EP3075052B1 - Centrale éolienne temps à de réponse amélioré - Google Patents

Centrale éolienne temps à de réponse amélioré Download PDF

Info

Publication number
EP3075052B1
EP3075052B1 EP14795552.0A EP14795552A EP3075052B1 EP 3075052 B1 EP3075052 B1 EP 3075052B1 EP 14795552 A EP14795552 A EP 14795552A EP 3075052 B1 EP3075052 B1 EP 3075052B1
Authority
EP
European Patent Office
Prior art keywords
value
controller
gain
power plant
kgs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14795552.0A
Other languages
German (de)
English (en)
Other versions
EP3075052A1 (fr
Inventor
Jorge Martinez Garcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Publication of EP3075052A1 publication Critical patent/EP3075052A1/fr
Application granted granted Critical
Publication of EP3075052B1 publication Critical patent/EP3075052B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a power plant controller, arranged for improving the voltage rise time of a wind power plant in an electrical grid, wherein the wind power plant comprises a plurality of wind turbine generators. Further, the present invention relates to a wind power plant comprising a power plant controller of the above-mentioned sort, and to a method for controlling a wind power plant connected to an electrical grid
  • a wind power plant usually has a plurality of wind turbines for converting wind energy to electricity. To supply electricity to the electricity end users, the wind power plant is connected to a power grid. However, before the wind power plant can be connected to a power grid, the wind power plant has to meet the requirements of electrical performance of the wind power plant specified by grid codes. One requirement is an initial response time of the wind power plant for various parameters such as voltage, frequency, active power and reactive power.
  • a wind power plant is often referred to as a group of wind turbine generators which are commonly connected to an electrical grid through a common connection point, also known as Point of Common Coupling (PCC). Additionally the wind power plant may comprise a power plant controller (PPC) and / or some sort of reactive power compensation equipment, such as Static Synchronous Compensators (STATCOMs) or switch/switched capacitors, or others.
  • PPC power plant controller
  • STATCOMs Static Synchronous Compensators
  • switch/switched capacitors or others.
  • the wind power plant has a wind power plant controller which monitors a power grid voltage and compares the power grid voltage with an external setpoint.
  • a difference between the actual power grid voltage and the external setpoint e.g. an error signal
  • This command is sent from the wind power plant controller to the individual wind turbines which in turn will respond (e.g. produce more or less power in order to adjust the power grid voltage) upon receiving the command.
  • the error signal may be caused by a change in the actual power grid voltage or a change in the external setpoint.
  • the rise time is the time period starting upon detection of a change in the power grid voltage or a change in the external setpoint and ending as soon as the current-power injected by the actuators at the PCC reach 95% of the control reference (in some standards the way of measuring the rise time can be different, it starts from the moment the actuators start injecting until they reach 95% of the reference, note as well that 95% is indicative that the system almost reach steady state, so instead of 95%, it can be 90% or another value that can indicate that the system is almost in steady-state (measurement almost reaching the reference).
  • the object of the present invention is to provide a method and a system for improving a rise time response for a voltage slope control in a wind power plant when reactive power reference is limited by a Power Factor (PF) set point or a reactive power limits both or even other limits. Furthermore it is an object to provide a power plant controller which is capable of providing better grid support during changes in reference setpoints. In addition it is an object to provide a controller that in most situations provides a signal response.
  • PF Power Factor
  • the above described object and several other objects are intended to be obtained in a first aspect of the invention by providing a method for controlling a wind power plant connected to an electrical grid, the wind power plant comprising at least one wind turbine generator and a power plant controller, the power plant controller comprising a signal controller for controlling an electrical parameter with a gain, the method comprising:
  • the invention is particularly, but not exclusively, advantageous because the method improves i.e. decreases the rise time of the voltage slope of a voltage control.
  • the gain Kgs cannot be set as high as it would be preferred in an ideal system.
  • the electrical parameter is a voltage parameter, current parameter or a reactive power parameter.
  • An advantage of this embodiment is that the internal signal value is calculated based on an internal variable; with the user hard reactive power limit is applied to the internal variable.
  • An advantage of this embodiment is that the trigger and the corresponding second predefined gain value.
  • An advantage of this embodiment is that the method finds the minimum of two internal variables and uses this in comparison with the saturation value, if the comparison is larger than the third predetermined threshold, the trigger moves to a higher state and thus a higher gain.
  • An advantage of this embodiment is that the gain is changed to an even higher value.
  • An advantage of this embodiment is that the method can detect oscillations in the system and thus prevent the gain to be so high that it will cause oscillation. Being able to detect oscillations at an early stage also means that the system can operate with a higher gain, than what normally would be used. If oscillations are detect the gain should be changed to base gain again, which is to be understood as the gain that would be applied with the Rise time function enabled.
  • An advantage of this embodiment is that the short circuit ratio of the electrical grid is taken into account when selecting the gain, both the present trigger state and the SCR are used in the gain adjustment.
  • the reactive power controller is a discrete proportional-integral controller with the gain (Kgs) and an output signal, and wherein the method further comprises:
  • An advantage of this embodiment is that the freeze structure is detecting the direction of which, output signal is growing. If the direction of output signal is decreasing, output signal is frozen if he gain was smaller than in previous sample or already in freeze mode.
  • the internal signal value is an internal reactive power value.
  • An advantage of this embodiment is that the freeze mode is only applied for the duration of one additional sample.
  • the present invention relates to a wind power plant connected to an electrical grid, comprising at least one wind turbine generator and a power plant controller, the power plant controller is arranged to operate in a wind power plant according to a method as claimed in any of the claims 1 to 10, or to a method according to any of the embodiments described herein.
  • the present invention relates a power plant controller arranged for controlling a wind power plant connected to an electrical grid, the wind power plant comprising at least one wind turbine generator and a power plant controller, the power plant controller comprising:
  • the present invention relates to at least one computer program product directly loadable into the internal memory of at least one digital computer, comprising software code portions for performing the steps of the method according to any of claims 1 to 11 when said at least one product is/are run on said at least one computer.
  • the first, second, third and fourth aspect of the present invention may each be combined with any of the other aspects.
  • the individual elements of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way such as in a single unit, in a plurality of units or as part of separate functional units.
  • the invention may be implemented in a single unit, or be both physically and functionally distributed between different units and processors.
  • the controller is provided with measurement values from a point of measurement, which values are modified according to estimated values at a point of common coupling, and associated reference values (e.g. V ref , f ref , Q ref , etc.) for the point of measurement.
  • the estimated values at the point of common coupling are determined from a model of the transmission line between the point of measurement and point of common coupling, not from measured values from the point of measurement, but from the reference values supplied to the controller (V ref , f ref , Q ref , etc.).
  • the reference values are equivalent with the measured values.
  • the embodiments of the present invention pertain to a power plant controller of a wind power system with a plurality of wind turbine generators.
  • the power plant controller is arranged to improve the rise time of the voltage level or the reactive power in a wind power plant.
  • the wind turbine generator which supplies power to an electric grid may be equipped with regulation capacity against voltage level, grid-frequency and active power fluctuations.
  • Electric grid or “grid” is a utility grid outside the boundary and point of common coupling of a wind power plant; when reference is made to the grid within a wind power plant an expression with explicit indication to the wind power plant is made, e.g., "wind power plant grid”.
  • a variable speed wind turbine generator which is used in at least one of the described embodiments and which is capable for being connected to an electrical grid 20 is equipped with the control system described. It comprises a rotor with a hub 3 and at least one blade 4 mounted to the rotor as discussed above.
  • the rotor is connected, for example via a main shaft, to a generator 12 for translating the torque of the rotor into electrical power.
  • a gearbox is interconnected between the rotor and the generator in order to translate the rotational speed of the rotor into a higher speed for the generator.
  • FIG. 1 shows, an exemplary variable-speed wind turbine generator (WT) 1 is one of a plurality of wind turbine generators of a wind power plant (WPP). It has a rotor 2 with a hub 3 to which, e.g., three blades 4 are mounted. The pitch angle of the rotor blades 4 is variable by means of pitch actuators.
  • the rotor 3 is connected to a nacelle 5 supported by a tower 6 and drives a generator 12 via a main shaft 8, a gearbox 10, and a high speed shaft 11.
  • This structure is exemplary; other embodiments, for example, use a direct-drive generator.
  • the generator 12 (e.g. Induction or synchronous generator) produces electrical output power of a frequency related to the rotation speed of the rotor 3, which is converted to grid frequency (e.g. about 50 or 60 Hz) by a converter 19.
  • the voltage of the electric power thus produced is up-transformed by a transformer 9.
  • the output of the transformer 9 is the wind turbine generator's terminals 9a.
  • the electric power from the wind turbine generator 1 and from the other wind turbine generators of the wind power plant is fed into a wind power plant grid 18 (symbolized by "a" in Fig. 1 ).
  • the internal wind power plant grid 18 is connected at a point of common coupling 21 and an optional further step up transformer 22 to a wind power plant external electrical utility grid 20.
  • the grid 20 is equipped with various regulation capacity against grid fluctuations, e.g. in the form of conventional producers which can increase and lower production on a short-time scale to control voltage and frequency.
  • a control system includes a wind-turbine controller 13 and a power plant controller 23.
  • the power plant controller 23 controls operation of the individual wind turbine generator 1, e.g. selects the full-load or partial-load operation mode, depending i.a. on the current wind speed, causes, in the partial load mode, operation of the wind turbine generator at the optimal working point by adjusting the blade angle and controlling the tip speed ration to the aerodynamic optimum at the current wind speed, and controls the converter 19 to produce electricity according to prescriptions of the power plant controller, e.g. an instruction to provide a certain amount of reactive power in addition to the active power, etc.
  • the power plant controller 13 uses different input signals to perform its control tasks, for example signals representing current wind conditions (e.g.
  • the power plant controller 23 receives signals representative of the voltage, current and frequency at the point of common coupling 21 (parameters which may be considered to represent the voltage, current and frequency in the utility grid 20) and, optionally, receives information or command signals from the utility-grid provider (at "c" in Figure 1 ).
  • the power plant controller 23 monitors grid stability and, upon detection of a reduction of grid stability, commands the wind-turbine controllers 13 of the wind turbine generator 1 and the other wind turbine generators of the wind power plant 2 (at "b" in Figure 1 ) to change operation by limiting fluctuations of the output power supplied.
  • the wind-turbine controller 13 upon increase of the wind speed, cuts the high-output peak which would then be produced in normal partial-load operation with maximum efficiency, e.g., by adjusting the blade-pitch angle towards the flag position, to comply with the power plant controller's limit-fluctuation command.
  • control task of the control system to limit output fluctuations is shared by the power plant controller 23 and the wind-turbine controller 13.
  • this control task is performed by the wind turbine controller 13 alone; in those embodiments, the "control system" is represented just by the wind turbine controller 13, without a power plant controller 23.
  • FIG. 2 shows the relevant communication/control links 202 and measurement signals 203.
  • the PPC 250 objective is to fulfil the grid code requirement at the PCC 210 regarding plant electrical performance. Therefore the PoM 211 for three-phase voltages and currents coincides in most of the cases with the PCC 210, unless there are very long distances between the PCC and the location of the PPC 250.
  • the PCC 250 placement can also vary according to the specific project requirements.
  • the PPC as the main controller of the WPP, takes care of the power control loops, such as voltage, reactive power and frequency controls by using the reference targets sent by, for instance, the grid operator.
  • the PPC 250 further dispatches the active power and reactive power references to the turbines and the reactive power references to the turbines and the additional reactive power compensation equipment.
  • the PPC 250 and the SCADA system 260 include several possibilities for data integration to owners and utilities. Through these data interfaces 202, customers and utilities can receive online information regarding the operational state of the wind power plant, for instance:
  • FIG. 2 also shows an example of WPP architecture where the MSUs 250 are controlled solely by the STATCOM 230.
  • the PPC can control MSUs if the power plant does not include a STATCOM.
  • the Power Plant Controller (PPC) 250 is based on a programmable automation controller. This platform allows the PPC to communicate with remote modules, including multiple communication modules for fast parallel communication with turbines and substation equipment thereby communicating with additional devices which have an Ethernet communication link.
  • a communication protocol is integrated with the PLC, targeting the WTGs within the power plant.
  • the main control signals transmitted via the protocol are the active and reactive power setpoints, the available active and reactive power and status signals of the turbines.
  • a power meter (not shown in the Figures) is usually located in the PPC or can be remotely connected by a dedicated fast-optical fibre communication channel. Apart from some filtering functions, the power meter calculates the rms values of the feedback signals received from the sensors (PoM) 211. In addition, the power meter can record grid events, such as faults.
  • the reactive power compensation equipment is possible to be installed on the MV busbar 270 of the substation to increase available reactive power in the power plant.
  • the solution of reactive power compensation by utilizing additional equipment depends on project-specific analysis of the existing requirements. For instance, the STATCOM will be used when the Q-V requirements at the PCC implies high dynamic performance, otherwise MSUs can be used. In most of the cases the STATCOM is complemented by MSU devices, in which case the STATCOM must be configured to control them.
  • Figure 3 shows a control diagram of an embodiment of the present invention.
  • Left side shows the input voltage variable Vmeas_PCC 312 and the voltage set point Vset 311 both compared in the comparator 310.
  • the error of the comparator 310 is feed to a Hard voltage limit block 320, this block receives two control values user max Verror(+) 322 and user max Verror(-) 323, the purpose of the user max Verror(+/-) 322 323 is to ensure a smooth control of the grid voltage.
  • the output of block 320 is then feed to a deadband block 330, this block also has two control values user dead-band(+) 332 and user dead-band(-) 333, the dead-band block 330 exclude voltage control around a narrow deadband defined by user dead-band(+) 332 and user dead-band(-) 333.
  • the droop control block 340 receives the output of the deadband block 330.
  • the droop control block receives two set points user Droop(+) 342 and user Droop(-) 343, which defines the droop function.
  • the droop block 340 translates the relationship between voltage and reactive power of the wind power plant, thus the output 341 of the droop block 340 is also called Qrefvd 341, as this is the reactive power reference according to the voltage droop control.
  • the block in line is the Hard Q limit block 350, here the limitation of reactive power for the WPP is set in WPP Q user limit 352. Whenever the Qrefvd 341 is above WPP Q user limit 352 it is limited, to whatever the limit value is set at.
  • the output of block 350 is the QrefPF 351 as this reactive power reference for the Hard Q limit (PF) block 360.
  • This block receives a set point QPFlim value 356 from a PF calculation block in which the reactive power according to a given power factor is calculated.
  • the PF calculation block 355 receives a filtered 335 signal of the active power measurement Pmeas 336 and PF set point, user WPP PF limits (cap-ind) 357. From that the corresponding maximum reactive power, QPFlim 356 is calculated.
  • the next block is the ramp rate limitor block 370, this block also has a user defined set point WPP Q user ramp-rate 372, which sets the maximum allowed rate of which reactive power can be changed.
  • the output of the ramp rate block 370 is the Qref 371.
  • the reactive power reference Qref 371 and the measured reactive power value Qmeas_PCC 375 are compared in another comparator 374, the output 373 of the comparator 374 is feed to another deadband block 380.
  • the deadband block 380 receives two user defined values user_PI_dead_band(+) 382 and user_PI_dead_band(-) 383, which defined the width of the reactive power controller deadband.
  • the output of the dead band block 380 is used as the input in the PI controller 390.
  • the enable block 300 is used to receive a user input to select whether or not the improved rise function is enabled. If the improved rise time function is enabled the switch 304 swabs downward to the new Kgs 303, instead of the normal Kgs 302. The new Kgs 303 is generated in the Kgs change logic block 345.
  • the inputs to the Kgs change logic block 345 are the following parameters Qrefvd 341, QrefPF 351, Qmeas_Pcc 375, QPFlim 356, QrefPI 361, and Qreflim 346.
  • the Kgs is calculated according to the rise time, SCR and control type, with the proposed logic it will be changed according to some other conditions when reaching saturation due to PF-Q limits.
  • the "Kgs Change Logic" block 345 is composed with a set trigger functions (explained further in the following sections):
  • the signal QrefPF 351 can be used instead of Qrefvd 341, this depends on whether block 350 is enabled by setting a WPP Q user limit 352.
  • the selector 376 ensures that the right internal signal value 341, 351 is used depending on the other parameters.
  • the parameters QPFLim 356 and QrefPI 361 are seen as saturation values.
  • the output of the Proportional-Integral controller 390 is fed to Hard Q limit block 395, which selects a minimum of the following values: WPP Q ind-Cap-Available and Quser.
  • the last output of block 395 is the aggregated reactive power reference for the wind power plant.
  • the aggregated reactive power reference is split among the plurality of WTGs in the wind power plant and individual references are dispatched to each WTG.
  • the input to the controller is the variable to be controlled at the PCC could one or more of: Q, V, or PF.
  • the output of the controller (WTG references) independently can be in whatever form of Vref, Iqref or Qref.
  • the intermediate control in Figure 3 is in form of Q control, thus allowing to limit the Q at PCC, however it may be in other forms, e.g. the intermediate reference can be a voltage signal, and in this case the voltage is limited at the PCC.
  • the general concept is that if the error or the reference to the intermediate controller is saturated (note that this is the same as saturating the error) the controller will not see the dynamics of the error thus becoming slower. To solve that when the saturation is reached the gain of the control can be increased.
  • the gain value Kgs is set according to the selected trigger.
  • index "k” and “k-1” refers to the sample number, so “k-1" is the previous sample compared to "k”.
  • the oscillations detector logic works as follows:
  • the hysteresis for Trigger1 is done as follows:
  • the slope_variable is depended on the actual voltage slope in the system.
  • the hysteresis for Trigger2 is done as follows:
  • the gain value Kgs used in the PPC is dependent on the short circuit ratio (SCR), rise time and Vslope values.
  • the gain value Kgs is set according to the selected trigger.
  • Kpv is the gain of the droop voltage controller
  • Slope Vslope %
  • Kpv 100 * QavarageCapacitive / Slope
  • Kgs SCR / SCR + Kpv
  • Figure 5 shows the relationship obtained between the SCR, rise time and the Vslope value. It can be seen that Kgs ranks between 0-1. Also that the larger the SCR is the larger is the gain value Kgs.
  • the Kgs is not set to 1 when in saturation conditions; instead an experimental value of the Kgs is obtained when in saturation conditions.
  • the actual gain Kgs is implemented in the PI controller 390, where the gain value Kgs 301 affects both proportional gain and the integral gain.
  • the PI controller is implemented in the discrete form in the PPC according to the equations below.
  • Figure 6 shows how a PI controller is implemented in discrete form according to the prior art.
  • gains K1 and K2 are calculated according to the current Kgs, WTG type and rise time value.
  • the PI should have the structure as shown in Figure 7 , where the PI controller is implanted with a freeze structure. Which enable online changes in the K1 and K2 gains, without causing too many disturbances, seen from a stability point of view.
  • the Q ref 391 can step down following a recovery, creating a bump in the transient response, to avoid that the freeze structure is used.
  • the freeze structure is detecting the direction of which, Q ref is growing. If the direction of Q ref is decreasing, i.e. the derivative of Q ref is negative; Q ref is frozen if the gain value Kgs 301 is smaller than in the previous sample or if it is already in the freeze mode.
  • Q ref may only be frozen maximum of 2 samples, if Q ref is lower than in the previous sample and no change in sign in Q ref is detected.
  • Figure 4 shows a flow chart of an embodiment of the invention.
  • Block 401 reads the data from a measurement or gets them from the power meter: the data are Vm Qm, Pm, Vset, Qset, Pset.
  • Block 402 it is detected if PPC is in Vslope, if no then exit to normal mode, if yes then continue to next block 403 which is check for whether the improved rise time function according to the invention is enabled.
  • Block 404 it is decided where the input to the Kgs change logic 345 ( Figure 3 ) is used, as block 404 is similar to the switch 374 ( Figure 3 ), Block 404 checks if read Qref before the PF+Q limits, and the logic for triggers as well as logic for oscillation.
  • the next blok 405 detects if a Trigger levels has reached and after that the block 406 System Oscillates detects if there are oscillations in the system. If no oscillations are detected Block 407 Use Larger Kgs according to trigger levels, is used. If there are oscillations Block 408 Use Normal Kgs is used. Block 410 and 411 are the implementations of the PI controllers accordingly.
  • the last block in the loop is the Block 409 Logic for freeze the PI output, which handles the freeze logic.
  • the power plant controller 350 or parts of the power plant controller may be implemented as computer program products, as electric analogue or digital circuits, or as a combination thereof.
  • a computer program being loadable into the internal memory of at least one digital computer is executable by the computer, wherein execution/running of the program results in functions of the power plant controller 350 being carried out, or in that the steps of a method of an embodiment of the invention are performed.
  • the invention relates to a method for controlling a wind power plant connected to an electrical grid (20), the wind power plant comprising at least one wind turbine generator (1) and a power plant controller (250), the power plant controller comprising a signal controller (390) for controlling an electrical parameter with a gain (Kgs), the method comprising, measuring at least one electrical parameter (312) in the electrical grid (20), determining an internal signal value (346) at least partially based on the at least one electrical parameter (312), comparing the internal signal value (346) with a saturation value (356), and if the internal signal value (346) exceed the saturation value, increasing the gain (Kgs) of the signal controller to a first gain value, in order to decrease a rise time for a slope for the electrical-parameter in the electrical grid (20).
  • the invention also relates to a power plant controller arranged to decrease a rise time for a voltage slope for a voltage parameter in the electrical grid (20).

Claims (14)

  1. Procédé de régulation d'une centrale éolienne connectée à un réseau électrique (20), la centrale éolienne comprenant au moins une éolienne (1) et un régulateur de centrale (250), le régulateur de centrale comprenant un régulateur de signal (390) pour réguler un paramètre électrique avec un gain (Kgs), le procédé étant caractérisé en ce qu'il comprend :
    - la mesure d'au moins un paramètre électrique (312) dans le réseau électrique (20),
    - la détermination d'une valeur de signal interne (346) au moins en partie sur la base de l'au moins un paramètre électrique (312),
    - la comparaison de la valeur de signal interne (346) à une valeur de saturation (356, 361), et
    - si la valeur de signal interne (346) dépasse la valeur de saturation, l'augmentation du gain (Kgs) du régulateur de signal à une première valeur de gain, afin de diminuer un temps de montée pour une pente pour le paramètre électrique dans le réseau électrique (20).
  2. Procédé selon la revendication 1, dans lequel le paramètre électrique est un paramètre de tension et/ou un paramètre de courant.
  3. Procédé selon la revendication 1 ou 2, dans lequel le procédé comprend en outre :
    - la détermination de la valeur de saturation (356, 361) au moins en partie sur la base d'une mesure de puissance et d'un point de consigne de facteur de puissance, et
    - la détermination de la valeur de signal interne (346) avec une fonction de limitation fixée par une limite utilisateur (350) et la valeur de saturation (361).
  4. Procédé selon la revendication 3, dans lequel le procédé comprend en outre :
    - si une différence entre la valeur de signal interne (346) et la valeur de saturation (356) est supérieure à une première valeur seuil, le changement de l'état déclencheur (405) à un premier état, et
    - l'augmentation du gain (Kgs) du régulateur de puissance de réaction (390) à une deuxième valeur de gain.
  5. Procédé selon la revendication 1, dans lequel le procédé comprend en outre :
    - la détermination d'une valeur de saturation provisoire au moins en partie sur la base d'une mesure de puissance (336) et d'un point de consigne de facteur de puissance (356),
    - la détermination de la valeur de saturation (356) comme minimum de la valeur de saturation provisoire et une limite utilisateur de puissance de réaction (352),
    - si une différence entre la valeur de signal interne (346) et la valeur de saturation (356) est supérieure à une deuxième valeur seuil et la valeur de saturation (356) est inférieure à une première valeur seuil minimale, le changement de l'état déclencheur (405) à un deuxième état, et
    - l'augmentation du gain (Kgs) du régulateur de puissance de réaction (390) à une troisième valeur de gain prédéfinie.
  6. Procédé selon la revendication 5, dans lequel le procédé comprend en outre :
    - la comparaison de la valeur de saturation (356) à une mesure de puissance de réaction (375) dans une deuxième comparaison,
    - la comparaison de la valeur de saturation (356) à une mesure de puissance de réaction (375) dans une troisième comparaison,
    - si une différence entre la valeur de saturation (356) et une mesure de puissance de réaction (375) de la deuxième comparaison est supérieure à une troisième valeur seuil, et une différence entre la valeur de saturation (356) et une mesure de puissance de réaction (375) de la troisième comparaison est supérieure à une quatrième valeur seuil, le changement d'un état déclencheur (405) à un troisième état, et
    - l'augmentation du gain (Kgs) du régulateur de puissance de réaction (390) à une quatrième valeur de gain.
  7. Procédé selon la revendication 1, dans lequel le procédé comprend en outre :
    - la détection d'une égalité de signes en comparant un signe d'un premier échantillon de la valeur de signal interne (346) à un signe d'un deuxième échantillon de la valeur de signal interne (346),
    - le fait de détecter si une valeur absolue de la valeur de signal interne (346) est supérieure à une valeur absolue de la valeur de saturation (356),
    - si l'égalité de signes et la valeur absolue de la valeur de signal interne (346) est supérieure à la valeur absolue de la valeur de saturation (356), la diminution du gain (Kgs) du régulateur de puissance de réaction (390) à une valeur de gain de base (302).
  8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le procédé comprend en outre :
    - le calcul d'un rapport de court-circuit de la centrale éolienne au niveau d'un point de connexion commun dans le réseau électrique (20),
    - l'ajustement du gain (Kgs) selon une fonction prédéfinie de l'état déclencheur et du rapport de court-circuit.
  9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le régulateur de puissance de réaction est un régulateur proportionnel-intégral discret (390) avec le gain (Kgs) et un signal de sortie (391), et dans lequel le procédé comprend en outre :
    - le calcul d'une dérivée d'un signal de sortie pour un premier échantillon du régulateur proportionnel-intégral et d'un signal de sortie pour un deuxième échantillon du régulateur proportionnel-intégral, et
    - si la dérivée du signal de sortie est négative et le gain (Kgs) est plus petit pour le deuxième échantillon que le gain (Kgs) pour le premier échantillon, le blocage du signal de sortie du régulateur proportionnel-intégral (390).
  10. Procédé selon la revendication 9, dans lequel le procédé comprend en outre :
    - la comparaison d'un signe d'un premier échantillon de la valeur de signal interne (346) avec un signe d'un deuxième échantillon de la valeur de signal interne (346) pour détecter un changement de signe, et
    - si la sortie pour le premier échantillon est inférieure à la sortie pour le deuxième échantillon et aucun changement de signe n'est détecté, le blocage de la sortie du régulateur proportionnel-intégral (390) pour la durée d'un échantillon.
  11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel la valeur de signal interne (346) est une valeur de puissance de réaction interne.
  12. Au moins un produit de programme informatique directement chargé dans la mémoire interne d'au moins un ordinateur numérique, comprenant des parties code logiciel configurées pour réaliser les étapes du procédé selon l'une quelconque des revendications 1 à 11 quand ledit au moins un produit est exécuté sur ledit au moins un ordinateur.
  13. Centrale éolienne pouvant être connectée à un réseau électrique (20), la centrale éolienne comprenant au moins une éolienne (1) et un régulateur de centrale (250), le régulateur de centrale étant agencé pour fonctionner selon un procédé selon l'une quelconque des revendications 1 à 11.
  14. Régulateur de centrale (250) pour réguler une centrale éolienne connectée à un réseau électrique (20), la centrale éolienne comprenant au moins une éolienne (1), le régulateur de centrale comprenant :
    - un régulateur de puissance de réaction (390) avec un gain (Kgs) agencé pour réguler la puissance de réaction dans la centrale éolienne,
    le régulateur de centrale étant caractérisé en ce qu'il comprend en outre :
    - un équipement pour mesurer au moins un paramètre électrique (312) dans le réseau électrique (20), et
    - une unité processeur pour déterminer une valeur de signal interne (346) au moins en partie sur la base de l'au moins un paramètre électrique (312), l'unité processeur étant agencée pour comparer la valeur de signal interne (346) à une valeur de saturation (356),
    - l'unité processeur étant agencée pour augmenter le gain (Kgs) du régulateur de puissance de réaction à une première valeur de gain, si la valeur de signal interne (346) dépasse la valeur de saturation, afin de diminuer un temps de montée pour une pente de tension pour un paramètre de tension dans le réseau électrique (20).
EP14795552.0A 2013-11-28 2014-11-06 Centrale éolienne temps à de réponse amélioré Active EP3075052B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201370730 2013-11-28
PCT/DK2014/050366 WO2015078473A1 (fr) 2013-11-28 2014-11-06 Centrale électrique éolienne à temps de montée amélioré

Publications (2)

Publication Number Publication Date
EP3075052A1 EP3075052A1 (fr) 2016-10-05
EP3075052B1 true EP3075052B1 (fr) 2018-01-10

Family

ID=51867966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14795552.0A Active EP3075052B1 (fr) 2013-11-28 2014-11-06 Centrale éolienne temps à de réponse amélioré

Country Status (5)

Country Link
US (1) US11258256B2 (fr)
EP (1) EP3075052B1 (fr)
CN (1) CN105794067B (fr)
ES (1) ES2659150T3 (fr)
WO (1) WO2015078473A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099991A (zh) * 2016-06-20 2016-11-09 广西电网有限责任公司电力科学研究院 一种电网风电消纳能力评估方法
EP4175105A3 (fr) * 2021-10-27 2023-05-10 General Electric Renovables España S.L. Système et procédé de réduction de l'instabilité dans une commande de puissance réactive d'une ressource basée sur un onduleur

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078474A1 (fr) 2013-11-28 2015-06-04 Vestas Wind Systems A/S Dispositif de commande de centrale électrique pour générer une référence de puissance pour des générateurs d'éoliennes
WO2015078473A1 (fr) 2013-11-28 2015-06-04 Vestas Wind Systems A/S Centrale électrique éolienne à temps de montée amélioré
EP3189573B1 (fr) * 2014-09-02 2019-09-18 Vestas Wind Systems A/S Système de commande pour générateur d'éolienne
EP3314118B1 (fr) * 2015-06-26 2019-08-07 Vestas Wind Systems A/S Augmentation de puissance active d'une éolienne
US9970417B2 (en) * 2016-04-14 2018-05-15 General Electric Company Wind converter control for weak grid
DE102016123011A1 (de) * 2016-11-29 2018-05-30 Innogy Se Verfahren zum regeln von einem leistungswert eines offshore-windenergiesystems
EP3631930B1 (fr) 2017-05-31 2021-10-27 Vestas Wind Systems A/S Perfectionnements se rapportant à la régulation de tension dans des centrales d'énergie renouvelable
CN110297150B (zh) 2018-03-21 2020-10-23 北京金风科创风电设备有限公司 风力发电机组并网点短路容量检测方法和装置
EP3900144A1 (fr) * 2018-12-20 2021-10-27 Vestas Wind Systems A/S Commande d'une centrale électrique à énergie renouvelable pour reprendre un fonctionnement normal à la suite d'une panne
WO2022226709A1 (fr) * 2021-04-25 2022-11-03 浙江大学 Procédé reposant sur une commande d'alimentation pour analyser la stabilité d'un ventilateur synchrone à aimant permanent accédant à un réseau de capacité insuffisante

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380737A (en) 1980-11-12 1983-04-19 E-Systems, Inc. Fast AGC slew circuit
US7346462B2 (en) * 2006-03-29 2008-03-18 General Electric Company System, method, and article of manufacture for determining parameter values associated with an electrical grid
CN102317622B (zh) * 2008-12-15 2014-07-30 维斯塔斯风力系统集团公司 风力涡轮机的桨距控制
US9325173B2 (en) 2009-09-15 2016-04-26 The University Of Western Ontario Utilization of distributed generator inverters as STATCOM
EP2599182A1 (fr) * 2010-07-29 2013-06-05 Spirae Inc. Système de régulation de réseau électrique réparti dynamique
NZ607114A (en) 2010-09-28 2014-10-31 Siemens Ag Power oscillation damping by a converter-based power generation device
GB2491548A (en) * 2010-09-30 2012-12-12 Vestas Wind Sys As Over-rating control of a wind turbine power plant
DK2551515T3 (da) 2011-07-27 2013-11-25 Siemens Ag Fremgangsmåde og indretning til drift af en vindmøllepark inden for en spændingsgrænse
EP2605356A1 (fr) 2011-12-15 2013-06-19 Siemens Aktiengesellschaft Procédé et contrôleur pour le fonctionnement stable d'une éolienne de différente résistance de grille
EP2605357A1 (fr) 2011-12-15 2013-06-19 Siemens Aktiengesellschaft Contrôle de sortie d'alimentation réactive d'un parc éolien
DK2662944T3 (da) 2012-05-09 2020-02-24 Siemens Gamesa Renewable Energy As Vindmøllestyring til et svagt netværk ved reduktion af den aktive effektudlæsning
CN103280814B (zh) 2013-03-26 2016-04-20 南京南瑞集团公司 一种风电场无功电压综合控制系统和方法
CN103326368B (zh) 2013-06-13 2016-01-20 国家电网公司 电网故障期间双馈风电机组动态无功电流直接控制方法
WO2015078473A1 (fr) 2013-11-28 2015-06-04 Vestas Wind Systems A/S Centrale électrique éolienne à temps de montée amélioré

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099991A (zh) * 2016-06-20 2016-11-09 广西电网有限责任公司电力科学研究院 一种电网风电消纳能力评估方法
CN106099991B (zh) * 2016-06-20 2018-06-26 广西电网有限责任公司电力科学研究院 一种电网风电消纳能力评估方法
EP4175105A3 (fr) * 2021-10-27 2023-05-10 General Electric Renovables España S.L. Système et procédé de réduction de l'instabilité dans une commande de puissance réactive d'une ressource basée sur un onduleur
US11901735B2 (en) 2021-10-27 2024-02-13 General Electric Renovables Espana, S.L. System and method for reducing instability in reactive power command of an inverter-based resource

Also Published As

Publication number Publication date
US20170025855A1 (en) 2017-01-26
US11258256B2 (en) 2022-02-22
CN105794067B (zh) 2019-10-18
CN105794067A (zh) 2016-07-20
EP3075052A1 (fr) 2016-10-05
ES2659150T3 (es) 2018-03-14
WO2015078473A1 (fr) 2015-06-04

Similar Documents

Publication Publication Date Title
EP3075052B1 (fr) Centrale éolienne temps à de réponse amélioré
US10411480B2 (en) Reconfiguration of the reactive power loop of a wind power plant
EP2847458B1 (fr) Commande de fréquence de centrale éolienne
EP2603696B1 (fr) Production d'électricité à partir de l'énergie éolienne avec fluctuations réduites de puissance
EP2847457B1 (fr) Système de puissance et procédé pour faire fonctionner un système d'énergie éolienne avec un algorithme de distribution
Sørensen et al. Wind farm models and control strategies
US10544780B2 (en) Method for controlling a wind power plant and a wind power plant
US9859710B2 (en) Line impedance compensation system
EP3004634B1 (fr) Unité de commande de parc éolien
EP2847844B1 (fr) Procédé pour coordonner des caractéristiques de commande de fréquence entre des centrales classiques et des centrales éoliennes
US10132297B2 (en) Basic grid supervision of a wind power plant
US9551323B2 (en) Power plant control during a low voltage or a high voltage event
US9528496B2 (en) Fast run-back control including plant losses
Soens et al. Equivalent transfer function for a variable speed wind turbine in power system dynamic simulations
EP2346133B1 (fr) Dispositif de convertisseur et procédé de conversion d'alimentation électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014019882

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02J0003160000

Ipc: H02J0003460000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F03D 9/25 20160101ALI20170531BHEP

Ipc: H02J 3/38 20060101ALI20170531BHEP

Ipc: H02J 3/46 20060101AFI20170531BHEP

Ipc: H02J 3/16 20060101ALI20170531BHEP

INTG Intention to grant announced

Effective date: 20170614

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GARCIA, JORGE MARTINEZ

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GARCIA, JORGE MARTINEZ

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170927

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 963438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014019882

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2659150

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180314

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 963438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014019882

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 10

Ref country code: DE

Payment date: 20231127

Year of fee payment: 10