EP3083159A1 - Positioning device - Google Patents

Positioning device

Info

Publication number
EP3083159A1
EP3083159A1 EP14761625.4A EP14761625A EP3083159A1 EP 3083159 A1 EP3083159 A1 EP 3083159A1 EP 14761625 A EP14761625 A EP 14761625A EP 3083159 A1 EP3083159 A1 EP 3083159A1
Authority
EP
European Patent Office
Prior art keywords
tool
positioning device
substrate
xref
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14761625.4A
Other languages
German (de)
French (fr)
Other versions
EP3083159B1 (en
Inventor
Hélène Mazerolle
Jean-Marc Vaucher
Marc KUNZE
Laurent Heiniger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Etel SA
Original Assignee
Etel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etel SA filed Critical Etel SA
Publication of EP3083159A1 publication Critical patent/EP3083159A1/en
Application granted granted Critical
Publication of EP3083159B1 publication Critical patent/EP3083159B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • B23Q1/012Portals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1687Assembly, peg and hole, palletising, straight line, weaving pattern movement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0465Surface mounting by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/082Integration of non-optical monitoring devices, i.e. using non-optical inspection means, e.g. electrical means, mechanical means or X-rays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37225Tool holder, measure forces in chuck, tool holder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39325External force control, additional loop comparing forces corrects position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40293Gantry, portal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45029Mount and solder parts on board
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49191Bending, tilt spindle in bearings to compensate for bending
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50355Tool perpendicular to a 2-D curve
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding

Definitions

  • the present invention relates to a positioning device for machining a workpiece or for placing components in a plane. Such positioning serve, for example, to position electronic components on a circuit board, or even to edit flat workpieces with a tool.
  • EP 2066996 B1 a portal-type positioning device is known in which a transverse bar is movably mounted between two parallel linear guides, on which a functional element is movably supported by means of a further linear guide, so that this functional element can be freely positioned in a plane between the two parallel linear guides is.
  • a functional element comes here, for example, a gripper of a placement machine, a laser of a laser machining center or a touch probe of a coordinate measuring machine in question.
  • EP 2066996 B1 deals above all with the most accurate position measurement possible such positioning devices, since an accurate positioning of the functional element is often very important.
  • the DE 102009008900 A1 deals with such positioning devices in gantry design. These are not easy to control for various reasons. It is therefore disclosed a device for controlling a positioning, with a particularly accurate positioning is possible.
  • thermocompression bonding in which electronic components are pressure and temperature connected to a printed circuit board. For this forces up to 500 N may be necessary.
  • required positioning accuracies in the range of one micron and below are not uncommon.
  • Multi-component force sensors for measuring axial and lateral forces which can occur on a tool with axial preferred direction are known in the prior art from EP2052810B1, EP0594534B1 or JP-S-6128835A. It is an object of the invention to provide a positioning device which, despite a tilting of a substrate to which a process force is to be exerted, enables accurate positioning of a functional element on the substrate.
  • a positioning device for positioning a tool at a desired position on a flat substrate in an XY plane, which in its axial direction exerts a process force perpendicular to the substrate.
  • the tool is equipped with a multi-component force sensor for measuring unwanted process force components in the lateral direction.
  • the desired position of the tool can be corrected by the positioning device so that the lateral process force components are minimized. If the tool now exerts a vertical force on the planar substrate, and if this substrate is slightly tilted in relation to its desired position parallel to the XY plane, the undesired lateral process force components that occur as a result are detected by the multicomponent force sensor.
  • the positioning device itself can position the tool in a variety of ways. In addition to robot arms with multiple degrees of freedom or multi-axis machine tools, above all positioning devices in gantry design are suitable for the applications mentioned above, which are described in more detail below.
  • FIGS. 1 shows a positioning device in gantry design according to the prior art
  • Figure 2 shows the positioning of Figure 1 in one
  • FIG. 3 shows a tool when placed on a substrate
  • FIG. 4 shows a first regulator structure for minimizing lateral
  • FIG. 5 shows a second regulator structure for minimizing lateral
  • FIG. 1 shows a gantry-type positioning device according to the prior art.
  • Two linear guides FX1, FX2 with integrated linear drives, which hold two X-carriages LX1, LX2 in the X-direction, are parallel to one another in an X-direction.
  • Attached to the two carriages LX1, LX2 is a linear guide which forms the cross bar FY of the portal frame of the positioning device.
  • This crossbeam FY can be positioned in the X direction over the working area between the two linear guides FX1 and FX2.
  • a Y-carriage LY is movably guided, which can be positioned by means of another linear drive between the two linear guides FX1 and FX2 in the Y direction.
  • the Y-carriage LY can be freely positioned above the working area between the two linear guides FX1 and FX2.
  • the Y-carriage LY now carries another linear guide with integrated drive, which keeps a Z-carriage LZ movable in the Z-direction, which is perpendicular to the working plane spanned by the X and Y direction.
  • a tool holder 1 fastened to the Z-carriage LZ and a tool 2 held by it can be positioned in all three spatial directions X, Y and Z.
  • the tool 2 may be, for example, a gripper which receives an electronic component and places it on a printed circuit board stored in the working area.
  • the necessary force F is applied by the drive of the Z-carriage LZ. Since the Z-carriage LZ is arranged laterally offset on the crossbar FY in the X direction, this vertical force F in the Z direction causes a torque on the crossbar FY. With a dashed line in FIG. 1, the force loop is shown, which loads the components of the positioning device when the tool 2 is placed on the workpiece arranged in the X-Y plane.
  • the tool 2 further comprises a heating element with which the electronic component can be heated within a few seconds to a temperature above 250 ° C in order to melt the solder used.
  • FIG. 2 shows a section through the positioning device of FIG. 1.
  • the section lies in the XZ plane and runs through the Z carriage LZ.
  • Figure 3 shows in detail the placement of the tool 2 on a substrate 3, which lies in the X-Y plane, but it is slightly tilted about the Y direction. In the figure, the tilt is exaggerated, in reality, the tilt should be at most in the range of 0.01 degrees. But even such small angles can already lead to disturbing lateral forces.
  • the tool 2 is placed above the desired contact point in the X and Y directions (at target coordinates Xref and Yref) before the tool is then lowered onto the substrate 3 in its axial direction (the Z direction) becomes.
  • the tool 2 has touched the substrate 3 and starts to apply a force F to the substrate 3. Because of the tilting of the substrate 3, the force applied by the positioning device (black arrow in the axial direction) is offset from the counterforce F (light arrow in the axial direction) originating from the substrate. The torque caused thereby counteract lateral forces Fx (black and light arrow in the lateral direction).
  • the multi-component force sensor 5 is located in the vicinity of the tool tip, that is, e.g. near the electronic component to be placed. However, other positions are possible as indicated in FIG. 3 (a).
  • the tool holder 1 must provide the tool 2 with the necessary degrees of freedom for tilting to correct the position. This can already be achieved by a certain flexibility of the tool holder 1. It is advantageous, however, to provide a corresponding joint 4 on the tool holder 1. This joint 4 should be as low-friction as possible. A ball joint with an air bearing has proved suitable for this purpose and allows compensatory movements in the X and Y directions.
  • Typical values obtained in experiments for the forces are at a process force F of 500 N lateral forces of 5 N without the position correction of the tool 2 (corresponding to part 3 (b)), and 0.05 N with such a correction (corresponding to FIG (c)).
  • FIG. 3 shows the compensation of a lateral process force Fx in the X direction.
  • Fx lateral process force
  • FIG. 4 shows a first exemplary embodiment of a control loop with which the lateral forces Fx can be minimized.
  • a higher-level controller 6 specifies a setpoint value Xref with respect to the X coordinate, which is set in the positioning device 8 by means of a controller 7 (eg a PID controller). The actual position X is measured and the deviation from the setpoint value Xref is fed to the control loop 7.
  • a controller 7 eg a PID controller
  • the undesired lateral process force component Fx is also measured and fed to a positioning device model 9, with the aid of which a correction value Xcor for the position of the tool 2 is calculated.
  • This correction value Xcor is added to the setpoint Xref. In this way, a compensating movement as shown in FIG. 3 (c) is impressed on the positioning device.
  • FIG. 5 shows a further exemplary embodiment in which the correction value Xcor is adjusted via an additional position correction controller 10.
  • a lateral process force component of 0 N is given to the position correction controller 10 as the desired value, and the actually measured process force component Fx is subtracted from this value.
  • FIGS. 4 and 5 only one force component in the X direction is considered, the same considerations apply to the Y direction.
  • the invention has been described here on the basis of the measurement of the lateral process force component Fx.

Abstract

Disclosed is a positioning device for positioning a tool (2) in a reference position (Xref) on an X-Y plane on a flat substrate (3), said tool (2) exerting a process force (F) on the substrate (3) perpendicular to the substrate (3), in the axial direction (Z) of the tool (2). The tool (2) is equipped with a multi-component force sensor (5) for measuring undesired process force components (Fx) in the lateral direction (X, Y). The reference position (Xref) of the tool (2) can be corrected by the positioning device in such a way that the lateral process force components (Fx) are minimized.

Description

Positioniereinrichtung  positioning
Die vorliegende Erfindung betrifft eine Positioniereinrichtung zur Bearbeitung eines Werkstücks oder zur Platzierung von Komponenten in einer Ebene. Solche Positioniereinrichtungen dienen beispielsweise dazu, elektronische Komponenten auf einer Leiterplatte zu positionieren, oder auch um flache Werkstücke mit einem Werkzeug zu bearbeiten. The present invention relates to a positioning device for machining a workpiece or for placing components in a plane. Such positioning serve, for example, to position electronic components on a circuit board, or even to edit flat workpieces with a tool.
Aus der EP 2066996 B1 ist eine Positioniereinrichtung in Portalbauweise bekannt, bei der zwischen zwei parallelen Linearführungen ein Querbalken beweglich gelagert ist, auf welchem mittels einer weiteren Linearführung ein Funktionselement beweglich gelagert ist, so dass dieses Funktionselement in einer Ebene zwischen den beiden parallelen Linearführungen frei positionierbar ist. Als Funktionselement kommt hier beispielsweise ein Greifer eines Bestückungsautomaten, ein Laser eines Laser- Bearbeitungszentrums oder auch ein Tastsystem einer Koordinatenmessmaschine in Frage. Die genannte EP 2066996 B1 beschäftigt sich vor allem mit einer möglichst genauen Positionsmessung an solchen Positioniereinrichtungen, da eine genaue Positionierung des Funktionselementes oft sehr wichtig ist. From EP 2066996 B1 a portal-type positioning device is known in which a transverse bar is movably mounted between two parallel linear guides, on which a functional element is movably supported by means of a further linear guide, so that this functional element can be freely positioned in a plane between the two parallel linear guides is. As a functional element comes here, for example, a gripper of a placement machine, a laser of a laser machining center or a touch probe of a coordinate measuring machine in question. Above-mentioned EP 2066996 B1 deals above all with the most accurate position measurement possible such positioning devices, since an accurate positioning of the functional element is often very important.
Auch die DE 102009008900 A1 beschäftigt sich mit solchen Positioniereinrichtungen in Portalbauweise. Diese sind aus verschiedenen Gründen regelungstechnisch nicht einfach zu beherrschen. Es wird daher eine Einrichtung zum Regeln einer Positioniereinrichtung offenbart, mit der eine besonders genaue Positionierung möglich ist. The DE 102009008900 A1 deals with such positioning devices in gantry design. These are not easy to control for various reasons. It is therefore disclosed a device for controlling a positioning, with a particularly accurate positioning is possible.
Wenn das Funktionselement, das am Querbalken geführt und über dem Werkstück positioniert wird, eine erhebliche Kraft auf das Werkstück ausüben muss, so kann dies dazu führen, dass die Bestandteile der Positioniereinrichtung deformiert werden. Wegen der großen Hebel, die durch die Portalbauweise entstehen, können dabei schon kleine Verformungen zu einem erheblichen Versatz des Angriffspunktes des Werkzeugs am Werkstück führen, der für Anwendungen mit hoher Anforderung an die Positioniergenauigkeit inakzeptabel ist. Ein Beispiel für eine solche Anwendung ist das Thermokompressionsbonden, bei dem elektronische Komponenten mittels Druck und Temperatur mit einer Leiterplatte verbunden werden. Hierzu können Kräfte bis zu 500 N nötig sein. Andererseits sind in solchen und vergleichbaren Anwendungen geforderte Positioniergenauigkeiten im Bereich von einem Mikrometer und darunter nicht ungewöhnlich. If the functional element, which is guided on the transverse bar and positioned over the workpiece, must exert a considerable force on the workpiece, this can lead to the components of the positioning device being deformed. Because of the large levers created by the gantry design, even small deformations can lead to a significant offset of the point of application of the tool on the workpiece, which is unacceptable for applications with high positioning accuracy requirements. An example of such an application is thermocompression bonding, in which electronic components are pressure and temperature connected to a printed circuit board. For this forces up to 500 N may be necessary. On the other hand, in such and similar applications, required positioning accuracies in the range of one micron and below are not uncommon.
Besonders problematisch wirken sich solche großen Kräfte aus, wenn das Substrat, auf dem elektronische Komponenten platziert werden, nicht sehr genau waagrecht ausgerichtet ist, so dass die vertikale Prozesskraft nicht exakt senkrecht auf das Substrat ausgeübt wird. Die dadurch entstehenden lateralen Kräfte sind schon bei kleinen Verkippungen des Substrats nicht mehr akzeptabel. Außerdem muss auch die zu platzierende elektronische Komponente parallel zum Leiterplattensubstrat sein, was bei einer Verkippung des Substrats nicht mehr gewährleistet ist. Mehrkomponenten - Kraftsensoren zur Messung von axialen und lateralen Kräften, die an einem Werkzeug mit axialer Vorzugsrichtung auftreten können, sind im Stand der Technik aus der EP2052810B1 , der EP0594534B1 oder der JP-S-6128835A bekannt. Es ist Aufgabe der Erfindung, eine Positioniereinrichtung zu schaffen, die trotz einer Verkippung eines Substrates, auf das eine Prozesskraft ausgeübt werden soll, eine genaue Positionierung eines Funktionselementes auf dem Substrat ermöglicht. Such large forces have a particularly problematic effect if the substrate on which electronic components are placed is not aligned very precisely horizontally so that the vertical process force is not exerted exactly perpendicular to the substrate. The resulting lateral forces are no longer acceptable even with small tilting of the substrate. In addition, the electronic component to be placed must be parallel to the printed circuit board substrate, which is no longer guaranteed when tilting the substrate. Multi-component force sensors for measuring axial and lateral forces which can occur on a tool with axial preferred direction are known in the prior art from EP2052810B1, EP0594534B1 or JP-S-6128835A. It is an object of the invention to provide a positioning device which, despite a tilting of a substrate to which a process force is to be exerted, enables accurate positioning of a functional element on the substrate.
Diese Aufgabe wird gelöst durch eine Vorrichtung gemäß Anspruch 1. Vorteilhafte Details dieser Vorrichtung ergeben sich auch aus den von Anspruch 1 abhängigen Ansprüchen. This object is achieved by a device according to claim 1. Advantageous details of this device also result from the claims dependent on claim 1.
Es wird eine Positioniereinrichtung zum Positionieren eines Werkzeugs an einer Sollposition auf einem flächigen Substrat in einer X-Y-Ebene offenbart, das in seiner axialen Richtung eine Prozesskraft senkrecht auf das Substrat ausübt. Das Werkzeug ist mit einem Mehrkomponenten-Kraftsensor zur Messung von unerwünschten Prozesskraftkomponenten in lateraler Richtung ausgerüstet. Die Sollposition des Werkzeugs ist durch die Positioniereinrichtung so korrigierbar, dass die lateralen Prozesskraftkomponenten minimiert werden. Übt nun das Werkzeug eine vertikale Kraft auf das flächige Substrat aus, und ist dieses Substrat leicht gegenüber seiner Soll-Lage parallel zur X-Y- Ebene verkippt, so werden die dadurch auftretenden, unerwünschten lateralen Prozesskraftkomponenten vom Mehrkomponenten-Kraftsensor erfasst. Dies erlaubt es, die Position des Werkzeuges so zu korrigieren, dass die lateralen Prozesskraftkomponenten verschwinden, ohne die Verkippung des Substrates vorab zu kennen. Da die Korrektur der Werkzeugposition erst erfolgt, wenn das Werkzeug das Substrat kontaktiert hat, kann die Korrektur so erfolgen, dass die Werkzeugspitze (und damit z.B. die zu platzierende Komponente) die Position auf dem Substrat beibehält. Die Achse des Werkzeugs wird stattdessen entsprechend der Verkippung des Substrates geneigt, so dass Substrat und Werkzeug wieder aufeinander senkrecht stehen. Es ist vorteilhaft, wenn diese Neigung des Werkzeugs durch ein Gelenk zwischen Werkzeug und Positioniereinrichtung ermöglicht wird, das zwar Kräfte in alle Richtungen, aber keinerlei Drehmomente überträgt. Gut geeignet ist hierzu beispielsweise ein Kugelelenk mit geringer Reibung, etwa dank einer Luftlagerung. A positioning device is disclosed for positioning a tool at a desired position on a flat substrate in an XY plane, which in its axial direction exerts a process force perpendicular to the substrate. The tool is equipped with a multi-component force sensor for measuring unwanted process force components in the lateral direction. The desired position of the tool can be corrected by the positioning device so that the lateral process force components are minimized. If the tool now exerts a vertical force on the planar substrate, and if this substrate is slightly tilted in relation to its desired position parallel to the XY plane, the undesired lateral process force components that occur as a result are detected by the multicomponent force sensor. This makes it possible to correct the position of the tool so that the lateral process force components disappear, without knowing the tilt of the substrate in advance. Since the correction of the tool position only takes place when the tool has contacted the substrate, the correction can be made so that the tool tip (and thus, for example, the component to be placed) retains the position on the substrate. The axis of the tool is instead tilted according to the Substrate inclined so that substrate and tool are perpendicular to each other again. It is advantageous if this inclination of the tool is made possible by a joint between the tool and the positioning device, which transmits forces in all directions, but no torques. Well suited for this purpose, for example, a Kugelelenk with low friction, such as thanks to an air bearing.
Die Positioniereinrichtung selbst kann das Werkzeug auf verschiedenste Arten positionieren. Neben Roboterarmen mit mehreren Freiheitsgraden oder mehrachsigen Werkzeugmaschinen kommen für die oben genannten Anwendungen vor allem Positioniereinrichtungen in Portalbauweise in Frage, die unten noch näher beschrieben werden. The positioning device itself can position the tool in a variety of ways. In addition to robot arms with multiple degrees of freedom or multi-axis machine tools, above all positioning devices in gantry design are suitable for the applications mentioned above, which are described in more detail below.
Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung verschiedener Ausführungsformen anhand der Figuren. Dabei zeigt Figur 1 eine Positioniereinrichtung in Portalbauweise gemäß dem Stand der Technik, Further advantages and details of the present invention will become apparent from the following description of various embodiments with reference to FIGS. 1 shows a positioning device in gantry design according to the prior art,
Figur 2 die Positioniereinrichtung der Figur 1 in einer Figure 2 shows the positioning of Figure 1 in one
Seitenansicht,  Side View,
Figur 3 ein Werkzeug beim Aufsetzen auf ein Substrat, FIG. 3 shows a tool when placed on a substrate,
Figur 4 eine erste Reglerstruktur zur Minimierung lateraler FIG. 4 shows a first regulator structure for minimizing lateral
Prozesskräfte,  Process forces
Figur 5 eine zweite Reglerstruktur zur Minimierung lateraler FIG. 5 shows a second regulator structure for minimizing lateral
Prozesskräfte.  Process forces.
Die Figur 1 zeigt eine Positioniereinrichtung in Portalbauweise gemäß dem Stand der Technik. In einer X-Richtung liegen parallel zueinander zwei Linearführungen FX1 , FX2 mit integrierten Linearantrieben, die zwei X- Laufwagen LX1 , LX2 in X-Richtung beweglich halten. An den beiden Laufwagen LX1 , LX2 befestigt ist eine Linearführung, die den Querbalken FY des Portalrahmens der Positioniereinrichtung bildet. Dieser Querbalken FY kann in X-Richtung über dem Arbeitsbereich zwischen den beiden Linearführungen FX1 und FX2 positioniert werden. FIG. 1 shows a gantry-type positioning device according to the prior art. Two linear guides FX1, FX2 with integrated linear drives, which hold two X-carriages LX1, LX2 in the X-direction, are parallel to one another in an X-direction. Attached to the two carriages LX1, LX2 is a linear guide which forms the cross bar FY of the portal frame of the positioning device. This crossbeam FY can be positioned in the X direction over the working area between the two linear guides FX1 and FX2.
An der Linearführung FY ist ein Y-Laufwagen LY beweglich geführt, der mittels eines weiteren Linearantriebs zwischen den beiden Linearführungen FX1 und FX2 in Y-Richtung positioniert werden kann. Durch eine geeignete Ansteuerung der Antriebe in den Linearführungen FX1 , FX2 und FY lässt sich der Y-Laufwagen LY frei über dem Arbeitsbereich zwischen den beiden Linearführungen FX1 und FX2 positionieren. On the linear guide FY a Y-carriage LY is movably guided, which can be positioned by means of another linear drive between the two linear guides FX1 and FX2 in the Y direction. By appropriately controlling the drives in the linear guides FX1, FX2 and FY, the Y-carriage LY can be freely positioned above the working area between the two linear guides FX1 and FX2.
Der Y-Laufwagen LY trägt nun eine weitere Linearführung mit integriertem Antrieb, die einen Z-Laufwagen LZ in der Z-Richtung beweglich hält, die senkrecht auf die durch die X- und Y-Richtung aufgespannte Bearbeitungsebene steht. The Y-carriage LY now carries another linear guide with integrated drive, which keeps a Z-carriage LZ movable in the Z-direction, which is perpendicular to the working plane spanned by the X and Y direction.
Somit ist ein am Z-Laufwagen LZ befestigter Werkzeughalter 1 und ein von diesem gehaltenes Werkzeug 2 in allen drei Raumrichtungen X, Y und Z positionierbar. Beim Werkzeug 2 kann es sich beispielsweise um einen Greifer handeln, der ein elektronisches Bauelement aufnimmt und dieses auf eine im Arbeitsbereich abgelegte Leiterplatte setzt. Die hierfür nötige Kraft F wird vom Antrieb des Z-Laufwagens LZ aufgebracht. Da der Z-Laufwagen LZ in X-Richtung versetzt seitlich am Querbalken FY angeordnet ist, bewirkt diese vertikale Kraft F in Z-Richtung ein Drehmoment auf den Querbalken FY. Mit einer gestrichelten Linie ist in der Figur 1 die Kraftschleife eingezeichnet, die beim Aufsetzen des Werkzeugs 2 auf das in der X-Y- Ebene angeordnete Werkstück die Bestandteile der Positioniereinrichtung belastet. Für das oben erwähnte Thermokompressionsbonden umfasst das Werkzeug 2 außerdem ein Heizelement, mit dem die elektronische Komponente innerhalb von wenigen Sekunden auf eine Temperatur oberhalb von 250 °C erhitzt werden kann, um das verwendet Lot zu schmelzen. Thus, a tool holder 1 fastened to the Z-carriage LZ and a tool 2 held by it can be positioned in all three spatial directions X, Y and Z. The tool 2 may be, for example, a gripper which receives an electronic component and places it on a printed circuit board stored in the working area. The necessary force F is applied by the drive of the Z-carriage LZ. Since the Z-carriage LZ is arranged laterally offset on the crossbar FY in the X direction, this vertical force F in the Z direction causes a torque on the crossbar FY. With a dashed line in FIG. 1, the force loop is shown, which loads the components of the positioning device when the tool 2 is placed on the workpiece arranged in the X-Y plane. For the above-mentioned thermocompression bonding, the tool 2 further comprises a heating element with which the electronic component can be heated within a few seconds to a temperature above 250 ° C in order to melt the solder used.
Die Figur 2 zeigt einen Schnitt durch die Positioniereinrichtung der Figur 1. Der Schnitt liegt in der X-Z-Ebene und verläuft durch den Z-Laufwagen LZ. Figur 3 zeigt im Detail das Aufsetzen des Werkzeugs 2 auf ein Substrat 3, das in der X- Y-Ebene liegt, dabei aber leicht um die Y-Richtung verkippt ist. In der Figur ist die Verkippung übertrieben dargestellt, in der Realität sollte die Verkippung höchstens im Bereich von 0,01 Grad liegen. Aber auch solch kleine Winkel können bereits zu störenden lateralen Kräften führen. FIG. 2 shows a section through the positioning device of FIG. 1. The section lies in the XZ plane and runs through the Z carriage LZ. Figure 3 shows in detail the placement of the tool 2 on a substrate 3, which lies in the X-Y plane, but it is slightly tilted about the Y direction. In the figure, the tilt is exaggerated, in reality, the tilt should be at most in the range of 0.01 degrees. But even such small angles can already lead to disturbing lateral forces.
In der Teilfigur 3(a) wird das Werkzeug 2 oberhalb des gewünschten Kontaktpunktes in X- und Y-Richtung (auf Sollkoordinaten Xref und Yref) platziert, bevor das Werkzeug dann in seiner axialen Richtung (der Z- Richtung) auf das Substrat 3 abgesenkt wird. In der Teilfigur 3(b) hat das Werkzeug 2 das Substrat 3 berührt und beginnt, eine Kraft F auf das Substrat 3 auszuüben. Wegen der Verkippung des Substrats 3 ist die von der Positioniereinrichtung aufgebrachte Kraft (schwarzer Pfeil in axialer Richtung) versetzt gegenüber der vom Substrat ausgehenden Gegenkraft F (heller Pfeil in axialer Richtung). Dem dadurch bewirkten Drehmoment wirken laterale Kräfte Fx (schwarzer und heller Pfeil in lateraler Richtung) entgegen. Diese lateralen Kräfte werden nun mittels einem im Werkzeug 2 angeordneten Mehrkomponenten-Kraftsensor 5 erfasst. Bevorzugt sitzt der Mehrkomponenten-Kraftsensor 5 in der Nähe der Werkezugspitze, also z.B. in der Nähe der zu platzierenden elektronischen Komponente. Es sind aber wie in der Figur 3(a) angedeutet auch andere Positionen möglich. In the sub-figure 3 (a), the tool 2 is placed above the desired contact point in the X and Y directions (at target coordinates Xref and Yref) before the tool is then lowered onto the substrate 3 in its axial direction (the Z direction) becomes. In the sub-figure 3 (b), the tool 2 has touched the substrate 3 and starts to apply a force F to the substrate 3. Because of the tilting of the substrate 3, the force applied by the positioning device (black arrow in the axial direction) is offset from the counterforce F (light arrow in the axial direction) originating from the substrate. The torque caused thereby counteract lateral forces Fx (black and light arrow in the lateral direction). These lateral forces are now detected by means of a multi-component force sensor 5 arranged in the tool 2. Preferably, the multi-component force sensor 5 is located in the vicinity of the tool tip, that is, e.g. near the electronic component to be placed. However, other positions are possible as indicated in FIG. 3 (a).
In der Teilfigur 3(c) ist zu erkennen, dass nach einer Ausgleichsbewegung (vergleiche die aktuelle Position des Z-Laufwagens LZ mit der gestrichelt angedeuteten Position aus Teilfigur 3(b)) das Werkzeug 2 eine Verkippung erfahren hat, die der Verkippung des Substrates 3 entspricht, so dass das Werkzeug 2 nun genau senkrecht auf dem Substrat 3 steht. Eine zu platzierende elektronische Komponente ist damit wieder parallel zum Substrat 3. Die Prozesskraft F und ihre Gegenkraft liegen auf einer Linie, das zur Figur 3(b) beschriebene Drehmoment verschwindet. Entsprechend sind auch die lateralen Kräfte Fx sehr deutlich reduziert, sie entsprechen jetzt nur noch dem Sinus des Kippwinkels des Substrats 3, multipliziert mit der Prozesskraft F. Diese kleinen lateralen Kräfte müssen von den Antrieben der Positioniereinrichtung aufgebracht werden. In the sub-figure 3 (c) it can be seen that after a compensating movement (compare the current position of the Z-carriage LZ with the position indicated by dashed lines from part 3 (b)), the tool 2 has experienced a tilt, the tilting of the substrate 3 corresponds, so that the tool 2 is now exactly perpendicular to the substrate 3. An electronic component to be placed is thus again parallel to the substrate 3. The process force F and its opposing force lie on a line, the torque described for FIG. 3 (b) disappears. Correspondingly, the lateral forces Fx are also significantly reduced; they now only correspond to the sine of the tilt angle of the substrate 3 multiplied by the process force F. These small lateral forces must be applied by the actuators of the positioning device.
Während der Korrektur der Position des Werkzeugs 2 zum Minimieren der lateralen Kräfte Fx darf sich der Berührpunkt des Werkzeugs 2 am Substrat 3 nicht mehr ändern, denn sonst würde z.B. eine elektronische Komponente nicht mehr an der richtigen Stelle platziert. Die Reibungskraft zwischen Werkzeug 2 und Substrat 3 muss hierfür also groß genug sein. Nur so verkippt auch das Werkzeug 2 in der gewünschten Weise. Die Korrektur der Position wird daher beim Thermokompressionsbonden nach dem Aufsetzen der elektronischen Komponente auf das Substrat 3, aber noch vor oder jedenfalls während dem Erhitzen der Komponente durchgeführt, so dass die Korrektur abgeschlossen ist, bevor sich das eingesetzte Lot verflüssigt. Ein verflüssigtes Lot würde die Reibung zu stark herabsetzen, die noch nicht minimierten lateralen Kräfte Fx würden die Komponente auf dem Substrat 3 verschieben. During the correction of the position of the tool 2 for minimizing the lateral forces Fx, the point of contact of the tool 2 on the substrate 3 must not change any more, because otherwise, e.g. an electronic component is no longer placed in the right place. The frictional force between the tool 2 and substrate 3 must therefore be large enough for this. Only then can the tool 2 also be tilted in the desired manner. Correction of the position is therefore carried out in the thermocompression bonding after placing the electronic component on the substrate 3, but before or at least during the heating of the component, so that the correction is completed before the solder used liquefies. A liquefied solder would reduce the friction too much, the not yet minimized lateral forces Fx would move the component on the substrate 3.
Der Werkzeughalter 1 muss zur Korrektur der Position dem Werkzeug 2 die nötigen Freiheitsgrade für eine Verkippung bieten. Dies kann schon durch eine gewisse Nachgiebigkeit des Werkzeughalters 1 erzielt werden. Vorteilhaft ist es aber, am Werkzeughalter 1 ein entsprechendes Gelenk 4 vorzusehen. Dieses Gelenk 4 sollte möglichst reibungsarm sein. Ein Kugelgelenk mit einer Luftlagerung hat sich hierfür als geeignet erwiesen und erlaubt Ausgleichsbewegungen in X- und Y-Richtung. The tool holder 1 must provide the tool 2 with the necessary degrees of freedom for tilting to correct the position. This can already be achieved by a certain flexibility of the tool holder 1. It is advantageous, however, to provide a corresponding joint 4 on the tool holder 1. This joint 4 should be as low-friction as possible. A ball joint with an air bearing has proved suitable for this purpose and allows compensatory movements in the X and Y directions.
Typische, in Experimenten erhaltene Werte für die Kräfte sind bei einer Prozesskraft F von 500 N laterale Kräfte von 5 N ohne die Positionskorrektur des Werkzeugs 2 (entsprechend Teilfigur 3(b)), und 0,05 N mit einer solchen Korrektur (entsprechend Teilfigur 3(c)). Typical values obtained in experiments for the forces are at a process force F of 500 N lateral forces of 5 N without the position correction of the tool 2 (corresponding to part 3 (b)), and 0.05 N with such a correction (corresponding to FIG (c)).
Ohne Beschränkung der Allgemeinheit zeigt die Figur 3 den Ausgleich einer lateralen Prozesskraft Fx in X-Richtung. Für Kräfte in Y-Richtung gelten die gleichen Überlegungen, beide Kräfte können bei entsprechender Verkippung des Substrats gleichzeitig auftreten und durch Korrekturen der Werkzeugposition in X- und Y-Richtung minimiert werden. Die Figur 4 zeigt ein erstes Ausführungsbeispiel für einen Regelkreis, mit dem die lateralen Kräfte Fx minimiert werden können. Eine übergeordnete Steuerung 6 gibt bezüglich der X-Koordinate einen Sollwert Xref vor, der anhand eines Reglers 7 (z.B. ein PID-Regler) in der Positioniereinrichtung 8 eingestellt wird. Die tatsächliche Position X wird dabei gemessen und die Abweichung vom Sollwert Xref dem Regelkreis 7 zugeführt. Die unerwünschte laterale Prozesskraftkomponente Fx wird ebenfalls gemessen und einem Modell 9 der Positioniereinrichtung zugeführt, mit dessen Hilfe ein Korrekturwert Xcor für die Position des Werkzeugs 2 berechnet wird. Dieser Korrekturwert Xcor wird zum Sollwert Xref addiert. Auf diese Weise wird der Positioniereinrichtung eine Ausgleichsbewegung wie in der Figur 3(c) dargestellt eingeprägt. Without limiting the generality, FIG. 3 shows the compensation of a lateral process force Fx in the X direction. For forces in the Y direction, the same considerations apply, both forces can occur simultaneously with appropriate tilting of the substrate and be minimized by corrections of the tool position in the X and Y directions. FIG. 4 shows a first exemplary embodiment of a control loop with which the lateral forces Fx can be minimized. A higher-level controller 6 specifies a setpoint value Xref with respect to the X coordinate, which is set in the positioning device 8 by means of a controller 7 (eg a PID controller). The actual position X is measured and the deviation from the setpoint value Xref is fed to the control loop 7. The undesired lateral process force component Fx is also measured and fed to a positioning device model 9, with the aid of which a correction value Xcor for the position of the tool 2 is calculated. This correction value Xcor is added to the setpoint Xref. In this way, a compensating movement as shown in FIG. 3 (c) is impressed on the positioning device.
In der Figur 5 ist ein weiteres Ausführungsbeispiel dargestellt, bei dem der Korrekturwert Xcor über einen zusätzlichen Lagekorrekturregler 10 erregelt wird. Hierzu wird dem Lagekorrekturregler 10 als Sollwert eine laterale Prozesskraftkomponente von 0 N vorgegeben, und von diesem Wert die tatsächlich gemessene Prozesskraftkomponente Fx abgezogen. Der wiederum als PID-Regler ausgebildete Lagekorrekturregler 10 erregelt dann den Korrekturwert Xcor, der wiederum zum Sollwert Xref addiert wird. In den Figuren 4 und 5 ist lediglich eine Kraftkomponente in X-Richtung betrachtet, für die Y-Richtung gelten die gleichen Überlegungen. Die Erfindung wurde hier anhand der Messung der lateralen Prozesskraftkomponente Fx beschrieben. Da diese laterale Kraft Fx über einen Abstand vom Kraftangriffspunkt zu einem Drehpunkt (z.B. Gelenk 4) immer auch einem unerwünschten Drehmoment entspricht, lassen sich die Ausführungsbeispiele der Figuren 4 und 5 auch durch die Messung eines entsprechenden Drehmoments und die Verwendung desselben in einem Modell 9 oder einem Lagekorrekturregler 10 realisieren. Diese völlig gleichwertige, sich nur um den Faktor eines Abstands unterscheidende Alternative, sei von der Beschreibung oben und den folgenden Ansprüchen umfasst. FIG. 5 shows a further exemplary embodiment in which the correction value Xcor is adjusted via an additional position correction controller 10. For this purpose, a lateral process force component of 0 N is given to the position correction controller 10 as the desired value, and the actually measured process force component Fx is subtracted from this value. The position correction controller 10, which in turn is designed as a PID controller, then corrects the correction value Xcor, which in turn is added to the setpoint value Xref. In FIGS. 4 and 5, only one force component in the X direction is considered, the same considerations apply to the Y direction. The invention has been described here on the basis of the measurement of the lateral process force component Fx. Since this lateral force Fx over a distance from the force application point to a pivot point (eg joint 4) always corresponds to an undesirable torque, the embodiments of Figures 4 and 5 can also be measured by measuring a corresponding torque and the use thereof in a model 9 or realize a position correction controller 10. This fully equivalent alternative, differing only by a factor of a distance, is encompassed by the description above and the claims which follow.

Claims

Ansprüche  claims
Positioniereinrichtung zum Positionieren eines Werkzeugs (2) an einer Sollposition (Xref) auf einem flächigen Substrat (3) in einer X- Y-Ebene, das in seiner axialen Richtung (Z) eine Prozesskraft (F) senkrecht auf das Substrat (3) ausübt, dadurch gekennzeichnet, dass das Werkzeug (2) mit einem Mehrkomponenten-Kraftsensor (5) zur Messung von unerwünschten Prozesskraftkomponenten (Fx) in lateraler Richtung (X, Y) ausgerüstet ist, und dass die Sollposition (Xref) des Werkzeugs (2) durch die Positioniereinrichtung so korrigierbar ist, dass die lateralen Prozesskraftkomponenten (Fx) minimiert sind. Positioning device for positioning a tool (2) at a target position (Xref) on a flat substrate (3) in an XY plane, which in its axial direction (Z) a process force (F) perpendicular to the substrate (3) , characterized in that the tool (2) with a multi-component force sensor (5) for measuring unwanted process force components (Fx) in the lateral direction (X, Y) is equipped, and that the target position (Xref) of the tool (2) the positioning device is correctable so that the lateral process force components (Fx) are minimized.
2. Positioniereinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Positioniereinrichtung ein Modell (9) umfasst, mit dem anhand der gemessenen lateralen Kraftkomponenten (Fx) Korrekturwerte (Xcor) für die Sollposition (Xref) des Werkzeugs (2) berechenbar sind. 2. Positioning device according to claim 1, characterized in that the positioning device comprises a model (9), with the basis of the measured lateral force components (Fx) correction values (Xcor) for the desired position (Xref) of the tool (2) can be calculated.
3. Positioniereinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Positioniereinrichtung einen Lagekorrekturregler (10) aufweist, mit dem die Prozesskraftkomponenten (Fx) auf null regelbar sind, indem vom Lagekorrekturregler (10) anhand der gemessenen lateralen Kraftkomponenten (Fx) Korrekturwerte (Xcor) für die Sollposition (Xref) des Werkzeugs (2) erregelbar sind. 3. Positioning device according to claim 1, characterized in that the positioning device has a position correction controller (10) with which the process force components (Fx) are adjustable to zero by the position correction controller (10) based on the measured lateral force components (Fx) correction values (Xcor) for the desired position (Xref) of the tool (2) can be adjusted.
4. Positioniereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Korrektur der Sollposition (Xref) des Werkzeugs (2) dessen Position auf dem Substrat (3) nicht verändert wird. 4. Positioning device according to one of the preceding claims, characterized in that by the correction of the desired position (Xref) of the tool (2) whose position on the substrate (3) is not changed.
5. Positioniereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Werkzeug (2) von einem Gelenk (4) gehalten wird, das Kräfte in allen Richtungen (X, Y, Z), aber keine Drehmomente überträgt. 5. Positioning device according to one of the preceding claims, characterized in that the tool (2) by a joint (4) is held, the forces in all directions (X, Y, Z), but transmits no torques.
6. Positioniereinrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Gelenk (4) ein luftgelagertes Kugelgelenk ist. 6. Positioning device according to claim 5, characterized in that the joint (4) is an air-bearing ball joint.
7. Positioniereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Positioniereinrichtung in Portalbauweise ausgeführt ist, mit zwei parallelen Linearführungen (FX1 , FX2) mit integrierten Linearantrieben, die je einen X-Laufwagen (LX1 ,7. Positioning device according to one of the preceding claims, characterized in that the positioning device is designed in gantry design, with two parallel linear guides (FX1, FX2) with integrated linear drives, each having an X-carriage (LX1,
LX2) in einer ersten Richtung (X) beweglich halten, sowie mit einem mit den beiden X-Laufwagen (LX1 , LX2) verbundenen Querbalken (FY), der mittels eines integrierten Linearantriebs einen Y-Laufwagen (LY) in der zur ersten Richtung (X) senkrechten zweiten Richtung (Y) beweglich hält, sowie mit einem Werkzeughalter (1 ), der am Y-Laufwagen (LY) in der zur ersten und zweiten Richtung (X, Y) senkrechten Richtung (Z) geführt ist und das Werkzeug (2) zur Bearbeitung des in der X- Y-Ebene angeordneten Substrats (3) trägt. LX2) in a first direction (X) movable, as well as with one of the two X-carriage (LX1, LX2) connected crossbar (FY), by means of an integrated linear drive a Y-carriage (LY) in the direction to the first ( X) vertical second direction (Y) movably, as well as with a tool holder (1) which is guided on the Y-carriage (LY) in the direction of the first and second directions (X, Y) (Z) and the tool ( 2) for processing the arranged in the X-Y plane substrate (3) carries.
8. Positioniereinrichtung nach Anspruch 7 und Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Werkzeughalter (1 ) das Gelenk (4) umfasst. 8. Positioning device according to claim 7 and claim 5 or 6, characterized in that the tool holder (1) comprises the joint (4).
9. Verwendung einer Positioniereinrichtung nach einem der vorhergehenden Ansprüche zum Verbinden einer elektronischen Komponente mit dem Substrat (3) mittels eines Lots, dadurch gekennzeichnet, dass die Sollposition (Xref) des Werkzeugs (2) zur Minimierung der lateralen Prozesskräfte (Fx) korrigiert wird, noch bevor sich das Lot verflüssigt. 9. Use of a positioning device according to one of the preceding claims for connecting an electronic component to the substrate (3) by means of a solder, characterized in that the desired position (Xref) of the tool (2) is corrected to minimize the lateral process forces (Fx), even before the solder liquefies.
EP14761625.4A 2013-12-18 2014-09-08 Positioning device Active EP3083159B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226448.8A DE102013226448A1 (en) 2013-12-18 2013-12-18 positioning
PCT/EP2014/069032 WO2015090652A1 (en) 2013-12-18 2014-09-08 Positioning device

Publications (2)

Publication Number Publication Date
EP3083159A1 true EP3083159A1 (en) 2016-10-26
EP3083159B1 EP3083159B1 (en) 2020-07-08

Family

ID=51494291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14761625.4A Active EP3083159B1 (en) 2013-12-18 2014-09-08 Positioning device

Country Status (4)

Country Link
US (1) US9919423B2 (en)
EP (1) EP3083159B1 (en)
DE (1) DE102013226448A1 (en)
WO (1) WO2015090652A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226448A1 (en) * 2013-12-18 2015-06-18 Etel S.A. positioning
JP1636981S (en) * 2018-10-31 2019-07-22

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637032A (en) * 1970-01-22 1972-01-25 John D Jeter Directional drilling apparatus
JPS6128835A (en) 1984-07-20 1986-02-08 Nippon Telegr & Teleph Corp <Ntt> Multiple component forces detector
JPH06128835A (en) 1992-10-16 1994-05-10 Aamo:Kk Cross beam for healed frame and its production
CH685648A5 (en) 1992-10-23 1995-08-31 Kk Holding Ag Multicomponent force and moment measuring arrangement.
DE4425924A1 (en) * 1994-07-21 1996-01-25 Siemens Ag Autonomous mobile unit with space-saving manipulator and associated control procedure
JP2002289647A (en) * 2001-03-26 2002-10-04 Sony Corp Thermocompression bonding apparatus
US6772080B2 (en) * 2002-12-24 2004-08-03 The Boeing Company System and method for kinematic consistency processing
DE102006044358A1 (en) 2006-09-20 2008-04-03 Etel S.A. Positioning device in gantry design
JP4271249B2 (en) 2007-06-14 2009-06-03 ファナック株式会社 Mating device
ATE490051T1 (en) 2007-10-22 2010-12-15 Eads Deutschland Gmbh TOOL HOLDER AND METHOD FOR PRODUCING AN INCREMENTAL FILM THEREFROM
DE102008031642A1 (en) * 2007-11-28 2009-06-04 Siemens Aktiengesellschaft Self-correcting conveyor
FR2930936B1 (en) 2008-05-07 2010-08-13 Etel Sa SYSTEM FOR CONTROLLING A DOUBLE-MEDIUM DRIVING GANTRY
US8316937B2 (en) * 2009-04-02 2012-11-27 Knight Information Systems, Llc Multi-window lateral well locator/reentry apparatus and method
US8360124B2 (en) * 2010-06-07 2013-01-29 Cbw Automation, Inc. Apparatus and process for in-mold labeling
US8950234B2 (en) * 2012-08-10 2015-02-10 Vitaliy V. Katok Apparatus for repairing control arms of automotive suspension
DE102013226448A1 (en) * 2013-12-18 2015-06-18 Etel S.A. positioning

Also Published As

Publication number Publication date
US9919423B2 (en) 2018-03-20
WO2015090652A1 (en) 2015-06-25
DE102013226448A1 (en) 2015-06-18
US20170001310A1 (en) 2017-01-05
EP3083159B1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
EP3302857B1 (en) Method and arrangement for introducing boreholes into a surface of a workpiece mounted in a stationary manner using a boring tool attached to an articulated-arm robot
DE102010032840B4 (en) Apparatus and method for measuring the position of a tool center of a robot
DE102009014766B4 (en) Superimposed axes in a device for machining a workpiece with a tool
EP2783791B1 (en) Positioning device in the form of a portal
EP1503874A2 (en) Production device, especially a bending press, and method for operating said production device
EP2924721B1 (en) Positioning device in portal design
EP2972078A1 (en) Method for correcting an angular deviation in the operation of a coordinate measuring device
EP2846943B1 (en) Method for automated manipulation of a bending tool, and manufacturing device
CH707934B1 (en) Method for mounting electronic or optical components on a substrate.
DE102016005699B3 (en) Method for calibrating a measuring device for measuring body parts and other workpieces and measuring device suitable for carrying out the method
EP2846966B1 (en) Transfer centre for machining at least one workpiece, with a position compensation system
DE102016214307B4 (en) Clamping device for a workpiece
DE102010006504B4 (en) Method for determining the position of a tool
EP3083159B1 (en) Positioning device
EP0729005A1 (en) Measuring device with 6 degrees of freedom
EP2849011B1 (en) Positioning device
WO2006084692A2 (en) Method for improving the positional accuracy of a manipulator relative to a serially produced workpiece
DE102015117028B4 (en) Device for cutting substrate and robot
DE102007060606B4 (en) Coordinate measuring machine with compensation of thermally induced changes in length for the determination of coordinates
EP2623257B1 (en) Position compensation device in a machine tool
DE102019205042B4 (en) Device and method for positioning a sensor or sensor part
WO2017063636A1 (en) Device and method for laser-beam machining a workpiece designed as a switch cabinet component
EP2085845B1 (en) Position regulator and method for regulating the position of a tool
DE102015119424A1 (en) Method for processing at least one workpiece
DE102012206503B4 (en) Method for force control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200326

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VAUCHER, JEAN-MARC

Inventor name: HEINIGER, LAURENT

Inventor name: KUNZE, MARC

Inventor name: MAZEROLLE, HELENE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1287954

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014428

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014428

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 10