate
  • photovoltaic generators are manufactured in planar modules, which are integrated in buildings and greenhouses.
  • LDPE low density polyethylene
  • EVA LDPE
  • LLDPE low density polyethylene
  • PMMA polycarbonate
  • PVC polycarbonate
  • French patent FR2792460 describing a photovoltaic generator comprising at least one photovoltaic cell and a transparent matrix deposited with at least one optically active material having a wavelength are known in the prior art. absorption lambda a and lambda retransmission wavelength r, the optically active material being selected such that lambda corresponds to a range of lesser sensitivity of the photovoltaic cell as lambda r, the matrix having a reflective coating.
  • US Patent US4952442 describes a light cascade doped film for agricultural greenhouses so that the light is enriched in the frequency bands favorable to photosynthesis and the yield of plants is significantly improved.
  • the patent application FR1000696 discloses a photovoltaic module for a greenhouse comprising a front plate intended to be in contact with sunlight, a rear substrate and a set of photovoltaic cells disposed between the front plate and the rear substrate.
  • the photovoltaic module has an expansion coefficient substantially between 0.2 and 0.8 and comprises at least one layer of a light-cascade doped dopant material promoting photosynthesis capable of absorbing sunlight in at least one range of lengths. wave to re-emit in at least a second range of wavelengths favorable for photosynthesis of at least one plant species.
  • FR7808150 French patent describes a polymer matrix based on a homogeneous mixture of rare earth-type optically active crystals capable of generating a light cascade, which emits photons in the infrared region. This polymeric matrix displaces incident light close to the highest sensitivity of a photocell. Disadvantages of prior art
  • optically active molecules which is related to the high permeability of polymers to gases, especially oxygen or ozone. These polymers are commonly used for photovoltaics, for example, of the EVA family and for agricultural green films, for example, of the PE family.
  • This aging effect is accelerated by electromagnetic radiation, such as UV rays.
  • Oxygen and UV radiation - a component of solar energy - produce a conjugated effect on MOAs, which causes a rise in temperature leading to greater sensitivity to photooxidation.
  • adjuvants Antioxidant, Anti-UV, HALS - heat and light stabilization - phosphite, phosphorite, antistatic type are generally added in the polymer films such as EVA, PE.
  • the number of actual charges - MOAs - per unit volume is substantially limited.
  • the other cause of the aging of the films is the migration of the optically active molecules in the PE / EVA type matrices, which exude with the PE / EVA plasticizers and create localized overconcentration. This aggregation leads to a phenomenon of self-extinction due to a high local concentration of optically active molecules.
  • the aging effect is limited. However, the energy conversion efficiencies are too low to allow industrial and commercial use.
  • Another difficulty comes from the shift in the absorption and emission spectrum of the MOAs, when they are found in the presence of a solvent. A number of environmental parameters in the solvent can modify the spectra of these molecules: the pH, the presence of organic solutes, the temperature and the polarity of the solvent. The effects of these parameters vary from one type of MOA to another type. The more the solvent is polar, the more the effect is marked. Such a type of effect also occurs on molecules with a large dipole. Solution provided by the invention
  • the invention aims to solve the problems of the state of the art, in particular to ensure an interesting energy conversion efficiency, while delaying the aging of the optically active molecules. To do this, it is proposed to overcome the effects of migrations, photo-oxidation and photo-degradation of MOAs in ⁇ -polar polymers, which has a low gas permeability.
  • the present invention provides an improvement of the morphology of the support matrices with respect to doping optically active molecules.
  • the subject of the present invention is a method for making the electromagnetic characteristics of optically active composite materials durable, comprising: a first step of preparation of the doped organic compounds by mixing at least one type of optically active molecules with a protective material to prevent their contact with elements inducing photodegradation and migration of optically active molecules,
  • said protective material consists of at least one type of polar polymer and crosslinked in three dimensions, and which has a low gas permeability.
  • the invention provides optically active nanoparticles have a diameter of between 1.10 “8 meter and 2.10 " 6 meter.
  • the optically active nanoparticles are inorganic.
  • the optically active nanoparticles are organic, in one embodiment, the organic nanoparticles are made colloidal latex from methyl methacrylate, in another embodiment, the organic nanoparticles are produced by mechanical micronization. According to a preferred embodiment of the invention, only one type of optically active molecules is mixed with a protective material and doped in the nanoparticles to obtain the optically active nanoparticles doped unitarily.
  • a set of said optically active nanoparticles doped unitarily are associated according to an optimized concentration rule to achieve the light cascade effect and integrated in the polymers to form an optically active composite material.
  • a plurality of types of optically active molecules associated according to a concentration rule optimized for the light cascade effect are mixed in at least one type of protective and doped materials in the nanoparticles. to obtain optically active nanoparticles doped in light cascade.
  • said optically active nanoparticles doped in light cascade are integrated in the polymers to form an optically active composite material.
  • the emission spectrum of one type of MOA partially overlaps the absorption spectrum of another type of MOA successively forming a luminous cascade, and the ratio C 2 / C 1 between the concentration of the first type with respect to the concentration C 2 of the second type is between 0.13 and 0.26.
  • the optically active composite materials include at least one type of optically active Stokes molecules whose retransmission wavelength is greater than the absorption wavelength and / or at least one type of the molecules optically. anti-Stokes actives whose retransmission wavelength is less than the absorption wavelength.
  • optically active molecules of the organic fluorophore type having a remanence of less than 10 ns are associated with the optically active crystals of the inorganic ZnS.Ag type having a remanence greater than 10 ns, the lengths of which are emission and absorption waves respond to the light cascade effect.
  • optically active composite materials having according to the invention perennial optoelectro-magnetic characteristics include optically active nanoparticles doped optically active molecules, which are mixed with the protective materials.
  • the invention also relates to an application of said optically active composite material for industrial uses such as photovoltaics or agricultural greenhouses films.
  • the protective material is often a polar type organic polymer and crosslinked in three dimensions, which has a low oxygen permeability. These features help to resist aging and increase the light fastness of organic matrices doped with MOAs to avoid photo-degradations and MOA migration in the PE, EVA matrix families.
  • the nanoparticles have important interfacial surfaces and high cross sections. Indeed, a uniform dispersion of the active particles of submicron size leads to a consequent increase in the adsorption rate of the organic compounds doped with MOAs for a given charge mass. So a significant increase in the number of MOAs per unit volume for a given volume fraction.
  • the invention thus relates to: ⁇ A method of manufacturing a luminescent composite material intended to make durable the electromagnetic characteristics of this material comprising:
  • a first step of preparing an organic compound with protected light-emitting molecules by mixing at least a first group of light-emitting molecules with a protective material to avoid their contact with elements inducing the photo-degradation and the migration of the luminescent molecules,
  • the protective material consists of at least one polar polymer compatible with the luminescent molecules, preferably physico-chemically stable.
  • the step of manufacturing said luminescent particles consists of grinding the organic compound by grinding.
  • the step of manufacturing said light-emitting particles consists, during the production of the organic compound, of initially introducing the at least first group of light-emitting molecules into a monomer to form a luminescent polymer, to integrate this polymer with an inorganic particle, then to evaporating the polymer leaving the luminescent molecules fixed on the inorganic support so as to form the luminescent particles.
  • the step of manufacturing said luminescent particles consists in producing organic particles and dissolving the at least first group of light-emitting molecules in the organic particles formed so as to form the luminescent particles,
  • the organic nanoparticles are made colloidally latex from methyl methacrylate.
  • each luminescent particle comprises the same type of luminescent molecules, and which are capable of reacting in light cascade with a second type of luminescent molecule of a second group of luminescent particles or each luminescent particle comprises different types of luminescent molecules capable of reacting two to two in cascade light,
  • the concentrations of the different types of luminescent molecules of the different groups of luminescent particles are optimized to achieve the light cascade effect.
  • the polymer matrix is in the form of a film.
  • the composite material comprises several films each incorporating luminescent particles, these films being stacked together to combine the effects of the luminescent particles they contain.
  • the film stacking is performed at the time of a film coextrusion step.
  • the luminescent molecules (MOAs) whose emission spectrum of one type of MOAs partially overlaps the absorption spectrum of another type of MOAs successively forming a luminous cascade, respect the C 2 / C 1 ratio between the concentration of a first type with respect to the C 2 concentration of a second type between 0.13 and 0.26.
  • the luminescent molecules include at least one type of Stokes-type molecules whose retransmission wavelength is greater than the absorption wavelength and / or at least one type of the optically active anti-Stokes molecules whose length is greater than The retransmission wave is less than the absorption wavelength.
  • the molecules the luminescent molecules include at least organic fluorophore-like molecules having a remanence of less than 10 ns are associated with optically active crystals of inorganic ZnS.Ag type having a remanence greater than 10 ns, the wavelengths of which emission and absorption respond to the light cascade effect.
  • the invention relates to a material obtained according to the method above.
  • FIG. 1 represents the emission spectra of the doped PMMA microsphere samples. of the formula P004NP obtained under the excitation of UV light with a wavelength of 365 nm,
  • FIG. 2 shows the comparison of emission spectra of samples made in different ways, obtained under the excitation of UV light with a wavelength of 365 nm.
  • the distance separating the two molecules respectively from the two groups is less than 1.8 ⁇ R 0
  • R 0 is the distance between the two molecules respectively of the two groups for which the efficiency of the energy transfer is 50%
  • the structure of the molecule and the number of nuclei can determine the wavelengths of absorption and emission of molecules.
  • the optically active molecules of a first group are selected such that the emission ranges of these molecules correspond to the absorption ranges of the molecules of the second group, in order to fulfill the first criterion.
  • the optically active molecules are of the organic phosphon scintillator type with N + 1, N + 2, N + 3, N + x nuclei phi chosen from: aromatic cyclics, Anthracene, naphthacene, penthacene, hexacene, rhodamine, oxazine, diphenyloxazol and dimethyloxazol.
  • the MOAs include at least one group of MOAs stokes and at least one group of anti-Stokes MOAs. In this case, it is possible to use molecules including rare earth atoms such as anti-Stokes MOAs.
  • organic polymer matrices that are luminescent because they are doped with rare earths, which give a good path for exploiting the anti-Stokes effects.
  • the optically active crystals that can form organic polymer matrices doped with rare earths are generally capable of performing a reverse light cascade. For example, a two-photon absorbing molecule in the infrared region is capable of emitting a photon in the visible region.
  • a first group of optically active molecules (MOAs) of organic fluorophore type having a remanence ⁇ 10 ns is associated with a second group of MOAs of inorganic photoluminescent type / optically active crystals (series ZnS doped Ag or Cu) having a remanence> 10 ns, the molecules of the two groups respectively having lengths emission and absorption waves responding to the light cascade effect.
  • the remanence of the light cascade becomes longer (> 10 ns) and the effect of energy re-emission by the fluorophores then takes place over a longer time.
  • a transition is often made between the excited state of the first level and the ground state.
  • the table below represents two examples of formulas, composition and concentration of MOAs in gr / kg or in percentage: the first formula P004NP dosed at 21 gr / kg, the second formula 2013F dosed at 5 gr / kg.
  • the doped organic compounds are obtained by a mixture of a protective polymethyl methacrylate (PMMA) material, which is physico-chemical stable, and optically active molecules.
  • PMMA is polar because it effectively aligns dipole molecules and produces a CL effect statistically more prominent than isotopic materials. However, the absence of spectrum shift should be regularly monitored.
  • the polymethyl methacrylate type protective material may be replaced by another type of protective material: other polar polymers (or made polar by electron bombardment or functionalization of the polymer molecules) and compatible with the molecules optically active, for example, polyesters, methylenebut-3-en-1-ol (IOH), polycarbonate (PC), silicone, and methyl methacrylate (MMA).
  • other polar polymers or made polar by electron bombardment or functionalization of the polymer molecules
  • other polar polymers or made polar by electron bombardment or functionalization of the polymer molecules
  • compatible with the molecules optically active for example, polyesters, methylenebut-3-en-1-ol (IOH), polycarbonate (PC), silicone, and methyl methacrylate (MMA).
  • a protective material suitable for the production of organic compounds with protected luminescent molecules is physico-chemically stable, polar and compatible with the luminescent molecules considered, that is to say it prevents the exudation, migration, photooxidation and photodegradation of this MOA.
  • optically active nanoparticles are integrated into the polymers of industrial use, which are chosen from:
  • PMMA polymethyl methacrylate
  • EVA polyethylene vinyl acetate
  • PC Polycarbonate
  • LDPE Low density polyethylene
  • PVDF Polyvinylidene fluoride
  • the optically active nanoparticles are inorganic, and made for example, in alumino silicate, mesoporous silica, alumino zeolite, aluminosilicates. It is interesting in this case to be able to prepare the choice:
  • a first doped solution of a first group of MOAs is produced by operating the dissolution of optically active molecules (MOAs) of a first group in an ad hoc ligand or MMAs which connect the MOA to the zeolite.
  • MOAs of this first group may for example be chosen from polycyclic aromatic hydrocarbons N Phi nuclei (Anthracene or Benzenic series):
  • each solution prepared with the same type of MOAs is introduced into functionalized zeolite-type inorganic nanoparticles with a magnetic stirrer at a temperature of 45 degrees Celsius in order to obtain the different groups of NOAs (optically nanoparticles).
  • active) doped CL Light Cascade
  • the ad hoc ligand or MMA is evaporated to obtain different groups of optically active nanoparticles each doped with the same type of MOAs attached to the inorganic nanoparticles.
  • these CL doped NOAs are dried and integrated into the polymer encapsulation matrices.
  • each type of doped inorganic NOAs of 3, 4, 5 or N phi respectively are associated with a polymer matrix, in concentrations optimized to produce the light cascade effect, the most adapted to the intended application:
  • PV - photovoltaic - or PS - photosynthesis -
  • nanoparticles each individually doped with at least two groups of MOAs capable of reacting two by two in a luminous cascade is described below.
  • MOAs at concentrations and proportions optimized for the desired light cascade effect are introduced into a ligand or MMA for example, to form a solution of light cascade (CL).
  • this solution is introduced into the inorganic nanoparticles of the zeolite type in a magnetic stirrer at a temperature of 45 degrees.
  • the optically active nanoparticles are organic.
  • the techniques for manufacturing organic nanoparticles historically fall within the context of colloidal chemistry and involve conventional sol-gel processes, or other aggregation methods.
  • Macromoleccular rapid communications it is described the synthesis of poly nanometric (methyl methacrylate) initiated by 2, 2-azoisobutyronitrile by differential microemulsion polymerization; in the scientific journal “polymer” (volumn 49, issue 26, December 8, 2008, pages 5636-556), poly (methyl methacrylate) and silica nanocomposites produced by "graft through” are described using reversible by addition-fragmentation transfer of polymerization chain.
  • the optically active molecules are dissolved in a colloidal solution by latex starting from the PMMA monomer.
  • NOAs With a magnetic stirrer and at a temperature of 45 degrees Celsius, NOAs of a few tens to a few hundred nm are obtained.
  • Each type of unitary NOA includes only one type of MOA.
  • several groups of organic NOAs doped respectively with several different types of MOAs, each NOA having the same type of MOA are mixed in a twin-screw extruder with LDPE / EVA compounds, according to a rule of optimized concentration to obtain the desired cascade effect.
  • a plurality of types of MOAs for example, phosphors of HAP type 2, 3, 4, N phi at concentrations and proportions optimized for the light cascade effect.
  • phosphors of HAP type 2, 3, 4, N phi at concentrations and proportions optimized for the light cascade effect.
  • a colloidal latex solution starting from the MMA (PMMA monomer), with a magnetic stirrer and at a temperature of 45 degrees Celsius in order to obtain the CL doped NOAs.
  • These CL doped NOAs are then mixed with the PMMA polymer or the PEBD / EVA compounds in a twin-screw extruder.
  • doped NOAs CL were obtained NOAs of 500 nm and 2 micrometers doped according to the formula P004NP to CL, whose analysis results are represented in FIG. 1.
  • FIG. 1 contains the emission spectra of PMMA microsphere samples doped according to the formula
  • the P004NP under excitation of UV light of wavelength 365 nm The PMMA microspheres doped here are performed colloidally latex from the MMA as explained in the previous paragraphs.
  • the X axis represents the wavelength in nanometers, one hundred nanometers per scale, while the Y axis represents the intensity in the arbitrary unit.
  • the solid line represents the lot3 sample of microspheres of size 2 micrometers, while the dotted line represents the lot5 sample of microspheres of size 500 nanometers.
  • the following table shows the intensities of the peak in the light region of red and blue, respectively. This table makes it easy to classify productions in terms of energy conversion efficiency.
  • Lot 3 is the most efficient for Photovoltaics.
  • Lot 5 can be considered for agricultural applications, because it is very effective in the blue while being significant in the retransmission in the red.
  • Optically active molecules grafted into optically active nanoparticles made of PMMA have increased light fastness and good UV and 1 ⁇ 2 resistance.
  • a CL-doped PMMA matrix is micronized by grinding to form an organic pigment.
  • the matrix is constituted by a rigid or flexible organic material, or is in the form of an applicable coating under the form of a resin.
  • the organic material is polymethyl methacrylate (PMMA) for example.
  • the PMMA matrices doped CL are micronized by grinding at 40/50 micrometers. It is a "top-down" method that reduces particle size by ball mills or planetary mills.
  • the optically active dopants are organic pigments with 2, 3, 4, N + 1 phi nuclei of aromatic cyclic type, or of anthracene, naphthacene, penthacene, hexacene, rhodamine, oxazine, diphenyloxazol or dimethyloxazol type.
  • the particles thus obtained are called organic pigments.
  • FIG. 2 shows the comparison between the emission spectra of the samples made in different ways under the excitation of the UV light of wavelength at
  • the first type is the doped PMMA compound of the 2013F formula before the micronization process; the second type is the doped PMMA compound of the 2013F formula after the cryomilling type micronization process; while the third type is the lot3 sample (the microspheres doped with the P004NP formula of size 2 micrometer).
  • the X axis represents the wavelength in nanometers, one hundred nanometers per graduation, while the Y axis represents the relative intensity in arbitrary units.
  • the solid line represents the doped PMMA compounds, the dashed line represents PMMA grinding-cryo compounds, while the dotted-pull line represents the sample lot 3 - the microspheres in 2 microns.
  • the intensity of the emission peak microspheres 2 micrometer lot 3 is 27% lower than the cryo-crushed PMMA peak.
  • the intensity of the emission peaks is of the same order for the doped PMMA compound 2013F, the cryo-milled 2013F doped PMMA compound and the micrometers 2 micrometers lot 3 (doped P004NP).
  • the organic pigments thus obtained are associated with the polymer matrices of use in the industrial applications concerned: films for agricultural greenhouses or in the polyvinyl chloride (PVC) sheets, polyethylene vinyl acetate (EVA) or polycarbonate (PC).
  • PVC polyvinyl chloride
  • EVA polyethylene vinyl acetate
  • PC polycarbonate
  • nanoparticles of the above type and the polymer matrix monomers are introduced into the extruder in order to obtain an extruded film at the outlet.
  • a composite material consists of a PMMA copolymer - PE / EVA, where PMMA is the polar polymer doped with MOAs, forming a light cascade.
  • This type of material is the addition of two different polymers, one technical and functional and forming an agricultural film or one PE / EVA photovoltaic encapsulation, the other optically active, such as PMMA doped with MOAs. micronized.
  • any other type of matrix associated with any other type of organic pigment, such as IOH or PC is compatible.

Abstract

The invention relates to method for rendering sustainable the electromagnetic characteristics of optically active composite materials, said method comprising: a first step of preparing doped organic compounds by mixing at least one type of optically active molecules with a protective material in order to prevent the contact thereof with photodegradation-inducing elements and the migration of the optically active molecules; a second step of producing optically active nanoparticles including said doped organic compounds; and a third step of producing optically active composite materials by incorporating the optically active nanoparticles into a polymer matrix.

Description

Procédé de fabrication d'un matériau composite contenant des molécules luminescentes destiné à rendre pérennes les caractéristiques éléctromagnétiques de ce matériau Domaine de 1 ' invention Process for producing a composite material containing luminescent molecules for making the electromagnetic characteristics of this material durable
[0001] La présente invention se rapporte à un procédé de fabrication d'un matériau composite contenant des molécules luminescentes pour rendre pérennes les caractéristiques éléctromagnétiques de ce matériau ainsi qu'à un produit obtenu par ce procédé. The present invention relates to a method of manufacturing a composite material containing luminescent molecules to make the electromagnetic characteristics of this material durable and to a product obtained by this method.
[0002] Il concerne plus particulièrement le domaine des matériaux composites dopés par des molécules luminescentes, définies encore dans ce qui suit par l'expression « molécules optiquement actives », en abrégé , MOAs . It relates more particularly to the field of composite materials doped with luminescent molecules, further defined in what follows by the expression "optically active molecules", abbreviated MOAs.
[0003] Les molécules luminescentes ou optiquement actives désignent les molécules pouvant émettre de la lumière après passage de leurs électrons périphériques dans un état excité provoqué par un facteur physique (absorption de lumière), mécanique (friction) ou encore chimique. Luminescent or optically active molecules are molecules that can emit light after passing their peripheral electrons in an excited state caused by a physical factor (light absorption), mechanical (friction) or chemical.
[0004] Une molécule excitée peut transmettre son énergie d'excitation à une autre molécule voisine de manière non radiative par couplage entre les orbitales électroniques des deux molécules. Ce phénomène est appelé transfert d'énergie par résonance résultant d'une interaction dipôle-dipôle entre deux molécules. Le transfert d'énergie par résonance est possible si le spectre d'émission d'une molécule recouvre partiellement le spectre d'absorption de l'autre molécule. Ce type de transfert d'énergie, dit de type Fôster, est communément dénommé FRET, acronyme de «Fôster résonance energy transfert» . [ 0005 ] On entendra au sens du présent brevet par « cascade lumineuse » le transfert d'énergie se produisant par l'association d'une série de molécules optiquement actives (MOAs) de deux groupes distincts choisies de manière telle que le spectre d'émission du premier groupe de MOAs recouvre partiellement le spectre d'absorption du deuxième groupe de MOAs successivement, chacun des deux groupes de MOAs étant défini par une longueur d'onde de réémission différent de la longueur d'onde d'absorption des MOAs du groupe considéré. An excited molecule can transmit its excitation energy to another neighboring molecule in a non-radiative manner by coupling between the electronic orbitals of the two molecules. This phenomenon is called resonance energy transfer resulting from a dipole-dipole interaction between two molecules. Resonance energy transfer is possible if the emission spectrum of one molecule partially overlaps the absorption spectrum of the other molecule. This type of energy transfer, known as the Fôster type, is commonly known as FRET, an acronym for "Fôster résonance energy transfert". For the purposes of this patent, the term "light cascade" will be understood to mean the transfer of energy occurring by the combination of a series of optically active molecules (MOAs) of two distinct groups chosen in such a way that the spectrum of emission of the first group of MOAs partially overlaps the absorption spectrum of the second group of MOAs successively, each of the two groups of MOAs being defined by a re-emission wavelength different from the absorption wavelength of the group MOAs considered.
[ 0006 ] La « cascade lumineuse » au sens du présent brevet peut en outre incorporer des « MOAs de type Stokes » dont la longueur d'onde de réémission est supérieure à la longueur d'onde d'absorption et les « MOAs de type anti- Stokes » dont la longueur d'onde de réémission est inférieure à la longueur d'onde d'absorption. The "light cascade" within the meaning of this patent may further incorporate "Stokes type MOAs" whose retransmission wavelength is greater than the absorption wavelength and the "anti-type MOAs". - Stokes "whose retransmission wavelength is less than the absorption wavelength.
[ 0007 ] Le lien entre l'énergie E et la longueur d'onde λ est exprimé par l'équation suivante : The link between the energy E and the wavelength λ is expressed by the following equation:
E = h- c/λ h est la constante de Planck, c est la vitesse de la lumière dans le vide. E = h- c / λ h is the Planck constant, c is the speed of light in vacuum.
[ 0008 ] L'invention concerne également la fabrication de particules luminescentes (ou optiquement actives) incluant des molécules luminescentes (ou optiquement actives) mélangées dans un matériau protecteur. The invention also relates to the manufacture of luminescent (or optically active) particles including luminescent (or optically active) molecules mixed in a protective material.
[ 0009 ] Ces particules optiquement actives s'intègrent par dispersion dans divers types de polymères formant des matériaux composites optiquement actifs, par exemple sous forme de film, pour des usages industriels différents. These optically active particles are dispersed in various types of polymers forming optically active composite materials, for example in film form, for different industrial uses.
[ 00010 ] Selon le type de polymère du film, une pluralité d'utilisations est réalisée par ces matériaux composites optiquement actifs. En premier lieu, une utilisation comme le photovoltaïque (PV) peut être obtenue par une technique de lamination — sous une certain pression et chaleur - avec un matériau d'encapsulation comme par exemple le polyéthylène acétate de vinyle (EVA) et toutes autres matrices liées, ou par la technique de coulée avec du polyméthacrylate de méthyle (PMMA) et toutes autres matrices liées. De manière générale, les générateurs photovoltaïques sont fabriqués en modules plans, qui sont intégrés dans les bâtiments et les serres. En deuxième lieu, une utilisation comme films pour serres agricoles est réalisée par la technique de mono-extrusion ou de co-extrusion du Polyéthylène basse densité (PEBD), PEBD/EVA, ou LLDPE pour les serres maraîchères ou horticoles, pour la culture de primeurs, salades, mâches ou melons, et également les serres rigides en PMMA, polycarbonate, PVC, NDLR. According to the type of polymer of the film, a plurality of uses is made by these composite materials optically active. Firstly, a use such as photovoltaics (PV) can be obtained by a lamination technique - under a certain pressure and heat - with an encapsulating material such as polyethylene vinyl acetate (EVA) and all other related matrices. , or by the casting technique with polymethyl methacrylate (PMMA) and all other related matrices. In general, photovoltaic generators are manufactured in planar modules, which are integrated in buildings and greenhouses. Secondly, use as films for agricultural greenhouses is carried out by the technique of mono-extrusion or co-extrusion of low density polyethylene (LDPE), LDPE / EVA, or LLDPE for vegetable or horticultural greenhouses, for the cultivation of primeurs, salads, chews or melons, and also rigid greenhouses made of PMMA, polycarbonate, PVC, NDLR.
Etat de la technique State of the art
[00011] On connaît dans l'art antérieur le principe des cascades lumineuses, qui permet, par dopage d'une matrice par des substances optiquement actives organiques ou minérales, en solution ou en dispersion, de transférer tout ou partie de l'énergie incidente, dans les bandes de longueur d'onde de plus grandes sensibilités d'un capteur électromagnétique, tel que des cellules photovoltaïques par exemple. [00011] The principle of light cascades is known in the prior art, which makes it possible, by doping a matrix with optically active organic or inorganic substances, in solution or in dispersion, to transfer all or part of the incident energy. , in the wavelength bands of greater sensitivities of an electromagnetic sensor, such as photovoltaic cells for example.
[00012] On connaît dans l'art antérieur le brevet français FR2792460 décrivant un générateur photovoltaïque comportant au moins une cellule photovoltaïque et une matrice transparente déposée avec au moins un matériau optiquement actif présentant une longueur d'onde d'absorption lambdaa et une longueur d'onde de réémission lambdar, le matériau optiquement actif étant choisi de sorte que lambdaa corresponde à une plage de moindre sensibilité de la cellule photovoltaïque que lambdar, la matrice comportant un revêtement réfléchissant. [00012] French patent FR2792460 describing a photovoltaic generator comprising at least one photovoltaic cell and a transparent matrix deposited with at least one optically active material having a wavelength are known in the prior art. absorption lambda a and lambda retransmission wavelength r, the optically active material being selected such that lambda corresponds to a range of lesser sensitivity of the photovoltaic cell as lambda r, the matrix having a reflective coating.
[00013] On connaît le brevet américain US4952442 décrivant un film dopé cascade lumineuse pour serres agricoles de telle sorte que la lumière soit enrichie dans les bandes de fréquence favorables à la photosynthèse et que le rendement des plantes s'en trouve notablement amélioré. US Patent US4952442 describes a light cascade doped film for agricultural greenhouses so that the light is enriched in the frequency bands favorable to photosynthesis and the yield of plants is significantly improved.
[00014] La demande de brevet FR1000696 décrit un module photovoltaïque pour serre agricole comprenant une plaque avant destinée à être en contact avec la lumière solaire, un substrat arrière et un ensemble de cellules photovoltaïques disposées entre la plaque avant et le substrat arrière. Le module photovoltaïque a un coefficient de foisonnement compris sensiblement entre 0,2 et 0,8 et comprend au moins une couche d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale. The patent application FR1000696 discloses a photovoltaic module for a greenhouse comprising a front plate intended to be in contact with sunlight, a rear substrate and a set of photovoltaic cells disposed between the front plate and the rear substrate. The photovoltaic module has an expansion coefficient substantially between 0.2 and 0.8 and comprises at least one layer of a light-cascade doped dopant material promoting photosynthesis capable of absorbing sunlight in at least one range of lengths. wave to re-emit in at least a second range of wavelengths favorable for photosynthesis of at least one plant species.
[00015] Le brevet français FR7808150 décrit une matrice polymérique à base d'un mélange homogène de cristaux optiquement actifs de type terres rares capable de générer une cascade lumineuse, qui émette les photons dans la région infrarouge. Cette matrice polymérique déplace la lumière incidente proche de la plus grande sensibilité d'une photopile. Inconvénients de l'art antérieur FR7808150 French patent describes a polymer matrix based on a homogeneous mixture of rare earth-type optically active crystals capable of generating a light cascade, which emits photons in the infrared region. This polymeric matrix displaces incident light close to the highest sensitivity of a photocell. Disadvantages of prior art
[00016] Les solutions de l'art antérieur présentent des problèmes de stabilisation des molécules optiquement actives. Bien que les différentes matrices organiques polymériques dopées des molécules optiquement actives organiques ou inorganiques donnent des rendements de conversion d'énergie intéressants, l'effet de vieillissement de ces matrices dopées est significatif et la solidité lumière est insuffisante. The solutions of the prior art have problems stabilizing optically active molecules. Although the various doped polymeric organic matrices of organic or inorganic optically active molecules give interesting energy conversion efficiencies, the aging effect of these doped matrices is significant and the light fastness is insufficient.
[00017] Une cause possible est la photo-oxydation des molécules optiquement actives, qui est liée à la forte perméabilité des polymères aux gaz, notamment l'oxygène ou l'ozone. Ces polymères sont couramment employés pour le photovoltaïque , par exemple, de la famille des EVA et pour les films serres agricoles, par exemple, de la famille des PE. Cet effet de vieillissement est accéléré par les rayonnements électromagnétiques, tels que les rayons UV. L'oxygène et le rayonnement UV - composante de l'énergie solaire — produisent sur les MOAs un effet conjugué, qui provoque une élévation de température conduisant une plus grande sensibilité à la photooxydation . One possible cause is the photo-oxidation of optically active molecules, which is related to the high permeability of polymers to gases, especially oxygen or ozone. These polymers are commonly used for photovoltaics, for example, of the EVA family and for agricultural green films, for example, of the PE family. This aging effect is accelerated by electromagnetic radiation, such as UV rays. Oxygen and UV radiation - a component of solar energy - produce a conjugated effect on MOAs, which causes a rise in temperature leading to greater sensitivity to photooxidation.
[00018] Afin de résoudre ce problème, des adjuvants Antioxydant, Anti-UV, des HALS — heat and light stabilisation — de type phosphite, phosphorite, antistatique sont généralement ajoutés dans les films polymères comme EVA, PE . Cependant malgré la diminution de vieillissement, le nombre de charges effectives — MOAs — par unité de volume, est substantiellement limité. In order to solve this problem, adjuvants Antioxidant, Anti-UV, HALS - heat and light stabilization - phosphite, phosphorite, antistatic type are generally added in the polymer films such as EVA, PE. However, despite the decrease in aging, the number of actual charges - MOAs - per unit volume, is substantially limited.
[ 00019 ] L ' autre cause du vieillissement des films est la migration des molécules optiquement actives dans les matrices de type PE/EVA, qui exsudent avec les plastifiants du PE/EVA et créent une surconcentration localisée. Cette agrégation conduit à un phénomène d'auto-extinction due à une concentration locale de molécules optiquement actives élevée. [ 00020 ] Dans d'autres matrices polymériques organiques dopées avec des terres rares, l'effet de vieillissement est limité. Néanmoins les rendements de conversion énergétiques sont trop faibles pour permettre une utilisation industrielle et commerciale. [ 00021 ] Une autre difficulté vient du décalage du spectre d'absorption et d'émission des MOAs, lorsqu'elles se retrouvent en présence d'un solvant. Un certain nombre de paramètres environnementaux dans le solvant peuvent modifier les spectres de ces molécules : le pH, la présence de solutés organiques, la température et la polarité du solvant. Les effets de ces paramètres varient d'un type de MOA à l'autre type. Plus le solvant est polaire, plus l'effet est marqué. Un tel type d'effet se produit également sur les molécules avec un grand dipôle. Solution apportée par l'invention The other cause of the aging of the films is the migration of the optically active molecules in the PE / EVA type matrices, which exude with the PE / EVA plasticizers and create localized overconcentration. This aggregation leads to a phenomenon of self-extinction due to a high local concentration of optically active molecules. In other organic polymer matrices doped with rare earths, the aging effect is limited. However, the energy conversion efficiencies are too low to allow industrial and commercial use. Another difficulty comes from the shift in the absorption and emission spectrum of the MOAs, when they are found in the presence of a solvent. A number of environmental parameters in the solvent can modify the spectra of these molecules: the pH, the presence of organic solutes, the temperature and the polarity of the solvent. The effects of these parameters vary from one type of MOA to another type. The more the solvent is polar, the more the effect is marked. Such a type of effect also occurs on molecules with a large dipole. Solution provided by the invention
[ 00022 ] L'invention vise à résoudre les problèmes de l'état de la technique, en particulier à garantir un rendement de conversion d'énergie intéressant, tout en retardant le vieillissement des molécules optiquement actives. [ 00023 ] Pour ce faire, il est proposé de pallier les effets de migrations, de photo-oxydation et de photo-dégradation des MOAs dans les polymères a-polaires, qui présente une faible perméabilité au gaz. The invention aims to solve the problems of the state of the art, in particular to ensure an interesting energy conversion efficiency, while delaying the aging of the optically active molecules. To do this, it is proposed to overcome the effects of migrations, photo-oxidation and photo-degradation of MOAs in α-polar polymers, which has a low gas permeability.
[ 00024 ] Dans ce but, la présente invention propose une amélioration de la morphologie des matrices supports par rapport aux dopants des molécules optiquement actives. [00025] A cet effet, la présente invention a pour objet un procédé destiné à rendre pérennes les caractéristiques éléctromagnétiques des matériaux composites optiquement actifs comprenant : une première étape de préparation des composés organiques dopés en mélangeant au moins un type de molécules optiquement actives avec un matériau protecteur pour éviter leur contact avec des éléments induisant la photodégradation et la migration des molécules optiquement actives , For this purpose, the present invention provides an improvement of the morphology of the support matrices with respect to doping optically active molecules. For this purpose, the subject of the present invention is a method for making the electromagnetic characteristics of optically active composite materials durable, comprising: a first step of preparation of the doped organic compounds by mixing at least one type of optically active molecules with a protective material to prevent their contact with elements inducing photodegradation and migration of optically active molecules,
une deuxième étape de fabrication des nanoparticules optiquement actives incluant lesdits composés organiques dopés ,  a second step of manufacturing optically active nanoparticles including said doped organic compounds,
et une troisième étape de production des matériaux composites optiquement actifs en intégrant les nanoparticules optiquement actives dans une matrice polymère .  and a third step of producing optically active composite materials by integrating the optically active nanoparticles into a polymer matrix.
[00026] Selon les caractéristiques de l'invention, ledit matériau protecteur est constitué par au moins un type de polymère polaire et réticulé en trois dimensions, et qui présente une faible perméabilité au gaz.  According to the characteristics of the invention, said protective material consists of at least one type of polar polymer and crosslinked in three dimensions, and which has a low gas permeability.
[00027] Selon des particularités avantageuses, l'invention prévoit les nanoparticules optiquement actives présentent un diamètre compris entre 1.10"8 mètre et 2.10"6 mètre. According to advantageous features, the invention provides optically active nanoparticles have a diameter of between 1.10 "8 meter and 2.10 " 6 meter.
[00028] Selon une première variante de réalisation, les nanoparticules optiquement actives sont inorganiques. According to a first variant embodiment, the optically active nanoparticles are inorganic.
[00029] Selon une deuxième variante, les nanoparticules optiquement actives sont organiques, dans un mode de réalisation, les nanoparticules organiques sont réalisées par voie colloïdal latex à partir du méthyl méthacrylate, dans un autre mode de réalisation, les nanoparticules organiques sont réalisées par voie de micronisation mécanique . [00030] Selon un mode de réalisation préféré de l'invention, seulement un type de molécules optiquement actives est mélangé avec un matériau protecteur et dopé dans les nanoparticules pour obtenir les nanoparticules optiquement actives dopées unitairement . According to a second variant, the optically active nanoparticles are organic, in one embodiment, the organic nanoparticles are made colloidal latex from methyl methacrylate, in another embodiment, the organic nanoparticles are produced by mechanical micronization. According to a preferred embodiment of the invention, only one type of optically active molecules is mixed with a protective material and doped in the nanoparticles to obtain the optically active nanoparticles doped unitarily.
[00031] De préférence, un ensemble desdites nanoparticules optiquement actives dopées unitairement sont associées suivant une règle de concentration optimisée pour réaliser l'effet de cascade lumineuse et intégrées dans les polymères pour former un matériau composite optiquement actif. Preferably, a set of said optically active nanoparticles doped unitarily are associated according to an optimized concentration rule to achieve the light cascade effect and integrated in the polymers to form an optically active composite material.
[00032] Selon un mode de mise en œuvre particulièrement avantageux, une pluralité de types de molécules optiquement actives associées suivant une règle de concentration optimisée pour l'effet de cascade lumineuse sont mélangées dans au moins un type de matériaux protecteurs et dopées dans les nanoparticules pour obtenir les nanoparticules optiquement actives dopées en cascade lumineuse. [00033] De préférence, lesdites nanoparticules optiquement actives dopées en cascade lumineuse sont intégrées dans les polymères pour former un matériau composite optiquement actif. According to a particularly advantageous embodiment, a plurality of types of optically active molecules associated according to a concentration rule optimized for the light cascade effect are mixed in at least one type of protective and doped materials in the nanoparticles. to obtain optically active nanoparticles doped in light cascade. Preferably, said optically active nanoparticles doped in light cascade are integrated in the polymers to form an optically active composite material.
[ 00034 ] Plusieurs desdits matériaux composites optiquement actifs de fonctions différentes sont empilés au moment de la co-extrusion des films formant matrice. [00034] Several of said optically active composite materials of different functions are stacked at the time of coextrusion of the matrix films.
[00035] Dans un mode de réalisation, le spectre d'émission d'un type de MOA recouvre partiellement le spectre d'absorption d'un autre type de MOA successivement formant une cascade lumineuse, et le rapport C2 /C1 entre la concentration du premier type par rapport à la concentration C2 du deuxième type est compris entre 0,13 et 0,26. [ 00036 ] Plus particulièrement, les matériaux composites optiquement actifs incluent au moins un type des molécules optiquement actives Stokes dont la longueur d'onde de réémission est supérieure à la longueur d'onde d'absorption et/ou au moins un type des molécules optiquement actives anti-Stokes dont la longueur d'onde de réémission est inférieure à la longueur d'onde d ' absorption . In one embodiment, the emission spectrum of one type of MOA partially overlaps the absorption spectrum of another type of MOA successively forming a luminous cascade, and the ratio C 2 / C 1 between the concentration of the first type with respect to the concentration C 2 of the second type is between 0.13 and 0.26. More particularly, the optically active composite materials include at least one type of optically active Stokes molecules whose retransmission wavelength is greater than the absorption wavelength and / or at least one type of the molecules optically. anti-Stokes actives whose retransmission wavelength is less than the absorption wavelength.
[ 00037 ] Selon un autre mode de réalisation, des molécules optiquement actives de type fluorophore organique ayant une rémanence inférieure à 10 ns sont associées avec les cristaux optiquement actifs de type ZnS.Ag inorganique ayant une rémanence supérieure à 10 ns, dont les longueurs d'ondes d'émission et d'absorption répondent à l'effet cascade lumineuse. According to another embodiment, optically active molecules of the organic fluorophore type having a remanence of less than 10 ns are associated with the optically active crystals of the inorganic ZnS.Ag type having a remanence greater than 10 ns, the lengths of which are emission and absorption waves respond to the light cascade effect.
[ 00038 ] Les Matériaux composites optiquement actifs présentant selon l'invention des caractéristiques optoéléctro-magnétiques pérennes, comprennent les nanoparticules optiquement actives dopés des molécules optiquement actives, qui sont mélangées avec les matériaux protecteurs . The optically active composite materials having according to the invention perennial optoelectro-magnetic characteristics, include optically active nanoparticles doped optically active molecules, which are mixed with the protective materials.
[ 00039 ] L ' invention concerne également une application dudit matériau composite optiquement actif pour des usages industriels comme le photovoltaïque ou les films des serres agricoles. The invention also relates to an application of said optically active composite material for industrial uses such as photovoltaics or agricultural greenhouses films.
[ 00040 ] Le matériau protecteur est souvent un polymère organique de type polaire et réticulé en trois dimensions, qui présente une faible perméabilité à l'oxygène. Ces caractéristiques aident à résister au vieillissement et à augmenter la solidité lumière des matrices organiques dopées par des MOAs pour éviter les photo-dégradations et la migration des MOAs dans les familles de matrices type PE, EVA. [ 00041 ] Les nanoparticules possèdent des surfaces interfaciales importantes et des sections efficaces élevées. En effet, une dispersion uniforme des particules active de taille submicronique conduit à une augmentation conséquente du taux d'adsorption des composés organiques dopés de MOAs pour une masse de charge donnée. Donc une augmentation importante du nombre de MOAs par unité de volume pour une fraction volumique donnée. The protective material is often a polar type organic polymer and crosslinked in three dimensions, which has a low oxygen permeability. These features help to resist aging and increase the light fastness of organic matrices doped with MOAs to avoid photo-degradations and MOA migration in the PE, EVA matrix families. [00041] The nanoparticles have important interfacial surfaces and high cross sections. Indeed, a uniform dispersion of the active particles of submicron size leads to a consequent increase in the adsorption rate of the organic compounds doped with MOAs for a given charge mass. So a significant increase in the number of MOAs per unit volume for a given volume fraction.
L'invention concerne ainsi un : · Procédé de fabrication d'un matériau composite luminescent destiné à rendre pérennes les caractéristiques éléctromagnétiques de ce matériauluminescent comprenant : The invention thus relates to: · A method of manufacturing a luminescent composite material intended to make durable the electromagnetic characteristics of this material comprising:
• une première étape de préparation d'un composé organique à molécules luminescentes protégées en mélangeant au moins un premier groupe de molécules luminescentes avec un matériau protecteur pour éviter leur contact avec des éléments induisant la photo-dégradation et la migration des molécules luminescentes,  A first step of preparing an organic compound with protected light-emitting molecules by mixing at least a first group of light-emitting molecules with a protective material to avoid their contact with elements inducing the photo-degradation and the migration of the luminescent molecules,
· une deuxième étape de fabrication de particules luminescentes présentant un diamètre compris entre 1 . 10"8 mètre et 2 . 10"6 mètre incluant lesdits composés organiques , A second step of manufacturing luminescent particles having a diameter of between 1. 10 "8 meters and 2 " 10 "6 meters including said organic compounds,
• et une troisième étape de production d'un matériau composite luminescent en intégrant les particules luminescentesdans une matrice polymère.  And a third step of producing a luminescent composite material by integrating the luminescent particles into a polymer matrix.
• Selon ce procédé • According to this process
- le matériau protecteur est constitué par au moins un polymère polaire compatible avec les molécules luminescentes, de préférence physico-chimiquement stable. l'étape de fabrication desdites particules luminescentes consiste à microniser par broyage le composé organique. the protective material consists of at least one polar polymer compatible with the luminescent molecules, preferably physico-chemically stable. the step of manufacturing said luminescent particles consists of grinding the organic compound by grinding.
l'étape de fabrication desdites particules luminescentes consiste, lors de la fabrication du composé organique, à introduire initialement l'au moins premier groupe de molécules luminescentes dans un monomère pour former un polymère luminescent, à intégrer ce polymère à une particule inorganique, puis à évaporer le polymère en laissant les molécules luminescentes fixées sur le support inorganique de façon à former les particules luminescentes . the step of manufacturing said light-emitting particles consists, during the production of the organic compound, of initially introducing the at least first group of light-emitting molecules into a monomer to form a luminescent polymer, to integrate this polymer with an inorganic particle, then to evaporating the polymer leaving the luminescent molecules fixed on the inorganic support so as to form the luminescent particles.
l'étape de fabrication desdites particules luminescentes consiste à fabriquer des particules organiques et à dissoudre l'au moins premier groupe de molécules luminescentes dans les particules organiques formées de façon à former les particules luminescentes, the step of manufacturing said luminescent particles consists in producing organic particles and dissolving the at least first group of light-emitting molecules in the organic particles formed so as to form the luminescent particles,
les nanoparticules organiques sont réalisées par voie colloïdale latex à partir du méthyl méthacrylate. the organic nanoparticles are made colloidally latex from methyl methacrylate.
chaque particule luminescente comprend un même type de molécules luminescentes, et qui sont susceptibles de réagir en cascade lumineuse avec un deuxième type de molécule luminescente d'un deuxième groupe de particules luminescentes ou chaque particule luminescente comprend différents types de molécules luminescentes susceptibles de réagir deux à deux en cascade lumineuse, each luminescent particle comprises the same type of luminescent molecules, and which are capable of reacting in light cascade with a second type of luminescent molecule of a second group of luminescent particles or each luminescent particle comprises different types of luminescent molecules capable of reacting two to two in cascade light,
les concentrations des différents types de molécules luminescentes des différents groupes de particules luminescentes sont optimisées pour réaliser l'effet de cascade lumineuse. • la matrice polymère se présente sous la forme d'un film. the concentrations of the different types of luminescent molecules of the different groups of luminescent particles are optimized to achieve the light cascade effect. The polymer matrix is in the form of a film.
• le matériau composite comprend plusieurs films intégrant chacun des particules luminescentes, ces films étant empilés les uns aux autres pour combiner les effets des particules luminescentes qu'ils contiennent. l'empilement des films est réalisé au moment d'une étape de coextrusion des films. les molécules luminescentes (MOAs), dont le spectre d'émission d'un type de MOAs recouvre partiellement le spectre d'absorption d'un autre type de MOAs formant successivement une cascade lumineuse, respectent le rapport C2/C1 entre la concentration d'un premier type par rapport à la concentration C2 d'un deuxième type compris entre 0,13 et 0,26. les molécules luminescentes incluent au moins un type des molécules de type Stokes dont la longueur d'onde de réémission est supérieure à la longueur d'onde d'absorption et/ou au moins un type des molécules optiquement actives anti-Stokes dont la longueur d'onde de réémission est inférieur à la longueur d'onde d ' absorption . The composite material comprises several films each incorporating luminescent particles, these films being stacked together to combine the effects of the luminescent particles they contain. the film stacking is performed at the time of a film coextrusion step. the luminescent molecules (MOAs), whose emission spectrum of one type of MOAs partially overlaps the absorption spectrum of another type of MOAs successively forming a luminous cascade, respect the C 2 / C 1 ratio between the concentration of a first type with respect to the C 2 concentration of a second type between 0.13 and 0.26. the luminescent molecules include at least one type of Stokes-type molecules whose retransmission wavelength is greater than the absorption wavelength and / or at least one type of the optically active anti-Stokes molecules whose length is greater than The retransmission wave is less than the absorption wavelength.
les molécules les molécules luminescentes incluent au moins des molécules de type fluorophore organique ayant une rémanence inférieure à 10 ns sont associées avec les cristaux optiquement actifs de type ZnS.Ag inorganique ayant une rémanence supérieure à 10 ns, dont les longueurs d'ondes d'émission et d'absorption répondent à l'effet cascade lumineuse. L'invention concerne un matériau obtenu selon le procédé ci-dessus . the molecules the luminescent molecules include at least organic fluorophore-like molecules having a remanence of less than 10 ns are associated with optically active crystals of inorganic ZnS.Ag type having a remanence greater than 10 ns, the wavelengths of which emission and absorption respond to the light cascade effect. The invention relates to a material obtained according to the method above.
Ainsi qu'un matériau comprenant des particules luminescentes de PMMA dopées par des molécules luminescentes réalisées par voie colloïdale latex à partir de monomères MMA.  As well as a material comprising PMMA luminescent particles doped with colloidal latex-based luminescent molecules from MMA monomers.
Et l'Utilisation du matériau selon la revendication précédente comme élément photovoltaïque ou film de serres agricoles . And the use of the material according to the preceding claim as a photovoltaic element or film of agricultural greenhouses.
Description détaillée d'un exemple non limitatif de réalisation Detailed description of a nonlimiting example of embodiment
[ 00042 ] L ' invention sera mieux comprise et d'autres caractéristiques et avantages apparaîtront plus clairement à la lecture de la description qui suit, se référant aux dessins annexés où - la figure 1 représente les spectres d'émission des échantillons de microsphères PMMA dopées de la formule P004NP obtenus sous l'excitation de la lumière UV de longueur d'onde 365 nm, The invention will be better understood and other features and advantages will appear more clearly on reading the description which follows, with reference to the accompanying drawings in which - FIG. 1 represents the emission spectra of the doped PMMA microsphere samples. of the formula P004NP obtained under the excitation of UV light with a wavelength of 365 nm,
la figure 2 montre la comparaison de spectres d'émission d'échantillons réalisés de façons différentes, obtenus sous l'excitation de la lumière UV de longueur d'onde 365 nm.  FIG. 2 shows the comparison of emission spectra of samples made in different ways, obtained under the excitation of UV light with a wavelength of 365 nm.
Description non limitative d'exemples de réalisation Non-limiting description of exemplary embodiments
[ 00043 ] D ' autre particularités et avantages de l'invention ressortiront à la lecture de la description faite ci- après de modes de réalisation particuliers de l'invention, donnés à titre indicatif mais non limitatif. Other features and advantages of the invention will emerge on reading the description given hereinabove. after particular embodiments of the invention, given by way of indication but not limiting.
[00044] Afin de réaliser l'effet de « cascade lumineuse» entre plusieurs groupes distincts de MOAs, il est nécessaire de remplir trois conditions entre deux groupes de MOAs pour obtenir le phénomène «Fôster résonance energy transfert», en abrégé FRET: In order to achieve the "light cascade" effect between several distinct groups of MOAs, it is necessary to fulfill three conditions between two groups of MOAs in order to obtain the "Foister resonance energy transfer" phenomenon, abbreviated to FRET:
• Le spectre d'émission d'une molécule d'un premier groupe recouvre partiellement le spectre d'absorption d'une molécule du deuxième groupe, • The emission spectrum of a molecule of a first group partially overlaps the absorption spectrum of a molecule of the second group,
• La distance séparant les deux molécules respectivement des deux groupes est inférieure à 1.8 x R0, R0 est la distance entre les deux molécules respectivement des deux groupes pour laquelle l'efficacité du transfert d'énergie est de 50%, • The distance separating the two molecules respectively from the two groups is less than 1.8 × R 0 , R 0 is the distance between the two molecules respectively of the two groups for which the efficiency of the energy transfer is 50%,
• L'orientation relative entre les deux molécules respectivement des deux groupes permet de définir un dipôle . • The relative orientation between the two molecules respectively of the two groups makes it possible to define a dipole.
[00045] La structure de la molécule et le nombre de noyaux peuvent déterminer les longueurs d'ondes d'absorption et d'émission de molécules. Les molécules optiquement actives d'un premier groupe sont sélectionnées de telle sorte que les plages d'émission de ces molécules correspondent aux plages d'absorption des molécules du deuxième groupe, afin de remplir le première critère. The structure of the molecule and the number of nuclei can determine the wavelengths of absorption and emission of molecules. The optically active molecules of a first group are selected such that the emission ranges of these molecules correspond to the absorption ranges of the molecules of the second group, in order to fulfill the first criterion.
[00046] Selon un mode de mise en œuvre de l'invention, les molécules optiquement actives sont de type organiques scintillateurs luminophore à N+l, N+2 , N+3 , N+x noyaux phi choisis parmi : les cycliques aromatiques, 1 ' anthracène , le naphtacène, le penthacène, l'hexacène, le rhodamine, l'oxazine, le diphényloxazol et le dimethyloxazol . [00047] Selon un autre mode de réalisation, les MOAs incluent au moins un groupe de MOAs stokes et au moins un groupe de MOAs anti-Stokes. Dans ce cas, il est possible d'utiliser des molécules incluant des atomes de terres rares comme MOAs anti-Stokes. Elles peuvent former lorsqu ' associées à des matrices polymériques organiques, des matrices polymériques organiques luminescentes car dopées avec terres rares qui donnent une bonne voie pour exploiter les effets anti-Stokes. En effet, les cristaux optiquement actifs que peuvent former des matrices polymériques organiques dopées avec terres rares, sont en général, susceptibles de réaliser une cascade lumineuse inverse. Par exemple, une molécule absorbant deux photons dans la région d'infrarouge est capable d'émettre un photon dans la région du visible. Il en est ainsi, par exemple, des luminescences anti-Stokes de trois Ln202S: Er(sup 3 +), Yb(sup 3 +), qui sont des luminophores incorporés en triplex sous l'excitation des sources IR dans les plages différentes de 0.93, 1.53, et 1.59 micromètre. Plus de détails sont donnés dans le tableau ci-dessous : According to one embodiment of the invention, the optically active molecules are of the organic phosphon scintillator type with N + 1, N + 2, N + 3, N + x nuclei phi chosen from: aromatic cyclics, Anthracene, naphthacene, penthacene, hexacene, rhodamine, oxazine, diphenyloxazol and dimethyloxazol. [00047] According to another embodiment, the MOAs include at least one group of MOAs stokes and at least one group of anti-Stokes MOAs. In this case, it is possible to use molecules including rare earth atoms such as anti-Stokes MOAs. They can form, when combined with organic polymer matrices, organic polymer matrices that are luminescent because they are doped with rare earths, which give a good path for exploiting the anti-Stokes effects. Indeed, the optically active crystals that can form organic polymer matrices doped with rare earths, are generally capable of performing a reverse light cascade. For example, a two-photon absorbing molecule in the infrared region is capable of emitting a photon in the visible region. This is the case, for example, with anti-Stokes luminescences of three Ln202S: Er (sup 3 +), Yb (sup 3 +), which are phosphors incorporated into triplexes under the excitation of IR sources in the different ranges of 0.93, 1.53, and 1.59 micrometers. More details are given in the table below:
[00048] Dans un troisième mode de réalisation particulièrement avantageux, un premier groupe de molécules optiquement actives (MOAs) de type fluorophore organique ayant une rémanence < 10 ns est associé avec un deuxième groupe de MOAs de type photoluminescent inorganique /cristaux optiquement actifs (série ZnS dopés Ag ou Cu) ayant une rémanence >10 ns, les molécules des deux groupes présentant respectivement des longueurs d'ondes d'émission et d'absorption répondant à l'effet cascade lumineuse. La rémanence de la cascade lumineuse devient de plus longue durée (>10 ns) et l'effet de réémission d'énergie par les fluorophores s'opère alors sur un temps plus long. In a third particularly advantageous embodiment, a first group of optically active molecules (MOAs) of organic fluorophore type having a remanence <10 ns is associated with a second group of MOAs of inorganic photoluminescent type / optically active crystals (series ZnS doped Ag or Cu) having a remanence> 10 ns, the molecules of the two groups respectively having lengths emission and absorption waves responding to the light cascade effect. The remanence of the light cascade becomes longer (> 10 ns) and the effect of energy re-emission by the fluorophores then takes place over a longer time.
[00049] Le tableau ci-dessous décrit les différentes transitions électroniques possibles des molécules. The table below describes the various possible electronic transitions of the molecules.
Une transition est souvent réalisée entre l'état excité du premier niveau et l'état fondamental. A transition is often made between the excited state of the first level and the ground state.
[00050] Afin de remplir le deuxième critère, il est nécessaire d'atteindre une certaine concentration de MOAs . A titre d'exemple, le tableau ci-dessous représente deux exemples de formules, de composition et la concentration des MOAs en gr/kg ou en pourcentage: la première formule P004NP dosée à 21 gr/kg, la deuxième formula 2013F dosée à 5 gr/kg. In order to fulfill the second criterion, it is necessary to reach a certain concentration of MOAs. By way of example, the table below represents two examples of formulas, composition and concentration of MOAs in gr / kg or in percentage: the first formula P004NP dosed at 21 gr / kg, the second formula 2013F dosed at 5 gr / kg.
Composés PPO Uvitex OB LFR305// GG PPO Compounds Uvitex OB LFR305 // GG
OR610 référence 2,5 2,5 Di Hostasol diphényl thiophène pérylène red oxazole C32H16 OR610 reference 2,5 2,5 Di Hostasol diphenyl thiophene perylene red oxazole C32H16
C26H26N202S C23H120S C26H26N202S C23H120S
C15H11NO C15H11NO
Formule 15,4gr 3,85gr 0,8744gr 0,8744grFormula 15,4gr 3,85gr 0,8744gr 0,8744gr
P004NP P004NP
73,33% 18,33% 4,166% 4,166%  73.33% 18.33% 4.166% 4.166%
Formule 3,657gr 0,942gr 0,401gr Formula 3,657gr 0,942gr 0,401gr
2013F 73, 14% 18,84% 8,02% 2013F 73, 14% 18.84% 8.02%
[00051] Les composés organiques dopés sont obtenus par un mélange d'un matériau protecteur type polyméthyl méthacrylate (PMMA), qui est physico-chimique stable, et des molécules optiquement actives. Le PMMA est polaire, car il aligne effectivement les molécules dipôles et produit un effet CL statistiquement plus proéminent que les matériaux isotopiques. Cependant l'absence de décalage du spectre doit être régulièrement contrôlé. The doped organic compounds are obtained by a mixture of a protective polymethyl methacrylate (PMMA) material, which is physico-chemical stable, and optically active molecules. PMMA is polar because it effectively aligns dipole molecules and produces a CL effect statistically more prominent than isotopic materials. However, the absence of spectrum shift should be regularly monitored.
[00052] Dans les composés organiques dopés, le matériau protecteur type polyméthyl méthacrylate peut être remplacé par un autre type de matériau protecteur : d'autres polymères polaires (ou rendus polaires par un bombardement électronique ou fonctionnalisation des molécules polymères) et compatibles avec les molécules optiquement actives, par exemple le polyesters, le methylenebut-3-en-l-ol (IOH), le polycarbonate (PC), le silicone, et le méthyl méthacrylate (MMA) . In doped organic compounds, the polymethyl methacrylate type protective material may be replaced by another type of protective material: other polar polymers (or made polar by electron bombardment or functionalization of the polymer molecules) and compatible with the molecules optically active, for example, polyesters, methylenebut-3-en-1-ol (IOH), polycarbonate (PC), silicone, and methyl methacrylate (MMA).
[00053] Un matériau protecteur convenant à la réalisation de composés organiques à molécules luminescentes protégées est physico-chimiquement stable, polaire et compatible avec les molécules luminescentes considérées c'est à dire qu'il empêche l'exsudation, la migration, la photooxydation et la photodégradation de cette MOA. A protective material suitable for the production of organic compounds with protected luminescent molecules is physico-chemically stable, polar and compatible with the luminescent molecules considered, that is to say it prevents the exudation, migration, photooxidation and photodegradation of this MOA.
[ 00054 ] Ces composés organiques dopés sont ensuite greffés dans des nanoparticules de type explicité ci-après ayant des sections efficaces élevées formant des nanoparticules optiquement actives (NOAs). These doped organic compounds are then grafted into nanoparticles of the type explained hereinafter having high cross sections forming optically active nanoparticles (NOAs).
[ 00055 ] Une importante surface interfaciale associée à des dimensions micro ou nanométriques est l'élément principal différenciant les nanoparticules, des charges traditionnelles. Les surfaces spécifiques de certaines charges peuvent atteindre des valeurs comprises entre 500 et 1000 m2/g dans le cas de charges lamellaires (montmorillonite ) . Le taux d'adsorption lié à l'interface est alors d'autant plus important. [ 00056 ] Pour réaliser les matériaux composites optiquement actifs, les nanoparticules optiquement actives sont intégrées dans les polymères d'usage industriel, qui sont choisi parmi : [00055] A large interfacial surface associated with micro or nanometric dimensions is the main element that differentiates nanoparticles, traditional fillers. The specific surfaces of certain loads can reach values between 500 and 1000 m 2 / g in the case of lamellar charges (montmorillonite). The adsorption rate related to the interface is then all the more important. To produce the optically active composite materials, the optically active nanoparticles are integrated into the polymers of industrial use, which are chosen from:
- Le polyméthacrylate de méthyle (PMMA), - Le polyéthylène acétate de vinyle (EVA), - polymethyl methacrylate (PMMA), - polyethylene vinyl acetate (EVA),
- Le polychlorure de vinyle (PVC), - Polyvinyl chloride (PVC),
- Le polycarbonate (PC) , Polyéthylène basse densité (PEBD), - Polycarbonate (PC), Low density polyethylene (LDPE),
- Polyfluorure de vinylidène (PVDF). - Polyvinylidene fluoride (PVDF).
[ 00057 ] Les paragraphes ci-dessus décrivent en général le procédé de la réalisation des matériaux composites optiquement actifs, tandis que les paragraphes suivants se rapportent en particulier aux différents modes de réalisation des nanoparticules optiquement actives. The above paragraphs generally describe the process for producing optically active composite materials, while the following paragraphs relate in particular to the different embodiments of the optically active nanoparticles.
1. nanoparticules inorganiques [ 00058 ] Selon une première variante de réalisation, les nanoparticules optiquement actives sont inorganiques, et réalisés par exemple, en alumino silicate, silice mésoporeuse, zéolithe alumino, aluminosilicates . [ 00059 ] Il est intéressant dans ce cas de pouvoir préparer au choix : 1. inorganic nanoparticles According to a first embodiment, the optically active nanoparticles are inorganic, and made for example, in alumino silicate, mesoporous silica, alumino zeolite, aluminosilicates. It is interesting in this case to be able to prepare the choice:
(a) un premier type de nanoparticules dopées chacune uniquement d ' un même premier groupe de MOAs , et un deuxième type de nanoparticules dopées d'un même deuxième groupe de MOAs susceptibles de fonctionner en Cascade(a) a first type of nanoparticles each doped only with the same first group of MOAs, and a second type of doped nanoparticles of the same second group of MOAs capable of operating in Cascade
Lumineuse avec les MOAs du premier type de nanoparticules, ou Bright with the MOAs of the first type of nanoparticles, or
(b) des nanoparticules dopées chacune individuellement de deux groupes de MOAs susceptibles de réagir ensemble en Cascade Lumineuse. (b) nanoparticles each individually doped with two groups of MOAs capable of reacting together in a luminous cascade.
1. a) nanoparticules inorganiques dopées par un unique type de MOAs 1. a) inorganic nanoparticles doped with a single type of MOAs
[ 00060 ] On décrit ci-dessous un exemple de réalisation de nanoparticules dopées uniquement d'un même premier groupe de MOAs : An embodiment of nanoparticles doped solely with the same first group of MOAs is described below:
[ 00061 ] Selon une première étape, on fabrique une première solution dopée d'un premier groupe de MOAs en opérant la dissolution de molécules optiquement actives (MOAs) d'un premier groupe dans un ligand ad hoc ou des MMA qui relient la MOA à la zéolithe. Les MOAs de ce premier groupe peuvent par exemple être choisis parmi des hydrocarbures aromatiques polycycliques N noyaux Phi (série Anthracènique ou Benzenique) : According to a first step, a first doped solution of a first group of MOAs is produced by operating the dissolution of optically active molecules (MOAs) of a first group in an ad hoc ligand or MMAs which connect the MOA to the zeolite. The MOAs of this first group may for example be chosen from polycyclic aromatic hydrocarbons N Phi nuclei (Anthracene or Benzenic series):
• hydrocarbure aromatique polycyclique 3 phi, • polycyclic aromatic hydrocarbon 3 phi,
• hydrocarbure aromatique polycyclique 4 phi, • hydrocarbure aromatique polycyclique 5 phi... • polycyclic aromatic hydrocarbon 4 phi, • polycyclic aromatic hydrocarbon 5 phi ...
[ 00062 ] On fabrique selon le même procédé d'autres solutions dopées d'autres groupes de MOAs que celles caractérisant le premier groupe ci-dessus, en choisissant les MOAs de la solution préparée en fonction de leur capacité à créer un effet cascade lumineuse avec les MOAs de la première solution . The same method is used to produce other doped solutions of other groups of MOAs than those characterizing the first group above, by choosing the MOAs of the solution prepared according to their capacity to create a luminous cascade effect with the MOAs of the first solution.
[ 00063 ] Selon une deuxième étape, chaque solution préparée avec un même type de MOAs est introduite dans des nanoparticules inorganiques fonctionnalisées de type zéolithe avec un agitateur magnétique à une température de 45 degrés Celsius afin d'obtenir les différents groupes de NOAs (nanoparticules optiquement actives) dopées CL (Cascade lumineuse). Puis le ligand ad hoc ou le MMA est évaporé afin d'obtenir différents groupes de nanoparticules optiquement actives dopées chacun par un même type de MOAs fixées aux nanoparticules inorganiques. Finalement, ces NOAs dopées CL sont séchées et intégrées dans les matrices polymère d'encapsulation. According to a second step, each solution prepared with the same type of MOAs is introduced into functionalized zeolite-type inorganic nanoparticles with a magnetic stirrer at a temperature of 45 degrees Celsius in order to obtain the different groups of NOAs (optically nanoparticles). active) doped CL (Light Cascade). Then the ad hoc ligand or MMA is evaporated to obtain different groups of optically active nanoparticles each doped with the same type of MOAs attached to the inorganic nanoparticles. Finally, these CL doped NOAs are dried and integrated into the polymer encapsulation matrices.
[ 00064 ] Selon une troisième étape, chaque type de NOAs inorganiques dopées de 3 , 4 , 5 ou N phi respectivement sont associées à une matrice polymère, dans des concentrations optimisées pour produire l'effet de cascade lumineuse, le plus adapté à l'application visée :According to a third step, each type of doped inorganic NOAs of 3, 4, 5 or N phi respectively are associated with a polymer matrix, in concentrations optimized to produce the light cascade effect, the most adapted to the intended application:
PV — photovoltaïque- ou la PS —photosynthèse-. PV - photovoltaic - or PS - photosynthesis -.
[ 00065 ] Cela produit les effets de renforcement de [00065] This produces the reinforcing effects of
solidité lumière et de la résistance au vieillissement. 1. b) nanoparticules inorganiques dopées par plusieurs types de MOAs light fastness and resistance to aging. 1. b) inorganic nanoparticles doped with several types of MOAs
[00066] On décrit dans ce qui suit un exemple de réalisation de nanoparticules dopées chacune individuellement d'au moins deux groupes de MOAs susceptibles de réagir deux à deux en Cascade Lumineuse. An embodiment of nanoparticles each individually doped with at least two groups of MOAs capable of reacting two by two in a luminous cascade is described below.
[00067] Selon un autre mode de mise en œuvre de l'invention, plusieurs types de MOAs aux concentrations et proportions optimisées pour l'effet de cascade lumineuse recherché, sont introduites dans un ligand ou des MMA par exemple, pour former une solution de cascade lumineuse (CL) . According to another embodiment of the invention, several types of MOAs at concentrations and proportions optimized for the desired light cascade effect are introduced into a ligand or MMA for example, to form a solution of light cascade (CL).
[ 00068 ] Ensuite , cette solution est introduite dans les nanoparticules inorganiques du type zéolithe dans un agitateur magnétique à la température de 45 dégréesThen, this solution is introduced into the inorganic nanoparticles of the zeolite type in a magnetic stirrer at a temperature of 45 degrees.
Celsius afin d'obtenir les NOAs dopées CL (Cascade lumineuse). Puis le ligand ad hoc ou le MMA est évaporé. Finalement, ces NOAs dopées CL sont séchées et intégrées dans les matrices d'encapsulation. Celsius in order to obtain the NOAs doped CL (luminous Cascade). Then the ad hoc ligand or MMA is evaporated. Finally, these CL doped NOAs are dried and integrated into the encapsulation matrices.
[00069] Il se produit les effets de la diffusion de photons, le renforcement de la solidité lumière, de la résistance au vieillissement. There are effects of photon scattering, strengthening of light fastness, resistance to aging.
[00070] Le procédé de fabrication de nanoparticules inorganiques est connu de l'homme du métier. Par exemple, le brevet français EP1335879 décrit la fabrication d'un matériau zéolithe chargé de colorant. La publication dans la revue scientifique « matériaux microporeux et mesoporeux » (volume 145, issues 1-3, Novembre 2011, pages 157-164) décrit le comportement d'adsorption du methylenen blue sur la clinoptilolite modifiée. [ 00071 ] 2) nanoparticules organiques The process for producing inorganic nanoparticles is known to those skilled in the art. For example, French Patent EP1335879 describes the manufacture of a zeolite material loaded with dye. The publication in the scientific journal "microporous and mesoporous materials" (volume 145, issues 1-3, November 2011, pages 157-164) describes the adsorption behavior of methylenen blue on the modified clinoptilolite. [00071] 2) organic nanoparticles
[ 00072 ] Selon une deuxième variante de réalisation, les nanoparticules optiquement actives sont organiques. Les techniques de fabrication des nanoparticules organiques relèvent historiquement de la chimie colloïdale et impliquent des procédés classiques sol-gel, ou d'autre procédés d'agrégations. [00072] According to a second variant embodiment, the optically active nanoparticles are organic. The techniques for manufacturing organic nanoparticles historically fall within the context of colloidal chemistry and involve conventional sol-gel processes, or other aggregation methods.
[ 00073 ] Ces techniques de chimie humide offrent actuellement des nanoparticules de meilleure qualité. [00073] These wet chemistry techniques currently offer nanoparticles of better quality.
[ 00074 ] Il est connu de réaliser les nanoparticules organiques à partir du polyméthacrylate de méthyle (PMMA) dans une solution colloïdale par voie latex en partant du MMA (monomère du PMMA) par des méthodes différentes. [ 00075 ] Par exemple, dans la revue scientifiqueIt is known to produce the organic nanoparticles from polymethyl methacrylate (PMMA) in a colloidal solution by latex starting from the MMA (monomer PMMA) by different methods. For example, in the scientific journal
« macromoleccular rapid communications», il est décrit la synthèse de poly nanométrique (méthacrylate de méthyle ) initié par le 2 , 2 —azo-isobutyronitrile par polymérisation en microémulsion différentielle ; dans la revue scientifique « polymer» (volumn 49 , numéro 26 , 8 décembre 2008 , pages 5636 -5642 ) , il est décrit les nanocomposites de poly (méthacrylate de méthyle) et de silice produites par « greffe à travers» à l'aide réversible par addition-fragmentation transfert de chaîne de polymérisation. "Macromoleccular rapid communications", it is described the synthesis of poly nanometric (methyl methacrylate) initiated by 2, 2-azoisobutyronitrile by differential microemulsion polymerization; in the scientific journal "polymer" (volumn 49, issue 26, December 8, 2008, pages 5636-556), poly (methyl methacrylate) and silica nanocomposites produced by "graft through" are described using reversible by addition-fragmentation transfer of polymerization chain.
[ 00076 ] 2) a) nanoparticules organiques dopées par un seul type de MOA [00076] 2) a) organic nanoparticles doped with a single type of MOA
[ 00077 ] Selon une première étape, les molécules optiquement actives (MOAs) sont dissoutes dans une solution colloïdale par voie latex en partant du monomère du PMMA. Avec un agitateur magnétique et à température de 45 degrés Celsius, des NOAs de quelques dizaines à quelques centaines de nm sont obtenues . Chaque type de NOA unitaire comprend un seul type de MOA. [00078] Selon une deuxième étape, plusieurs groupes de NOAs organiques dopées respectivement de plusieurs types de MOAs différentes, chaque NOAs comptant un même type de MOA, sont, mélangées dans un extrudeuse bi-vis aux composés PEBD/EVA, suivant une règle de concentration optimisée pour obtenir l'effet de cascade lumineuse recherché . In a first step, the optically active molecules (MOAs) are dissolved in a colloidal solution by latex starting from the PMMA monomer. With a magnetic stirrer and at a temperature of 45 degrees Celsius, NOAs of a few tens to a few hundred nm are obtained. Each type of unitary NOA includes only one type of MOA. According to a second step, several groups of organic NOAs doped respectively with several different types of MOAs, each NOA having the same type of MOA, are mixed in a twin-screw extruder with LDPE / EVA compounds, according to a rule of optimized concentration to obtain the desired cascade effect.
2) b) nanoparticules organiques dopées par plusieurs types de MOA 2) b) organic nanoparticles doped by several types of MOA
[00079] Selon un autre mode de mise en œuvre de l'invention, une pluralité de types de MOAs, par exemple, luminophores de type HAP 2 , 3 , 4 , N phi aux concentrations et proportions optimisées pour l'effet de cascade lumineuse, sont introduits dans une solution colloïdale par voie latex en partant du MMA (monomère du PMMA) , avec un agitateur magnétique et à température de 45 degrés Celsius afin d'obtenir les NOAs dopées CL. Ces NOAs dopées CL sont ensuite mélangées au polymère PMMA ou aux compounds PEBD/EVA dans une extrudeuse bi-vis. [00080] Par ce procédé de réalisation de NOAs dopées CL, ont été obtenus des NOAs de 500 nm et 2 micromètres dopées selon la formule P004NP à CL, dont les résultats d'analyse sont représentés dans la figure 1. According to another embodiment of the invention, a plurality of types of MOAs, for example, phosphors of HAP type 2, 3, 4, N phi at concentrations and proportions optimized for the light cascade effect. , are introduced into a colloidal latex solution starting from the MMA (PMMA monomer), with a magnetic stirrer and at a temperature of 45 degrees Celsius in order to obtain the CL doped NOAs. These CL doped NOAs are then mixed with the PMMA polymer or the PEBD / EVA compounds in a twin-screw extruder. By this method of producing doped NOAs CL, were obtained NOAs of 500 nm and 2 micrometers doped according to the formula P004NP to CL, whose analysis results are represented in FIG. 1.
[00081] La figure 1 contient les spectres d'émission des échantillons de microsphères PMMA dopées selon la formuleFIG. 1 contains the emission spectra of PMMA microsphere samples doped according to the formula
P004NP sous l'excitation de la lumière UV de longueur d'onde 365 nm. Les microsphères PMMA dopées ici sont réalisées par voie colloïdale latex à partir du MMA comme expliqué dans les paragraphes précédents. L'axe X représente la longueur d'onde en nanomètres, cent nanomètres par graduation, tandis que l'axe Y représente l'intensité en l'unité arbitraire. La ligne pleine représente l'échantillon lot3 de microsphères de taille 2 micromètres, tandis que la ligne en pointillés représente l'échantillon lot5 de microsphères de taille 500 nanomètres . P004NP under excitation of UV light of wavelength 365 nm. The PMMA microspheres doped here are performed colloidally latex from the MMA as explained in the previous paragraphs. The X axis represents the wavelength in nanometers, one hundred nanometers per scale, while the Y axis represents the intensity in the arbitrary unit. The solid line represents the lot3 sample of microspheres of size 2 micrometers, while the dotted line represents the lot5 sample of microspheres of size 500 nanometers.
[00082] Le tableau suivant montre les intensités du pic dans la région de lumière du rouge et du bleu respectivement. Ce tableau permet de classer aisément les productions en termes d'efficacité de conversion énergétique. The following table shows the intensities of the peak in the light region of red and blue, respectively. This table makes it easy to classify productions in terms of energy conversion efficiency.
[00083] C'est le lot 3 qui est le plus efficace pour le Photovoltaïque . Lot 3 is the most efficient for Photovoltaics.
[00084] Le lot 5 peut être envisagé pour les applications agricoles, car il est très efficace dans le bleu tout en étant significatif dans la réémission dans le rouge. Lot 5 can be considered for agricultural applications, because it is very effective in the blue while being significant in the retransmission in the red.
[00085] Les molécules optiquement actives greffées dans les nanoparticules optiquement actives en PMMA ont une solidité lumière accrue et une bonne résistance aux UV et à 1Ό2. [00085] Optically active molecules grafted into optically active nanoparticles made of PMMA have increased light fastness and good UV and 1Ό2 resistance.
3. nanoparticules issues du broyage de PMMA dopé 3. nanoparticles resulting from the grinding of doped PMMA
[00086] Selon une troisième variante de réalisation, une matrice de PMMA dopée CL est micronisé par broyage pour former un pigment organique. La matrice est constituée par un matériau organique rigide ou souple, ou encore se présente sous la forme d'un revêtement applicable sous la forme d'une résine. Le matériau organique est le polyméthacrylate de méthyle (PMMA) par exemple. According to a third variant embodiment, a CL-doped PMMA matrix is micronized by grinding to form an organic pigment. The matrix is constituted by a rigid or flexible organic material, or is in the form of an applicable coating under the form of a resin. The organic material is polymethyl methacrylate (PMMA) for example.
[00087] Les matrices PMMA dopées CL sont micronisées par broyage à 40/50 micromètres. C'est une méthode de « haut en bas » qui réduit la taille des particules par des broyeurs à boulets ou à mouvement planétaire. The PMMA matrices doped CL are micronized by grinding at 40/50 micrometers. It is a "top-down" method that reduces particle size by ball mills or planetary mills.
[00088] Les dopants optiquement actifs sont les pigments organiques à 2, 3, 4, N+l noyaux phi de type cycliques aromatiques, ou de type anthracène, naphtacène, penthacène, hexacène, rhodamine, oxazine, diphényloxazol , dimethyloxazol . Les particules ainsi obtenues sont appelées les pigments organiques. [00088] The optically active dopants are organic pigments with 2, 3, 4, N + 1 phi nuclei of aromatic cyclic type, or of anthracene, naphthacene, penthacene, hexacene, rhodamine, oxazine, diphenyloxazol or dimethyloxazol type. The particles thus obtained are called organic pigments.
[00089] La figure 2 montre la comparaison entre les spectres d'émission des échantillons réalisés de façons différents sous l'excitation de la lumière UV de longueur d'onde à[00089] FIG. 2 shows the comparison between the emission spectra of the samples made in different ways under the excitation of the UV light of wavelength at
365nm. Le premier type est le compound PMMA dopé de la formula 2013F avant le procédé de micronisation ; le deuxième type est le compound PMMA dopé de la formula 2013F après le procédé de micronisation de type cryo- broyage ; tandis que le troisième type est l'échantillon lot3 (les microsphères dopé de la formula P004NP du taille 2 micromètre). 365nm. The first type is the doped PMMA compound of the 2013F formula before the micronization process; the second type is the doped PMMA compound of the 2013F formula after the cryomilling type micronization process; while the third type is the lot3 sample (the microspheres doped with the P004NP formula of size 2 micrometer).
[00090] L'axe X représente la longueur d'onde en nanomètre, cent nanomètres par graduation, tandis que l'axe Y représente l'intensité relative en unité arbitraire. La ligne pleine représente les compounds PMMA dopés, la ligne en pointillés représente les compounds PMMA broyage-cryo, tandis que la ligne en pointillé-tire représente l'échantillon lot 3 - les microsphères en 2 micromètres . The X axis represents the wavelength in nanometers, one hundred nanometers per graduation, while the Y axis represents the relative intensity in arbitrary units. The solid line represents the doped PMMA compounds, the dashed line represents PMMA grinding-cryo compounds, while the dotted-pull line represents the sample lot 3 - the microspheres in 2 microns.
[00091] Dans le bleu, l'intensité du pic émission des microsphères 2 micromètre lot 3 est inférieur de 27% par rapport au pic du PMMA cryo-broyé. Dans le rouge, l'intensité des pics d'émission est du même ordre pour le compound PMMA dopé 2013F, le compound PMMA dopé 2013F cryo-broyé et les microsphères 2 micromètres lot 3 (dopé P004NP). Cependant, un léger décalage existe en longueur d'onde des pics entre les trois : In blue, the intensity of the emission peak microspheres 2 micrometer lot 3 is 27% lower than the cryo-crushed PMMA peak. In the red, the intensity of the emission peaks is of the same order for the doped PMMA compound 2013F, the cryo-milled 2013F doped PMMA compound and the micrometers 2 micrometers lot 3 (doped P004NP). However, a slight shift exists in the wavelength of the peaks between the three:
• le compound PMMA dopé 2013F : 634 nm, • the doped PMMA compound 2013F: 634 nm,
• le compound PMMA dopé 2013F cryo-broyé : 617 nm, • the cryo-milled 2013F doped PMMA compound: 617 nm,
• les microsphères 2 micromètres lot 3 :628 nm. Microspheres 2 micrometers lot 3: 628 nm.
[00092] Les pigments organiques ainsi obtenus sont associés aux matrices polymères d'usage dans les applications industrielles concernées : films pour les serres agricoles ou dans les plaques du polychlorure de vinyle (PVC), le polyéthylène acétate de vinyle (EVA) ou du polycarbonate (PC). The organic pigments thus obtained are associated with the polymer matrices of use in the industrial applications concerned: films for agricultural greenhouses or in the polyvinyl chloride (PVC) sheets, polyethylene vinyl acetate (EVA) or polycarbonate (PC).
[00093] La nouvelle performance de retardement du vieillissement du PMMA dopé CL dans la matrice EVA est mesurée par la durabilité en utilisant la machine « Atlas Suntest XLS+» sous les conditions de test appliqué suivantes: [00093] The new aging retardation performance of the doped PMMA CL in the EVA matrix is measured by the durability using the "Suntest XLS + Atlas" machine under the following applied test conditions:
• 60W/m2 et 300-400 nm ; • 60W / m 2 and 300-400 nm;
• la lumière continue ; • the light continues;
• 102 min sèche, 18 min pluvieuse ; • 102 min dry, 18 min rainy;
• Température : 65+/- 2°C. • Temperature: 65 +/- 2 ° C.
Les matériaux sont exposés sous ces conditions jusqu'à 1500 heures et aucune dégradation n'apparaît. Par conséquent, la durabilité équivalente dans les conditions naturelles est estimée supérieure à 10 ans, alors que sans l'invention elle ne dure qu'un mois dans l'EVA ou le PE dopé CL avec MOAs. L'effet de retardement du vieillissement est donc vérifié. The materials are exposed under these conditions up to 1500 hours and no degradation appears. Therefore, the equivalent durability in natural conditions is estimated to be greater than 10 years, whereas without the invention it lasts only one month in EVA or PE doped CL with MOAs. The effect of delaying aging is therefore verified.
[ 00094 ] Il est possible de réaliser le matériau composite final qui inclut les nanoparticules optiquement actives ou particules luminescentes décrites dans les paragraphesIt is possible to produce the final composite material which includes the optically active nanoparticles or luminescent particles described in the paragraphs.
1 ) à 3 ) ci-dessus, et une matrice de polymère type PMMA, EVA, PVC, PEBD, PVDF, par extrusion. 1) to 3) above, and a polymer matrix type PMMA, EVA, PVC, LDPE, PVDF, by extrusion.
[ 00095 ] Les nanoparticules de type ci-dessus et les monomères de matrice de polymère sont introduits dans l'extrudeuse afin d'obtenir en sortie un film extrudé. The nanoparticles of the above type and the polymer matrix monomers are introduced into the extruder in order to obtain an extruded film at the outlet.
[ 00096 ] Il est également possible de coextruder différents films incluant chacun des fonctionnalités particulières en utilisant les MOAs correspondantes : selon les applications recherchées, on peut alterner au moment de la coextrusion des films formant matrice, les fonctionnalités des films extérieur, interne (âme centrale) et intérieur. Par exemple, dans une serre, on choisira une fonction anti UV et anti 02 en film extérieur, le dopage MOAs cascade lumineuse dans l'âme centrale, la fonction antibuée dans le film intérieur. On peut aussi décliner les fonctions de diffusion de la lumière, de réflecteur IR et les épaisseurs des films selon les applications. It is also possible to coextrude different films each including particular functionalities using the corresponding MOAs: according to the desired applications, it is possible to alternate at the time of the coextrusion of the matrix films, the functionalities of the outer, inner films (central core ) and inside. For example, in a greenhouse, we will choose an anti UV and anti 02 function in external film, MOAs cascade light in the central core, anti-fogging function in the inner film. Light scattering, IR reflector and film thicknesses can also be broken down by application.
[ 00097 ] Au moment de la coextrusion des films formant matrice At the time of coextrusion of the matrix films
4. Matériau composite issu d'un copolymère dont l'un est dopé 4. Composite material derived from a copolymer of which one is doped
[ 00098 ] Selon une quatrième variante de réalisation, un matériau composite est constitué par un copolymère PMMA — PE/EVA, où le PMMA est le polymère polaire dopé par les MOAs, formant cascade lumineuse. According to a fourth variant embodiment, a composite material consists of a PMMA copolymer - PE / EVA, where PMMA is the polar polymer doped with MOAs, forming a light cascade.
[ 00099 ] Ce type de matériaux est l'addition de deux polymères différents, l'un technique et fonctionnel et formant un film agricole ou 1 'encapsulation photovoltaïque PE/EVA, l'autre optiquement actif, tel que du PMMA dopé par des MOAs micronisé. This type of material is the addition of two different polymers, one technical and functional and forming an agricultural film or one PE / EVA photovoltaic encapsulation, the other optically active, such as PMMA doped with MOAs. micronized.
[ 000100 ] Tout autre type de matrice associée à tout autre type de pigment organique, tel que IOH ou PC est compatibles. [000100] Any other type of matrix associated with any other type of organic pigment, such as IOH or PC is compatible.

Claims

Revendications claims
1. Procédé de fabrication d'un matériau composite luminescent destiné à rendre pérennes les caractéristiques éléctromagnétiques de ce matériauluminescent comprenant : A method of manufacturing a luminescent composite material for rendering durable the electromagnetic characteristics of this light-emitting material comprising:
- une première étape de préparation d'un composé organique à molécules luminescentes protégées en mélangeant au moins un premier groupe de molécules luminescentes avec un matériau protecteur pour éviter leur contact avec des éléments induisant la photo-dégradation et la migration des molécules luminescentes,  a first step of preparing an organic compound with protected light-emitting molecules by mixing at least a first group of luminescent molecules with a protective material to prevent their contact with elements inducing the photo-degradation and the migration of the luminescent molecules,
une deuxième étape de fabrication de particules luminescentes présentant un diamètre compris entre 1.10"8 mètre et 2.10"6 mètre incluant lesdits composés organiques , a second luminescent particles manufacturing step having a diameter of between 1.10 "and 2.10 8 meter" 6 meter including said organic compounds,
- et une troisième étape de production d'un matériau composite luminescent en intégrant les particules luminescentesdans une matrice polymère.  and a third step of producing a luminescent composite material by integrating the luminescent particles into a polymer matrix.
2. Procédé selon la revendication 1, caractérisé en ce que le matériau protecteur est constitué par au moins un polymère polaire compatible avec les molécules luminescentes, de préférence physico-chimiquement stable. 2. Method according to claim 1, characterized in that the protective material consists of at least one polar polymer compatible with the luminescent molecules, preferably physico-chemically stable.
3. Procédé selon la revendication 1 ou 2 , caractérisé en ce que l'étape de fabrication desdites particules luminescentes consiste à microniser par broyage le composé organique . 3. Method according to claim 1 or 2, characterized in that the step of manufacturing said luminescent particles comprises micronize by grinding the organic compound.
4. Procédé selon la revendication 1 ou 2 , caractérisé en ce que l'étape de fabrication desdites particules luminescentes consiste, lors de la fabrication du composé organique, à introduire initialement l'au moins premier groupe de molécules luminescentes dans un monomère pour former un polymère luminescent, à intégrer ce polymère à une particule inorganique, puis à évaporer le polymère en laissant les molécules luminescentes fixées sur le support inorganique de façon à former les particules luminescentes. 4. Method according to claim 1 or 2, characterized in that the step of manufacturing said light-emitting particles consists, during the manufacture of the organic compound, in initially introducing the at least first group of luminescent molecules into a monomer to form a luminescent polymer, to integrate this polymer with an inorganic particle, then evaporate the polymer leaving the luminescent molecules fixed on the inorganic support so as to form the luminescent particles.
5. Procédé selon la revendication 1 ou 2 , caractérisé en ce que l'étape de fabrication desdites particules luminescentes consiste à fabriquer des particules organiques et à dissoudre l'au moins premier groupe de molécules luminescentes dans les particules organiques formées de façon à former les particules luminescentes.  5. Method according to claim 1 or 2, characterized in that the step of manufacturing said luminescent particles consists of producing organic particles and dissolving the at least first group of luminescent molecules in the organic particles formed to form the luminescent particles.
6. Procédé selon la revendication 6, caractérisé en ce que les nanoparticules organiques sont réalisées par voie colloïdale latex à partir du méthyl méthacrylate.  6. Method according to claim 6, characterized in that the organic nanoparticles are made colloidally latex from methyl methacrylate.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que chaque particule luminescente comprend un même type de molécules luminescentes, et qui sont susceptibles de réagir en cascade lumineuse avec un deuxième type de molécule luminescente d'un deuxième groupe de particules luminescentes ou chaque particule luminescente comprend différents types de molécules luminescentes susceptibles de réagir deux à deux en cascade lumineuse.  7. Method according to one of the preceding claims, characterized in that each luminescent particle comprises the same type of luminescent molecules, and which are capable of reacting in light cascade with a second type of luminescent molecule of a second group of luminescent particles. or each luminescent particle comprises different types of luminescent molecules capable of reacting two by two in light cascade.
8. Procédé selon la revendication 7, caractérisé en ce que les concentrations des différents types de molécules luminescentes des différents groupes de particules luminescentes sont optimisées pour réaliser l'effet de cascade lumineuse .  8. Method according to claim 7, characterized in that the concentrations of the different types of luminescent molecules of the different groups of luminescent particles are optimized to achieve the light cascade effect.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que la matrice polymère se présente sous la forme d'un film. 9. Method according to one of the preceding claims, characterized in that the polymer matrix is in the form of a film.
10. Procédé selon la revendication 9, caractérisé en ce que le matériau composite comprend plusieurs films intégrant chacun des particules luminescentes, ces films étant empilés les uns aux autres pour combiner les effets des particules luminescentes qu'ils contiennent. 10. Method according to claim 9, characterized in that the composite material comprises several films each incorporating luminescent particles, these films being stacked to each other to combine the effects of the luminescent particles they contain.
11 . Procédé selon la revendications 10 , caractérisé en ce que l'empilement des films est réalisé au moment d'une étape de coextrusion des films. 11. Process according to Claim 10, characterized in that the stack of films is produced at the time of a coextrusion step of the films.
12 . Procédé selon l'une des revendications précédentes, caractérisé en ce que les molécules luminescentes (MOAs), dont le spectre d'émission d'un type de MOAs recouvre partiellement le spectre d'absorption d'un autre type de MOAs formant successivement une cascade lumineuse, respectent le rapport C2 /C1 entre la concentration d'un premier type par rapport à la concentration C2 d'un deuxième type compris entre 0 , 13 et 0 , 26 . 12. Method according to one of the preceding claims, characterized in that the luminescent molecules (MOAs), the emission spectrum of one type of MOAs partially overlaps the absorption spectrum of another type of MOAs successively forming a cascade luminous, respect the ratio C 2 / C 1 between the concentration of a first type with respect to the concentration C 2 of a second type between 0.13 and 0.26.
13 . Procédé selon l'une des revendications précédentes, caractérisé en ce que les molécules luminescentes incluent au moins un type des molécules de type Stokes dont la longueur d'onde de réémission est supérieure à la longueur d'onde d'absorption et/ou au moins un type des molécules optiquement actives anti-Stokes dont la longueur d'onde de réémission est inférieur à la longueur d'onde d'absorption. 13. Method according to one of the preceding claims, characterized in that the luminescent molecules include at least one type of Stokes-type molecules whose retransmission wavelength is greater than the absorption wavelength and / or at least a type of anti-Stokes optically active molecules whose retransmission wavelength is less than the absorption wavelength.
14 . Procédé selon l'une des revendications précédentes, caractérisé en ce que les molécules les molécules luminescentes incluent au moins des molécules de type fluorophore organique ayant une rémanence inférieure à 10 ns sont associées avec les cristaux optiquement actifs de type ZnS.Ag inorganique ayant une rémanence supérieure à 10 ns, dont les longueurs d'ondes d'émission et d'absorption répondent à l'effet cascade lumineuse. 14. Method according to one of the preceding claims, characterized in that the molecules the luminescent molecules include at least organic fluorophore-type molecules having a remanence of less than 10 ns are associated with the optically active crystals of the inorganic ZnS.Ag type having a remanence greater than 10 ns, whose emission and absorption wavelengths respond to the light cascade effect.
15. Matériau obtenu selon le procédé suivant l'une quelconque des revendications précédentes. 15. Material obtained according to the process according to any one of the preceding claims.
16. Matériau comprenant des particules luminescentes de PMMA dopées par des molécules luminescentes réalisées par voie colloïdale latex à partir de monomères MMA.  16. Material comprising PMMA luminescent particles doped with colloidal latex-based luminescent molecules from MMA monomers.
17. Utilisation du matériau selon la revendication précédente comme élément photovoltaïque ou film de serres agricoles . 17. Use of the material according to the preceding claim as a photovoltaic element or film of agricultural greenhouses.
EP15703466.1A 2014-01-13 2015-01-13 Method for producing a composite material containing luminescent molecules, for rendering sustainable the electromagnetic characteristics of said material Pending EP3094702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450244A FR3016369B1 (en) 2014-01-13 2014-01-13 PROCESS FOR MAKING THE ELECTROMAGNETIC CHARACTERISTICS OF OPTICALLY ACTIVE COMPOSITE MATERIALS PERENNIAL
PCT/EP2015/050517 WO2015104432A1 (en) 2014-01-13 2015-01-13 Method for producing a composite material containing luminescent molecules, for rendering sustainable the electromagnetic characteristics of said material

Publications (1)

Publication Number Publication Date
EP3094702A1 true EP3094702A1 (en) 2016-11-23

Family

ID=51260947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15703466.1A Pending EP3094702A1 (en) 2014-01-13 2015-01-13 Method for producing a composite material containing luminescent molecules, for rendering sustainable the electromagnetic characteristics of said material

Country Status (4)

Country Link
US (1) US20160333263A1 (en)
EP (1) EP3094702A1 (en)
FR (1) FR3016369B1 (en)
WO (1) WO2015104432A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069863B1 (en) * 2017-08-02 2020-07-31 Univ Maine MATERIAL FOR OPTICAL DOPING OF POLYMER SUBSTRATE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933104A1 (en) * 1999-07-15 2001-01-18 Ingo Klimant Phosphorescent micro- and nanoparticles as reference standards and phosphorescence markers
DE102008009541A1 (en) * 2008-02-16 2009-08-20 Universität Karlsruhe (Th) Inorganic-organic composite phosphor
FR2928932B1 (en) * 2008-03-21 2010-04-30 Centre Nat Rech Scient FLUORESCENT NANOCRYSTALS COATED WITH AN INORGANIC SHELL
US8147714B2 (en) * 2008-10-06 2012-04-03 Xerox Corporation Fluorescent organic nanoparticles and a process for producing fluorescent organic nanoparticles
US8724054B2 (en) * 2009-05-27 2014-05-13 Gary Wayne Jones High efficiency and long life optical spectrum conversion device and process
WO2011038335A1 (en) * 2009-09-25 2011-03-31 Immunolight, Llc Up and down conversion systems for improved solar cell performance or other energy conversion
MY163118A (en) * 2010-04-09 2017-08-15 Hitachi Chemical Co Ltd Spherical phosphor, wavelength conversion-type photovoltaic cell sealing material, photovoltaic cell module, and production methods therefor
EP2420547A1 (en) * 2010-08-20 2012-02-22 Sony Corporation Polymeric nanoparticles comprising a medium for photon up-conversion
FR2971514B1 (en) * 2011-02-10 2014-12-26 Photofuel Sas MATERIAL FOR MODULATING SOLAR LIGHT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015104432A1 *

Also Published As

Publication number Publication date
WO2015104432A1 (en) 2015-07-16
FR3016369B1 (en) 2016-02-12
US20160333263A1 (en) 2016-11-17
FR3016369A1 (en) 2015-07-17

Similar Documents

Publication Publication Date Title
EP2714842B1 (en) Color conversion films comprising polymer-substituted organic fluorescent dyes
EP1570023A1 (en) Light transforming material comprising as additive a barium and magnesium silicate
JP2010283282A (en) Method of controlling optical characteristic of wavelength conversion sheet, method of manufacturing wavelength conversion sheet, wavelength conversion sheet for cadmium tellurium based solar cell, and cadmium tellurium based solar cell
WO2015044261A1 (en) Luminescent composite comprising a polymer and a luminophore and use of this composite in a photovoltaic cell
JP2017525801A (en) Modified phosphor and composition thereof
Corsini et al. Highly emissive fluorescent silica-based core/shell nanoparticles for efficient and stable luminescent solar concentrators
EP3094702A1 (en) Method for producing a composite material containing luminescent molecules, for rendering sustainable the electromagnetic characteristics of said material
WO2004041963A1 (en) Barium and magnesium silicate doped with praseodymium, its use in luminescence and as anti-uv additive in light-transforming materials
TW201331338A (en) Wavelength conversion composition, wavelength conversion film, and solar cell
WO2012107701A1 (en) Sunlight modulating material
US20230049071A1 (en) Extruded fluorescent films
Pelayo-Ceja et al. Anomalous Stokes shift of colloidal quantum dots and their influence on solar cell performance
FR2989222A1 (en) Encapsulation material for photovoltaic cell utilized for producing electricity, has polymeric layers comprising superimposed layers, where cell compound is dispersed in one of layers, and other superimposed layer is different from compound
US9520521B2 (en) Optically active coating for improving the yield of photosolar conversion
AU2019289206B2 (en) A photon multiplying film
WO2013105043A1 (en) Cascaded photon-emitting nanoparticle codoped with terbium and ytterbium and functionalized by an organic ligand
CN111670215A (en) Stable organic luminescent coating
RU2747603C2 (en) Polymer luminescent composition for increasing performability of a photovoltaic converter
CN111417698A (en) Material for optical doping of polymer substrates
FR3041971A1 (en) ACRYLIC ADHESIVE WHOSE PRECURSOR IS APPLIED IN LIQUID AND UV RETICULATED FORM, FOR ENCAPSULATION OF FLEXIBLE ELECTRONIC DEVICES, IMPROVING PROTECTION AGAINST GAS PERMEABILITY.
Pelayo et al. Silicon solar cell efficiency improvement employing the photoluminescent, downshifting effects of carbon quantum dots
CN102446999A (en) Photoelectric converter and manufacturing method thereof
FR2973393A1 (en) Luminescent organic-inorganic nanocomposite multilayer or monolayer film, useful as layer for converting photons of ultraviolet spectrum into photons of visible spectrum, comprises polymer matrix, and zinc oxide nanoparticles
WO2017158284A1 (en) Rare-earth-free luminescent composite material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS