EP3072042A1 - Resizing technique for display content - Google Patents

Resizing technique for display content

Info

Publication number
EP3072042A1
EP3072042A1 EP14809195.2A EP14809195A EP3072042A1 EP 3072042 A1 EP3072042 A1 EP 3072042A1 EP 14809195 A EP14809195 A EP 14809195A EP 3072042 A1 EP3072042 A1 EP 3072042A1
Authority
EP
European Patent Office
Prior art keywords
content
size
scale factor
content item
text
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14809195.2A
Other languages
German (de)
English (en)
French (fr)
Inventor
Saied Khanahmadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Publication of EP3072042A1 publication Critical patent/EP3072042A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04806Zoom, i.e. interaction techniques or interactors for controlling the zooming operation

Definitions

  • Text enlargement refers to a feature provided by some computers and mobile devices that, when activated, causes text and other display content (e.g., icons) to appear larger without having to change the resolution of the display to which such content is rendered.
  • Text enlargement is generally considered an important accessibility feature as it can be used by people with visual impairments to better enable them to access content displayed by their computers and mobile devices. Text enlargement also provides users with flexibility by enabling them to select their own preferred display size for text.
  • content items such as text items and images are enlarged based on an original size associated therewith and a scale factor.
  • the enlargement is carried out in a manner such that smaller content items are enlarged as the scale factor increases at a faster rate than a rate at which relatively larger content items are enlarged as the scale factor increases.
  • This approach can improve accessibility by applying a greater degree of enlargement to those content items which are smallest and hardest to read, while improving usability by applying a lesser degree of enlargement to larger content items that may already be sufficiently legible, thereby freeing up more of a display area for other content and functionality a user may wish to access.
  • the enlargement is performed in such a manner that the size of smaller content items after enlargement will never equal or exceed the size of relatively larger content items after enlargement.
  • Embodiments described herein may also perform content reduction.
  • embodiments described herein may perform content reduction in manner such that larger content items are reduced in size at a faster rate as a scale factor decreases than a rate at which relatively smaller content items are reduced in size as the scale factor decreases.
  • embodiments described herein may perform content reduction in such a manner that the size of larger content items after reduction will never equal or be less than the size of relatively smaller content items after reduction.
  • an apparatus is described herein.
  • the apparatus includes at least one processor and a memory that stores computer program logic for execution by the at least one processor.
  • the computer program logic includes a plurality of components configured to perform operations when executed by the at least one processor.
  • the plurality of components include a content providing component, a content resizing component, and a display component.
  • the content providing component is configured to provide a first content item and a second content item to be rendered to a display.
  • the content resizing component is configured to increase a respective size associated with each of the first content item and the second content item as a scale factor increases.
  • the first content item has a different size than the second content item. The increase is performed such that the size associated with a smaller of the first and second content items increases with the scale factor at a rate that is faster than a rate at which the size associated with a larger of the first and second content items increases with the scale factor.
  • the display component causes the first content item and the second content items to be displayed at the increased sizes respectively associated therewith.
  • the first content item and the second content item may comprise, for example, two text items, two images, or a text item and an image respectively.
  • the plurality of components further include a user interface component that is configured to enable a user of the apparatus to select the scale factor.
  • the user interface component may be configured to display an interactive slider by which a user of the apparatus can select the scale factor.
  • the plurality of components further includes a scale factor selection component that is configured to automatically select the scale factor. Such selection may be made based on one or more parameters, such as one or more of a display size, a display resolution, a device operating mode, a user viewing location or orientation, a device manufacturer, and a device model.
  • the content providing component comprises part of an application stored in the memory.
  • the content resizing component comprises part of an operating system stored in the memory.
  • the content resizing component is accessible to other components via an application programming interface (API).
  • the API may include, for example, a function that receives a size associated with a content item and returns an adjusted size for the content item.
  • the API may also include a function that indicates whether a content resizing feature is active or inactive.
  • the content resizing component is further configured to reduce a respective size associated with each of the first content item and the second content item as the scale factor decreases. The decreasing is performed such that the size associated with the smaller of the first and second content items decreases with the scale factor at a rate that is slower than a rate at which the size associated with a larger of the first and second content items decreases with the scale factor.
  • the content resizing component is configured to operate in an alternate mode in which the content resizing component increases a respective size associated with each of the first content item and the second content item as the scale factor increases, the increase being performed such that the size associated with the smaller of the first and second content items increases with the scale factor at a rate that is equal to a rate at which the size associated with a larger of the first and second content items increases with the scale factor.
  • a method for performing content resizing is also described herein.
  • an original size associated with a first content item and an original size associated with a second content item are received.
  • the original size associated with the second content item is different than the original size associated with the first content item.
  • An enlargement amount is calculated for each of the first content item and the second content item by utilizing a function of the original size associated with the respective content item and a scale factor.
  • the function is defined such that the enlargement amount for the smaller of the first and second content items increases with the scale factor at a rate that is faster than a rate at which the enlargement amount for the larger of the first and second content items increases with the scale factor.
  • the enlargement amount for the first content item is added to the original size associated with the first content item to produce an output size associated with the first content item.
  • the enlargement amount for the second content item is added to the original size associated with the second content item to produce an output size associated with the second content item.
  • the first content item is displayed at the output size associated with the first content item.
  • the second content item is displayed at the output size associated with the second content item.
  • the first content item and the second content item may comprise, for example, two text items, two images, or a text item and an image respectively.
  • the enlargement amount for each of the first and second content items is calculated in accordance with
  • the method further includes selecting the scale factor based on user input.
  • the method further includes selecting the scale factor based on one or more parameters.
  • the one or more parameters may include one or more of a display size, a display resolution, a device operating mode, a user viewing location or orientation, a device manufacturer, and a device model.
  • a computer program product comprises a computer-readable memory device having instructions recorded thereon that, when executed by one or more processors, cause the one or more processors to perform operations.
  • a scale factor is received.
  • An original size associated with a content item to be displayed is also received.
  • An enlargement amount is then calculated as a function of the scale factor and the original size.
  • the function is defined such that, for a fixed scale factor, the enlargement amount decreases as the original size increases.
  • the enlargement amount is then added to the original size thereby to produce an output size.
  • the content item is then caused to be displayed at the output size.
  • the content item may comprise, for example, a text item or an image.
  • calculating the enlargement amount includes calculating the enlargement amount as a function of the scale factor and a natural logarithm of the original size.
  • FIG. 1 is a block diagram of a system that resizes content to be rendered to a display in accordance with an embodiment.
  • FIG. 2 is a graph that illustrates how text having font sizes 1-50 may be enlarged for scale factors of 1.0, 1.5 and 2.0 in accordance with an embodiment.
  • FIGS. 3A, 3B and 3C collectively provide a first example of how text that has been enlarged using a content resizing technique in accordance with an embodiment appears on the display of a smart phone.
  • FIGS. 4A, 4B and 4C collectively provide a second example of how text that has been enlarged using a content resizing technique in accordance with an embodiment appears on the display of a smart phone.
  • FIGS. 5A, 5B and 5C collectively provide a third example of how text that has been enlarged in accordance with a content resizing technique in accordance with an embodiment appears on the display of a smart phone.
  • FIG. 6 depicts an example user interface that may be used to select a scale factor for content resizing in accordance with an embodiment.
  • FIG. 7 depicts a flowchart of a method for enlarging a content item to be rendered to a display in accordance with an embodiment.
  • FIG. 8 depicts a flowchart of a method for enlarging first and second content items to be rendered to a display in accordance with an embodiment.
  • FIG. 9 depicts a flowchart of a method for reducing first and second content items to be rendered to a display in accordance with an embodiment.
  • FIG. 10 depicts a flowchart of another method for enlarging first and second content items to be rendered to a display in accordance with an embodiment.
  • FIG. 11 is a block diagram of an example mobile device that may be used to implement various embodiments.
  • FIG. 12 is a block diagram of an example processor-based computer system that may be used to implement various embodiments.
  • references in the specification to "one embodiment,” “an embodiment,” “an example embodiment,” or the like, indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of persons skilled in the relevant art(s) to implement such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • Text enlargement refers to a feature provided by some computers and mobile devices that, when activated, causes text and other display content (e.g., icons) to appear larger without having to change the resolution of the display to which such content is rendered.
  • Text enlargement is generally considered an important accessibility feature as it can be used by people with visual impairments to better enable them to access content displayed by their computers and mobile devices. Text enlargement also provides users with flexibility by enabling them to select their own preferred display size for text.
  • Text enlargement is typically implemented either by forcing a particular font size on all displayed text or by multiplying all font sizes by a user-selected scale factor and then capping all text at some maximum font size.
  • these approaches can negatively impact usability, especially when implemented on smart phones and other devices with small form factors. For example, such approaches can cause text that was already large enough to be legible to nevertheless be enlarged. This unnecessary enlargement may cause other content or functionality to be pushed off the display, thereby reducing the user's access thereto.
  • the foregoing implementation approaches can also negatively impact the usability of applications in which the size of text itself is used to convey information.
  • the relative size of different text items rendered to a display may indicate some sort of hierarchy among the text items (e.g., the largest text items may represent document headers, while the next-largest text items may represent document sub-headers, and so on) or whether underlying functionality is available (e.g., text of one size may represent a link to some other content or functionality, while text of a different size may not).
  • underlying functionality e.g., text of one size may represent a link to some other content or functionality, while text of a different size may not.
  • forcing all the text to the same font size or multiplying the font sizes by a scale factor up to a maximum font size can cause text items that were originally of a different size to appear to be the same size.
  • the information that was meant to be conveyed to the user by the relative size of the different text items is lost. This can significantly degrade usability of such applications.
  • content items such as text items and images are enlarged based on an original size associated therewith and a scale factor.
  • the enlargement is carried out in a manner such that smaller content items are enlarged as the scale factor increases at a faster rate than a rate at which relatively larger content items are enlarged as the scale factor increases.
  • This approach can improve accessibility by applying a greater degree of enlargement to those content items which are smallest and hardest to read, while improving usability by applying a lesser degree of enlargement to larger content items that may already be sufficiently legible, thereby freeing up more of a display area for other content and functionality a user may wish to access.
  • the enlargement is performed in such a manner that the size of smaller content items after enlargement will never equal or exceed the size of relatively larger content items after enlargement.
  • Embodiments described herein may also perform content reduction.
  • embodiments described herein may perform content reduction in manner such that larger content items are reduced in size at a slower rate as a scale factor decreases than a rate at which relatively smaller content items are reduced in size as the scale factor decreases.
  • embodiments described herein may perform content reduction in such a manner that the size of larger content items after reduction will never equal or be less than the size of relatively smaller content items after reduction.
  • Section II describes an example system for resizing content to be rendered to a display in accordance with embodiments.
  • Section III describes exemplary methods for resizing content to be rendered to a display in accordance with embodiments.
  • Section IV describes an example mobile device that performs content resizing in accordance with techniques described herein.
  • Section V describes an example desktop computer that performs content resizing in accordance with techniques described herein.
  • Section VI provides some concluding remarks.
  • FIG. 1 is a block diagram of a system 100 that resizes content to be rendered to a display in accordance with an embodiment.
  • system 100 is implemented in a mobile device.
  • the mobile device may comprise, for example, a mobile phone (e.g., a smart phone), a laptop computer, a tablet computer, a netbook, a wearable computer such as a smart watch or a head-mounted computer, a portable media player, a handheld game console, a personal digital assistant, a personal navigation assistant, a camera, or any other mobile device capable of displaying text or other types of content.
  • a mobile phone e.g., a smart phone
  • a laptop computer e.g., a tablet computer
  • netbook e.g., a wearable computer
  • portable media player e.g., a portable media player
  • handheld game console e.g., a portable media player
  • personal digital assistant e.g., a personal navigation assistant
  • camera e.g.,
  • system 100 comprises a desktop computing system or other non-mobile system (including, for example, displays for the Internet-of-things) capable of displaying text or other types of content.
  • desktop computing system or other non-mobile system including, for example, displays for the Internet-of-things
  • An example desktop computing system that may incorporate the functionality of system 100 will be discussed below in reference to FIG. 12.
  • system 100 includes a number of interconnected components including one or more processors 102, a memory 104, a display 106 and one or more user input devices 108.
  • Processor(s) 102 are intended to represent one or more microprocessors, each of which may have one or more central processing units (CPUs) or microprocessor cores.
  • processor(s) 102 operate in a well-known manner to execute computer program logic. The execution of such computer program logic causes processor(s) 102 to perform operations including operations that will be described herein.
  • Memory 104 comprises one or more computer-readable memory devices that operate to store computer programs (also referred to herein as computer program logic) for execution by processor(s) 102 as well as data associated therewith. Any of a wide variety of volatile and non-volatile computer-readable memory devices may be used to implement memory 104, including but not limited to read-only memory (ROM) devices, random access memory (RAM) devices, solid state drives, hard disk drives, magnetic storage media such as magnetic disks and associated drives, optical storage media such as optical disks and associated drives, and flash memory devices such as USB flash drives. Still other types of computer-readable memory devices may be used to implement memory 104. Moreover, various combinations of different types of computer-readable memory devices may be used to collectively implement memory 104. Memory 104 is connected to and accessible by processor(s) 102 via one or more suitable interfaces.
  • Display 106 comprises a device to which content, such as text and images, can be rendered so that it will be visible to a user. Some or all of the rendering operations required to display such content may be performed at least in part by processor(s) 102 which is connected to display 106 via a suitable interface. Some or all of the rendering operations may also be performed by a display device interface such as a video or graphics chip or card (not shown in FIG. 1) that is coupled between processor(s) 102 and display 106.
  • a display device interface such as a video or graphics chip or card (not shown in FIG. 1) that is coupled between processor(s) 102 and display 106.
  • display 106 may comprise a device that is integrated within the same physical structure or housing as processor(s) 102 and memory 104 or may comprise a monitor, projector, a wearable device (such as glasses or a watch), or other type of device that is physically separate from a structure or housing that includes processor(s) 102 and memory 104 and connected thereto via a suitable wired and/or wireless connection (such as by BLUETOOTH® or other RF communication).
  • a suitable wired and/or wireless connection such as by BLUETOOTH® or other RF communication.
  • User input device(s) 108 comprise one or more devices that operate to generate user input information in response to a user' s manipulation or control thereof. Such user input information is passed via a suitable interface to processor(s) 102 for processing thereof.
  • user input device(s) 108 may include a touch screen (e.g., a touch screen integrated with display 106), a proximity sensing surface (such as a screen which detects hovering of an object such as a pen or a finger), a keyboard, a keypad, a mouse, a touch pad, a trackball, a joystick, a pointing stick, a wired glove, a motion tracking sensor, a game controller or gamepad, or a video capture device such as a camera.
  • a touch screen e.g., a touch screen integrated with display 106
  • a proximity sensing surface such as a screen which detects hovering of an object such as a pen or a finger
  • a keyboard e.g., a keypad, a mouse
  • user input device(s) 108 may include other types of devices other than those listed herein.
  • each user input device 108 may be integrated within the same physical structure or housing as processor(s) 102 and memory 104 (such as an integrated touch screen, touch pad, or keyboard on mobile device) or physically separate from a physical structure or housing that includes processor(s) 102 and memory 104 and connected thereto via a suitable wired and/or wireless connection.
  • memory 104 stores a number of software components including a content providing component 112, a content resizing component 114, a display component 116, and a user interface component 118.
  • Each of these software components comprises computer program logic that, when executed by processor(s) 102, causes processor(s) 102 to perform certain operations that will be described herein.
  • processor(s) 102 causes processor(s) 102 to perform certain operations that will be described herein.
  • Content providing component 112 is intended to broadly represent any software component that is capable of providing content to be rendered to display 106. Such content may include, for example and without limitation, text and/or images. Content providing component 112 may comprise, for example, any of a wide variety of application programs (sometimes referred to as "applications" or “apps").
  • content providing component 112 may comprise any one of a Web browser application, an e-mail application, a messaging application, an e-reader application, a telephony application, a calendar application, a social networking application, a media player application, a navigation application, a weather application, a game application, a contacts or address book application, a photography application, a shopping application, a word processing application, a spreadsheet application, a programming application, or the like.
  • Content providing component 112 may also comprise an operating system or a component thereof, or any other type of software program, module or entity that is capable of providing content to be rendered to display 106.
  • Content resizing component 114 comprises a software component that may operate to resize (e.g., enlarge or reduce the size of) content items that are provided by content providing component 1 12 prior to rendering of such content items to display 106.
  • content resizing component 114 comprises a part of an operating system that is stored in memory 104 and executed by processor(s) 102.
  • content resizing component 114 may comprise a stand-alone program that is not part of an operating system.
  • content resizing component 114 comprises a part of content providing component 112. Still other implementations are possible as would be recognized by persons skilled in the relevant art(s).
  • content resizing component 114 only performs resizing operations in response to user activation of a content resizing feature of system 100.
  • content resizing component 114 performs content resizing operations automatically without being activated by a user.
  • content resizing component 114 may perform content resizing operations based on one or more automatically- determined parameters. The manner in which content resizing component 114 is activated as well as the manner in which content resizing component performs resizing operations will be discussed in more detail below.
  • Display component 116 comprises a software component that causes content items that have been provided by content providing component 112 and optionally resized by content resizing component 114 to be rendered to display 106. Like content resizing component 114, display component 116 may also comprise part of an operating system that is stored in memory 104 and executed by processor(s) 102. However, this is only an example, and display component 116 need not comprise a part of an operating system. For example, display component 116 may comprise a stand-alone program that is not part of an operating system. In another embodiment, display component 116 comprises a part of content providing component 112. Still other implementations are possible.
  • content resizing component 114 is configured to perform content enlargement.
  • content resizing component 114 is configured to increase the size of content items as a user-selected or system-selected scale factor increases.
  • the larger the scale factor the more enlargement that is applied to each content item.
  • the function used to determine the amount of enlargement that is applied to each content item is based not only on the scale factor but also on a non-linear function of the original size of the content item, which in one embodiment is a logarithm of the original size of the content item. The effect of this is that as the scale factor is increased, all content items will be enlarged but content items of different original sizes will enlarge at different rates.
  • the aforementioned content enlargement function also ensures that when content enlargement is applied to a first content item and a second content item that is larger than the first content item, that the first content item after enlargement will never be larger than the second content item after enlargement.
  • a text item having an original font size of 12 will always be smaller than a text item having an original font size of 13, 14, 15 or greater, regardless of the amount of enlargement that is applied to each.
  • content resizing component 1 14 utilizes a content enlargement function that accepts as input a scale factor and the original size of a content item to be enlarged and outputs an enlarged size of the content item to be used for display.
  • the content enlargement function may comprises a stepwise function that first creates a seed value. The seed value is then used to determine the ultimate enlarged content size used for display.
  • This content enlargement function may be implemented as follows:
  • the amount by which the original size of a content item is enlarged (i.e., the amount that is added to the original size to obtain the enlarged size) may also be represented as:
  • content resizing component 114 exposes an application programming interface (API) by which applications can invoke the content resizing functionality thereof.
  • the API may include a function that can be invoked by an application to determine if content resizing has been turned on (i.e., that indicates whether the content resizing feature is active or inactive).
  • the API may include a function that receives an original size associated with a content item (e.g., original size) and returns an adjusted content size (e.g., enlarged size) for the content item based on the original size and the currently-selected scale factor (e.g., scale factor).
  • the scale factor can take on any value starting at 1.
  • a scale factor value of 1 basically means that no content enlargement is applied.
  • a scale factor value of 1 is a neutral value.
  • increasing the scale factor to a value that is greater than 1 will begin to enlarge content on a curve.
  • FIG. 2 is a graph 200 that illustrates how content resizing component 114 enlarges text items having font sizes 1-50 for scale factors of 1.0, 1.5 and 2.0 in accordance with an embodiment.
  • Scale factor 1 is a neutral value that, given the original text size, will output the same exact text size.
  • FIGS. 3 A, 3B and 3C collectively provide a first example of how text that is resized using the foregoing content enlargement technique appears on the display of a smart phone.
  • FIG. 3A shows how a plurality of different-sized text items appear on a smart phone display 300 when the scale factor equals 1 (i.e., when no enlargement is applied).
  • FIG. 3B shows how the plurality of different-sized text items appear on smart phone display 300 when enlargement in accordance with a scale factor of 1.5 has been applied.
  • FIG. 3C shows how the plurality of different-sized text items appear on smart phone display 300 when enlargement in accordance with a scale factor of 2.0 has been applied.
  • FIGS. 3B and 3C all of the text has been enlarged, although it may be difficult to notice the enlargement of the very large text at the top of display 300. This is because, as the scale factor increases from 1.0 to 1.5 to 2.0, the large text is enlarged at a much slower rate than the smaller text that is located beneath it. In contrast, it is much easier to observe the enlargement of the very small text.
  • the very small text at the bottom of display 300 (“size 10 writing") has almost doubled in size. This is advantageous since the very small text is typically the text that is least legible and thus most in need of enlargement.
  • FIGS. 3 A, 3B and 3C further illustrate that because the content enlargement scheme enlarges text using a curve, there is no need to suppress the enlargement of very large text. Rather, very large text is enlarged but to a much lesser degree than smaller text. This has the benefit of reducing the amount of content or functionality that will be displaced by the enlarged text.
  • the relative size of different text items rendered to a display may indicate some sort of hierarchy among the text items (e.g., the largest text items may represent document headers, while the next-largest text items may represent document sub-headers, and so on) or whether underlying functionality is available (e.g., text of one size may represent a link to some other content or functionality, while text of a different size may not).
  • the different- sized text items shown in FIG. 3A have a hierarchical visual appearance.
  • 3B and 3C illustrate that even after content enlargement has been applied, the enlarged text has retained this hierarchical visual appearance. This is because content enlargement is performed in such a manner that the size of smaller content items after enlargement will never equal or exceed the size of relatively larger content items after enlargement.
  • FIGS. 4A, 4B and 4C collectively provide a second example of how text that is resized using the foregoing content enlargement technique appears on the display of a smart phone.
  • FIG. 4A shows how a plurality of different-sized text items associated with a contacts application appear on a smart phone display 400 when the scale factor equals 1 (i.e., when no enlargement is applied).
  • FIG. 4B shows how the plurality of different-sized text items associated with the contacts application appear on smart phone display 400 when enlargement in accordance with a scale factor of 1.5 has been applied.
  • FIG. 4C shows how the plurality of different-sized text items associated with the contacts application appear on smart phone display 400 when enlargement in accordance with a scale factor of 2.0 has been applied.
  • FIGS. 4 A, 4B and 4C further demonstrate how smaller text items are enlarged at a faster rate than relatively larger text items as the scale factor increases and how size differences are maintained.
  • the contacts application distinguishes certain interactive text items from certain non-interactive text items by text size.
  • the non-interactive text "call mobile” is distinguished from the interactive text "+ 1 (425) 555-1234" (which will initiate a phone call when activated by a user) by virtue of the former being larger than the latter.
  • FIGS. 4B and 4C even after text enlargement has been applied to both text items, "call mobile” is still visibly larger than "+ 1 (425) 555-1234.”
  • the distinction between interactive and non- interactive text based on size has been maintained.
  • FIGS. 5A, 5B and 5C collectively provide a third example of how text that is resized using the foregoing content enlargement technique appears on the display of a smart phone.
  • FIG. 5 A in particular shows how a plurality of different-sized text items associated with an e-mail application appear on a smart phone display 500 when the scale factor equals 1 (i.e., when no enlargement is applied).
  • FIG. 5B shows how the plurality of different-sized text items associated with the e-mail application appear on smart phone display 500 when enlargement in accordance with a scale factor of 1.5 has been applied.
  • FIG. 5C shows how the plurality of different-sized text items associated with the contacts application appear on smart phone display 500 when enlargement in accordance with a scale factor of 2.0 has been applied.
  • FIGS. 5A, 5B and 5C further demonstrate how smaller text items are enlarged at a faster rate than relatively larger text items as the scale factor increases and how size differences are maintained.
  • the e-mail application distinguishes between different types of information associated with an e-mail by text size. For example, a sender of a particular e-mail (“Saied Kha.adi”) is shown using text that is larger than the text used to show the subject line of the same e-mail ("Phone XAML Controls Triage"). Furthermore, the subject line is shown using text that is larger than the text used to show a portion of the body of the same e-mail ("The path for 60454 was changed. Is there a way to").
  • content resizing component 114 can be used to enlarge other types of content as well, such as images. Any of a wide variety of images could be enlarged using the foregoing techniques.
  • content resizing component 114 could be used to enlarge album covers displayed by a media player application, playing cards displayed by a game application, advertisements displayed by a Web browser, or the like.
  • the scale factor used by content resizing component 114 may be selected by a user of system 100.
  • memory 104 may store a user interface component 118 that, when executed by processor(s) 102, displays a user interface on display 106. A user can interact with such user interface to select the scale factor.
  • user interface component 118 comprises a part of an operating system that is stored in memory 104 and executed by processor(s) 102.
  • user interface component 118 need not comprise a part of an operating system.
  • user interface component 118 may comprise a stand-alone program that is not part of an operating system.
  • user interface component 118 comprises a part of content providing component 112. Still other implementations are possible.
  • user interface component 118 comprises part of a settings tool associated with system 100 that enables a user thereof to activate and control certain accessibility features, although this is only an example.
  • FIG. 6 is an example of a user interface 600 that may be displayed by user interface component 118 and used to select a scale factor for content resizing.
  • user interface 600 includes a slider button 602 and a slider path 604.
  • slider button 602 By dragging slider button 602 to the right along slider path 604, a user can increase the scale factor.
  • slider button 602 to the left along slider path 604 a user can reduce the scale factor.
  • user input device(s) 108 comprise a touch screen
  • a user may achieve such dragging of slider button 602 by sliding his/her finger to the right or left across the touch screen.
  • any of a wide variety of known user input device(s) may be used to interact with slider button 602.
  • the size of a text sample 608 that is displayed within a window 606 of user interface 600 is modified accordingly, thereby providing a visible example of how an item of text will appear using the currently-selected scale factor.
  • slider button 602 may be used to select one of four incrementally-increasing scale factor values, with the smallest scale factor being 1 (i.e., no content resizing).
  • this example is not intended to be limiting, and slider button 602 may be used to select any number of incrementally-increasing scale factor values. Indeed, the scale factor value may be controlled to a very fine resolution using slider button 602.
  • user interface 600 comprises a slider mechanism to enable a user to select a scale factor
  • user input device(s) 108 include a touch screen
  • pinch and zoom gestures may be applied directly to content that a user wishes to resize (or to an area in which such content is displayed) to cause the scale factor to be reduced or increased, and to adjust the content size accordingly.
  • this is merely one example.
  • the scale factor may be selected automatically by an operating system or other software component stored in memory 104 and executed by processor(s) 102.
  • system 100 will automatically resize content without requiring a user to activate resizing functionality and/or select a scale factor.
  • Such automated selection of the scale factor may be performed by a scale factor selection component stored in memory 104 and executed by processor(s) 102. The selection may be based on one or more parameters.
  • Such parameters may include, for example and without limitation, one or more of a size of display 106, a resolution of display 106, an operating mode of a device that includes system 100, a location or orientation of a user with respect to display 106 or a device that includes system 100, a manufacturer of a device that includes system 100, or a model of a device that includes system 100.
  • an embodiment of system 100 can automatically select an optimal content resizing strategy for a given device and/or viewing scenario without requiring user input. Furthermore, such a feature can enable developers to program applications for execution on different platforms without having to worry about sizing application display content for each platform. Instead, the system can select the best content resizing strategy for a given application depending upon what platform the application is being executed upon.
  • content resizing component 112 may also perform content reduction.
  • content resizing component 112 may perform content reduction in manner such that larger content items are reduced in size at a slower rate as a scale factor decreases than a rate at which relatively smaller content items are reduced in size as the scale factor decreases.
  • content resizing component may perform content reduction in such a manner that the size of larger content items after reduction will never equal or be less than the size of relatively smaller content items after reduction.
  • user interface component 118 is configured to provide a user interface by which a user can cause content resizing component 114 to operate in an alternate mode in which all text is enlarged or reduced at the same rate as the scaling factor increases or decreases respectively. Such alternate mode could also be invoked by system 100 based on one or more automatically- determined factors.
  • FIG. 7 depicts a flowchart 700 of a method for enlarging a content item to be rendered to a display in accordance with an embodiment.
  • the method of flowchart 700 may be performed, for example, by one or more components of system 100 as described above in reference to FIG. 1. However, the method is not limited to that embodiment.
  • the method of flowchart 700 begins at step 702 in which a scale factor is received.
  • a scale factor is received.
  • an original size associated with a content item to be displayed is received.
  • the content item may comprise, for example, a text item or an image.
  • an enlargement amount is calculated as a function of the scale factor and the original size.
  • the function is defined such that, for a fixed scale factor, the enlargement amount decreases as the original size increases.
  • calculating the enlargement amount in this fashion comprises calculating the enlargement amount as a function of the scale factor and a natural logarithm of the original size.
  • the enlargement amount may be calculated using the function described above in Equation 1 , such that the enlargement amount is calculated in accordance with
  • original size represents the original size of the content item and scale factor represents the scale factor.
  • step 708 the enlargement amount is added to the original size thereby producing an output size and, at step 710, the content item is caused to be displayed at the output size.
  • steps 702, 704, 706 and 708 are performed by content resizing component 114 as described above in reference to system 100 of FIG. 1 and step 710 is performed by display component 116 as described above in reference to system 100 of FIG. 1.
  • FIG. 8 depicts a flowchart 800 of a method for enlarging first and second content items to be rendered to a display in accordance with an embodiment.
  • the method of flowchart 800 may be performed, for example, by one or more components of system 100 as described above in reference to FIG. 1. However, the method is not limited to that embodiment.
  • the method of flowchart 800 begins at step 802 in which a respective size associated with each of a first content item and a second content item is obtained.
  • the size of the first content item is different than the size of the second content item.
  • the first content item and the second content item may comprise, for example, two text items, two images, or a text item and an image respectively.
  • the respective size associated with each of the first and second content items is increased as a scale factor increases, such that the size associated with the smaller of the first and second content items increases with the scaling factor at a rate that is faster than a rate at which the size associated with a larger of the first and second content items increases with the scaling factor.
  • the first and second content items are caused to be displayed at the increased sizes respectively associated therewith.
  • steps 802 and 804 are performed by content resizing component 114 as described above in reference to system 100 of FIG. 1 and step 806 is performed by display component 116 as described above in reference to system 100 of FIG. 1.
  • FIG. 9 depicts a flowchart 900 of a method for reducing first and second content items to be rendered to a display in accordance with an embodiment.
  • the method of flowchart 900 may be performed, for example, by one or more components of system 100 as described above in reference to FIG. 1. However, the method is not limited to that embodiment.
  • the method of flowchart 900 begins at step 902 in which a respective size associated with each of a first content item and a second content item is obtained.
  • the size of the first content item is different than the size of the second content item.
  • the first content item and the second content item may comprise, for example, two text items, two images, or a text item and an image respectively.
  • the respective size associated with each of the first and second content items is reduced as a scale factor decreases, such that the size associated with the smaller of the first and second content items decreases with the scaling factor at a rate that is slower than a rate at which the size associated with a larger of the first and second content items decreases with the scaling factor.
  • the first and second content items are caused to be displayed at the decreased sizes respectively associated therewith.
  • steps 902 and 904 are performed by content resizing component 114 as described above in reference to system 100 of FIG. 1 and step 906 is performed by display component 116 as described above in reference to system 100 of FIG. 1.
  • FIG. 10 depicts a flowchart 1000 of another method for enlarging first and second content items to be rendered to a display in accordance with an embodiment.
  • the method of flowchart 1000 may be performed, for example, by one or more components of system 100 as described above in reference to FIG. 1. However, the method is not limited to that embodiment.
  • the method of flowchart 1000 begins at step 1002, in which an original size associated with a first content item is received.
  • an original size associated with a second content item is received.
  • the original size associated with the first content item is different than the original size associated with the second content item.
  • the first content item and the second content item may comprise, for example, two text items, two images, or a text item and an image respectively.
  • an enlargement amount is calculated for the first content item and an enlargement amount is calculated for the second content item.
  • the enlargement amount for each content item is calculated utilizing a function of the original size associated with the respective content item and a scale factor.
  • the function is defined such that the enlargement amount for the smaller of the first and second content items increases with the scale factor at a rate that is faster than a rate at which the enlargement amount for the larger of the first and second content items increases with the scale factor.
  • the enlargement amount for each of the first and second content items is calculated in accordance with
  • original size represents the original size of the first or second content item respectively and scale factor represents the scale factor.
  • the enlargement amount for the first content item is added to the original size associated with the first content item to produce an output size associated with the first content item.
  • the enlargement amount for the second content item is added to the original size associated with the second content item to produce an output size associated with the second content item.
  • the first content item is displayed at the output size associated with the first content item.
  • the second content item is displayed at the output size associated with the second content item.
  • steps 1002, 1004, 1006, 1008 and 1010 are performed by content resizing component 114 as described above in reference to system 100 of FIG. 1 and steps 1012 and 1014 are performed by display component 116 as described above in reference to system 100 of FIG. 1.
  • the method of flowchart 1000 further includes selecting the scale factor based on user input.
  • the method of flowchart 1000 may further include the step of selecting the scale factor based on one or more parameters.
  • the one or more parameters may include, for example and without limitation, one or more of a display size, a display resolution, a device operating mode, a user viewing location or orientation, a device manufacturer, and a device model.
  • FIG. 11 is a block diagram of an exemplary mobile device 1102 that may implement embodiments described herein.
  • mobile device 1102 includes a variety of optional hardware and software components. Any component in mobile device 1102 can communicate with any other component, although not all connections are shown for ease of illustration.
  • Mobile device 1102 can be any of a variety of computing devices (e.g., cell phone, smartphone, handheld computer, Personal Digital Assistant (PDA), etc.) and can allow wireless two-way communications with one or more mobile communications networks 1104, such as a cellular or satellite network, or with a local area or wide area network.
  • mobile communications networks 1104 such as a cellular or satellite network, or with a local area or wide area network.
  • the illustrated mobile device 1102 can include a controller or processor 1110
  • An operating system 1112 can control the allocation and usage of the components of mobile device 1102 and support for one or more application programs 1114 (also referred to as "applications" or “apps").
  • Application programs 114 may include common mobile computing applications (e.g., e-mail applications, calendars, contact managers, Web browsers, messaging applications) and any other computing applications (e.g., word processing applications, mapping applications, media player applications).
  • the illustrated mobile device 1102 can include memory 1120.
  • Memory 1120 can include non-removable memory 1122 and/or removable memory 1124.
  • Non-removable memory 1122 can include RAM, ROM, flash memory, a hard disk, or other well-known memory devices or technologies.
  • Removable memory 1124 can include flash memory or a Subscriber Identity Module (SIM) card, which is well known in GSM communication systems, or other well-known memory devices or technologies, such as "smart cards.”
  • SIM Subscriber Identity Module
  • Memory 1120 can be used for storing data and/or code for running operating system 1112 and applications 1114.
  • Example data can include Web pages, text, images, sound files, video data, or other data to be sent to and/or received from one or more network servers or other devices via one or more wired or wireless networks.
  • Memory 1120 can be used to store a subscriber identifier, such as an International Mobile Subscriber Identity (IMSI), and an equipment identifier, such as an International Mobile Equipment Identifier (IMEI).
  • IMSI International Mobile Subscriber Identity
  • IMEI International Mobile Equipment Identifier
  • Such identifiers can be transmitted to a network server to identify users and equipment.
  • Mobile device 1102 can support one or more input devices 1130, such as a touch screen 1132, a microphone 1134, a camera 1136, a physical keyboard 1138 and/or a trackball 1140 and one or more output devices 1150, such as a speaker 1152 and a display 1154.
  • Touch screens such as touch screen 1132, can detect input in different ways. For example, capacitive touch screens detect touch input when an object (e.g., a fingertip) distorts or interrupts an electrical current running across the surface. As another example, touch screens can use optical sensors to detect touch input when beams from the optical sensors are interrupted. Physical contact with the surface of the screen is not necessary for input to be detected by some touch screens.
  • Other possible output devices can include piezoelectric or other haptic output devices. Some devices can serve more than one input/output function. For example, touch screen 1132 and display 1154 can be combined in a single input/output device.
  • the input devices 1130 can include a Natural User Interface (NUI).
  • NUI Natural User Interface
  • Wireless modem(s) 1160 can be coupled to antenna(s) (not shown) and can support two-way communications between the processor 1110 and external devices, as is well understood in the art.
  • the modem(s) 1160 are shown generically and can include a cellular modem 1166 for communicating with the mobile communication network 1104 and/or other radio-based modems (e.g., Bluetooth 1164 and/or Wi-Fi 1162).
  • At least one of the wireless modem(s) 1160 is typically configured for communication with one or more cellular networks, such as a GSM network for data and voice communications within a single cellular network, between cellular networks, or between the mobile device and a public switched telephone network (PSTN).
  • GSM Global System for Mobile communications
  • PSTN public switched telephone network
  • Mobile device 1102 can further include at least one input/output port 1180, a power supply 1182, a satellite navigation system receiver 1184, such as a Global Positioning System (GPS) receiver, an accelerometer 1186, and/or a physical connector 1190, which can be a USB port, IEEE 1394 (Fire Wire) port, and/or RS-232 port.
  • GPS Global Positioning System
  • the illustrated components of mobile device 1 102 are not required or all-inclusive, as any components can be deleted and other components can be added as would be recognized by one skilled in the art.
  • certain components of mobile device 1102 are configured to perform the content resizing techniques described in preceding sections.
  • the content resizing techniques may be implemented by any one of applications 1114, by operating system 1112, or any one of applications 1114 operating in conjunction with operating system 1112.
  • any one of applications 1114 may perform the functions of content providing component 112 as described above in reference to system 100 of FIG. 1 and operating system 1112 may perform the functions of content resizing component 1 14, display component 116, and user interface component 118 as described above in reference to system 100 of FIG. 1.
  • Resized content may be rendered to display 1154.
  • input device(s) 1130 may be used to activate the content resizing functionality and to select a scale factor.
  • Computer program logic for performing the content resizing techniques described above may be stored in memory 1120 and executed by processor 1110. By executing such computer program logic, processor 1110 may be caused to implement any of the features of any of the components of system 100 as described above in reference to FIG. 1. Also, by executing such computer program logic, processor 1110 may be caused to perform any or all of the steps of flowchart 700 as described above in reference to FIG. 7, flowchart 800 as described above in reference to FIG. 8, flowchart 900 as described above in reference to FIG. 9, and flowchart 1000 as described above in reference to FIG. 10. V. Example Computer System Implementation
  • FIG. 12 depicts an example processor-based computer system 1200 that may be used to implement various embodiments described herein.
  • system 1200 may be used to implement any of the components of system 100 as described above in reference to FIG. 1.
  • System 1200 may also be used to implement any of the steps of flowchart 700 as described above in reference to FIG. 7, flowchart 800 as described above in reference to FIG. 8, flowchart 900 as described above in reference to FIG. 9, and flowchart 1000 as described above in reference to FIG. 10.
  • the description of system 1200 provided herein is provided for purposes of illustration, and is not intended to be limiting. Embodiments may be implemented in further types of computer systems, as would be known to persons skilled in the relevant art(s).
  • system 1200 includes a processing unit 1102, a system memory 1204, and a bus 1206 that couples various system components including system memory 1204 to processing unit 1202.
  • Processing unit 1202 may comprise one or more microprocessors or microprocessor cores.
  • Bus 1206 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures.
  • System memory 1204 includes read only memory (ROM) 1208 and random access memory (RAM) 1210.
  • ROM read only memory
  • RAM random access memory
  • a basic input/output system 1212 (BIOS) is stored in ROM 1208.
  • System 1200 also has one or more of the following drives: a hard disk drive
  • Hard disk drive 1214 for reading from and writing to a hard disk
  • a magnetic disk drive 1216 for reading from or writing to a removable magnetic disk 1218
  • an optical disk drive 1220 for reading from or writing to a removable optical disk 1222 such as a CD ROM, DVD ROM, BLU-RAYTM disk or other optical media.
  • Hard disk drive 1214, magnetic disk drive 1216, and optical disk drive 1220 are connected to bus 1206 by a hard disk drive interface 1224, a magnetic disk drive interface 1226, and an optical drive interface 1228, respectively.
  • the drives and their associated computer-readable media provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the computer.
  • a hard disk a removable magnetic disk and a removable optical disk
  • other types of computer-readable memory devices and storage structures can be used to store data, such as flash memory cards, digital video disks, random access memories (RAMs), read only memories (ROM), and the like.
  • a number of program modules may be stored on the hard disk, magnetic disk, optical disk, ROM, or RAM. These program modules include an operating system 1230, one or more application programs 1232, other program modules 1234, and program data 1236.
  • the program modules may include computer program logic that is executable by processing unit 1202 to perform any or all of the functions and features of system 100 as described above in reference to FIG. 1.
  • the program modules may also include computer program logic that, when executed by processing unit 1202, performs any of the steps or operations shown or described in reference to flowchart 700 of FIG. 7, flowchart 800 of FIG. 8, flowchart 900 of FIG. 9, or flowchart 1000 of FIG. 10.
  • a user may enter commands and information into system 1200 through input devices such as a keyboard 1238 and a pointing device 1240.
  • Other input devices may include a microphone, joystick, game controller, scanner, or the like.
  • a touch screen is provided in conjunction with a display 1244 to allow a user to provide user input via the application of a touch (as by a finger or stylus for example) to one or more points on the touch screen.
  • processing unit 1202 through a serial port interface 1242 that is coupled to bus 1206, but may be connected by other interfaces, such as a parallel port, game port, or a universal serial bus (USB).
  • Such interfaces may be wired or wireless interfaces.
  • a display 1244 is also connected to bus 1206 via an interface, such as a video adapter 1246.
  • system 1200 may include other peripheral output devices (not shown) such as speakers and printers.
  • System 1200 is connected to a network 1248 (e.g., a local area network or wide area network such as the Internet) through a network interface or adapter 1250, a modem 1252, or other suitable means for establishing communications over the network.
  • a network 1248 e.g., a local area network or wide area network such as the Internet
  • Modem 1252 which may be internal or external, is connected to bus 1206 via serial port interface 1242.
  • computer program medium As used herein, the terms "computer program medium,” “computer-readable medium,” and “computer-readable storage medium” are used to generally refer to memory devices or storage structures such as the hard disk associated with hard disk drive 1214, removable magnetic disk 1218, removable optical disk 1222, as well as other memory devices or storage structures such as flash memory cards, digital video disks, random access memories (RAMs), read only memories (ROM), and the like.
  • Such computer-readable storage media are distinguished from and non-overlapping with communication media (do not include communication media).
  • Communication media typically embodies computer- readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wireless media such as acoustic, RF, infrared and other wireless media. Embodiments are also directed to such communication media.
  • computer programs and modules may be stored on the hard disk, magnetic disk, optical disk, ROM, or RAM. Such computer programs may also be received via network interface 1250, serial port interface 1242, or any other interface type. Such computer programs, when executed or loaded by an application, enable computer 1200 to implement features of embodiments of the present invention discussed herein. Accordingly, such computer programs represent controllers of the system 1200.
  • Embodiments are also directed to computer program products comprising software stored on any computer useable medium. Such software, when executed in one or more data processing devices, causes a data processing device(s) to operate as described herein.
  • Embodiments of the present invention employ any computer-useable or computer- readable medium, known now or in the future. Examples of computer-readable mediums include, but are not limited to memory devices and storage structures such as RAM, hard drives, floppy disks, CD ROMs, DVD ROMs, zip disks, tapes, magnetic storage devices, optical storage devices, MEMs, nanotechnology-based storage devices, and the like.
  • system 1200 may be implemented as hardware logic/electrical circuitry or firmware.
  • one or more of these components may be implemented in a system-on-chip (SoC).
  • SoC may include an integrated circuit chip that includes one or more of a processor (e.g., a microcontroller, microprocessor, digital signal processor (DSP), etc.), memory, one or more communication interfaces, and/or further circuits and/or embedded firmware to perform its functions.
  • a processor e.g., a microcontroller, microprocessor, digital signal processor (DSP), etc.
EP14809195.2A 2013-11-19 2014-11-18 Resizing technique for display content Withdrawn EP3072042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/083,992 US9747007B2 (en) 2013-11-19 2013-11-19 Resizing technique for display content
PCT/US2014/066020 WO2015077189A1 (en) 2013-11-19 2014-11-18 Resizing technique for display content

Publications (1)

Publication Number Publication Date
EP3072042A1 true EP3072042A1 (en) 2016-09-28

Family

ID=52014381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809195.2A Withdrawn EP3072042A1 (en) 2013-11-19 2014-11-18 Resizing technique for display content

Country Status (5)

Country Link
US (1) US9747007B2 (zh)
EP (1) EP3072042A1 (zh)
KR (1) KR102310654B1 (zh)
CN (1) CN105745612B (zh)
WO (1) WO2015077189A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130339859A1 (en) 2012-06-15 2013-12-19 Muzik LLC Interactive networked headphones
WO2015106013A2 (en) * 2014-01-09 2015-07-16 AI Squared Systems and methods for transforming a user interface icon into an enlarged view
KR102406926B1 (ko) 2015-07-20 2022-06-10 엘지전자 주식회사 전자 액자 및 전자 액자의 이미지 표시 방법
US20170052683A1 (en) * 2015-08-20 2017-02-23 International Business Machines Corporation Altering a display perspective to avoid scrolling
EP3526775A4 (en) * 2016-10-17 2021-01-06 Muzik Inc. INTEGRATED PROJECTOR AUDIO / VIDEO CLOTHING COMPUTER SYSTEM
CN106910158B (zh) * 2016-11-14 2020-12-01 上海仪电鑫森科技发展有限公司 自适应矢量显示系统
CN106648341B (zh) * 2016-11-18 2020-07-10 惠州Tcl移动通信有限公司 一种显示界面排版调整方法及系统
CN106933487A (zh) * 2017-03-15 2017-07-07 深圳市金立通信设备有限公司 一种图像缩放方法及终端
CN110275749B (zh) * 2019-06-19 2022-03-11 深圳顺盈康医疗设备有限公司 一种表面放大显示的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060085743A1 (en) * 2004-10-18 2006-04-20 Microsoft Corporation Semantic thumbnails
US20110072390A1 (en) * 2009-09-21 2011-03-24 Brady Duga System and method for selective control of zoom adjustments in an electronic publication

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907576B2 (en) 2002-03-04 2005-06-14 Microsoft Corporation Legibility of selected content
US20060227153A1 (en) * 2005-04-08 2006-10-12 Picsel Research Limited System and method for dynamically zooming and rearranging display items
US7916157B1 (en) 2005-08-16 2011-03-29 Adobe Systems Incorporated System and methods for selective zoom response behavior
US20090109243A1 (en) * 2007-10-25 2009-04-30 Nokia Corporation Apparatus and method for zooming objects on a display
US8648858B1 (en) * 2009-03-25 2014-02-11 Skyfire Labs, Inc. Hybrid text and image based encoding
GB201000738D0 (en) * 2010-01-18 2010-03-03 British Telecomm Graphical data processing
US8782716B2 (en) 2011-07-29 2014-07-15 Google Inc. Systems and methods for rendering user interface objects in accordance with a variable scaling factor
US9489121B2 (en) 2011-11-02 2016-11-08 Microsoft Technology Licensing, Llc Optimal display and zoom of objects and text in a document
US9123138B2 (en) * 2013-06-18 2015-09-01 Adobe Systems Incorporated Adaptive patch-based image upscaling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060085743A1 (en) * 2004-10-18 2006-04-20 Microsoft Corporation Semantic thumbnails
US20110072390A1 (en) * 2009-09-21 2011-03-24 Brady Duga System and method for selective control of zoom adjustments in an electronic publication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015077189A1 *

Also Published As

Publication number Publication date
US20150143287A1 (en) 2015-05-21
KR20160086842A (ko) 2016-07-20
WO2015077189A1 (en) 2015-05-28
CN105745612B (zh) 2019-06-18
KR102310654B1 (ko) 2021-10-07
CN105745612A (zh) 2016-07-06
US9747007B2 (en) 2017-08-29

Similar Documents

Publication Publication Date Title
US9747007B2 (en) Resizing technique for display content
US11048379B2 (en) Method for controlling display, storage medium, and electronic device
KR102311221B1 (ko) 오브젝트 운용 방법 및 이를 지원하는 전자 장치
US9355472B2 (en) Device, method, and graphical user interface for adjusting the appearance of a control
US9448694B2 (en) Graphical user interface for navigating applications
CN108463799B (zh) 电子设备的柔性显示器及其操作方法
US11947791B2 (en) Devices, methods, and systems for manipulating user interfaces
US20130176248A1 (en) Apparatus and method for displaying screen on portable device having flexible display
US20130147825A1 (en) Apparatus and method for providing a visual transition between screens
KR20170093658A (ko) 복수의 디스플레이들을 포함하는 전자 장치 및 그 동작 방법
CN108370396B (zh) 电子装置、电子装置的通知显示方法及计算机可读介质
US20160224198A1 (en) Mobile device and displaying method thereof
US20140035946A1 (en) Mobile terminal and control method thereof
US20160004425A1 (en) Method of displaying graphic user interface and electronic device implementing same
US8717328B1 (en) System and method for managing display power consumption
EP3441865B1 (en) Electronic device for storing user data, and method therefor
US20140223298A1 (en) Method of editing content and electronic device for implementing the same
KR20140096780A (ko) 콘텐츠 표시 방법 및 이를 구현하는 휴대 단말
CN108027962B (zh) 一种图像处理方法、电子设备以及存储介质
US10185457B2 (en) Information processing apparatus and a method for controlling the information processing apparatus
CN116048373B (zh) 悬浮球控件的显示方法、电子设备以及存储介质
WO2024078114A1 (zh) 窗口显示方法、电子设备及计算机可读存储介质
RU2617544C2 (ru) Способ и система отображения рекламы на устройствах с сенсорным дисплеем
KR20160037841A (ko) 디스플레이 전력 소모를 관리하는 시스템 및 방법
KR20150027679A (ko) 이미지 처리 방법 및 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20191121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200227