EP3083816B1 - Optical fiber cable components - Google Patents
Optical fiber cable components Download PDFInfo
- Publication number
- EP3083816B1 EP3083816B1 EP14803318.6A EP14803318A EP3083816B1 EP 3083816 B1 EP3083816 B1 EP 3083816B1 EP 14803318 A EP14803318 A EP 14803318A EP 3083816 B1 EP3083816 B1 EP 3083816B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymeric composition
- weight
- extruded
- crystalline polypropylene
- weight percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 title claims description 21
- 239000000203 mixture Substances 0.000 claims description 90
- 229920001903 high density polyethylene Polymers 0.000 claims description 68
- -1 polypropylene Polymers 0.000 claims description 66
- 239000002131 composite material Substances 0.000 claims description 64
- 239000004700 high-density polyethylene Substances 0.000 claims description 64
- 229920001155 polypropylene Polymers 0.000 claims description 58
- 239000004743 Polypropylene Substances 0.000 claims description 57
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 42
- 150000001336 alkenes Chemical class 0.000 claims description 40
- 230000002902 bimodal effect Effects 0.000 claims description 24
- 239000002667 nucleating agent Substances 0.000 claims description 20
- 230000001681 protective effect Effects 0.000 claims description 14
- 229920001400 block copolymer Polymers 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 13
- 229920001684 low density polyethylene Polymers 0.000 claims description 8
- 239000004702 low-density polyethylene Substances 0.000 claims description 8
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 description 52
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 36
- 239000005977 Ethylene Substances 0.000 description 31
- 239000004711 α-olefin Substances 0.000 description 29
- 239000000178 monomer Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 20
- 239000000835 fiber Substances 0.000 description 20
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 239000004215 Carbon black (E152) Substances 0.000 description 18
- 229930195733 hydrocarbon Natural products 0.000 description 18
- 150000002430 hydrocarbons Chemical class 0.000 description 18
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 17
- 239000000872 buffer Substances 0.000 description 17
- 239000003921 oil Substances 0.000 description 17
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 17
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 13
- 239000000499 gel Substances 0.000 description 13
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000155 melt Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000000654 additive Substances 0.000 description 11
- 239000004519 grease Substances 0.000 description 11
- 238000001125 extrusion Methods 0.000 description 10
- 229920001519 homopolymer Polymers 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000010998 test method Methods 0.000 description 7
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000004584 weight gain Effects 0.000 description 5
- 235000019786 weight gain Nutrition 0.000 description 5
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 4
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- XXHCQZDUJDEPSX-KNCHESJLSA-L calcium;(1s,2r)-cyclohexane-1,2-dicarboxylate Chemical compound [Ca+2].[O-]C(=O)[C@H]1CCCC[C@H]1C([O-])=O XXHCQZDUJDEPSX-KNCHESJLSA-L 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- ZHROMWXOTYBIMF-UHFFFAOYSA-M sodium;1,3,7,9-tetratert-butyl-11-oxido-5h-benzo[d][1,3,2]benzodioxaphosphocine 11-oxide Chemical compound [Na+].C1C2=CC(C(C)(C)C)=CC(C(C)(C)C)=C2OP([O-])(=O)OC2=C1C=C(C(C)(C)C)C=C2C(C)(C)C ZHROMWXOTYBIMF-UHFFFAOYSA-M 0.000 description 3
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- ZNRLMGFXSPUZNR-UHFFFAOYSA-N 2,2,4-trimethyl-1h-quinoline Chemical compound C1=CC=C2C(C)=CC(C)(C)NC2=C1 ZNRLMGFXSPUZNR-UHFFFAOYSA-N 0.000 description 2
- CJSBUWDGPXGFGA-UHFFFAOYSA-N 4-methylpenta-1,3-diene Chemical compound CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- KVOZXXSUSRZIKD-UHFFFAOYSA-N Prop-2-enylcyclohexane Chemical compound C=CCC1CCCCC1 KVOZXXSUSRZIKD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000012644 addition polymerization Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- HFVZWWUGHWNHFL-FMIVXFBMSA-N (4e)-5,9-dimethyldeca-1,4,8-triene Chemical compound CC(C)=CCC\C(C)=C\CC=C HFVZWWUGHWNHFL-FMIVXFBMSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- HYBLFDUGSBOMPI-BQYQJAHWSA-N (4e)-octa-1,4-diene Chemical compound CCC\C=C\CC=C HYBLFDUGSBOMPI-BQYQJAHWSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- HITROERJXNWVOI-SOFGYWHQSA-N (5e)-octa-1,5-diene Chemical compound CC\C=C\CCC=C HITROERJXNWVOI-SOFGYWHQSA-N 0.000 description 1
- RJUCIROUEDJQIB-GQCTYLIASA-N (6e)-octa-1,6-diene Chemical compound C\C=C\CCCC=C RJUCIROUEDJQIB-GQCTYLIASA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- QTYUSOHYEPOHLV-FNORWQNLSA-N 1,3-Octadiene Chemical compound CCCC\C=C\C=C QTYUSOHYEPOHLV-FNORWQNLSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- JQMYLKNKPVEXTQ-UHFFFAOYSA-N 2-[[2-carboxy-4-(3,5-ditert-butyl-4-hydroxyphenyl)butyl]sulfanylmethyl]-4-(3,5-ditert-butyl-4-hydroxyphenyl)butanoic acid Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(CSCC(CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(O)=O)C(O)=O)=C1 JQMYLKNKPVEXTQ-UHFFFAOYSA-N 0.000 description 1
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical class C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- MQWCQFCZUNBTCM-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylphenyl)sulfanyl-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(SC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O MQWCQFCZUNBTCM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- UJAWGGOCYUPCPS-UHFFFAOYSA-N 4-(2-phenylpropan-2-yl)-n-[4-(2-phenylpropan-2-yl)phenyl]aniline Chemical compound C=1C=C(NC=2C=CC(=CC=2)C(C)(C)C=2C=CC=CC=2)C=CC=1C(C)(C)C1=CC=CC=C1 UJAWGGOCYUPCPS-UHFFFAOYSA-N 0.000 description 1
- HBPSHRBTXIZBDI-UHFFFAOYSA-N 4-ethylidene-8-methylnona-1,7-diene Chemical compound C=CCC(=CC)CCC=C(C)C HBPSHRBTXIZBDI-UHFFFAOYSA-N 0.000 description 1
- MDDXGELKFXXQDP-UHFFFAOYSA-N 4-n-(5-methylhexan-2-yl)benzene-1,4-diamine Chemical compound CC(C)CCC(C)NC1=CC=C(N)C=C1 MDDXGELKFXXQDP-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- UCKITPBQPGXDHV-UHFFFAOYSA-N 7-methylocta-1,6-diene Chemical compound CC(C)=CCCCC=C UCKITPBQPGXDHV-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 239000003508 Dilauryl thiodipropionate Substances 0.000 description 1
- 239000002656 Distearyl thiodipropionate Substances 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UTGQNNCQYDRXCH-UHFFFAOYSA-N N,N'-diphenyl-1,4-phenylenediamine Chemical compound C=1C=C(NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000013036 UV Light Stabilizer Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- SRIDKWFKROYRSX-UHFFFAOYSA-N bis[(2-methylpropan-2-yl)oxy]-phenylphosphane Chemical compound CC(C)(C)OP(OC(C)(C)C)C1=CC=CC=C1 SRIDKWFKROYRSX-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical group 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 239000008380 degradant Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000019304 dilauryl thiodipropionate Nutrition 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- PWWSSIYVTQUJQQ-UHFFFAOYSA-N distearyl thiodipropionate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCCCCCC PWWSSIYVTQUJQQ-UHFFFAOYSA-N 0.000 description 1
- 235000019305 distearyl thiodipropionate Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000013627 low molecular weight specie Substances 0.000 description 1
- 229940099514 low-density polyethylene Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 239000004209 oxidized polyethylene wax Substances 0.000 description 1
- 235000013873 oxidized polyethylene wax Nutrition 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- LVEOKSIILWWVEO-UHFFFAOYSA-N tetradecyl 3-(3-oxo-3-tetradecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCC LVEOKSIILWWVEO-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- UIYCHXAGWOYNNA-UHFFFAOYSA-N vinyl sulfide Chemical group C=CSC=C UIYCHXAGWOYNNA-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
- G02B6/4432—Protective covering with fibre reinforcements
- G02B6/4433—Double reinforcement laying in straight line with optical transmission element
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
- G02B6/4486—Protective covering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
- H01B7/2813—Protection against damage caused by electrical, chemical or water tree deterioration
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/05—Bimodal or multimodal molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/206—Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/24—Crystallisation aids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
Definitions
- Various embodiments of the present invention relate to polymeric compositions comprising a high-density polyethylene, a crystalline polypropylene, and an olefin block composite. Additional embodiments relate to buffer-tube, core-tube, or slotted-core fiber optic cable components made from an extrudable blend of high-density polyethylene, crystalline polypropylene, and an olefin block composite.
- Optical fibers efficiently transmit information at high rates and over long distances. These fibers are delicate and need to be protected. In practical application, a fiber optic cable protects the fibers from mechanical damage and/or adverse environmental conditions such as moisture exposure.
- specific protective components include extruded buffer tubes, core tubes, and slotted core members.
- Buffer tubes also known as loose buffer tubes, are protection components used to house and protect optical fibers, such as in a cable.
- these loose buffer tubes are filled with a hydrocarbon gel or grease to suspend and protect the fiber from moisture and have stringent requirements for high crush resistance, resistance to micro-bending, low brittleness temperature, good grease compatibility, impact resistance, and low post-extrusion shrinkage.
- Materials used in the manufacture of the buffer tubes include polybutylene terephthalate (“PBT”), high-crystallinity polypropylene, and to a lesser extent high-density polyethylene. PBT is a high-cost material, and cost-effective alternatives are desired.
- One embodiment is a polymeric composition, comprising:
- extruded optical cable protective component comprising an extruded polymeric blend, said extruded polymeric blend comprising:
- polymeric compositions comprising a high-density polyethylene (“HDPE"), a crystalline polypropylene, and an olefin block composite.
- the polymeric composition can further comprise a nucleating agent.
- the polymeric composition may also contain one or more additives. Such polymeric compositions can be extruded to form optical fiber cable protective components.
- the high-density polyethylene suitable for use herein can be any high-density polyethylene known or hereafter discovered in the art.
- HDPEs are ethylene-based polymers having densities greater than 0.940 g/cm 3 . Polymer densities provided herein are determined according to ASTM International ("ASTM") method D792.
- ASTM International ASTM International
- the HDPE can have a density from 0.945 to 0.970 g/cm 3 , or from 0.945 to 0.955 g/cm 3 .
- the HDPE can have a peak melting temperature of at least 124 °C, or from 124 to 135 °C.
- the HDPE can have a melt index (I 2 ) ranging from 0.1 grams per 10 minutes ("g/10 min.”), or 0.2 g/10 min., or 0.3 g/10 min., or 0.4 g/10 min., up to 5.0 g/10 min., or 4.0 g/10 min., or, 3.0 g/10 min. or 2.0 g/10 min., or 1.0 g/10 min., or 0.5 g/10 min.
- Melt indices provided herein are determined according to ASTM method D1238. Unless otherwise noted, melt indices are determined at 190 °C and 2.16 Kg (i.e., I 2 ). Melt indices determined using a 21.6-Kg weight are denoted as "I 21.6 ".
- the HDPE can have a polydispersity index ("PDI") in the range of from 1.0 to 30.0, or in the range of from 2.0 to 15.0, as determined by gel permeation chromatography.
- PDI polydispersity index
- the HDPE suitable for use herein can be either unimodal or bimodal.
- unimodal denotes an HDPE having a molecular weight distribution (“MWD") such that its gel permeation chromatography (“GPC”) curve exhibits only a single peak with no discernible second peak, or even a shoulder, hump, or tail relative to such single peak.
- GPC gel permeation chromatography
- bimodal means that the MWD in a GPC curve exhibits the presence of two component polymers, such as by having two peaks or where one component may be indicated by a hump, shoulder, or tail relative to the peak of the other component polymer.
- the HDPE is unimodal.
- the HDPE is bimodal.
- the HDPE employed is a unimodal HDPE
- the HDPE can be an ethylene-based polymer.
- ethylene-based polymers are polymers prepared from ethylene monomers as the primary (i.e., greater than 50 weight percent (“wt%")) monomer component, though other co-monomers may also be employed.
- Polymer means a macromolecular compound prepared by reacting (i.e., polymerizing) monomers of the same or different type, and includes homopolymers and interpolymers.
- Interpolymer means a polymer prepared by the polymerization of at least two different monomer types.
- This generic term includes copolymers (usually employed to refer to polymers prepared from two different monomer types), and polymers prepared from more than two different monomer types (e.g., terpolymers (three different monomer types) and tetrapolymers (four different monomer types)).
- the ethylene-based polymer can be an ethylene homopolymer.
- homopolymer denotes a polymer comprising repeating units derived from a single monomer type, but does not exclude residual amounts of other components used in preparing the homopolymer, such as chain transfer agents.
- the ethylene-based polymer can be an ethylene/alpha-olefin (" ⁇ olefin") interpolymer having an ⁇ -olefin content of at least 1 wt%, at least 5 wt%, at least 10 wt%, at least 15 wt%, at least 20 wt%, or at least 25 wt% based on the entire interpolymer weight.
- ⁇ olefin ethylene/alpha-olefin
- interpolymers can have an ⁇ -olefin content of less than 50 wt%, less than 45 wt%, less than 40 wt%, or less than 35 wt% based on the entire interpolymer weight.
- the ⁇ -olefin can be a C 3-20 (i.e., having 3 to 20 carbon atoms) linear, branched or cyclic ⁇ -olefin.
- C 3-20 ⁇ -olefins include propene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene.
- the ⁇ -olefins can also have a cyclic structure such as cyclohexane or cyclopentane, resulting in an ⁇ -olefin such as 3 cyclohexyl-1-propene (allyl cyclohexane) and vinyl cyclohexane.
- Illustrative ethylene/ ⁇ -olefin interpolymers include ethylene/propylene, ethylene/1-butene, ethylene/1-hexene, ethylene/1-octene, ethylene/propylene/1-octene, ethylene/propylene/1-butene, and ethylene/1-butene/1-octene.
- Preparation methods for unimodal HDPEs are well known in the art. Any methods known or hereafter discovered for preparing a unimodal HDPE having the desired properties may be employed for making the unimodal HDPE.
- a suitable preparation method for making the unimodal HDPE can be found, for example, in U.S. Patent No. 4,303,771 .
- An example of a commercially available unimodal HDPE includes, but is not limited to, DGDL-3364NT, available from The Dow Chemical Company, Midland, MI, USA.
- the HDPE employed is a bimodal HDPE
- such HDPE can comprise a first polymeric component and a second polymeric component.
- the first component can be an ethylene-based polymer; for example, the first component can be a high-molecular-weight ethylene/alpha-olefin copolymer.
- the first component may comprise any amount of one or more alpha-olefin copolymers.
- the first component can comprise less than 10 wt% of one or more alpha-olefin comonomers, based on the total first component weight.
- the first component may comprise any amount of ethylene; for example, the first component can comprise at least 90 wt% of ethylene, or at least 95 wt% of ethylene, based on the total first component weight.
- the alpha-olefin comonomers present in the first component of the bimodal HDPE typically have no more than 20 carbon atoms.
- the alpha-olefin comonomers may have from 3 to 10 carbon atoms, or from 3 to 8 carbon atoms.
- Exemplary alpha-olefin comonomers include, but are not limited to, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 4-methyl-1-pentene.
- the alpha-olefin comonomers can be selected from the group consisting of propylene, 1-butene, 1-hexene, and 1-octene. In other embodiments, the alpha-olefin comonomers can be selected from the group consisting of 1-hexene and 1-octene.
- the first component of the bimodal HDPE can have a density in the range of from 0.915 to 0.940 g/cm 3 , from 0.920 to 0.940 g/cm 3 , or from 0.921 to 0.936 g/cm 3 .
- the first component can have a melt index (I 21.6 ) in the range of from 0.5 to 10 g/10 min., from 1 to 7 g/10 min., or from 1.3 to 5 g/10 min.
- the first component can have a molecular weight in the range of from 150,000 to 375,000 g/mol, from 175,000 to 375,000 g/mol, or from 200,000 to 375,000 g/mol.
- the second polymeric component of the bimodal HDPE can be an ethylene-based polymer; for example, the second component can be a low-molecular-weight ethylene homopolymer.
- the ethylene homopolymer may contain trace amounts of contaminate comonomers, for example alpha-olefin comonomers.
- the second component can comprise less than 1 wt% of one or more alpha-olefin comonomers, based on the weight of the second component.
- the second component may comprise from 0.0001 to 1.00 wt% of one or more alpha-olefin comonomers, or from 0.001 to 1.00 percent by weight of one or more alpha-olefin comonomers.
- the second component can comprise at least 99 wt% of ethylene, or in the range of from 99.5 to 100 wt% of ethylene, based on the weight of the second component.
- the second component of the bimodal HDPE can have a density in the range of from 0.965 to 0.980 g/cm 3 , or from 0.970 to 0.975 g/cm 3 .
- the second component can have a melt index (I 2 ) in the range of from 50 to 1,500 g/10 min., from 200 to 1,500 g/10 min., or from 500 to 1,500 g/10 min.
- the second component can have a molecular weight in the range of 12,000 to 40,000 g/mol, from 15,000 to 40,000 g/mol, or from 20,000 to 40,000 g/mol.
- bimodal HDPEs Preparation methods for bimodal HDPEs are well known in the art. Any methods known or hereafter discovered for preparing a bimodal HDPE having the desired properties may be employed for making the bimodal HDPE.
- a suitable preparation method for making bimodal HDPE can be found, for example, in U.S. Patent Application Publication No. 2009-0068429 , paragraphs [0063] to [0086].
- An example of a commercially available bimodal HDPE includes, but is not limited to, DMDA-1250NT, available from The Dow Chemical Company, Midland, MI, USA.
- the HDPE component is present in an amount that is greater than the amount of crystalline polypropylene in the polymeric composition.
- the HDPE component can be present in an amount that is at least 5 %, at least 10 %, at least 20 %, at least 30 %, at least 40 %, at least 50 %, or even up to 100 % or 200 % greater than the amount of crystalline polypropylene in the polymeric composition.
- the HDPE can be present in the polymeric composition in an amount of at least 10 wt%, at least 25 wt%, at least 50 wt%, in the range of from 50 to 95 wt%, in the range of from 50 to 80 wt%, or in the range of from 50 to 65 wt%, based on the total polymeric composition weight.
- the polymeric composition described herein contains less than 1 wt% low-density-polyethylene ("LDPE"), less than 0.1 wt% LDPE, less than 0.01 wt% LDPE, or less than 0.001 wt% LDPE. In certain embodiments, the polymeric composition described herein contains no LDPE.
- LDPE low-density-polyethylene
- the polymeric composition further comprises a crystalline polypropylene.
- a "crystalline polypropylene" is a polypropylene having at least some measureable quantity of crystallinity, as determined according to the method described below.
- the crystalline polypropylene can be an isotactic or syndiotactic homopolymer polypropylene, or mixtures thereof.
- the crystalline polypropylene can be an isotactic homopolymer polypropylene, in order to maximize the crystallinity of the polymer.
- the polypropylene used in the present invention is known in the literature and can be prepared by known techniques.
- the polypropylene can be made with Ziegler-Natta catalysts or metallocene catalysts.
- " Kirk-Othmer Encyclopedia of Chemical Technology” (2001 ) describes these catalysts and their corresponding reactor processes for making crystalline polypropylenes.
- the crystallinity of the polypropylene can be measured by differential scanning calorimetry ("DSC").
- DSC differential scanning calorimetry
- a small sample of the propylene polymer is sealed into an aluminum DSC pan.
- the sample is placed into a DSC cell with a 25-centimeter-per-minute nitrogen purge and cooled to about -100 °C.
- a standard thermal history is established for the sample by heating at 10 °C per minute to 225 °C.
- the sample is then re-cooled to about -100 °C and reheated at 10 °C per minute to 225 °C.
- the observed heat of fusion ( ⁇ H observed ) for the second scan is recorded.
- the crystalline polypropylene can have a crystallinity of at least 50 wt%, at least 55 wt%, at least 65 wt%, at least 70 wt%, or at least 73 wt%.
- the crystalline polypropylene can have a melt index (I 2 ) ranging from 1 to 20 g/10 min., from 1 to 12 g/10 min., from 2 to 9 g/10 min., from 2 to 8 g/10 min., or from 3 to 6 g/10 min.
- I 2 melt index
- U.S. Patent No. 7,087,680 filed October 7, 2003 , discloses an example of a crystalline polypropylene useful in various embodiments of the present invention.
- An example of a commercially available crystalline polypropylene includes, but is not limited to, BRASKEMTM FF018F, available from Braskem America, Inc., Philadelphia, PA, USA.
- the crystalline polypropylene can be present in the polymeric composition in an amount of less than 50 wt%, less than 45 wt%, in the range of from 5 to 45 wt%, or in the range of from 25 to 40 wt%, based on the total polymeric composition weight.
- the polymeric composition comprises at least one olefin block composite.
- block composite refers to polymer compositions comprising three components: (1) a soft copolymer, (2) a hard polymer, and (3) a block copolymer having a soft segment and a hard segment.
- the hard segment of the block copolymer is the same composition as the hard polymer in the block composite and the soft segment of the block copolymer is the same composition as the soft copolymer of the block composite.
- the block copolymers present in the olefin block composite can be linear or branched. More specifically, when produced in a continuous process, the block composites can have a PDI from 1.7 to 15, from 1.8 to 3.5, from 1.8 to 2.2, or from 1.8 to 2.1. When produced in a batch or semi-batch process, the block composites can have a PDI from 1.0 to 2.9, from 1.3 to 2.5, from 1.4 to 2.0, or from 1.4 to 1.8.
- olefin block composite refers to block composites prepared solely or substantially solely from two or more ⁇ -olefin types of monomers.
- the olefin block composite can consist of only two ⁇ -olefin type monomer units.
- An example of an olefin block composite would be a hard segment and hard polymer comprising only or substantially only propylene monomer residues with a soft segment and soft polymer comprising only or substantially only ethylene and propylene comonomer residues.
- hard segments refer to highly crystalline blocks of polymerized units in which a single monomer is present in an amount greater than 95 mol%, or greater than 98 mol%. In other words, the comonomer content in the hard segments is less than 5 mol%, or less than 2 mol%. In some embodiments, the hard segments comprise all or substantially all propylene units.
- Soft segments refer to amorphous, substantially amorphous or elastomeric blocks of polymerized units having a comonomer content greater than 10 mol%. In some embodiments, the soft segments comprise ethylene/propylene interpolymers.
- polyethylene includes homopolymers of ethylene and copolymers of ethylene and one or more C 3-8 ⁇ -olefins in which ethylene comprises at least 50 mole percent.
- polyethylene copolymer or "propylene interpolymer” means a copolymer comprising propylene and one or more copolymerizable comonomers, where a plurality of the polymerized monomer units of at least one block or segment in the polymer (the crystalline block) comprises propylene, which can be present in an amount of at least 90 mole percent, at least 95 mole percent, or at least 98 mole percent.
- a polymer made primarily from a different ⁇ -olefin, such as 4-methyl-1-pentene would be named similarly.
- crystalline when used to describe olefin block composites, refers to a polymer or polymer block that possesses a first order transition or crystalline melting point (“Tm”) as determined by differential scanning calorimetry ("DSC”) or equivalent technique.
- Tm transition or crystalline melting point
- DSC differential scanning calorimetry
- crystalline may be used interchangeably with the term “semicrystalline.”
- amorphous refers to a polymer lacking a crystalline melting point.
- isotactic denotes polymer repeat units having at least 70 percent isotactic pentads as determined by 13 C-nulcear magnetic resonance (“NMR”) analysis.
- NMR 13 C-nulcear magnetic resonance
- block copolymer or “segmented copolymer” refers to a polymer comprising two or more chemically distinct regions or segments (referred to as “blocks”) joined in a linear manner, that is, a polymer comprising chemically differentiated units which are joined end-to-end with respect to polymerized ethylenic functionality, rather than in pendent or grafted fashion.
- the blocks differ in the amount or type of comonomer incorporated therein, the density, the amount of crystallinity, the crystallite size attributable to a polymer of such composition, the type or degree of tacticity (isotactic or syndiotactic), regio-regularity or regio-irregularity, the amount of branching, including long chain branching or hyper-branching, the homogeneity, or any other chemical or physical property.
- the olefin block composites employed herein are characterized by unique distributions of polymer PDI, block length distribution, and/or block number distribution, due, in a preferred embodiment, to the effect of shuttling agent(s) in combination with the catalyst(s) used in preparing the block composites.
- the olefin block composite employed herein can be prepared by a process comprising contacting an addition polymerizable monomer or mixture of monomers under addition polymerization conditions with a composition comprising at least one addition polymerization catalyst, a cocatalyst and a chain shuttling agent ("CSA"), the process being characterized by formation of at least some of the growing polymer chains under differentiated process conditions in two or more reactors operating under steady state polymerization conditions or in two or more zones of a reactor operating under plug flow polymerization conditions.
- CSA chain shuttling agent
- Suitable monomers for use in preparing the olefin block composites of the present invention include any addition polymerizable monomer, such as any olefin or diolefin monomer, including any ⁇ -olefin.
- suitable monomers include straight-chain or branched ⁇ -olefins of 2 to 30, or 2 to 20, carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene; and di- and poly-olefins, such as butadiene, isoprene, 4-methyl-1,3-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,5-he
- ethylene and at least one copolymerizable comonomer, propylene and at least one copolymerizable comonomer having from 4 to 20 carbons, 1-butene and at least one copolymerizable comonomer having 2 or from 5 to 20 carbons, or 4-methyl-1-pentene and at least one different copolymerizable comonomer having from 4 to 20 carbons can be employed.
- the olefin block composites are prepared using propylene and ethylene monomers.
- Comonomer content in the resulting block composites may be measured using any suitable technique, such as NMR spectroscopy. It is highly desirable that some or all of the polymer blocks comprise amorphous or relatively amorphous polymers such as copolymers of propylene, 1-butene, or 4-methyl-1-pentene and a comonomer, especially random copolymers of propylene, 1-butene, or 4-methyl-1-pentene with ethylene, and any remaining polymer blocks (hard segments), if any, predominantly comprise propylene, 1-butene or 4-methyl-1-pentene in polymerized form. Preferably such hard segments are highly crystalline or stereospecific polypropylene, polybutene or poly-4-methyl-1-pentene, especially isotactic homopolymers.
- amorphous or relatively amorphous polymers such as copolymers of propylene, 1-butene, or 4-methyl-1-pentene and a comonomer, especially random copolymers of propy
- block copolymers of the block composites comprise from 10 to 90 wt% hard segments and 90 to 10 wt% soft segments.
- the mole percent comonomer may range from 5 to 90 wt%, or from 10 to 60 wt%. In the case where the comonomer is ethylene, it can be present in an amount from 10 to 75 wt%, or from 30 to 70 wt%. In an embodiment, propylene constitutes the remainder of the soft segment.
- the block copolymers of the olefin block composites comprise hard segments that are 80 to 100 wt% propylene.
- the hard segments can be greater than 90 wt%, 95 wt%, or 98 wt% propylene.
- the block composites described herein may be differentiated from conventional, random copolymers, physical blends of polymers, and block copolymers prepared via sequential monomer addition.
- the block composites may be differentiated from random copolymers by characteristics such as higher melting temperatures for a comparable amount of comonomer, block composite index, as described below; from a physical blend by characteristics such as block composite index, better tensile strength, improved fracture strength, finer morphology, improved optics, and greater impact strength at lower temperature; from block copolymers prepared by sequential monomer addition by molecular weight distribution, rheology, shear thinning, rheology ratio, and in that there is block polydispersity.
- the block composites have a Block Composite Index ("BCI"), as defined below, that is greater than zero but less than 0.4, or from 0.1 to 0.3. In other embodiments, BCI is greater than 0.4 and up to 1.0. Additionally, the BCI can range from 0.4 to 0.7, from 0.5 to 0.7, or from 0.6 to 0.9. In some embodiments, BCI ranges from 0.3 to 0.9, from 0.3 to 0.8, from 0.3 to 0.7, from 0.3 to 0.6, from 0.3 to 0.5, or from 0.3 to 0.4.
- BCI Block Composite Index
- BCI ranges from 0.4 to less than 1, from 0.5 to less than 1, from 0.6 to less than 1, from 0.7 to less than 1, from 0.8 to less than 1, or from 0.9 to less than 1.
- BCI is herein defined to equal the weight percentage of block copolymer divided by 100% (i.e., weight fraction).
- the value of the block composite index can range from 0 to less than 1, wherein 1 would be equal to 100% block copolymer and zero would be for a material such as a traditional blend or random copolymer.
- the olefin block composites can have a Tm greater than 100 °C, preferably greater than 120 °C., and more preferably greater than 125 °C.
- the melt index ("I 2 ") of the block composite can range from 0.1 to 1000 g/10 min., from 0.1 to 50 g/10 min., from 0.1 to 30 g/10 min., or from 1 to 10 g/10 min.
- the block composites can have a weight average molecular weight (“Mw”) from 10,000 to 2,500,000, from 35,000 to 1,000,000, from 50,000 to 300,000, or from 50,000 to 200,000 g/mol.
- Suitable catalysts and catalyst precursors for use in the present invention include metal complexes such as disclosed in WO 2005/090426 , in particular, those disclosed starting on page 20, line 30 through page 53, line 20. Suitable catalysts are also disclosed in U.S. 2006/0199930 ; U.S. 2007/0167578 ; U.S. 2008/0311812 ; U.S. 2011/0082258 ; U.S. Patent No. 7,355,089 ; and WO 2009/012215 .
- Suitable co-catalysts are those disclosed in WO 2005/090426 , in particular, those disclosed on page 54, line 1 to page 60, line 12.
- Suitable chain shuttling agents are those disclosed in WO 2005/090426 , in particular, those disclosed on page 19, line 21 through page 20 line 12.
- Particularly preferred chain shuttling agents are dialkyl zinc compounds.
- the olefin block composites themselves are more fully described in U.S. Patent No. 8,476,366 .
- the olefin block composite can be present in the polymeric composition in an amount ranging from 1 to 20 wt%, from 2 to 15 wt%, or from 5 to 10 wt%, based on the entire polymeric composition weight.
- a nucleating agent can be employed in the polymeric composition.
- suitable nucleating agents include ADK NA-11, available commercially from Asahi Denim Kokai, and HYPERFORMTM HPN-20E, available from Milliken Chemical. Persons of ordinary skill in the art can readily identify other useful nucleating agents.
- the nucleating agents can be included in the polymeric composition in amounts ranging from 0.08 to 0.3 wt%, from 0.09 to 0.25 wt%, or from 0.1 to 0.22 wt% based on the total polymeric composition weight.
- a hydrocarbon oil can also be included in the polymeric compositions. This additional component may reduce subsequent diffusion and absorption of undesirable low molecular weight species typically found in fiber-optical-cable grease, thereby improving the balance between impact performance and gel compatibility.
- the hydrocarbon oil can be present in the polymeric compositions in an amount ranging from 0.2 to 10 parts per hundred resin ("phr"), or from 0.3 to 3.0 phr based on 100 weight parts of all polymer components present in the polymeric composition. Higher-molecular-weight hydrocarbon oils are more preferable than low-molecular-weight hydrocarbon oils.
- the hydrocarbon oil can have a viscosity greater than 400 centistokes as measured by ASTM D-445. Additionally, the hydrocarbon oil can have a specific gravity between 0.86 and 0.90 as measured by ASTM D-1250. Also, the hydrocarbon oil can have a flash point greater than 300 °C as measured by ASTM D-92. Furthermore, the hydrocarbon oil can have a pour point greater than -10 °C as measured by ASTM D-97. Moreover, the hydrocarbon oil can have an aniline point between 80 and 300 °C as measured by ASTM D-611.
- the polymeric composition can include one or more particulate fillers, such as glass fibers or various mineral fillers including nano-composites. Fillers, especially those with elongated or platelet-shaped particles providing a higher aspect ratio (length/thickness), may improve modulus and post-extrusion shrinkage characteristics. Fillers may be included in the polymeric composition in an amount ranging from 0.1 to 20 phr based on 100 weight parts of all polymer components present in the polymeric composition.
- the polymeric compositions may also contain other types of additives.
- Representative additives include, but are not limited to, antioxidants, cross-linking co-agents, cure boosters and scorch retardants, processing aids, coupling agents, ultraviolet stabilizers (including UV absorbers), antistatic agents, additional nucleating agents, slip agents, lubricants, viscosity control agents, tackifiers, anti-blocking agents, surfactants, extender oils, acid scavengers, flame retardants and metal deactivators.
- These additives are typically used in a conventional manner and in conventional amounts, e.g., from 0.01 phr or less to 20 phr or more based on 100 weight parts of all polymer components present in the polymeric composition.
- Suitable UV light stabilizers include hindered amine light stabilizers (“HALS”) and UV light absorber (“UVA”) additives.
- Representative UVA additives include benzotriazole types such as Tinuvin 326 and Tinuvin 328 commercially available from Ciba, Inc. Blends of HAL's and UVA additives are also effective.
- antioxidants include hindered phenols such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydro-cinnamate)]methane; bis[(beta-(3,5-ditert-butyl-4-hydroxybenzyl)methylcarboxyethyl)]-sulphide, 4,4'-thiobis(2-methyl-6-tert-butylphenol), 4,4'-thiobis(2-tert-butyl-5-methylphenol), 2,2'-thiobis(4-methyl-6-tert-butylphenol), and thiodiethylene bis(3,5-di-tert-butyl-4-hydroxy)-hydrocinnamate; phosphites and phosphonites such as tris(2,4-di-tert-butylphenyl)phosphite and di-tert-butylphenyl-phosphonite; thio compounds such as dilaurylthiodipropionate
- processing aids include but are not limited to metal salts of carboxylic acids such as zinc stearate or calcium stearate; fatty acids such as stearic acid, oleic acid, or erucic acid; fatty amides such as stearamide, oleamide, erucamide, or N,N'-ethylene bis-stearamide; polyethylene wax; oxidized polyethylene wax; polymers of ethylene oxide; copolymers of ethylene oxide and propylene oxide; vegetable waxes; petroleum waxes; non ionic surfactants; silicone fluids and polysiloxanes.
- carboxylic acids such as zinc stearate or calcium stearate
- fatty acids such as stearic acid, oleic acid, or erucic acid
- fatty amides such as stearamide, oleamide, erucamide, or N,N'-ethylene bis-stearamide
- polyethylene wax oxidized polyethylene wax
- polymers of ethylene oxide copolymers
- the components of the polymeric composition used in the practice of this invention can be added to a batch or continuous mixer for melt blending.
- the components can be added in any order or first preparing one or more masterbatches for blending with the other components.
- Additives are usually blended with one or more other components before being added to the bulk resins and/or filler.
- the additives can be added directly to the compounding line without the use of previously prepared masterbatches.
- melt blending is conducted at a temperature above the highest melting polymer but lower than the maximum compounding temperature of 285 °C.
- the melt-blended composition can then either be delivered to an extruder or an injection-molding machine or passed through a die for shaping into the desired article, or converted to pellets, tape, strip or film or some other form for storage or to prepare the material for feeding to a next shaping or processing step.
- the pellets, etc. can be coated with an anti-block agent to facilitate handling while in storage.
- Compounding of the compositions can be effected by standard equipment known to those skilled in the art.
- Examples of compounding equipment are internal batch mixers, such as a BanburyTM or BollingTM internal mixer.
- continuous single, or twin screw, mixers can be used, such as FarrelTM continuous mixer, a Werner and PfleidererTM twin screw mixer, or a BussTM kneading continuous extruder.
- the type of mixer utilized, and the operating conditions of the mixer, will affect properties of the composition such as viscosity, volume resistivity, and extruded surface smoothness.
- Molded electrical articles comprising the polymeric compositions of this invention can be made via an injection-molding process in which the compounded material is fed to the injection-molding machine to manufacture a molded part of a given design.
- the resulting polymeric composition can have a miniwire line shrinkback at 21 °C of less than 0.8 %, less than 0.78 %, less than 0.75 %, or less than 0.70 %. Shrinkback is determined according to the procedure provided in the Test Methods section, below. Additionally, the polymeric composition can have a brittleness temperature of less than 0 °C, less than -10 °C, less than -20 °C, less than -25 °C, or less than -30 °C. Brittleness temperature is determined according to the procedure provided in the Test Methods section, below.
- an optical fiber cable can be prepared that includes at least one extruded optical protective component made from the polymer compositions described herein and incorporating at least one optical fiber transmission medium.
- FIG. 1 A cross-sectional view of a common loose buffer tube optical fiber cable design is shown in FIG. 1 .
- buffer tubes 2 are positioned radially around a central strength member 4, with a helical rotation to the tubes in the axial length.
- the helical rotation allows bending of the cable without significantly stretching the tube or the optic fibers 6.
- foamed filler rods 10 can be used as low-cost spacers to occupy one or more buffer tube positions to maintain cable geometry.
- the cable jacket 14 is generally fabricated from a polyethylene-based material.
- the buffer tubes 2 are typically filled with an optic cable grease or gel.
- Various gel compounds are available commercially, a number of which are hydrocarbon-based greases incorporating hydrocarbon oils. Others are polymer based and use a low viscosity polymer formulated with hydrocarbon oils and other additives for even lower viscosity for ease of filling. These greases and gels provide the suspension and protection needed in the immediate environment surrounding the fibers, including eliminating air space. This filling compound (also referred to as "gel” or “grease”) provides a barrier against water penetration, which is detrimental to the optic transmission performance.
- the hydrocarbon oils are typically low-molecular-weight hydrocarbon oils, which can be absorbed into polymeric buffer tubes. Absorption typically adversely affects the tube's mechanical properties, such as flexural modulus and crush resistance. A decrease in crush resistance renders the optic fibers more prone to mechanical stress, thereby permitting an increase in signal attenuation and increasing the possibility of catastrophic failure. Thus, good retention of modulus and crush resistance along with minimal oil absorption, commonly referred to as "grease compatibility,” are important performance characteristics for polymeric materials to be used for making extruded optical protective component.
- buffer tube cable designs are possible.
- the size and materials of construction for the central strength and tensile member, the dimensions and number of buffer tubes, and the use of metallic armors and multiple layers of jacketing material are among the design elements.
- FIG. 2 A partial cutaway view of a typical core-tube optical fiber cable, also known as "central tube,” is illustrated in FIG. 2 .
- Bundles 24 of the optical fibers 22 are positioned near the center of the optical cable 20 within a central, cylindrical core tube 28. The bundles are embedded in a filling material 26.
- Water blocking tape 32 surrounds the ripcords 30, which are on the surface of the core tube.
- a corrugated, coated steel cylinder 34 surrounds the tape to protect the bundles.
- Wire strength members 36 provide the cable with strength and stiffness.
- a jacket 38 which is generally fabricated from a polyethylene-based material, surrounds all of the components. In this design, the mechanical functions are incorporated into the outer sheathing system composed of the core tube, polyolefin jacketing layers, tensile and compressive strength members, metallic armors, core wraps, water blocking components, and other components.
- the core tube is typically larger in diameter than a buffer tube to accommodate bundles of fibers or the use of ribbon components containing the optic fibers. Color-coded binders are typically used to bundle and identify the fibers.
- the core tube can contain water blocking grease or super-absorbent polymer elements surrounding the optic fiber components. The optimal material characteristics for the core tube component are often similar to those of the buffer tube application.
- FIG. 3 A cross-sectional view of a typical slotted-core cable design is shown in FIG. 3 .
- the optical fiber cable 40 includes a jacket 58 and a slotted core 42, having a central member 44.
- the central member prevents buckling and controls axial shrinkage of the extruded slotted core profile shape.
- the jacket and the slotted core are typically made from a polyolefin-based material.
- the slotted core has slots 46 in which optical fibers 48 are located.
- a filler rod 50 also may occupy one or more slots.
- a water-blocking layer 52 which may have one or more ripcords 54, surrounds the slotted core 42.
- a dielectric strength member layer 56 surrounds the water-blocking layer.
- optical fiber cable such as those described above, can typically be made in a series of sequential manufacturing steps.
- Optical transmission fibers are generally manufactured in the initial step.
- the fibers can have a polymeric coating for mechanical protection.
- These fibers can be assembled into bundles or ribbon cable configurations or can be directly incorporated into the cable fabrication.
- Optical protective components can be manufactured using an extrusion fabrication process.
- a single screw plasticating extruder discharges a fluxed and mixed polymer under pressure into a wire and cable cross-head.
- the cross-head turns the melt flow perpendicular to the extruder and shapes the flow into the molten component.
- one or more optic fibers or fiber assemblies and grease are fed into the back of the cross-head and exit the cross-head within the molten tube that is then cooled and solidified in a water trough system. This component is eventually collected as a finished component on a take-up reel.
- a tensioning system is used to feed the fiber components into the tube fabrication process.
- component materials selection, the tube extrusion and cross-head equipment, and processing conditions are optimized to provide a finished component where post-extrusion shrinkage does not result in excessive slack in the optic fiber components.
- extruded optical protective components along with other components, such as central components, armors, and wraps, are then subsequently processed in one or more steps to produce the finished cable construction.
- the hydrocarbon gel used for these studies is LA 444 manufactured by the Stewart Group. Determine gel absorption by measuring the weight gain of each sample with time. Samples 2.25 inches long (with a copper conductor left loosely in place) are immersed in the LA 444 hydrocarbon gel and then placed in an 85 °C convection oven. Each sample is initially weighed and then re-weighed after 14 days in the gel after removing all the gel from the sample surfaces.
- a first crystalline polypropylene (1) is BRASKEMTM FF018F, which has a density of 0.90 g/cm 3 , and a melt flow rate of 1.6 g/10 minutes at 230 °C and 2.16 kg.
- BRASKEMTM FF018F is commercially available from Braskem Chemical, Philadelphia, PA.
- a second crystalline polypropylene (2) is ESCORENETM 7032, which has a density of 0.900 g/cm 3 , and a melt flow rate of 4.2 g/10 minutes at 230 °C and 2.16 kg.
- ESCORENETM 7032 is commercially available from ExxonMobil Chemical, Houston, TX, USA.
- DGDL-3364NT is a unimodal HDPE having a density of 0.945 g/cm 3 and a melt index (I 2 ) of 0.8 g/10 min. at 190 °C.
- DGDL-3364NT is commercially available from The Dow Chemical Company, Midland, MI, USA.
- DMDA-1250NT is a bimodal HDPE having a density of 0.955 g/cm 3 and a melt index (I 2 ) of 1.5 g/10 min. at 190 °C.
- DMDA-1250NT is commercially available from The Dow Chemical Company, Midland, MI, USA.
- NA-11A is a nucleating agent with the chemical name sodium 2,2'-methylene-bis-(4,6-di-tert-butylphenyl)phosphate ( CAS NO.85209-91-2 ), which is commercially available from ADEKA Corporation, Tokyo, Japan.
- HYPERFORMTM HPN-20E is a nucleating agent that is a calcium salt of 1,2-cyclohexanedicarboxylic acid and zinc stearate, which is commercially available from Milliken Chemical, Spartanburg, SC, USA.
- the block composite B (“BC B”) is an isotactic-polypropylene/ethylene-propylene olefin block composite having a density of 0.905 g/cm 3 and a melt index of 6 at 230 °C.
- the olefin block composite is prepared according to the following procedure.
- Catalyst-1 [[rel-2',2'''-[(1R,2R)-1,2-cylcohexanediylbis(methyleneoxy- ⁇ O)] bis[3-(9H-carbazol-9-yl)-5-methyl[1,1'-biphenyl]-2-olato- ⁇ O]](2-)]dimethyl-hafnium
- cocatalyst-1 a mixture of methyldi(C 14-18 alkyl)ammonium salts of tetrakis(pentafluorophenyl)borate, prepared by reaction of a long chain trialkylamine (ArmeenTM M2HT, available from Akzo-Nobel, Inc.), HCl and Li[B(C 6 F 5 ) 4 ], substantially as disclosed in USP 5,919,983 , Ex. 2., are purchased from Boulder Scientific and used without further purification.
- CSA-1 diethylzinc or DEZ
- cocatalyst-2 modified methylalumoxane (“MMAO”)
- the solvent for the polymerization reactions is a hydrocarbon mixture (ISOPAR®E) obtainable from ExxonMobil Chemical Company and purified through beds of 13-X molecular sieves prior to use.
- the block composite is prepared using two continuous stirred tank reactors ("CSTR") connected in series.
- the first reactor is approximately 12 gallons in volume while the second reactor is approximately 26 gallons.
- Each reactor is hydraulically full and set to operate at steady state conditions.
- Monomers, solvent, hydrogen, catalyst-1, cocatalyst-1, cocatalyst-2 and CSA-1 are fed to the first reactor according to the process conditions outlined in Table 1.
- the first reactor contents as described in Table 1 flow to a second reactor in series. Additional monomers, solvent, hydrogen, catalyst-1, cocatalyst-1, and optionally, cocatalyst-2, are added to the second reactor.
- the block composite prepared as described above has the following properties shown in Table 2: Table 2 - Block Composite Properties Property BC B Melt Flow Rate ("MFR") (230 °C/2.16 Kg) 7.0 Molecular Weight (Mw) (Kg/mol) 128 Polydispersity Index (Mw/Mn) 4.0 Total Weight Percent C 2 46.9 Melting Temperature (°C) Peak 1 132 Crystallization Temperature (°C) 91 Melt Enthalpy (J/g) 97 Wt% iPP 50 Wt% EP 50 Wt% C 2 in EP 90 Block Composite Index 0.707
- Each polymeric composition of Comparative Samples CS1-CS6 is then used to prepare a mini-wire sample.
- Coated wire extrusion is performed on each of the materials using the Brabender Mini-wire line on 14 AWG solid gauge copper conductor. The machine settings are shown below. The equipment is used to generate samples with a final diameter of approximately 2.9 mm and a wall thickness of approximately 0.635 mm on 14 AWG solid copper conductor of 1.63 mm/0.064" diameter.
- Wire preheat, to 80-90 °C is applied with an industrial air heat gun directed at the copper wire before entrance to the extruder die. After extrusion, the copper conductor can be stretched and removed, and the resulting hollow polymer tube samples are used for property testing such as shrinkage, gel absorption and modulus.
- the Mini-Wire line extrusion parameters are shown below: Heat zones 1-4 (°C): 180/200/220/220 Screw RPM: 25 Line speed (ft/min.): 10 Melt Temp. (°C): 220 Die Size (in.): 0.105 Tubing tip size (in.) 0.067 Finished Diameter: 2.9 mm (0.114 in.) Cooling Water Temp. (°C): 35-40 Wire Preheat Temp.
- Samples S1-S5 are prepared according to the procedure utilized for Comparative Samples CS5 and CS6, described in Example 1, above. Following preparation, each polymeric composition of Samples S1-S5 is then used to prepare a mini-wire sample in the same manner described above in Example 1.
- the combination of an HDPE with a crystalline polypropylene and olefin block composite decreases the brittleness temperature, particularly in comparison to a polypropylene alone (cf. Comparative Samples CS1 and CS2) and in comparison to a polypropylene/HDPE combination without an olefin block composite (cf. Comparative Samples CS5 and CS6).
- the Samples S1-S5 all show superior (lower) shrinkback compared to HDPE alone (cf. Comparative Samples CS3 and CS4).
- Samples S6 and S7 are prepared according to the procedure described in Example 1, above. Following preparation, each polymeric composition of Samples S6 and S7 is then used to prepare a mini-wire sample in the same manner described above in Example 1.
- Table 7 - Compositions of S6 and S7 S6 S7 HDPE 2 (DMDA-1250NT; bimodal) (wt%) 65 50 Polypropylene 1 (Braskem FF018F) (wt%) 25 40 Olefin Block Composite (BC B) (wt%) 10 10
- the combination of an HDPE with a crystalline polypropylene and olefin block composite decreases the brittleness temperature, particularly in comparison to a polypropylene alone (cf. Comparative Samples CS1 and CS2) and in comparison to a polypropylene/HDPE combination without an olefin block composite (cf. Comparative Samples CS5 and CS6).
- the Samples S6 and S7 both show superior (lower) shrinkback compared to HDPE alone (cf. Comparative Samples CS3 and CS4).
- Samples S8-S12 are prepared according to the procedure described in Example 1, above. Following preparation, each polymeric composition of Samples S8-S12 is then used to prepare a mini-wire sample in the same manner described above in Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
- The present application claims the benefit of
U.S. Provisional Application No. 61/917,674, filed on December 18, 2013 - Various embodiments of the present invention relate to polymeric compositions comprising a high-density polyethylene, a crystalline polypropylene, and an olefin block composite. Additional embodiments relate to buffer-tube, core-tube, or slotted-core fiber optic cable components made from an extrudable blend of high-density polyethylene, crystalline polypropylene, and an olefin block composite.
- Optical fibers efficiently transmit information at high rates and over long distances. These fibers are delicate and need to be protected. In practical application, a fiber optic cable protects the fibers from mechanical damage and/or adverse environmental conditions such as moisture exposure. For example, specific protective components include extruded buffer tubes, core tubes, and slotted core members.
- Buffer tubes, also known as loose buffer tubes, are protection components used to house and protect optical fibers, such as in a cable. Typically, these loose buffer tubes are filled with a hydrocarbon gel or grease to suspend and protect the fiber from moisture and have stringent requirements for high crush resistance, resistance to micro-bending, low brittleness temperature, good grease compatibility, impact resistance, and low post-extrusion shrinkage. Materials used in the manufacture of the buffer tubes include polybutylene terephthalate ("PBT"), high-crystallinity polypropylene, and to a lesser extent high-density polyethylene. PBT is a high-cost material, and cost-effective alternatives are desired.
- One embodiment is a polymeric composition, comprising:
- (a) a bimodal high-density polyethylene;
- (b) a crystalline polypropylene; and
- (c) an olefin block composite,
- Another embodiment is an extruded optical cable protective component comprising an extruded polymeric blend, said extruded polymeric blend comprising:
- (a) a high-density polyethylene;
- (b) a crystalline polypropylene; and
- (c) an olefin block composite,
- Reference is made to the accompanying drawings in which:
-
FIG. 1 shows a cross-sectional view of a loose buffer tube optical fiber cable; -
FIG. 2 shows a partial cutaway view of a core tube optical fiber cable; and -
FIG. 3 shows a cross-sectional view of a slotted core optical fiber cable. - Various embodiments of the present invention concern polymeric compositions comprising a high-density polyethylene ("HDPE"), a crystalline polypropylene, and an olefin block composite. Optionally, the polymeric composition can further comprise a nucleating agent. The polymeric composition may also contain one or more additives. Such polymeric compositions can be extruded to form optical fiber cable protective components.
- The high-density polyethylene suitable for use herein can be any high-density polyethylene known or hereafter discovered in the art. As known to those of ordinary skill in the art, HDPEs are ethylene-based polymers having densities greater than 0.940 g/cm3. Polymer densities provided herein are determined according to ASTM International ("ASTM") method D792. In an embodiment, the HDPE can have a density from 0.945 to 0.970 g/cm3, or from 0.945 to 0.955 g/cm3. The HDPE can have a peak melting temperature of at least 124 °C, or from 124 to 135 °C. The HDPE can have a melt index (I2) ranging from 0.1 grams per 10 minutes ("g/10 min."), or 0.2 g/10 min., or 0.3 g/10 min., or 0.4 g/10 min., up to 5.0 g/10 min., or 4.0 g/10 min., or, 3.0 g/10 min. or 2.0 g/10 min., or 1.0 g/10 min., or 0.5 g/10 min. Melt indices provided herein are determined according to ASTM method D1238. Unless otherwise noted, melt indices are determined at 190 °C and 2.16 Kg (i.e., I2). Melt indices determined using a 21.6-Kg weight are denoted as "I21.6". Also, the HDPE can have a polydispersity index ("PDI") in the range of from 1.0 to 30.0, or in the range of from 2.0 to 15.0, as determined by gel permeation chromatography.
- The HDPE suitable for use herein can be either unimodal or bimodal. As used herein, "unimodal" denotes an HDPE having a molecular weight distribution ("MWD") such that its gel permeation chromatography ("GPC") curve exhibits only a single peak with no discernible second peak, or even a shoulder, hump, or tail relative to such single peak. In contrast, as used herein, "bimodal" means that the MWD in a GPC curve exhibits the presence of two component polymers, such as by having two peaks or where one component may be indicated by a hump, shoulder, or tail relative to the peak of the other component polymer. In various embodiments, the HDPE is unimodal. In other embodiments, the HDPE is bimodal.
- When the HDPE employed is a unimodal HDPE, the HDPE can be an ethylene-based polymer. As used herein, "ethylene-based" polymers are polymers prepared from ethylene monomers as the primary (i.e., greater than 50 weight percent ("wt%")) monomer component, though other co-monomers may also be employed. "Polymer" means a macromolecular compound prepared by reacting (i.e., polymerizing) monomers of the same or different type, and includes homopolymers and interpolymers. "Interpolymer" means a polymer prepared by the polymerization of at least two different monomer types. This generic term includes copolymers (usually employed to refer to polymers prepared from two different monomer types), and polymers prepared from more than two different monomer types (e.g., terpolymers (three different monomer types) and tetrapolymers (four different monomer types)).
- In various embodiments, the ethylene-based polymer can be an ethylene homopolymer. As used herein, "homopolymer" denotes a polymer comprising repeating units derived from a single monomer type, but does not exclude residual amounts of other components used in preparing the homopolymer, such as chain transfer agents.
- In an embodiment, the ethylene-based polymer can be an ethylene/alpha-olefin ("α olefin") interpolymer having an α-olefin content of at least 1 wt%, at least 5 wt%, at least 10 wt%, at least 15 wt%, at least 20 wt%, or at least 25 wt% based on the entire interpolymer weight. These interpolymers can have an α-olefin content of less than 50 wt%, less than 45 wt%, less than 40 wt%, or less than 35 wt% based on the entire interpolymer weight. When an α-olefin is employed, the α-olefin can be a C3-20 (i.e., having 3 to 20 carbon atoms) linear, branched or cyclic α-olefin. Examples of C3-20 α-olefins include propene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene. The α-olefins can also have a cyclic structure such as cyclohexane or cyclopentane, resulting in an α-olefin such as 3 cyclohexyl-1-propene (allyl cyclohexane) and vinyl cyclohexane. Illustrative ethylene/α-olefin interpolymers include ethylene/propylene, ethylene/1-butene, ethylene/1-hexene, ethylene/1-octene, ethylene/propylene/1-octene, ethylene/propylene/1-butene, and ethylene/1-butene/1-octene.
- Preparation methods for unimodal HDPEs are well known in the art. Any methods known or hereafter discovered for preparing a unimodal HDPE having the desired properties may be employed for making the unimodal HDPE. A suitable preparation method for making the unimodal HDPE can be found, for example, in
U.S. Patent No. 4,303,771 . - An example of a commercially available unimodal HDPE includes, but is not limited to, DGDL-3364NT, available from The Dow Chemical Company, Midland, MI, USA.
- When the HDPE employed is a bimodal HDPE, such HDPE can comprise a first polymeric component and a second polymeric component. In various embodiments, the first component can be an ethylene-based polymer; for example, the first component can be a high-molecular-weight ethylene/alpha-olefin copolymer. The first component may comprise any amount of one or more alpha-olefin copolymers. For example, the first component can comprise less than 10 wt% of one or more alpha-olefin comonomers, based on the total first component weight. The first component may comprise any amount of ethylene; for example, the first component can comprise at least 90 wt% of ethylene, or at least 95 wt% of ethylene, based on the total first component weight.
- The alpha-olefin comonomers present in the first component of the bimodal HDPE typically have no more than 20 carbon atoms. For example, the alpha-olefin comonomers may have from 3 to 10 carbon atoms, or from 3 to 8 carbon atoms. Exemplary alpha-olefin comonomers include, but are not limited to, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 4-methyl-1-pentene. In an embodiment, the alpha-olefin comonomers can be selected from the group consisting of propylene, 1-butene, 1-hexene, and 1-octene. In other embodiments, the alpha-olefin comonomers can be selected from the group consisting of 1-hexene and 1-octene.
- The first component of the bimodal HDPE can have a density in the range of from 0.915 to 0.940 g/cm3, from 0.920 to 0.940 g/cm3, or from 0.921 to 0.936 g/cm3. The first component can have a melt index (I21.6) in the range of from 0.5 to 10 g/10 min., from 1 to 7 g/10 min., or from 1.3 to 5 g/10 min. The first component can have a molecular weight in the range of from 150,000 to 375,000 g/mol, from 175,000 to 375,000 g/mol, or from 200,000 to 375,000 g/mol.
- The second polymeric component of the bimodal HDPE can be an ethylene-based polymer; for example, the second component can be a low-molecular-weight ethylene homopolymer. The ethylene homopolymer may contain trace amounts of contaminate comonomers, for example alpha-olefin comonomers. In various embodiments, the second component can comprise less than 1 wt% of one or more alpha-olefin comonomers, based on the weight of the second component. For example, the second component may comprise from 0.0001 to 1.00 wt% of one or more alpha-olefin comonomers, or from 0.001 to 1.00 percent by weight of one or more alpha-olefin comonomers. The second component can comprise at least 99 wt% of ethylene, or in the range of from 99.5 to 100 wt% of ethylene, based on the weight of the second component.
- The second component of the bimodal HDPE can have a density in the range of from 0.965 to 0.980 g/cm3, or from 0.970 to 0.975 g/cm3. The second component can have a melt index (I2) in the range of from 50 to 1,500 g/10 min., from 200 to 1,500 g/10 min., or from 500 to 1,500 g/10 min. The second component can have a molecular weight in the range of 12,000 to 40,000 g/mol, from 15,000 to 40,000 g/mol, or from 20,000 to 40,000 g/mol.
- Preparation methods for bimodal HDPEs are well known in the art. Any methods known or hereafter discovered for preparing a bimodal HDPE having the desired properties may be employed for making the bimodal HDPE. A suitable preparation method for making bimodal HDPE can be found, for example, in
U.S. Patent Application Publication No. 2009-0068429 , paragraphs [0063] to [0086]. - An example of a commercially available bimodal HDPE includes, but is not limited to, DMDA-1250NT, available from The Dow Chemical Company, Midland, MI, USA.
- In one or more embodiments, the HDPE component is present in an amount that is greater than the amount of crystalline polypropylene in the polymeric composition. For example, the HDPE component can be present in an amount that is at least 5 %, at least 10 %, at least 20 %, at least 30 %, at least 40 %, at least 50 %, or even up to 100 % or 200 % greater than the amount of crystalline polypropylene in the polymeric composition. In various embodiments, the HDPE can be present in the polymeric composition in an amount of at least 10 wt%, at least 25 wt%, at least 50 wt%, in the range of from 50 to 95 wt%, in the range of from 50 to 80 wt%, or in the range of from 50 to 65 wt%, based on the total polymeric composition weight.
- In various embodiments, the polymeric composition described herein contains less than 1 wt% low-density-polyethylene ("LDPE"), less than 0.1 wt% LDPE, less than 0.01 wt% LDPE, or less than 0.001 wt% LDPE. In certain embodiments, the polymeric composition described herein contains no LDPE.
- As noted above, the polymeric composition further comprises a crystalline polypropylene. As used herein, a "crystalline polypropylene" is a polypropylene having at least some measureable quantity of crystallinity, as determined according to the method described below. In various embodiments, the crystalline polypropylene can be an isotactic or syndiotactic homopolymer polypropylene, or mixtures thereof. In one or more embodiments, the crystalline polypropylene can be an isotactic homopolymer polypropylene, in order to maximize the crystallinity of the polymer.
- The polypropylene used in the present invention is known in the literature and can be prepared by known techniques. In general, the polypropylene can be made with Ziegler-Natta catalysts or metallocene catalysts. "Kirk-Othmer Encyclopedia of Chemical Technology" (2001) describes these catalysts and their corresponding reactor processes for making crystalline polypropylenes.
- The crystallinity of the polypropylene can be measured by differential scanning calorimetry ("DSC"). In this measurement, a small sample of the propylene polymer is sealed into an aluminum DSC pan. The sample is placed into a DSC cell with a 25-centimeter-per-minute nitrogen purge and cooled to about -100 °C. A standard thermal history is established for the sample by heating at 10 °C per minute to 225 °C. The sample is then re-cooled to about -100 °C and reheated at 10 °C per minute to 225 °C. The observed heat of fusion (ΔHobserved) for the second scan is recorded. The observed heat of fusion is related to the degree of crystallinity in weight percent based on the weight of the polypropylene sample by the following equation:
- In one or more embodiments, the crystalline polypropylene can have a melt index (I2) ranging from 1 to 20 g/10 min., from 1 to 12 g/10 min., from 2 to 9 g/10 min., from 2 to 8 g/10 min., or from 3 to 6 g/10 min.
-
U.S. Patent No. 7,087,680, filed October 7, 2003 , discloses an example of a crystalline polypropylene useful in various embodiments of the present invention. An example of a commercially available crystalline polypropylene includes, but is not limited to, BRASKEM™ FF018F, available from Braskem America, Inc., Philadelphia, PA, USA. - In various embodiments, the crystalline polypropylene can be present in the polymeric composition in an amount of less than 50 wt%, less than 45 wt%, in the range of from 5 to 45 wt%, or in the range of from 25 to 40 wt%, based on the total polymeric composition weight.
- As noted above, the polymeric composition comprises at least one olefin block composite. The term "block composite" refers to polymer compositions comprising three components: (1) a soft copolymer, (2) a hard polymer, and (3) a block copolymer having a soft segment and a hard segment. The hard segment of the block copolymer is the same composition as the hard polymer in the block composite and the soft segment of the block copolymer is the same composition as the soft copolymer of the block composite.
- The block copolymers present in the olefin block composite can be linear or branched. More specifically, when produced in a continuous process, the block composites can have a PDI from 1.7 to 15, from 1.8 to 3.5, from 1.8 to 2.2, or from 1.8 to 2.1. When produced in a batch or semi-batch process, the block composites can have a PDI from 1.0 to 2.9, from 1.3 to 2.5, from 1.4 to 2.0, or from 1.4 to 1.8. The term "olefin block composite" refers to block composites prepared solely or substantially solely from two or more α-olefin types of monomers. In various embodiments, the olefin block composite can consist of only two α-olefin type monomer units. An example of an olefin block composite would be a hard segment and hard polymer comprising only or substantially only propylene monomer residues with a soft segment and soft polymer comprising only or substantially only ethylene and propylene comonomer residues.
- In describing olefin block composites, "hard" segments refer to highly crystalline blocks of polymerized units in which a single monomer is present in an amount greater than 95 mol%, or greater than 98 mol%. In other words, the comonomer content in the hard segments is less than 5 mol%, or less than 2 mol%. In some embodiments, the hard segments comprise all or substantially all propylene units. "Soft" segments, on the other hand, refer to amorphous, substantially amorphous or elastomeric blocks of polymerized units having a comonomer content greater than 10 mol%. In some embodiments, the soft segments comprise ethylene/propylene interpolymers.
- When referring to block composites, the term "polyethylene" includes homopolymers of ethylene and copolymers of ethylene and one or more C3-8 α-olefins in which ethylene comprises at least 50 mole percent. The term "propylene copolymer" or "propylene interpolymer" means a copolymer comprising propylene and one or more copolymerizable comonomers, where a plurality of the polymerized monomer units of at least one block or segment in the polymer (the crystalline block) comprises propylene, which can be present in an amount of at least 90 mole percent, at least 95 mole percent, or at least 98 mole percent. A polymer made primarily from a different α-olefin, such as 4-methyl-1-pentene would be named similarly. The term "crystalline," when used to describe olefin block composites, refers to a polymer or polymer block that possesses a first order transition or crystalline melting point ("Tm") as determined by differential scanning calorimetry ("DSC") or equivalent technique. The term "crystalline" may be used interchangeably with the term "semicrystalline." The term "amorphous" refers to a polymer lacking a crystalline melting point. The term, "isotactic" denotes polymer repeat units having at least 70 percent isotactic pentads as determined by 13C-nulcear magnetic resonance ("NMR") analysis. "Highly isotactic" denotes polymers having at least 90 percent isotactic pentads.
- When referring to olefin block composites, the term "block copolymer" or "segmented copolymer" refers to a polymer comprising two or more chemically distinct regions or segments (referred to as "blocks") joined in a linear manner, that is, a polymer comprising chemically differentiated units which are joined end-to-end with respect to polymerized ethylenic functionality, rather than in pendent or grafted fashion. In an embodiment, the blocks differ in the amount or type of comonomer incorporated therein, the density, the amount of crystallinity, the crystallite size attributable to a polymer of such composition, the type or degree of tacticity (isotactic or syndiotactic), regio-regularity or regio-irregularity, the amount of branching, including long chain branching or hyper-branching, the homogeneity, or any other chemical or physical property. The olefin block composites employed herein are characterized by unique distributions of polymer PDI, block length distribution, and/or block number distribution, due, in a preferred embodiment, to the effect of shuttling agent(s) in combination with the catalyst(s) used in preparing the block composites.
- The olefin block composite employed herein can be prepared by a process comprising contacting an addition polymerizable monomer or mixture of monomers under addition polymerization conditions with a composition comprising at least one addition polymerization catalyst, a cocatalyst and a chain shuttling agent ("CSA"), the process being characterized by formation of at least some of the growing polymer chains under differentiated process conditions in two or more reactors operating under steady state polymerization conditions or in two or more zones of a reactor operating under plug flow polymerization conditions.
- Suitable monomers for use in preparing the olefin block composites of the present invention include any addition polymerizable monomer, such as any olefin or diolefin monomer, including any α-olefin. Examples of suitable monomers include straight-chain or branched α-olefins of 2 to 30, or 2 to 20, carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene; and di- and poly-olefins, such as butadiene, isoprene, 4-methyl-1,3-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, 1,3-hexadiene, 1,3-octadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, ethylidene norbornene, vinyl norbornene, dicyclopentadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, and 5,9-dimethyl-1,4,8-decatriene. In various embodiments, ethylene and at least one copolymerizable comonomer, propylene and at least one copolymerizable comonomer having from 4 to 20 carbons, 1-butene and at least one copolymerizable comonomer having 2 or from 5 to 20 carbons, or 4-methyl-1-pentene and at least one different copolymerizable comonomer having from 4 to 20 carbons can be employed. In an embodiment, the olefin block composites are prepared using propylene and ethylene monomers.
- Comonomer content in the resulting block composites may be measured using any suitable technique, such as NMR spectroscopy. It is highly desirable that some or all of the polymer blocks comprise amorphous or relatively amorphous polymers such as copolymers of propylene, 1-butene, or 4-methyl-1-pentene and a comonomer, especially random copolymers of propylene, 1-butene, or 4-methyl-1-pentene with ethylene, and any remaining polymer blocks (hard segments), if any, predominantly comprise propylene, 1-butene or 4-methyl-1-pentene in polymerized form. Preferably such hard segments are highly crystalline or stereospecific polypropylene, polybutene or poly-4-methyl-1-pentene, especially isotactic homopolymers.
- Further, the block copolymers of the block composites comprise from 10 to 90 wt% hard segments and 90 to 10 wt% soft segments.
- Within the soft segments, the mole percent comonomer may range from 5 to 90 wt%, or from 10 to 60 wt%. In the case where the comonomer is ethylene, it can be present in an amount from 10 to 75 wt%, or from 30 to 70 wt%. In an embodiment, propylene constitutes the remainder of the soft segment.
- In an embodiment, the block copolymers of the olefin block composites comprise hard segments that are 80 to 100 wt% propylene. The hard segments can be greater than 90 wt%, 95 wt%, or 98 wt% propylene.
- The block composites described herein may be differentiated from conventional, random copolymers, physical blends of polymers, and block copolymers prepared via sequential monomer addition. The block composites may be differentiated from random copolymers by characteristics such as higher melting temperatures for a comparable amount of comonomer, block composite index, as described below; from a physical blend by characteristics such as block composite index, better tensile strength, improved fracture strength, finer morphology, improved optics, and greater impact strength at lower temperature; from block copolymers prepared by sequential monomer addition by molecular weight distribution, rheology, shear thinning, rheology ratio, and in that there is block polydispersity.
- In some embodiments, the block composites have a Block Composite Index ("BCI"), as defined below, that is greater than zero but less than 0.4, or from 0.1 to 0.3. In other embodiments, BCI is greater than 0.4 and up to 1.0. Additionally, the BCI can range from 0.4 to 0.7, from 0.5 to 0.7, or from 0.6 to 0.9. In some embodiments, BCI ranges from 0.3 to 0.9, from 0.3 to 0.8, from 0.3 to 0.7, from 0.3 to 0.6, from 0.3 to 0.5, or from 0.3 to 0.4. In other embodiments, BCI ranges from 0.4 to less than 1, from 0.5 to less than 1, from 0.6 to less than 1, from 0.7 to less than 1, from 0.8 to less than 1, or from 0.9 to less than 1. BCI is herein defined to equal the weight percentage of block copolymer divided by 100% (i.e., weight fraction). The value of the block composite index can range from 0 to less than 1, wherein 1 would be equal to 100% block copolymer and zero would be for a material such as a traditional blend or random copolymer. Methods for determining BCI can be found, for example, in
U.S. Published Patent Application No. 2011/0082258 from paragraph [0170] to [0189]. - The olefin block composites can have a Tm greater than 100 °C, preferably greater than 120 °C., and more preferably greater than 125 °C. The melt index ("I2") of the block composite can range from 0.1 to 1000 g/10 min., from 0.1 to 50 g/10 min., from 0.1 to 30 g/10 min., or from 1 to 10 g/10 min. The block composites can have a weight average molecular weight ("Mw") from 10,000 to 2,500,000, from 35,000 to 1,000,000, from 50,000 to 300,000, or from 50,000 to 200,000 g/mol.
- Processes useful in producing the olefin block composites suitable for use in the present invention may be found, for example, in
U.S. Patent Application Publication No. 2008/0269412, published on Oct. 30, 2008 . Suitable catalysts and catalyst precursors for use in the present invention include metal complexes such as disclosed inWO 2005/090426 , in particular, those disclosed starting onpage 20,line 30 through page 53,line 20. Suitable catalysts are also disclosed inU.S. 2006/0199930 ;U.S. 2007/0167578 ;U.S. 2008/0311812 ;U.S. 2011/0082258 ;U.S. Patent No. 7,355,089 ; andWO 2009/012215 . Suitable co-catalysts are those disclosed inWO 2005/090426 , in particular, those disclosed onpage 54, line 1 to page 60, line 12. Suitable chain shuttling agents are those disclosed inWO 2005/090426 , in particular, those disclosed on page 19, line 21 throughpage 20 line 12. Particularly preferred chain shuttling agents are dialkyl zinc compounds. The olefin block composites themselves are more fully described inU.S. Patent No. 8,476,366 . - In one or more embodiments, the olefin block composite can be present in the polymeric composition in an amount ranging from 1 to 20 wt%, from 2 to 15 wt%, or from 5 to 10 wt%, based on the entire polymeric composition weight.
- In various embodiments, a nucleating agent can be employed in the polymeric composition. Examples of suitable nucleating agents include ADK NA-11, available commercially from Asahi Denim Kokai, and HYPERFORM™ HPN-20E, available from Milliken Chemical. Persons of ordinary skill in the art can readily identify other useful nucleating agents. The nucleating agents can be included in the polymeric composition in amounts ranging from 0.08 to 0.3 wt%, from 0.09 to 0.25 wt%, or from 0.1 to 0.22 wt% based on the total polymeric composition weight.
- In various embodiments, a hydrocarbon oil can also be included in the polymeric compositions. This additional component may reduce subsequent diffusion and absorption of undesirable low molecular weight species typically found in fiber-optical-cable grease, thereby improving the balance between impact performance and gel compatibility.
- When employed, the hydrocarbon oil can be present in the polymeric compositions in an amount ranging from 0.2 to 10 parts per hundred resin ("phr"), or from 0.3 to 3.0 phr based on 100 weight parts of all polymer components present in the polymeric composition. Higher-molecular-weight hydrocarbon oils are more preferable than low-molecular-weight hydrocarbon oils. In various embodiments, the hydrocarbon oil can have a viscosity greater than 400 centistokes as measured by ASTM D-445. Additionally, the hydrocarbon oil can have a specific gravity between 0.86 and 0.90 as measured by ASTM D-1250. Also, the hydrocarbon oil can have a flash point greater than 300 °C as measured by ASTM D-92. Furthermore, the hydrocarbon oil can have a pour point greater than -10 °C as measured by ASTM D-97. Moreover, the hydrocarbon oil can have an aniline point between 80 and 300 °C as measured by ASTM D-611.
- In various embodiments, the polymeric composition can include one or more particulate fillers, such as glass fibers or various mineral fillers including nano-composites. Fillers, especially those with elongated or platelet-shaped particles providing a higher aspect ratio (length/thickness), may improve modulus and post-extrusion shrinkage characteristics. Fillers may be included in the polymeric composition in an amount ranging from 0.1 to 20 phr based on 100 weight parts of all polymer components present in the polymeric composition.
- The polymeric compositions may also contain other types of additives. Representative additives include, but are not limited to, antioxidants, cross-linking co-agents, cure boosters and scorch retardants, processing aids, coupling agents, ultraviolet stabilizers (including UV absorbers), antistatic agents, additional nucleating agents, slip agents, lubricants, viscosity control agents, tackifiers, anti-blocking agents, surfactants, extender oils, acid scavengers, flame retardants and metal deactivators. These additives are typically used in a conventional manner and in conventional amounts, e.g., from 0.01 phr or less to 20 phr or more based on 100 weight parts of all polymer components present in the polymeric composition.
- Suitable UV light stabilizers include hindered amine light stabilizers ("HALS") and UV light absorber ("UVA") additives. Representative UVA additives include benzotriazole types such as Tinuvin 326 and Tinuvin 328 commercially available from Ciba, Inc. Blends of HAL's and UVA additives are also effective.
- Examples of antioxidants include hindered phenols such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydro-cinnamate)]methane; bis[(beta-(3,5-ditert-butyl-4-hydroxybenzyl)methylcarboxyethyl)]-sulphide, 4,4'-thiobis(2-methyl-6-tert-butylphenol), 4,4'-thiobis(2-tert-butyl-5-methylphenol), 2,2'-thiobis(4-methyl-6-tert-butylphenol), and thiodiethylene bis(3,5-di-tert-butyl-4-hydroxy)-hydrocinnamate; phosphites and phosphonites such as tris(2,4-di-tert-butylphenyl)phosphite and di-tert-butylphenyl-phosphonite; thio compounds such as dilaurylthiodipropionate, dimyristylthiodipropionate, and distearylthiodipropionate; various siloxanes; polymerized 2,2,4-trimethyl-1,2-dihydroquinoline, n,n'-bis(1,4-dimethylpentyl-p-phenylenediamine), alkylated diphenylamines, 4,4'-bis(alpha, alpha-dimethylbenzyl)diphenylamine, diphenyl-p-phenylenediamine, mixed di-aryl-p-phenylenediamines, and other hindered amine anti-degradants or stabilizers.
- Examples of processing aids include but are not limited to metal salts of carboxylic acids such as zinc stearate or calcium stearate; fatty acids such as stearic acid, oleic acid, or erucic acid; fatty amides such as stearamide, oleamide, erucamide, or N,N'-ethylene bis-stearamide; polyethylene wax; oxidized polyethylene wax; polymers of ethylene oxide; copolymers of ethylene oxide and propylene oxide; vegetable waxes; petroleum waxes; non ionic surfactants; silicone fluids and polysiloxanes.
- In one or more embodiments, the components of the polymeric composition used in the practice of this invention can be added to a batch or continuous mixer for melt blending. The components can be added in any order or first preparing one or more masterbatches for blending with the other components. Additives are usually blended with one or more other components before being added to the bulk resins and/or filler. In one embodiment, the additives can be added directly to the compounding line without the use of previously prepared masterbatches. Typically, melt blending is conducted at a temperature above the highest melting polymer but lower than the maximum compounding temperature of 285 °C. The melt-blended composition can then either be delivered to an extruder or an injection-molding machine or passed through a die for shaping into the desired article, or converted to pellets, tape, strip or film or some other form for storage or to prepare the material for feeding to a next shaping or processing step. Optionally, if shaped into pellets or some similar configuration, then the pellets, etc. can be coated with an anti-block agent to facilitate handling while in storage.
- Compounding of the compositions can be effected by standard equipment known to those skilled in the art. Examples of compounding equipment are internal batch mixers, such as a Banbury™ or Bolling™ internal mixer. Alternatively, continuous single, or twin screw, mixers can be used, such as Farrel™ continuous mixer, a Werner and Pfleiderer™ twin screw mixer, or a Buss™ kneading continuous extruder. The type of mixer utilized, and the operating conditions of the mixer, will affect properties of the composition such as viscosity, volume resistivity, and extruded surface smoothness.
- Molded electrical articles comprising the polymeric compositions of this invention can be made via an injection-molding process in which the compounded material is fed to the injection-molding machine to manufacture a molded part of a given design.
- The resulting polymeric composition can have a miniwire line shrinkback at 21 °C of less than 0.8 %, less than 0.78 %, less than 0.75 %, or less than 0.70 %. Shrinkback is determined according to the procedure provided in the Test Methods section, below. Additionally, the polymeric composition can have a brittleness temperature of less than 0 °C, less than -10 °C, less than -20 °C, less than -25 °C, or less than -30 °C. Brittleness temperature is determined according to the procedure provided in the Test Methods section, below.
- In various embodiments, an optical fiber cable can be prepared that includes at least one extruded optical protective component made from the polymer compositions described herein and incorporating at least one optical fiber transmission medium.
- A cross-sectional view of a common loose buffer tube optical fiber cable design is shown in
FIG. 1 . In this design of optical fiber cable 1,buffer tubes 2 are positioned radially around acentral strength member 4, with a helical rotation to the tubes in the axial length. The helical rotation allows bending of the cable without significantly stretching the tube or the optic fibers 6. - If a reduced number of buffer tubes is required, then foamed
filler rods 10 can be used as low-cost spacers to occupy one or more buffer tube positions to maintain cable geometry. Thecable jacket 14 is generally fabricated from a polyethylene-based material. - The
buffer tubes 2 are typically filled with an optic cable grease or gel. Various gel compounds are available commercially, a number of which are hydrocarbon-based greases incorporating hydrocarbon oils. Others are polymer based and use a low viscosity polymer formulated with hydrocarbon oils and other additives for even lower viscosity for ease of filling. These greases and gels provide the suspension and protection needed in the immediate environment surrounding the fibers, including eliminating air space. This filling compound (also referred to as "gel" or "grease") provides a barrier against water penetration, which is detrimental to the optic transmission performance. - In either oil-based grease or polymer formulated with oil for lower viscosity, the hydrocarbon oils are typically low-molecular-weight hydrocarbon oils, which can be absorbed into polymeric buffer tubes. Absorption typically adversely affects the tube's mechanical properties, such as flexural modulus and crush resistance. A decrease in crush resistance renders the optic fibers more prone to mechanical stress, thereby permitting an increase in signal attenuation and increasing the possibility of catastrophic failure. Thus, good retention of modulus and crush resistance along with minimal oil absorption, commonly referred to as "grease compatibility," are important performance characteristics for polymeric materials to be used for making extruded optical protective component.
- Many other buffer tube cable designs are possible. The size and materials of construction for the central strength and tensile member, the dimensions and number of buffer tubes, and the use of metallic armors and multiple layers of jacketing material are among the design elements.
- A partial cutaway view of a typical core-tube optical fiber cable, also known as "central tube," is illustrated in
FIG. 2 .Bundles 24 of theoptical fibers 22 are positioned near the center of theoptical cable 20 within a central,cylindrical core tube 28. The bundles are embedded in a fillingmaterial 26.Water blocking tape 32 surrounds theripcords 30, which are on the surface of the core tube. A corrugated, coatedsteel cylinder 34 surrounds the tape to protect the bundles.Wire strength members 36 provide the cable with strength and stiffness. A jacket 38, which is generally fabricated from a polyethylene-based material, surrounds all of the components. In this design, the mechanical functions are incorporated into the outer sheathing system composed of the core tube, polyolefin jacketing layers, tensile and compressive strength members, metallic armors, core wraps, water blocking components, and other components. - The core tube is typically larger in diameter than a buffer tube to accommodate bundles of fibers or the use of ribbon components containing the optic fibers. Color-coded binders are typically used to bundle and identify the fibers. The core tube can contain water blocking grease or super-absorbent polymer elements surrounding the optic fiber components. The optimal material characteristics for the core tube component are often similar to those of the buffer tube application.
- A cross-sectional view of a typical slotted-core cable design is shown in
FIG. 3 . Theoptical fiber cable 40 includes ajacket 58 and a slottedcore 42, having acentral member 44. The central member prevents buckling and controls axial shrinkage of the extruded slotted core profile shape. The jacket and the slotted core are typically made from a polyolefin-based material. - The slotted core has
slots 46 in whichoptical fibers 48 are located. Afiller rod 50 also may occupy one or more slots. A water-blocking layer 52, which may have one ormore ripcords 54, surrounds the slottedcore 42. A dielectricstrength member layer 56 surrounds the water-blocking layer. - An optical fiber cable, such as those described above, can typically be made in a series of sequential manufacturing steps. Optical transmission fibers are generally manufactured in the initial step. The fibers can have a polymeric coating for mechanical protection. These fibers can be assembled into bundles or ribbon cable configurations or can be directly incorporated into the cable fabrication.
- Optical protective components can be manufactured using an extrusion fabrication process. Typically, a single screw plasticating extruder discharges a fluxed and mixed polymer under pressure into a wire and cable cross-head. The cross-head turns the melt flow perpendicular to the extruder and shapes the flow into the molten component. For buffer and core tubes, one or more optic fibers or fiber assemblies and grease are fed into the back of the cross-head and exit the cross-head within the molten tube that is then cooled and solidified in a water trough system. This component is eventually collected as a finished component on a take-up reel.
- To fabricate components comprised of two or more material layers, there typically would be separate plasticating extruders feeding the melt compositions into a multi-layer cross-head where it is shaped into the desired multi-layer construction.
- Slotted core members and other profile extrusion components would typically be extruded in a similar profile extrusion process incorporating an appropriate shaping die, and then subsequently combined with the optical fiber components to fabricate the finished cable.
- To control excess fiber length, a tensioning system is used to feed the fiber components into the tube fabrication process. In addition, component materials selection, the tube extrusion and cross-head equipment, and processing conditions are optimized to provide a finished component where post-extrusion shrinkage does not result in excessive slack in the optic fiber components.
- The extruded optical protective components, along with other components, such as central components, armors, and wraps, are then subsequently processed in one or more steps to produce the finished cable construction. This typically includes processing on a cabling line where the components are assembled with a fabricating extruder/crosshead then used to apply the polymeric jacketing.
- Determine brittleness temperature according to ASTM D746.
- Melt index, or I2, is measured in accordance with ASTM D1238, condition 190 °C / 2.16 kg, and is reported in grams eluted per 10 minutes.
- Melt Index, or I2, can also measured in accordance with ASTM D1238 at 230 °C and 2.16 kg, and is reported in grams eluted per 10 minutes.
- Determine shrinkage of extruded samples after aging at room temperature (21 °C). At least eight (8) samples are measured for each material. Five-foot test specimens are prepared using a steel V channel to keep the samples straight and a ruler used for marking initial length measurements. The conductors are then stretched by clamping one end down of the conductor and drawing or pulling the other end of the conductor to separate the polymer tube from the copper. The resulting polymer tubes are aged for one (1) day at 21 °C. The sample lengths are measured at the 1-day time. The aged specimens are placed in the V-channel and the change in length measured using a caliper instrument with +/-0.0005 inch resolution. The average shrinkage value is reported. The commercial ESCORENE™ 7032 from Exxon Mobil is used for benchmarking results.
- Determine tensile modulus according to ASTM D638. Modulus is measured for fresh samples as well as samples exposed to LA444 gel at 85 °C for 14 days in the manner described below for determining grease resistance.
- Determine tensile strength according to ASTM D638.
- Determine tensile elongation according to ASTM D638.
- The hydrocarbon gel used for these studies is LA 444 manufactured by the Stewart Group. Determine gel absorption by measuring the weight gain of each sample with time. Samples 2.25 inches long (with a copper conductor left loosely in place) are immersed in the LA 444 hydrocarbon gel and then placed in an 85 °C convection oven. Each sample is initially weighed and then re-weighed after 14 days in the gel after removing all the gel from the sample surfaces.
- The following materials are employed in the Examples, below.
- A first crystalline polypropylene (1) is BRASKEM™ FF018F, which has a density of 0.90 g/cm3, and a melt flow rate of 1.6 g/10 minutes at 230 °C and 2.16 kg. BRASKEM™ FF018F is commercially available from Braskem Chemical, Philadelphia, PA.
- A second crystalline polypropylene (2) is ESCORENE™ 7032, which has a density of 0.900 g/cm3, and a melt flow rate of 4.2 g/10 minutes at 230 °C and 2.16 kg. ESCORENE™ 7032 is commercially available from ExxonMobil Chemical, Houston, TX, USA.
- DGDL-3364NT is a unimodal HDPE having a density of 0.945 g/cm3 and a melt index (I2) of 0.8 g/10 min. at 190 °C. DGDL-3364NT is commercially available from The Dow Chemical Company, Midland, MI, USA.
- DMDA-1250NT is a bimodal HDPE having a density of 0.955 g/cm3 and a melt index (I2) of 1.5 g/10 min. at 190 °C. DMDA-1250NT is commercially available from The Dow Chemical Company, Midland, MI, USA.
- NA-11A is a nucleating agent with the
chemical name sodium 2,2'-methylene-bis-(4,6-di-tert-butylphenyl)phosphate (CAS NO.85209-91-2), which is commercially available from ADEKA Corporation, Tokyo, Japan. - HYPERFORM™ HPN-20E is a nucleating agent that is a calcium salt of 1,2-cyclohexanedicarboxylic acid and zinc stearate, which is commercially available from Milliken Chemical, Spartanburg, SC, USA.
- The block composite B ("BC B") is an isotactic-polypropylene/ethylene-propylene olefin block composite having a density of 0.905 g/cm3 and a melt index of 6 at 230 °C.
- The olefin block composite is prepared according to the following procedure. Catalyst-1 ([[rel-2',2'''-[(1R,2R)-1,2-cylcohexanediylbis(methyleneoxy-κO)] bis[3-(9H-carbazol-9-yl)-5-methyl[1,1'-biphenyl]-2-olato-κO]](2-)]dimethyl-hafnium) and cocatalyst-1, a mixture of methyldi(C14-18 alkyl)ammonium salts of tetrakis(pentafluorophenyl)borate, prepared by reaction of a long chain trialkylamine (Armeen™ M2HT, available from Akzo-Nobel, Inc.), HCl and Li[B(C6F5)4], substantially as disclosed in USP
5,919,983 , Ex. 2., are purchased from Boulder Scientific and used without further purification. - CSA-1 (diethylzinc or DEZ) and cocatalyst-2 (modified methylalumoxane ("MMAO")) are purchased from Akzo Nobel and used without further purification. The solvent for the polymerization reactions is a hydrocarbon mixture (ISOPAR®E) obtainable from ExxonMobil Chemical Company and purified through beds of 13-X molecular sieves prior to use.
- The block composite is prepared using two continuous stirred tank reactors ("CSTR") connected in series. The first reactor is approximately 12 gallons in volume while the second reactor is approximately 26 gallons. Each reactor is hydraulically full and set to operate at steady state conditions. Monomers, solvent, hydrogen, catalyst-1, cocatalyst-1, cocatalyst-2 and CSA-1 are fed to the first reactor according to the process conditions outlined in Table 1. The first reactor contents as described in Table 1 flow to a second reactor in series. Additional monomers, solvent, hydrogen, catalyst-1, cocatalyst-1, and optionally, cocatalyst-2, are added to the second reactor.
Table 1 - Block Composite Process Conditions Condition BC B 1st Reactor 2nd Reactor Reactor Control Temp. (°C) 140 135 Solvent Feed (lb/hr) 242 245 Propylene Feed (lb/hr) 5.5 49.3 Ethylene Feed (lb/hr) 47.1 - Reactor Propylene Conc. (g/L) 2.0 2.0 Hydrogen Feed (SCCM) 9.6 9.9 Catalyst Efficiency (gPoly/gM)*106 0.86 0.03 Catalyst Flow (lb/hr) 1.96 2.14 Catalyst Conc. (ppm) 29.9 900 Cocatalyst-1 Flow (lb/hr) 1.47 2.16 Cocatalyst-1 Conc. (ppm) 399 7500 Cocat.-2 Flow (lb/hr) - 0.3 Cocat.-2 Conc. (ppm) - 2686 DEZ Flow (lb/hr) 0.64 - DEZ Concentration (ppm) 3599 - - The block composite prepared as described above has the following properties shown in Table 2:
Table 2 - Block Composite Properties Property BC B Melt Flow Rate ("MFR") (230 °C/2.16 Kg) 7.0 Molecular Weight (Mw) (Kg/mol) 128 Polydispersity Index (Mw/Mn) 4.0 Total Weight Percent C2 46.9 Melting Temperature (°C) Peak 1 132 Crystallization Temperature (°C) 91 Melt Enthalpy (J/g) 97 Wt% iPP 50 Wt% EP 50 Wt% C2 in EP 90 Block Composite Index 0.707 - Prepare six comparative samples (CS1-CS6) using the formulations provided in Table 3, below. The polypropylenes and HDPEs in CS1-CS4 are employed as received. All Comparative Samples having two or more components are prepared by blending in a Brabender mixing bowl with 250-gm capacity and rotor type mixing blades. Brabender mixing conditions are shown below:
Zone 1 (°C): 175 Zone 2 (°C): 170 Melt (°C): 185-190 RPM: 50 Flux (min.) 5.0 - Each polymeric composition of Comparative Samples CS1-CS6 is then used to prepare a mini-wire sample. Coated wire extrusion is performed on each of the materials using the Brabender Mini-wire line on 14 AWG solid gauge copper conductor. The machine settings are shown below. The equipment is used to generate samples with a final diameter of approximately 2.9 mm and a wall thickness of approximately 0.635 mm on 14 AWG solid copper conductor of 1.63 mm/0.064" diameter. Wire preheat, to 80-90 °C, is applied with an industrial air heat gun directed at the copper wire before entrance to the extruder die. After extrusion, the copper conductor can be stretched and removed, and the resulting hollow polymer tube samples are used for property testing such as shrinkage, gel absorption and modulus. The Mini-Wire line extrusion parameters are shown below:
Heat zones 1-4 (°C): 180/200/220/220 Screw RPM: 25 Line speed (ft/min.): 10 Melt Temp. (°C): 220 Die Size (in.): 0.105 Tubing tip size (in.) 0.067 Finished Diameter: 2.9 mm (0.114 in.) Cooling Water Temp. (°C): 35-40 Wire Preheat Temp. (°C): 80-100 Wall Thickness: 0.635 mm (0.025 in.) Table 3 - Compositions of CS1-CS6 CS1 CS2 CS3 CS4 CS5 CS6 Polypropylene 1 (Braskem FF018F) (wt%) 100 - - - 25 50 Polypropylene 2 (Escorene 7032) (wt%) - 100 - - - - HDPE 1 (DGDL-3364NT; unimodal) (wt%) - - 100 - 75 50 HDPE 2 (DMDA-1250NT; bimodal) (wt%) - - - 100 - - - Analyze Comparative Samples CS1-CS6 according to the Test Methods described above. Results are provided in Table 4, below.
Table 4 - Properties of CS1-CS6 CS1 CS2 CS3 CS4 CS5 CS6 Tensile Modulus ( secant 2%)* (psi)144,489 119,722 80,307 123,865 131,966 124,666 Stress at break (psi) 3,179 2,856 3,759 3,353 3,350 3,924 Strain at break (%) 466 83 799 718 21 9 Low temp. brittleness, F50 (°C) > 10 -20 < -65 < -65 > 10 > 0 Shrinkback (%) 0.66 0.55 1.01 0.83 0.76 0.76 Melt Index (g/10 min.) I2 @190 C 0.7 1.8 0.7 1.4 1.2 1.1 Melt Index (g/10 min.) I2 @230 C 1.6 4.2 1.4 2.6 2.5 2.2 Weight gain in LA444 (%) 7.04 12.78 5.33 4.97 6.86 8.34 Secant 2% modulus; oven/gel-aged35,260 25,733 27,622 32,348 29,096 33,338 Secant 2% modulus; un-aged tube50,058 46,905 37,747 42,404 44,164 55,031 Secant 2% modulus retention (%)70.4 54.9 73.2 76.3 65.9 60.6 *This sample measurement is performed on samples prepared according to ASTM D638 as opposed to being measured on the actual extruded mini-wire tube. - Prepare five Samples (S1-S5) using the formulations shown in Table 5, below, using unimodal HDPE. Samples S1-S5 are prepared according to the procedure utilized for Comparative Samples CS5 and CS6, described in Example 1, above. Following preparation, each polymeric composition of Samples S1-S5 is then used to prepare a mini-wire sample in the same manner described above in Example 1.
Table 5 - Compositions of S1-S5 S1 S2 S3 S4 S5 HDPE 1 (DGDL-3364NT; unimodal) (wt%) 65 50 64.85 64.8 64.65 Polypropylene 1 (Braskem FF018F) (wt%) 25 40 25 25 25 Olefin Block Composite (BC B) (wt%) 10 10 10 10 10 Nucleating agent (NA-11A) (wt%) - - 0.15 - 0.15 Nucleating agent (HPN-20E) (wt%) - - - 0.2 0.2 - Analyze Samples S1-S5 according to the Test Methods described above. Results are provided in Table 6, below.
Table 6 - Properties of S1-S5 S1 S2 S3 S4 S5 Tensile Modulus ( secant 2%)* (psi)118,273 118,969 105,955 102,773 112,145 Stress at break (psi) 1,871 1,370 2,182 2,250 1,963 Strain at break (%) 207 153 113 143 133 Low temp. brittleness, F50 (°C) < -65 -38 -47.4 <-65 -42.5 Shrinkback (%) 0.76 0.71 0.67 0.68 0.66 Weight gain in LA444 (%) 7.73 8.07 8.20 8.06 7.95 Secant 2% modulus; oven/gel-aged29,219 34,484 28,483 31,224 29,358 Secant 2% modulus; un-aged tube45,071 52,383 45,022 44,178 47,200 Secant 2% modulus retention (%)64.8 65.8 63.3 70.7 62.2 *This sample measurement is performed on samples prepared according to ASTM D638 as opposed to being measured on the actual extruded mini-wire tube. - As can be seen from the results in Table 6, the combination of an HDPE with a crystalline polypropylene and olefin block composite decreases the brittleness temperature, particularly in comparison to a polypropylene alone (cf. Comparative Samples CS1 and CS2) and in comparison to a polypropylene/HDPE combination without an olefin block composite (cf. Comparative Samples CS5 and CS6). In addition, the Samples S1-S5 all show superior (lower) shrinkback compared to HDPE alone (cf. Comparative Samples CS3 and CS4).
- Prepare two Samples (S6 and S7) using the formulations shown in Table 7, below, using bimodal HDPE. Samples S6 and S7 are prepared according to the procedure described in Example 1, above. Following preparation, each polymeric composition of Samples S6 and S7 is then used to prepare a mini-wire sample in the same manner described above in Example 1.
Table 7 - Compositions of S6 and S7 S6 S7 HDPE 2 (DMDA-1250NT; bimodal) (wt%) 65 50 Polypropylene 1 (Braskem FF018F) (wt%) 25 40 Olefin Block Composite (BC B) (wt%) 10 10 - Analyze Samples S6 and S7 according to the Test Methods described above. Results are provided in Table 8, below.
Table 8 - Properties of S6 and S7 S6 S7 Tensile Modulus ( secant 2%) (psi)107,571 123,365 Stress at break (psi) 2,272 2,439 Strain at break (%) 144 235 Low temp. brittleness, F50 (°C) -48 -28 Shrinkback (%) 0.66 0.61 Melt Index (g/10 min.) I2 @190 C 1.3 1.2 Melt Flow Rate (g/10 min.) I2 @230C 2.6 2.5 Weight gain in LA444 (%) 6.9 7.6 Secant 2% modulus; oven/gel-aged29,168 30,290 Secant 2% modulus; un-aged43,313 46,600 Secant 2% modulus retention (%)67.3 65 - As can be seen from the results in Table 8, the combination of an HDPE with a crystalline polypropylene and olefin block composite decreases the brittleness temperature, particularly in comparison to a polypropylene alone (cf. Comparative Samples CS1 and CS2) and in comparison to a polypropylene/HDPE combination without an olefin block composite (cf. Comparative Samples CS5 and CS6). In addition, the Samples S6 and S7 both show superior (lower) shrinkback compared to HDPE alone (cf. Comparative Samples CS3 and CS4).
- Prepare five additional Samples (S8-S12) using the formulations shown in Table 9, below, using varying amounts of bimodal HDPE, polypropylene 1, and BC B. Samples S8-S12 are prepared according to the procedure described in Example 1, above. Following preparation, each polymeric composition of Samples S8-S12 is then used to prepare a mini-wire sample in the same manner described above in Example 1.
Table 9 - Compositions of S8-S12 S8 S9 S10 S11 S12 HDPE 2 (DMDA-1250NT; bimodal) (wt%) 73.65 74.65 58.65 59.65 80.0 Polypropylene 1 (Braskem FF018F) (wt%) 25.00 5.00 40.00 20.00 10.00 Olefin Block Composite (BC B) (wt%) 1.00 20.00 1.00 20.00 10.00 Nucleating agent (NA-11A) (wt%) 0.15 0.15 0.15 0.15 - Nucleating agent (HPN-20E) (wt%) 0.20 0.20 0.20 0.20 - - Analyze Samples S8-S12 for low temperature brittleness and shrinkback according to the Test Methods described above. Results are provided in Table 10, below.
Table 10 - Properties of S8-S12 S8 S9 S10 S11 S12 Low temp. brittleness, F50 (°C) >-10 -39 >-10 -25 -35 Shrinkback (%) 0.53 0.68 0.39 0.51 0.62 - As can be seen from the results in Table 10, varying the amounts of HDPE, polypropylene, and olefin block composite still provides samples having a good balance of low temperature brittleness and shrinkback performance.
Claims (10)
- A polymeric composition, comprising:(a) a bimodal high-density polyethylene;(b) a crystalline polypropylene; and(c) an olefin block composite,wherein said bimodal high-density polyethylene is present in said polymeric composition in an amount greater than said crystalline polypropylene.
- The polymeric composition of claim 1, further comprising (d) a nucleating agent, wherein said nucleating agent is present in an amount ranging from 0.08 to 0.3 weight percent based on the entire polymeric composition weight.
- The polymeric composition of either claim 1 or claim 2, wherein said olefin block composite comprises block copolymers having hard polypropylene segments and soft ethylene-propylene segments; wherein said olefin block composite is present in an amount ranging from 1 to 20 weight percent based on the entire polymeric composition weight.
- The polymeric composition of any one of the foregoing claims, wherein said crystalline polypropylene is present in an amount of greater than 0 but less than 50 weight percent based on the entire polymeric composition weight; wherein said crystalline polypropylene has a crystallinity of at least 50 weight percent; wherein said bimodal high-density polyethylene is present in an amount of at least 50 weight percent based on the entire polymeric composition weight; wherein said polymeric composition comprises no low-density polyethylene.
- The polymeric composition of any one of the foregoing claims, wherein said polymeric composition has a shrinkback after aging for 1 day at 21 °C of less than 0.8 %; wherein said polymeric composition has a brittleness temperature of less than 0 °C.
- An extruded optical cable protective component comprising an extruded polymeric blend, said extruded polymeric blend comprising:(a) a high-density polyethylene;(b) a crystalline polypropylene; and(c) an olefin block composite,wherein said high-density polyethylene is present in said polymeric composition in an amount greater than said crystalline polypropylene.
- The extruded optical cable protective component of claim 6, said extruded polymeric blend further comprising (d) a nucleating agent, wherein said nucleating agent is present in an amount ranging from 0.08 to 0.3 weight percent based on the entire polymeric composition weight; wherein said crystalline polypropylene is present in an amount of greater than 0 but less than 50 weight percent based on the entire polymeric composition weight; wherein said crystalline polypropylene has a crystallinity of at least 50 weight percent; wherein said high-density polyethylene is present in an amount of at least 50 weight percent based on the entire polymeric composition weight; wherein said polymeric composition comprises no low-density polyethylene.
- The extruded optical cable protective component of either claim 6 or claim 7, wherein said olefin block composite comprises block copolymers having hard polypropylene segments and soft ethylene-propylene segments; wherein said olefin block composite is present in an amount ranging from 1 to 20 weight percent based on the entire polymeric composition weight.
- The extruded optical cable protective component of any one of claims 6 through 8, wherein said extruded optical cable protective component has a shrinkback after aging for 1 day at 21 °C of less than 0.8 %; wherein said extruded optical cable protective component has a brittleness temperature of less than 0 °C.
- An optical fiber cable, comprising:(a) the extruded optical fiber cable protective component of any one of claims 6 through 9; and(b) at least one optical fiber transmission medium.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361917674P | 2013-12-18 | 2013-12-18 | |
PCT/US2014/065117 WO2015094516A1 (en) | 2013-12-18 | 2014-11-12 | Optical fiber cable components |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3083816A1 EP3083816A1 (en) | 2016-10-26 |
EP3083816B1 true EP3083816B1 (en) | 2018-12-26 |
Family
ID=51987500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14803318.6A Active EP3083816B1 (en) | 2013-12-18 | 2014-11-12 | Optical fiber cable components |
Country Status (10)
Country | Link |
---|---|
US (1) | US9598565B2 (en) |
EP (1) | EP3083816B1 (en) |
JP (1) | JP6506761B2 (en) |
KR (1) | KR102330603B1 (en) |
CN (1) | CN105793347B (en) |
BR (1) | BR112016012925B1 (en) |
CA (1) | CA2933637C (en) |
MX (1) | MX2016007145A (en) |
RU (1) | RU2675843C1 (en) |
WO (1) | WO2015094516A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3262660B1 (en) * | 2015-02-25 | 2023-09-27 | Union Carbide Corporation | Polyolefin compounds for cable coatings |
CN107922686B (en) * | 2015-09-10 | 2021-01-08 | 陶氏环球技术有限责任公司 | Polyolefin blends including compatibilizers |
BR112018010314B1 (en) * | 2015-12-10 | 2022-01-25 | Dow Global Technologies Llc | Composition, manufacturing process of a tube, tube and cable |
BR112018068614B1 (en) * | 2016-03-25 | 2022-03-15 | Dow Global Technologies Llc | Composition, protective element and fiber optic cable |
KR102545899B1 (en) * | 2017-09-06 | 2023-06-22 | 롬 앤드 하스 캄파니 | Polymeric Compositions for Fiber Optic Cable Components |
KR20200073249A (en) * | 2017-10-20 | 2020-06-23 | 디에스엠 아이피 어셋츠 비.브이. | Fiber optic cable element and fiber optic cable structure comprising same |
CN109485972A (en) * | 2018-11-12 | 2019-03-19 | 湖北九衢管道有限公司 | A kind of formula of polyethylene double-wall corrugated pipe and preparation method thereof |
US20220340739A1 (en) * | 2019-09-13 | 2022-10-27 | Dow Global Technologies Llc | Compatibilized polymeric compositions for optical fiber cable components |
CN113985546B (en) * | 2021-10-09 | 2023-09-15 | 富通集团(嘉善)通信技术有限公司 | Water-resistant optical cable |
KR102393368B1 (en) * | 2022-01-10 | 2022-05-02 | 케이넷(주) | Optical cable protection pipe |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303771A (en) | 1978-12-14 | 1981-12-01 | Union Carbide Corporation | Process for the preparation of high density ethylene polymers in fluid bed reactor |
JPS58113236A (en) * | 1981-12-28 | 1983-07-06 | Tounen Sekiyu Kagaku Kk | Polyolefin composition |
US5574816A (en) | 1995-01-24 | 1996-11-12 | Alcatel Na Cable Sytems, Inc. | Polypropylene-polyethylene copolymer buffer tubes for optical fiber cables and method for making the same |
AU2214997A (en) | 1996-03-27 | 1997-10-17 | Dow Chemical Company, The | Highly soluble olefin polymerization catalyst activator |
DE19619625C2 (en) | 1996-05-15 | 1999-10-14 | Hoechst Ag | High tenacity polyolefin blends |
US5911023A (en) | 1997-07-10 | 1999-06-08 | Alcatel Alsthom Compagnie Generale D'electricite | Polyolefin materials suitable for optical fiber cable components |
ES2259952T3 (en) | 2000-04-13 | 2006-11-01 | Borealis Technology Oy | HDPE POLYMER COMPOUND. |
RU2295144C2 (en) * | 2001-06-04 | 2007-03-10 | Пирелли Энд К. Спа | Optical cable, provided with mechanically durable cover |
CN100559221C (en) * | 2002-10-07 | 2009-11-11 | 陶氏环球技术公司 | Optical cable components |
WO2004033509A1 (en) | 2002-10-07 | 2004-04-22 | Dow Global Technologies Inc. | Highly crystalline polypropylene with low xylene solubles |
EP1552331B1 (en) * | 2002-10-07 | 2010-10-06 | Dow Global Technologies Inc. | Optical cable components |
EP1449878A1 (en) | 2003-02-24 | 2004-08-25 | Borealis Technology Oy | Polypropylene compositions |
US6931184B2 (en) | 2003-05-30 | 2005-08-16 | Corning Cable Systems Llc | Dry tube fiber optic assemblies, cables, and manufacturing methods therefor |
RU2327714C2 (en) * | 2003-09-30 | 2008-06-27 | Призмиан Кави Э Системи Энергиа С.Р.Л. | Cable with coating layer, made from waste material |
US7608668B2 (en) | 2004-03-17 | 2009-10-27 | Dow Global Technologies Inc. | Ethylene/α-olefins block interpolymers |
AU2005224259B2 (en) | 2004-03-17 | 2010-09-09 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US7951882B2 (en) | 2004-03-17 | 2011-05-31 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
US7355089B2 (en) | 2004-03-17 | 2008-04-08 | Dow Global Technologies Inc. | Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates |
US7220917B2 (en) * | 2004-12-17 | 2007-05-22 | General Electric Company | Electrical wire and method of making an electrical wire |
KR100897655B1 (en) * | 2004-12-17 | 2009-05-14 | 사빅 이노베이티브 플라스틱스 아이피 비.브이. | Electrical wire and method of making an electrical wire |
BRPI0617001B1 (en) | 2005-09-15 | 2018-02-14 | Dow Global Technologies Inc. | PROCESS FOR POLYMERIZING ONE OR MORE POLYMERIZABLE MONOMERS BY ADDITION, HIGH MOLECULAR WEIGHT COPOLYMER AND POLYMER MIXER |
US7786203B2 (en) * | 2005-09-16 | 2010-08-31 | Milliken & Company | Polymer compositions comprising nucleating or clarifying agents and articles made using such compositions |
ATE461242T1 (en) | 2006-05-02 | 2010-04-15 | Dow Global Technologies Inc | HIGH DENSITY POLYETHYLENE COMPOSITIONS, METHOD FOR PRODUCING THEM, ARTICLES MADE THEREFROM AND METHOD FOR PRODUCING SUCH ARTICLES |
JP5260888B2 (en) * | 2007-05-16 | 2013-08-14 | 古河電気工業株式会社 | Slot rod for optical fiber cable and optical fiber cable using the same |
EP2170604B1 (en) | 2007-07-13 | 2019-05-15 | Dow Global Technologies LLC | Ethylene/alpha-olefin interpolymers having low crystallinity hard blocks |
EP2112201A1 (en) * | 2008-04-25 | 2009-10-28 | INEOS Manufacturing Belgium NV | Oxygen Barrier Composition |
US8476366B2 (en) | 2009-10-02 | 2013-07-02 | Dow Global Technologies, Llc | Block compositions in thermoplastic vulcanizate applications |
CN102712795B (en) * | 2009-10-02 | 2015-10-21 | 陶氏环球技术有限责任公司 | Block matrix material and impact modified composition |
US20110174413A1 (en) * | 2010-01-20 | 2011-07-21 | Fina Technology, Inc. | Modification of Polyethylene Pipe to Improve Sag Resistance |
US8822599B2 (en) | 2010-06-21 | 2014-09-02 | Dow Global Technologies Llc | Crystalline block composites as compatibilizers |
CN103080206B (en) * | 2010-06-21 | 2015-05-20 | 陶氏环球技术有限责任公司 | Crystalline block composites as compatibilizers |
JP5844806B2 (en) * | 2010-06-21 | 2016-01-20 | ダウ グローバル テクノロジーズ エルエルシー | Crystalline block composites as compatibilizers |
CA2872487C (en) | 2012-06-27 | 2021-06-15 | Dow Global Technologies Llc | Polymeric coatings for coated conductors |
KR102157916B1 (en) * | 2012-12-21 | 2020-09-18 | 다우 글로벌 테크놀로지스 엘엘씨 | Hdpe-based buffer tubes with improved excess fiber length in fiber optic cables |
-
2014
- 2014-11-12 CA CA2933637A patent/CA2933637C/en active Active
- 2014-11-12 CN CN201480064793.1A patent/CN105793347B/en active Active
- 2014-11-12 MX MX2016007145A patent/MX2016007145A/en active IP Right Grant
- 2014-11-12 JP JP2016536558A patent/JP6506761B2/en active Active
- 2014-11-12 EP EP14803318.6A patent/EP3083816B1/en active Active
- 2014-11-12 RU RU2016128815A patent/RU2675843C1/en active
- 2014-11-12 US US15/035,264 patent/US9598565B2/en active Active
- 2014-11-12 WO PCT/US2014/065117 patent/WO2015094516A1/en active Application Filing
- 2014-11-12 BR BR112016012925-3A patent/BR112016012925B1/en active IP Right Grant
- 2014-11-12 KR KR1020167017392A patent/KR102330603B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
MX2016007145A (en) | 2016-09-08 |
EP3083816A1 (en) | 2016-10-26 |
US20160289433A1 (en) | 2016-10-06 |
KR102330603B1 (en) | 2021-11-25 |
RU2016128815A (en) | 2018-01-23 |
CA2933637C (en) | 2021-10-26 |
CA2933637A1 (en) | 2015-06-25 |
US9598565B2 (en) | 2017-03-21 |
BR112016012925B1 (en) | 2021-08-10 |
JP2017501259A (en) | 2017-01-12 |
BR112016012925A2 (en) | 2017-08-08 |
CN105793347A (en) | 2016-07-20 |
WO2015094516A1 (en) | 2015-06-25 |
CN105793347B (en) | 2019-04-19 |
KR20160100991A (en) | 2016-08-24 |
RU2675843C1 (en) | 2018-12-25 |
JP6506761B2 (en) | 2019-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3083816B1 (en) | Optical fiber cable components | |
EP3058408B1 (en) | Optical fiber cable components | |
EP3426727B1 (en) | Polymeric compositions for optical fiber cable components | |
CA2927156C (en) | Optical fiber cable components | |
KR102545899B1 (en) | Polymeric Compositions for Fiber Optic Cable Components | |
EP4028475B1 (en) | Compatibilized polymeric compositions for optical fiber cable components | |
KR102716633B1 (en) | Polymer compound for cable coating and method for producing same | |
US20230265259A1 (en) | Polyolefin compositions with reduced shrinkage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160713 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180628 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1081344 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014038762 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190327 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1081344 Country of ref document: AT Kind code of ref document: T Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014038762 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191112 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191112 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141112 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231010 Year of fee payment: 10 Ref country code: DE Payment date: 20230919 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240909 Year of fee payment: 11 |