EP3058167B1 - Hydrocarbon production plant, production process and upgrading process - Google Patents

Hydrocarbon production plant, production process and upgrading process Download PDF

Info

Publication number
EP3058167B1
EP3058167B1 EP14784222.3A EP14784222A EP3058167B1 EP 3058167 B1 EP3058167 B1 EP 3058167B1 EP 14784222 A EP14784222 A EP 14784222A EP 3058167 B1 EP3058167 B1 EP 3058167B1
Authority
EP
European Patent Office
Prior art keywords
well
production
pump
pressurized gas
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14784222.3A
Other languages
German (de)
French (fr)
Other versions
EP3058167A1 (en
Inventor
Pierre Lemetayer
Jean-Louis Beauquin
Mark BANMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies SE
Original Assignee
Total SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total SE filed Critical Total SE
Publication of EP3058167A1 publication Critical patent/EP3058167A1/en
Application granted granted Critical
Publication of EP3058167B1 publication Critical patent/EP3058167B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/129Adaptations of down-hole pump systems powered by fluid supplied from outside the borehole

Definitions

  • the present invention relates to a plant and a method for producing hydrocarbons.
  • the present invention also relates to a method of upgrading a hydrocarbon production facility.
  • curves 112 and 122 thus correspond to wells of Lg lower than the characteristic well represented by curve 102, the Lg of curve well 122 being itself lower than the Lg of curve well 112.
  • the curves 104 and 114 of the figure 1 correspond respectively to the performance of a gas lift said light and the performance of a gas lift said strong.
  • the so-called light gas lift has two operating points with the curve well 102 of which point 106 allowing a larger flow, Q, production of the well.
  • the so-called lightweight gas lift has no operating point with the lower Lg wells like the wells of curves 112 and 122.
  • the gas lift said weak thus allows the exploitation of wells of Lg between 0.6 and 1, 0.
  • the introduction of the so-called heavy gas lift then ensures the operation of the curve well 112 at the operating point 112 but does not make it possible to operate the curve well 122 with which it has no operating point.
  • the gas lift says strong allows the exploitation of wells of Lg between 0.3 and 0.5. In other words the gas lift, even strong, is insufficient to exploit the wells of Lg too low.
  • the document WO-A2-2013 / 011307 relates to a method of positioning a pump in a well for generating an artificial lift effect in which the pump is coupled to a turbine driven by a propellant.
  • the installation comprises a mechanical transmission shaft connecting the pneumatic motor to the pump.
  • the pneumatic motor is an electric generator.
  • the pump in the well is of the electric submersible type or of the progressive cavity type.
  • the pump is disposed at the bottom of the well.
  • the injection line opens at the bottom of the well, preferably in the production tube of the hydrocarbon production line.
  • the pneumatic motor is at the wellhead.
  • the pneumatic motor is at the bottom of the well.
  • the injection line opens into the evacuation tube of the production line, downstream of the circulation pump.
  • the gas under pressure is at a pressure greater than or equal to 70 bars before the expansion.
  • the pressurized gas is expanded by the pneumatic motor at a pressure of less than or equal to 30 bars.
  • the hydrocarbon production facility comprises a hydrocarbon well 22.
  • the installation comprises a production line having a production tube 24 in the well 22 and a tube 26 on the discharge surface from the production tube 24.
  • the tube 26 on the surface allows for example the evacuation to a reservoir 28 for storing the hydrocarbon product.
  • the tube 26 at the surface can also be used to evacuate the products 82, brought up by the production tube 24 and comprising hydrocarbons 80, to devices (not shown) for separating the products 82.
  • These product separation devices 82 can in particular separate water, gas and oil.
  • the installation 20 comprises a hydrocarbon circulation pump of the well 22 in the production line making it easier to raise the hydrocarbons 80 by the production tube 24.
  • This pump 40 can be placed at the bottom of the well 22 and is the remainder of this document referred to as the "bottom pump".
  • Such a bottom pump 40 makes it possible to ensure or increase a production of hydrocarbons by the well 22, in particular in cases where the activation by injection of gas under pressure is insufficient to obtain a lowering of the hydrostatic pressure. or against pressure, of the well 22 making it possible to exploit the well 22.
  • the pump 40 may be disposed in the tube 26 for evacuation at the surface. Such an arrangement of the pump 40 also makes it possible to increase the production by lowering the back pressure of the well 22 while facilitating the maintenance of the pump 40 which is then more accessible.
  • the pump 40 is driven by a turbine 30.
  • the positioning of the turbine 30 is embodied in the figures on the one hand by means of discontinuous lines and on the other hand by the schematic representation of blades 32 of the turbine 30.
  • This turbine 30 is disposed in a line 36 of gas 38 under pressure so as to be rotated by the expansion of the gas 38 under pressure.
  • the turbine 30 supplies the pump 40 with energy, this energy coming from the expansion of the gas 38 under pressure.
  • the turbine 30 can be replaced by any other type of pneumatic motor, an engine pneumatic converter converting stored energy in a compressed gas into mechanical energy.
  • the turbine can be replaced by any other hydrodynamic-type tire or a pneumatic type volumetric motor, the air motor then comprises a relaxation chamber whose volume is variable.
  • the pneumatic type volumetric motor proposed can thus correspond to a pneumatic piston engine circumferential.
  • the air motor such as in the form of the turbine 30, may be provided with a deflection, otherwise known as " bypass ".
  • bypass a deflection
  • the proposed installation may comprise a speed controller integrated in the pneumatic motor.
  • the speed of the turbine or the pneumatic motor can be transmitted on the surface in the form of a sound via the production tube 24 of the well 22. impact frequency at each rotation of the pneumatic motor to be characteristic of the rotational speed of the pneumatic motor.
  • the transmission of the kinetic energy of the turbine 30 to the pump can be carried out using a shaft 42 (shown in broken lines) rotated.
  • This shaft 42 of mechanical transmission connects the turbine 30 to the pump 40.
  • the mechanical connection between the turbine 30 and the pump 40 comprises a gear 44 for modulating the speed of rotation of the shaft 42 causing the actuation of the pump 40.
  • the shaft 42 is then split into two parts, a part connecting the turbine 30 to the gearbox 44 and another portion connecting the gearbox 44 to the pump 40.
  • Such a gearbox may be of the magnetic type to obtain a high conversion ratio.
  • the mechanical connection between the turbine 30 and the pump 40 may also include a clutch (not shown).
  • the shaft 42 may comprise various hinges 46.
  • the transmission to the pump 40 of the energy recovered by the turbine 30 is then achieved without additional energy conversion.
  • the turbine 30 may be an electric generator.
  • the energy transmitted from the turbine 30 to the pump 40 is then electrical to overcome the mechanical constraints associated with the use of the shaft 42 of mechanical transmission especially when the trajectory of the well 22 is too aggressive.
  • the bottom pump 40 may be of the electric submersible type (pump type also referred to as " Electric Submersible Pump “ abbreviated as "ESP” ).
  • the bottom pump 40 may be of the progressive cavity type (pump type also referred to as " Progressive Cavity Pump “ abbreviated as "PCP” ).
  • the use of a progressive cavity pump makes it possible to stabilize the well 22 by allowing a direct control of the flow rate of the well 22.
  • the mechanical transmission of the power of the pneumatic motor in the form of a turbine 30 at the pump 40 limits the presence of electrical equipment downhole. In such a case of mechanical power transmission, the life of the installation is improved due to the independence of the proposed installation to such electrical equipment downhole 22.
  • the pressurized gas 38 driving the turbine 30 comes from a source 34 of pressurized gas, at the surface with respect to the well 22, the source illustrated here in the form of a reservoir.
  • sources 34 of pressurized gas are generally available on the surface in known hydrocarbon production facilities.
  • the presence of pressurized gas sources on the surface is particularly required in the case of installations activated by injection of pressurized gas into the production line (production process also known as " gas lift "). .
  • the proposed installation 20 allows the driving of the bottom pump 40 facilitating the production of hydrocarbons and this in the absence of additional power distribution network.
  • the proposed installation 20 is particularly advantageous when the production facility is remote from any electrical production site or inhabited place.
  • the upgrade of a hydrocarbon production facility corresponds to the adaptation of existing facilities to the previously described solution.
  • the devices already present before the upgrade of the installation are for example the well 22, the production line, the source 34 of pressurized gas and the injection line 36 of the pressurized gas 38 in the production line.
  • Such an upgrading method adds the bottom pump 40, or the surface pump, and the turbine 30 or other pneumatic motor to these devices already present in the installation to be leveled.
  • the method comprises placing the pump 40 in the well 22 or on the surface and placing it on the injection line 36 of the turbine 30 for supplying the pump with energy.
  • the upgrading method can of course include the implementation of any other device described in this document and in particular the establishment of one, more or all devices in interaction with the pump 40 and / or with the turbine 30, such as for example the mechanical transmission shaft 42 and the gearbox 44.
  • Such a method firstly comprises supplying pressurized gas 38 from the source 34 of pressurized gas, at the surface. This step allows the recovery of energy already available on production facilities by gas lift.
  • the source 34 may for example provide the gas 38 before expansion at a pressure greater than or equal to 70 bars or of the order of 65 bars.
  • the pressurized gas 38 may be expanded by the turbine 30 to a pressure of less than or equal to 30 bar.
  • This energy recovered in kinetic form is retransmitted in this form or in another form, such as in the form of electrical energy, to the pump 40 in the well 22 for its actuation.
  • the bottom pump 40 contributes to the surface rise of the hydrocarbons 80 of the production well via the hydrocarbon production line to the tank 28.
  • the gas 38 after expansion can be injected into the hydrocarbon production line.
  • the gas under pressure 38 after expansion then has a lower injection pressure compared to the case where the pressurized gas 38 is injected into the production line without prior expansion or too high pressure such as 70 or 65 bar.
  • the lower injection pressure makes it possible to avoid excessive instantaneous flow (also known as steam break through ).
  • instantaneous flow also known as steam break through
  • the lower injection pressure also makes it possible to avoid runaway in the event of instantaneous vaporization (also known as the " steam flashing " phenomenon).
  • the system makes it possible to limit without risk the over-cooling, difference between the hydrocarbon temperature and the evaporation temperature of these hydrocarbons at the same pressure (over-cooling corresponding to the English term "sub-cool” ).
  • the over-cooling can then be lower without risk of runaway, that is to say without risk of spraying.
  • the hydrocarbons to be produced are hotter, less viscous and therefore easier to extract.
  • the gas injection line 36 opens at the surface into the evacuation tube 26 of the production line.
  • the expanded pressurized gas 38 is thus injected into the surface portion of the production line referred to as "flow line” (of the English expression " flow line” ). Injection of the pressurized gas 38 into the surface portion of the production line makes it possible to reduce the hydrostatic pressure of the production line even when the pressure after expansion is low.
  • the pressurized gas 38 is provided to be injected into the production line at the production tube 24, so as to activate the production of hydrocarbons 80.
  • the injection line 36 is in the form of an annulus around the production tube 24.
  • the gas 38 is expanded by the turbine 30 before being injected into the production line of the well 22.
  • the production of hydrocarbons is facilitated on the one hand by the bottom pump 40 and on the other hand by the injection of gas.
  • the injection of gas into the production line of the well 22 as illustrated in FIG. figure 3 corresponds to a gas lift technique , ie activation by gas injection.
  • the injection of the expanded gas 38 is carried out "downhole" above the location of the bottom pump 40, directly in the production line at the level of the production tube 24.
  • gas injection is performed downstream of the pump in the production line.
  • the term "downhole” is used in this document as characterizing a positioning close to the geological layers forming the reservoir of the hydrocarbon reservoir exploited by the well 22. This expression is used in opposition to the expressions “wellhead "and” on the surface ".
  • the term “surface” characterizes in this document a positioning at ground level, above the ground or immediately below the ground. A device disposed on the surface can thus correspond to a device buried at a negligible depth relative to the depth of the well.
  • the expression “at the wellhead” characterizes in this document a “surface” positioning, in line with the well, that is to say at the vertical of the well. Thus the distance between a "wellhead” positioning and a “well bottom” positioning is substantially equal to the length of the trajectory of the well 22.
  • the mixed lines modeling the interrupted view of the well 22 in the figures separate from the one part the wellhead and the surface, above the mixed lines, the well bottom 22 on the other hand, below the mixed lines.
  • the turbine 30 is disposed at the wellhead 22.
  • the arrangement of the turbine 30 at the surface makes it possible to prevent the expansion of the pressurized gases 38 at the turbine 30 from cooling the hydrocarbon 80 downhole 22.
  • the cooling of the hydrocarbon 80 by the gas can for example, to cause deposition formation, such as paraffin deposition formation for paraffinic hydrocarbons, otherwise referred to as paraffinic crude.
  • the embodiments illustrated in figures 2 and 3 then have the advantage of facilitating the management of the deposit formation risk which is limited at the level of the injection of the expanded gas 38 into the production line, either at the surface of the well or at the wellhead, respectively.
  • the embodiment illustrated in figure 3 possibly allows to have more diameter.
  • Such an embodiment is then particularly preferred for the production of hydrocarbons present in the form of "heavy oil".
  • the bottom pump 40 is preferably of the PCP type.
  • the use of the PCP type pump 40 for the production of "heavy oil” makes it possible to stabilize the activation by gas injection and better control of the flow, especially at the beginning of production after the injection of the gas under pressure. in the production line.
  • the pressurized gas 38 can be heated after having been expanded by the turbine 30.
  • the surface positioning of the turbine 30 also contributes to facilitating the architecture of the installation. Indeed, in the mechanical transmission variants of the energy of the turbine 30 to the pump 40, the gearbox 44 can be very bulky, particularly in the case where the gear 44 is of the magnetic type.
  • the surface arrangement of the turbine 30 then allows the surface arrangement of the gearbox 44 between the turbine 30 and the pump 40, the surface being less subject to space constraints than the bottom of the well 22.
  • the proposed installation allows a lowering of the pressure in the well 22 according to the diagram of the figure 4 .
  • the figure 4 shows a diagram of the evolution of the pressure, P, as a function of the vertical depth, H, in the well 22.
  • the point BH abbreviation of the expression English "Bottom Hole ", corresponds to the vertical depth at the bottom of the well.
  • the installation illustrated in figure 3 allows the pressure to follow the curve 140 having a pressure decrease 142 to the depth at which the pump 40 is disposed. This reduction in pressure 142 makes it possible to obtain a low downhole pressure at point 144.
  • This low pressure at point 144 is to be compared with the pressure obtained at point 132, which is the hydrostatic pressure of the hydrocarbons at the bottom of the well.
  • Point 132 is the point of the hydrostatic pressure curve in broken lines 130 at the depth at the bottom of the well.
  • the curve 130 corresponds to the evolution of the pressure in the well in the natural state, that is to say in the absence of particular devices in the well to facilitate the production of the well.
  • the downhole pressure obtained using the proposed installation corresponds, with respect to hydrostatic pressure point 132 downhole 22, to a pressure drop 146 (also referred to as " draw down”). ) promoting the extraction of hydrocarbons from the well 22.
  • the use of a portion of the energy of the gas under pressure to actuate the bottom pump 40 and the other part of the pressurized gas energy used in gas lift allows double- strand extraction of hydrocarbons from well 22 from a single source.
  • the pressure as a function of the depth follows the curve in thin line 134 to reach a downhole pressure at point 136.
  • This pressure at the bottom of the well 22 allows a lower pressure drop 138 than the pressure drop 146 allowed by the proposed installation.
  • the double-effect extraction from a single source then allows a greater production of the well 22 in comparison with the use of all the energy of the pressurized gas gas lift.
  • the injection of the pressurized gas after the expansion corresponds in fact to a use of the gas lift in its effective range, such as for pressures of the order of or less than 30 bar, the excess energy being used in the form of mechanical energy for driving the pump 40.
  • pressure levels of the pressurized gas 38 of the order of 70 bars or 65 bars can be achieved with pressure levels of the pressurized gas 38 of the order of 70 bars or 65 bars.
  • the use of pressure levels of the order of 70 bar or 65 bar limits the risk of wear of the installation and increases the number of usable technologies compared to the use of higher pressures in gas lift to obtain a efficiency comparable to that of the proposed double-effect extraction.
  • the figure 5 shows an embodiment of the installation where the turbine 30 is disposed downhole.
  • This embodiment is particularly advantageous when the hydrocarbons 80 to produce are very hot.
  • the heat of the hydrocarbons 80 to be produced limits the influence on the production of the cooling of the hydrocarbons 80 by the injection of the pressurized gas 38 expanded.
  • the pump 40 may be of rotodynamic type at high speed, preferably a high temperature electric submersible pump (pump type also designated by the expression English " Electric Submersible Pump High Temperature " abbreviated " ESP-HT ”) more expensive.
  • the arrangement of the turbine 30 downhole can also be considered when it is planned to preheat the pressurized gas 38 in the annular portion of the injection line 36, to limit the cooling of the hydrocarbons to be produced. In all cases, because of the positioning at the bottom of the well of the turbine, the gas under pressure before expansion is hotter than in the embodiments described above with reference to figures 2 and 3 .
  • the embodiment illustrated in figure 5 with the downhole air motor 22, shown as a turbine 30, is preferred to the embodiment illustrated in FIG. figure 3 with the engine at the wellhead for the aforementioned phase of stimulation of the well 22 when the hydrocarbons are heavy oils.
  • the embodiment illustrated in figure 5 is also preferred for wells 22 of standard crudes.
  • the embodiment illustrated in figure 3 is preferred for the aforementioned phase of ramping up the operation of the well 22 when the hydrocarbons are heavy oils.
  • the injection of gases under expanded pressure can be carried out for the same hydrocarbon production facility both in the production tube 24 downhole and in the discharge tube 26 at the surface.
  • Such a variant thus corresponds to the combination of the embodiments illustrated by the figure 2 and by figure 3 .
  • the injection line of the pressurized gas may comprise one or more boosters (not shown) to increase the pressure of the gas under pressure upstream of the turbine.
  • boosters also known as the boosters to increase the pressure of the gas under pressure upstream of the turbine. This increase in pressure allowed by the boosters makes it possible to have more energy for the turbine and / or more energy after the expansion performed for the turbine for the activation of the well by injection of the expanded gas. This increase in pressure by the boosters ultimately allows an even greater improvement in the production of the well.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

La présente invention concerne une installation et un procédé de production d'hydrocarbures. La présente invention se rapporte aussi à un procédé de mise à niveau d'une installation de production d'hydrocarbures.The present invention relates to a plant and a method for producing hydrocarbons. The present invention also relates to a method of upgrading a hydrocarbon production facility.

Dans le domaine de la production des hydrocarbures, il est connu de recourir à l'injection de gaz sous pression dans un puits de production d'hydrocarbures pour améliorer la production de ce puits. Les documents EP 0 756 065 A1 et FR 2 783 557 A1 , par exemple, décrivent l'injection de gaz pour l'activation de la production d'hydrocarbures d'un puits. L'injection de gaz permet de réduire la pression hydrostatique du puits afin de faciliter l'extraction d'hydrocarbures. Toutefois un tel procédé connu d'activation par injection de gaz (procédé également désigné par l'expression anglaise "gas lift") peut ne pas permettre d'abaisser suffisamment la pression hydrostatique pour exploiter le puits dans des conditions satisfaisantes.In the field of hydrocarbon production, it is known to use the injection of gas under pressure in a hydrocarbon production well to improve the production of this well. The documents EP 0 756 065 A1 and FR 2 783 557 A1 , for example, describe the injection of gas for the activation of the hydrocarbon production of a well. The injection of gas makes it possible to reduce the hydrostatic pressure of the well in order to facilitate the extraction of hydrocarbons. However, such a known method of activation by gas injection (also known as gas lift ) may not sufficiently lower the hydrostatic pressure to operate the well under satisfactory conditions.

La figure 1 montre un diagramme de différentes caractéristiques de productivité en relation avec la pression d'écoulement au fond du puits et le débit d'écoulement, noté Q. La pression d'écoulement de fond du puits est désignée sur la figure 1 par le signe de référence BHFP, abréviation de l'expression équivalente anglaise "Bottom Hole Fluid Pressure". La figure 1 montre trois caractéristiques 102, 112 et 122, de puits différents. Ces puits différent par leur gradient de portance naturelle, tel que défini par l'équation suivante : Lg = BHP THP H 10 , 2

Figure imgb0001

  • Lg est le gradient de portance naturelle du puits ;
  • BHP est la pression de fond de puits en bars (abréviation de l'expression anglaise équivalente "Bottom Hole Pressure")
  • THP est la pression à la tête du puits en bars (abréviation issue de l'expression anglaise "Tubing Hanger Pressure") ;
  • H est la profondeur verticale du puits en m.
The figure 1 shows a diagram of different productivity characteristics in relation to well bottom flow pressure and flow rate, noted Q. The well bottom flow pressure is designated on the figure 1 by the reference sign BHFP, abbreviation of the equivalent English expression "Bottom Hole Fluid Pressure ". The figure 1 shows three characteristics 102, 112 and 122 of different wells. These wells differ in their natural lift gradient, as defined by the following equation: Lg = BHP - THP H * 10 , 2
Figure imgb0001
or
  • Lg is the natural lift gradient of the well;
  • BHP is the downhole pressure in bars (abbreviation of the equivalent English expression "Bottom Hole Pressure ")
  • THP is the pressure at the wellhead in bars (abbreviation from the English term "Tubing Hanger Pressure ");
  • H is the vertical depth of the well in m.

Les caractéristiques de courbes 112 et 122 correspondent ainsi à des puits de Lg plus faible que le puits de caractéristique représentée par la courbe 102, le Lg de du puits de courbe 122 étant lui-même plus faible que le Lg du puits de courbe 112.The characteristics of curves 112 and 122 thus correspond to wells of Lg lower than the characteristic well represented by curve 102, the Lg of curve well 122 being itself lower than the Lg of curve well 112.

Les courbes 104 et 114 de la figure 1 correspondent respectivement à la performance d'un gas lift dit léger et à la performance d'un gas lift dit fort. Le gas lift dit léger présente deux points de fonctionnement avec le puits de courbe 102 dont le point 106 permettant un plus grand débit, Q, de production du puits. Toutefois le gas lift dit léger ne présente aucun point de fonctionnement avec les puits de Lg plus faible comme les puits de courbes 112 et 122. Le gas lift dit faible permet ainsi l'exploitation de puits de Lg compris entre 0,6 et 1,0. La mise en place du gas lift dit lourd assure alors l'exploitation du puits de courbe 112 au point de fonctionnement 112 mais ne permet pas d'exploiter le puits de courbe 122 avec lequel il ne présente pas de point de fonctionnement. Le gas lift dit fort permet l'exploitation de puits de Lg compris entre 0,3 et 0,5. En d'autres termes le gas lift, même fort, est insuffisant pour exploiter les puits de Lg trop faible.The curves 104 and 114 of the figure 1 correspond respectively to the performance of a gas lift said light and the performance of a gas lift said strong. The so-called light gas lift has two operating points with the curve well 102 of which point 106 allowing a larger flow, Q, production of the well. However, the so-called lightweight gas lift has no operating point with the lower Lg wells like the wells of curves 112 and 122. The gas lift said weak thus allows the exploitation of wells of Lg between 0.6 and 1, 0. The introduction of the so-called heavy gas lift then ensures the operation of the curve well 112 at the operating point 112 but does not make it possible to operate the curve well 122 with which it has no operating point. The gas lift says strong allows the exploitation of wells of Lg between 0.3 and 0.5. In other words the gas lift, even strong, is insufficient to exploit the wells of Lg too low.

De plus, le document WO-A2-2013/011307 a trait à un procédé de positionnement d'une pompe dans un puits permettant de générer un effet d'ascension artificielle dans lequel la pompe est couplée à une turbine mue par un fluide propulseur.In addition, the document WO-A2-2013 / 011307 relates to a method of positioning a pump in a well for generating an artificial lift effect in which the pump is coupled to a turbine driven by a propellant.

Il existe donc un besoin pour un procédé et une installation de production d'hydrocarbures dans le cas où l'activation par injection de gaz est insuffisante pour obtenir un abaissement de la pression hydrostatique du puits permettant d'exploiter le puits.There is therefore a need for a process and a facility for producing hydrocarbons in the case where activation by gas injection is insufficient to obtain a lowering of the hydrostatic pressure of the well making it possible to exploit the well.

Pour cela, l'invention propose une installation de production d'hydrocarbures, comprenant :

  • un puits d'hydrocarbures ;
  • une ligne de production d'hydrocarbures comprenant :
    • * dans le puits, un tube de production, et
    • * en surface, un tube d'évacuation depuis le tube de production ;
  • en surface, une source de gaz sous pression ;
  • une ligne d'injection du gaz sous pression dans la ligne de production d'hydrocarbures, la ligne d'injection étant reliée à la source de gaz sous pression ;
  • une pompe de circulation d'hydrocarbures du puits dans la ligne de production d'hydrocarbures ;
  • un moteur pneumatique d'alimentation en énergie de la pompe, disposé sur la ligne d'injection du gaz sous pression et adapté à être entrainé en rotation par détente du gaz sous pression.
For this purpose, the invention proposes a hydrocarbon production plant, comprising:
  • a hydrocarbon well;
  • a hydrocarbon production line comprising:
    • * in the well, a production tube, and
    • * on the surface, an evacuation tube from the production tube;
  • on the surface, a source of gas under pressure;
  • a line for injecting the gas under pressure into the hydrocarbon production line, the injection line being connected to the source of gas under pressure;
  • a hydrocarbon circulation pump of the well in the hydrocarbon production line;
  • a pneumatic pump power supply motor, disposed on the injection line of the gas under pressure and adapted to be rotated by expansion of the gas under pressure.

Selon une variante, l'installation comprend un arbre de transmission mécanique reliant le moteur pneumatique à la pompe.According to a variant, the installation comprises a mechanical transmission shaft connecting the pneumatic motor to the pump.

Selon une variante, le moteur pneumatique est un générateur électrique.According to one variant, the pneumatic motor is an electric generator.

Selon une variante, la pompe dans le puits est du type submersible électrique ou du type progressive à cavité.According to one variant, the pump in the well is of the electric submersible type or of the progressive cavity type.

Selon une variante, la pompe est disposée en fond de puits.According to one variant, the pump is disposed at the bottom of the well.

Selon une variante, la ligne d'injection débouche en fond de puits, de préférence dans le tube de production de la ligne de production d'hydrocarbures.According to a variant, the injection line opens at the bottom of the well, preferably in the production tube of the hydrocarbon production line.

Selon une variante, le moteur pneumatique est en tête de puits.According to one variant, the pneumatic motor is at the wellhead.

Selon une variante, le moteur pneumatique est en fond de puits.According to one variant, the pneumatic motor is at the bottom of the well.

Selon une variante, la ligne d'injection débouche dans le tube d'évacuation de la ligne de production, en aval de la pompe de circulation.According to a variant, the injection line opens into the evacuation tube of the production line, downstream of the circulation pump.

L'invention propose aussi un procédé d'exploitation d'un puits de production d'hydrocarbures activé par injection de gaz, comprenant :

  1. a) la fourniture d'un gaz sous pression à partir d'une source en surface de gaz sous pression ;
  2. b) la récupération d'énergie par la détente du gaz sous pression à l'aide d'un moteur pneumatique ;
  3. c) l'actionnement d'une pompe de circulation d'hydrocarbures du puits au moyen de l'énergie récupérée à l'étape b) ;
  4. d) l'injection du gaz sous pression détendu dans une ligne de production d'hydrocarbures.
The invention also proposes a method for operating a gas injection-activated hydrocarbon production well, comprising:
  1. a) supplying a gas under pressure from a surface source of gas under pressure;
  2. b) the recovery of energy by the expansion of the gas under pressure using a pneumatic motor;
  3. c) actuating a hydrocarbon circulation pump of the well by means of the energy recovered in step b);
  4. d) injection of the pressurized gas expanded in a hydrocarbon production line.

Selon une variante, le gaz sous pression est à une pression supérieure ou égale à 70 bars avant la détente.According to a variant, the gas under pressure is at a pressure greater than or equal to 70 bars before the expansion.

Selon une variante, le gaz sous pression est détendu par le moteur pneumatique à une pression inférieure ou égale à 30 bars.According to a variant, the pressurized gas is expanded by the pneumatic motor at a pressure of less than or equal to 30 bars.

L'invention propose encore un procédé de mise à niveau d'une installation de production d'hydrocarbures, l'installation comprenant :

  • un puits d'hydrocarbures ;
  • une ligne de production d'hydrocarbures comprenant :
    • * dans le puits, un tube de production, et
    • * en surface, un tube d'évacuation depuis le tube de production ;
  • en surface, une source de gaz sous pression ;
  • une ligne d'injection du gaz sous pression dans la ligne de production d'hydrocarbures, la ligne d'injection étant reliée à la source de gaz sous pression ;
le procédé comprenant :
  • la mise en place d'une pompe de circulation d'hydrocarbures du puits ; et
  • la mise en place, sur la ligne d'injection du gaz sous pression, d'un moteur pneumatique d'alimentation en énergie de la pompe, adapté à être entrainé en rotation par détente du gaz sous pression.
The invention also proposes a method of upgrading a hydrocarbon production facility, the installation comprising:
  • a hydrocarbon well;
  • a hydrocarbon production line comprising:
    • * in the well, a production tube, and
    • * on the surface, an evacuation tube from the production tube;
  • on the surface, a source of gas under pressure;
  • a line for injecting the gas under pressure into the hydrocarbon production line, the injection line being connected to the source of gas under pressure;
the method comprising:
  • the installation of a hydrocarbon circulation pump of the well; and
  • the introduction, on the injection line of the pressurized gas, of a pneumatic motor for supplying the pump with energy, adapted to be rotated by expansion of the gas under pressure.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en référence aux dessins qui montrent :

  • Figure 1, un diagramme de différentes caractéristiques de productivité en relation avec la pression d'écoulement au fond du puits et le débit d'écoulement ;
  • Figure 2, une vue schématique en coupe d'un mode de réalisation d'une installation de production d'hydrocarbures ;
  • Figure 3, une vue schématique en coupe d'un mode de réalisation avec gas lift de l'installation de production d'hydrocarbures ;
  • Figure 4, un diagramme d'évolution de la pression en fonction de la profondeur dans un puits pour différentes méthodes d'exploitation du puits ;
  • Figure 5, une vue schématique en coupe d'un autre mode de réalisation avec gas lift de l'installation de production d'hydrocarbures.
Other features and advantages of the invention will appear on reading the following detailed description of the embodiments of the invention, given by way of example only and with reference to the drawings which show:
  • Figure 1 a diagram of different productivity characteristics in relation to well bottom flow pressure and flow rate;
  • Figure 2 , a schematic sectional view of an embodiment of a hydrocarbon production facility;
  • Figure 3 , a schematic sectional view of an embodiment with gas lift of the hydrocarbon production facility;
  • Figure 4 , a graph of pressure versus depth in a well for different methods of well exploitation;
  • Figure 5 , a schematic sectional view of another embodiment with gas lift of the hydrocarbon production facility.

Il est proposé une installation de production d'hydrocarbures. En référence à la figure 2, l'installation 20 de production d'hydrocarbures comprend un puits 22 d'hydrocarbures. Pour remonter les hydrocarbures 80 du puits 22, l'installation comprend une ligne de production présentant un tube de production 24 dans le puits 22 et un tube 26 en surface d'évacuation depuis le tube de production 24. Le tube 26 en surface permet par exemple l'évacuation vers un réservoir 28 de stockage de l'hydrocarbure produit. Avant le stockage, le tube 26 en surface peut aussi servir à évacuer les produits 82, remontés par le tube de production 24 et comprenant des hydrocarbures 80, vers des dispositifs (non représentés) de séparation des produits 82. Ces dispositifs de séparation des produits 82 peuvent notamment séparer l'eau, le gaz et l'huile.A hydrocarbon production facility is proposed. With reference to the figure 2 the hydrocarbon production facility comprises a hydrocarbon well 22. To raise the hydrocarbons 80 of the well 22, the installation comprises a production line having a production tube 24 in the well 22 and a tube 26 on the discharge surface from the production tube 24. The tube 26 on the surface allows for example the evacuation to a reservoir 28 for storing the hydrocarbon product. Before storage, the tube 26 at the surface can also be used to evacuate the products 82, brought up by the production tube 24 and comprising hydrocarbons 80, to devices (not shown) for separating the products 82. These product separation devices 82 can in particular separate water, gas and oil.

L'installation 20 comprend une pompe 40 de circulation d'hydrocarbures du puits 22 dans la ligne de production permettant de faciliter la remontée des hydrocarbures 80 par le tube de production 24. Cette pompe 40 peut être disposée au fond du puits 22 et est dans la suite de ce document désignée par l'expression "pompe de fond". Une telle pompe de fond 40 permet d'assurer ou d'augmenter une production d'hydrocarbures par le puits 22, en particulier dans les cas où l'activation par injection de gaz sous pression est insuffisante pour obtenir un abaissement de la pression hydrostatique, ou contre pression, du puits 22 permettant d'exploiter le puits 22. En alternative non illustré, la pompe 40 peut être disposée dans le tube 26 d'évacuation en surface. Une telle disposition de la pompe 40 permet aussi d'augmenter la production en abaissant la contre pression du puits 22 tout en facilitant la maintenance de la pompe 40 qui est alors plus accessible.The installation 20 comprises a hydrocarbon circulation pump of the well 22 in the production line making it easier to raise the hydrocarbons 80 by the production tube 24. This pump 40 can be placed at the bottom of the well 22 and is the remainder of this document referred to as the "bottom pump". Such a bottom pump 40 makes it possible to ensure or increase a production of hydrocarbons by the well 22, in particular in cases where the activation by injection of gas under pressure is insufficient to obtain a lowering of the hydrostatic pressure. or against pressure, of the well 22 making it possible to exploit the well 22. As an alternative, not illustrated, the pump 40 may be disposed in the tube 26 for evacuation at the surface. Such an arrangement of the pump 40 also makes it possible to increase the production by lowering the back pressure of the well 22 while facilitating the maintenance of the pump 40 which is then more accessible.

Selon le mode de réalisation illustré en figure 2, la pompe 40 est entraînée par une turbine 30. Le positionnement de la turbine 30 est matérialisé dans les figures d'une part à l'aide de traits discontinus et d'autres part par la représentation schématique de pales 32 de la turbine 30. Cette turbine 30 est disposée dans une ligne 36 de gaz 38 sous pression de manière à être entrainée en rotation par la détente du gaz 38 sous pression. En d'autres termes, la turbine 30 alimente la pompe 40 en énergie, cette énergie étant issue de la détente du gaz 38 sous pression. La turbine 30 peut être remplacée par tout autre type de moteur pneumatique, un moteur pneumatique convertissant l'énergie stockée dans un gaz comprimé en énergie mécanique. La turbine peut ainsi être remplacée par tout autre pneumatique de type hydrodynamique ou un moteur pneumatique de type volumétrique, le moteur pneumatique comprend alors une chambre de détente dont le volume est variable. Le moteur pneumatique de type volumétrique proposé peut ainsi correspondre à un moteur pneumatique à piston circonférentiel. Pour éviter l'emballement, le moteur pneumatique, tel que sous la forme de la turbine 30, peut être pourvu d'une déviation, autrement désigné par le terme anglais "by-pass". Pour commander l'ouverture automatique du by-pass, l'installation proposée peut comprendre un régulateur de vitesse intégré dans le moteur pneumatique. Notamment en l'absence de régulateur de vitesse, la vitesse de la turbine ou du moteur pneumatique peut être transmise en surface sous la forme d'un son par l'intermédiaire du tube de production 24 du puits 22. Le son transmis peut présenter la fréquence d'impact à chaque rotation du moteur pneumatique pour être caractéristique de la vitesse de rotation du moteur pneumatique.According to the embodiment illustrated in figure 2 , the pump 40 is driven by a turbine 30. The positioning of the turbine 30 is embodied in the figures on the one hand by means of discontinuous lines and on the other hand by the schematic representation of blades 32 of the turbine 30. This turbine 30 is disposed in a line 36 of gas 38 under pressure so as to be rotated by the expansion of the gas 38 under pressure. In other words, the turbine 30 supplies the pump 40 with energy, this energy coming from the expansion of the gas 38 under pressure. The turbine 30 can be replaced by any other type of pneumatic motor, an engine pneumatic converter converting stored energy in a compressed gas into mechanical energy. The turbine can be replaced by any other hydrodynamic-type tire or a pneumatic type volumetric motor, the air motor then comprises a relaxation chamber whose volume is variable. The pneumatic type volumetric motor proposed can thus correspond to a pneumatic piston engine circumferential. To avoid runaway, the air motor, such as in the form of the turbine 30, may be provided with a deflection, otherwise known as " bypass ". To control the automatic opening of the bypass, the proposed installation may comprise a speed controller integrated in the pneumatic motor. In particular, in the absence of a speed regulator, the speed of the turbine or the pneumatic motor can be transmitted on the surface in the form of a sound via the production tube 24 of the well 22. impact frequency at each rotation of the pneumatic motor to be characteristic of the rotational speed of the pneumatic motor.

La transmission de l'énergie cinétique de la turbine 30 à la pompe peut être réalisée à l'aide d'un arbre 42 (représenté en traits discontinus) entrainé en rotation. Cet arbre 42 de transmission mécanique relie la turbine 30 à la pompe 40. Telle qu'illustrée en figure 2, la liaison mécanique entre la turbine 30 et la pompe 40 comprend un réducteur 44 permettant de moduler la vitesse de rotation de l'arbre 42 entraînant l'actionnement de la pompe 40. L'arbre 42 est alors scindé en deux parties, une partie reliant la turbine 30 au réducteur 44 et une autre partie reliant le réducteur 44 à la pompe 40. Un tel réducteur peut être du type magnétique permettant d'obtenir un ratio élevé de conversion. De façon analogue, la liaison mécanique entre la turbine 30 et la pompe 40 peut aussi comprendre un embrayage (non représenté). Par ailleurs, pour faciliter la transmission l'énergie cinétique depuis l'emplacement de la turbine 30 jusqu'à la pompe de fond 40 sans être contraint par une trajectoire en ligne droite, l'arbre 42 peut comprendre diverses articulations 46.The transmission of the kinetic energy of the turbine 30 to the pump can be carried out using a shaft 42 (shown in broken lines) rotated. This shaft 42 of mechanical transmission connects the turbine 30 to the pump 40. As illustrated in FIG. figure 2 , the mechanical connection between the turbine 30 and the pump 40 comprises a gear 44 for modulating the speed of rotation of the shaft 42 causing the actuation of the pump 40. The shaft 42 is then split into two parts, a part connecting the turbine 30 to the gearbox 44 and another portion connecting the gearbox 44 to the pump 40. Such a gearbox may be of the magnetic type to obtain a high conversion ratio. Similarly, the mechanical connection between the turbine 30 and the pump 40 may also include a clutch (not shown). Furthermore, to facilitate the transmission of kinetic energy from the location of the turbine 30 to the bottom pump 40 without being constrained by a path in a straight line, the shaft 42 may comprise various hinges 46.

Selon le mode de réalisation illustré en figure 2, la transmission à la pompe 40 de l'énergie récupérée par la turbine 30 est alors réalisée sans conversion supplémentaire d'énergie. Selon un mode de réalisation alternatif non illustré, la turbine 30 peut être un générateur électrique. L'énergie transmise de la turbine 30 à la pompe 40 est alors électrique permettant de s'affranchir des contraintes mécaniques liées à l'utilisation de l'arbre 42 de transmission mécanique en particulier lorsque la trajectoire du puits 22 est trop agressive. Selon un tel mode de réalisation alternatif, la pompe de fond 40 peut être du type submersible électrique (type de pompe également désigné par l'expression anglaise "Electric Submersible Pump" abrégée en "ESP"). Dans tous les modes de réalisation précédemment décrits, la pompe de fond 40 peut être du type progressive à cavité (type de pompe également désigné par l'expression anglaise "Progressive Cavity Pump" abrégée en "PCP"). L'utilisation d'une pompe progressive à cavité permet de stabiliser le puits 22 en permettant un contrôle direct du débit du puits 22. En comparaison à la transmission électrique de la puissance, la transmission mécanique de la puissance du moteur pneumatique sous forme de turbine 30 à la pompe 40 permet de limiter la présence d'équipement électrique en fond de puits. Dans un tel cas de transmission mécanique de puissance, la durée de vie de l'installation est améliorée du fait de l'indépendance de l'installation proposée à de tels équipements électriques en fond de puits 22.According to the embodiment illustrated in figure 2 , the transmission to the pump 40 of the energy recovered by the turbine 30 is then achieved without additional energy conversion. According to an alternative embodiment not illustrated, the turbine 30 may be an electric generator. The energy transmitted from the turbine 30 to the pump 40 is then electrical to overcome the mechanical constraints associated with the use of the shaft 42 of mechanical transmission especially when the trajectory of the well 22 is too aggressive. According to such an alternative embodiment, the bottom pump 40 may be of the electric submersible type (pump type also referred to as " Electric Submersible Pump " abbreviated as "ESP" ). In all the embodiments previously described, the bottom pump 40 may be of the progressive cavity type (pump type also referred to as " Progressive Cavity Pump " abbreviated as "PCP" ). The use of a progressive cavity pump makes it possible to stabilize the well 22 by allowing a direct control of the flow rate of the well 22. Compared with the electric transmission of the power, the mechanical transmission of the power of the pneumatic motor in the form of a turbine 30 at the pump 40 limits the presence of electrical equipment downhole. In such a case of mechanical power transmission, the life of the installation is improved due to the independence of the proposed installation to such electrical equipment downhole 22.

Le gaz 38 sous pression entraînant la turbine 30 provient d'une source 34 de gaz sous pression, en surface par rapport au puits 22, source illustrée ici sous la forme d'un réservoir. Or des sources 34 de gaz sous pression sont généralement disponibles en surface dans les installations connues de production d'hydrocarbures. En effet, la présence de sources de gaz sous pression en surface est notamment requise dans le cas d'installations activées par injection de gaz sous pression dans la ligne de production (procédé de production également désigné par l'expression anglaise "gas lift").The pressurized gas 38 driving the turbine 30 comes from a source 34 of pressurized gas, at the surface with respect to the well 22, the source illustrated here in the form of a reservoir. Or sources 34 of pressurized gas are generally available on the surface in known hydrocarbon production facilities. In fact, the presence of pressurized gas sources on the surface is particularly required in the case of installations activated by injection of pressurized gas into the production line (production process also known as " gas lift "). .

En définitive, une telle source d'énergie étant déjà présente sur les installations connues de production d'hydrocarbures, l'installation proposée 20 permet l'entraînement de la pompe de fond 40 facilitant la production d'hydrocarbures et ce en l'absence de réseau supplémentaire de distribution de puissance.Ultimately, as such a power source is already present on known hydrocarbon production facilities, the proposed installation 20 allows the driving of the bottom pump 40 facilitating the production of hydrocarbons and this in the absence of additional power distribution network.

En se passant de réseau supplémentaire de distribution de puissance, l'installation proposée 20 est particulièrement avantageuse lorsque l'installation 20 de production est éloignée de tout site de production électrique ou de lieu habité.By dispensing with additional power distribution network, the proposed installation 20 is particularly advantageous when the production facility is remote from any electrical production site or inhabited place.

Il est particulièrement proposé un procédé de mise à niveau d'installation de production d'hydrocarbures. La mise à niveau d'une installation de production d'hydrocarbures correspond à l'adaptation des installations existantes à la solution précédemment décrite. Les dispositifs déjà présents avant la mise à niveau de l'installation sont par exemple le puits 22, la ligne de production, la source 34 de gaz sous pression et la ligne d'injection 36 du gaz sous pression 38 dans la ligne de production. Un tel procédé de mise à niveau rajoute la pompe de fond 40, ou la pompe en surface, et la turbine 30 ou tout autre moteur pneumatique à ces dispositifs déjà présents dans l'installation à mettre à niveau. En d'autres termes, le procédé comprend la mise en place de la pompe 40 dans le puits 22 ou en surface et la mise en place sur la ligne d'injection 36 de la turbine 30 d'alimentation en énergie de la pompe. Le procédé de mise à niveau peut bien entendu comprendre la mise en place de tout autre dispositif décrit dans ce document et en particulier la mise en place d'un, de plusieurs ou de tous dispositifs en interaction avec la pompe 40 et/ ou avec la turbine 30, tel que par exemple l'arbre de transmission mécanique 42 et le réducteur 44.It is particularly proposed a method of upgrading a hydrocarbon production facility. The upgrade of a hydrocarbon production facility corresponds to the adaptation of existing facilities to the previously described solution. The devices already present before the upgrade of the installation are for example the well 22, the production line, the source 34 of pressurized gas and the injection line 36 of the pressurized gas 38 in the production line. Such an upgrading method adds the bottom pump 40, or the surface pump, and the turbine 30 or other pneumatic motor to these devices already present in the installation to be leveled. In other words, the method comprises placing the pump 40 in the well 22 or on the surface and placing it on the injection line 36 of the turbine 30 for supplying the pump with energy. The upgrading method can of course include the implementation of any other device described in this document and in particular the establishment of one, more or all devices in interaction with the pump 40 and / or with the turbine 30, such as for example the mechanical transmission shaft 42 and the gearbox 44.

Par ailleurs, il est aussi proposé un procédé de production d'hydrocarbures reprenant les principes de fonctionnement de l'installation 20 de production d'hydrocarbures proposée. Un tel procédé comprend tout d'abord la fourniture du gaz sous pression 38 à partir de la source 34 de gaz sous pression, en surface. Cette étape permet la récupération d'une énergie déjà disponible sur des installations de production par gas lift. La source 34 peut par exemple fournir le gaz 38 avant détente à une pression supérieure ou égale à 70 bars ou de l'ordre de 65 bars.Furthermore, it is also proposed a hydrocarbon production process incorporating the operating principles of the proposed hydrocarbon production facility. Such a method firstly comprises supplying pressurized gas 38 from the source 34 of pressurized gas, at the surface. This step allows the recovery of energy already available on production facilities by gas lift. The source 34 may for example provide the gas 38 before expansion at a pressure greater than or equal to 70 bars or of the order of 65 bars.

Cette énergie est ensuite récupérée par la détente du gaz sous pression 38 à l'aide de la turbine 30 ou tout autre moteur pneumatique. Le gaz en sous pression 38 peut être détendu par la turbine 30 jusqu'à une pression inférieure ou égale à 30 bars.This energy is then recovered by the expansion of the pressurized gas 38 by means of the turbine 30 or any other pneumatic motor. The pressurized gas 38 may be expanded by the turbine 30 to a pressure of less than or equal to 30 bar.

Cette énergie récupérée sous forme cinétique est retransmise sous cette forme ou sous une autre forme, telle que sous forme d'énergie électrique, à la pompe 40 dans le puits 22 pour son actionnement. La pompe de fond 40 contribue à la remontée en surface des hydrocarbures 80 du puits de production par l'intermédiaire de la ligne de production d'hydrocarbures jusqu'au réservoir 28.This energy recovered in kinetic form is retransmitted in this form or in another form, such as in the form of electrical energy, to the pump 40 in the well 22 for its actuation. The bottom pump 40 contributes to the surface rise of the hydrocarbons 80 of the production well via the hydrocarbon production line to the tank 28.

Le gaz 38 après détente peut être injecté dans la ligne de production d'hydrocarbures. Le gaz sous pression 38 après détente présente alors une pression d'injection plus faible par rapport au cas où le gaz sous pression 38 est injecté dans la ligne de production sans détente préalable ou à trop forte pression tel qu'à 70 ou 65 bars.The gas 38 after expansion can be injected into the hydrocarbon production line. The gas under pressure 38 after expansion then has a lower injection pressure compared to the case where the pressurized gas 38 is injected into the production line without prior expansion or too high pressure such as 70 or 65 bar.

Lors d'une phase de montée en régime de l'exploitation du puits (phase également désignée en anglais par le terme "ramp-up"), au début de l'exploitation du puits 22, la pression d'injection plus faible permet d'éviter un débit instantané excessif (phénomène également désigné par l'expression anglaise "steam break through"). Un tel phénomène intervient en effet lorsque la chute de pression procurée en fond de puits par le gas lift est trop importante et nuit à la productivité du puits. La pression d'injection plus faible permet également d'éviter l'emballement en cas de vaporisation instantanée (phénomène également désigné par l'expression anglaise "steam flashing").During a ramp-up phase of well operation (also known as ramp-up ), at the start of the operation of well 22, the lower injection pressure makes it possible to avoid excessive instantaneous flow (also known as steam break through ). Such a phenomenon occurs in fact when the pressure drop provided at the bottom of the well by the gas lift is too great and adversely affects the productivity of the well. The lower injection pressure also makes it possible to avoid runaway in the event of instantaneous vaporization (also known as the " steam flashing " phenomenon).

Lors d'une phase de stimulation du puits (phase également désignée par le terme anglais "boosting"), mise en oeuvre quand la production du puits 22 commence à décliner, le système permet de limiter sans risque le sur-refroidissement, différence entre la température des hydrocarbures et la température d'évaporation de ces hydrocarbures à la même pression (sur-refroidissement correspondant au terme anglais "sub-cool"). Le sur-refroidissement peut alors être plus faible sans risque d'emballement, c'est-à-dire sans risque de vaporisation. En limitant le sur-refroidissement, les hydrocarbures à produire sont plus chaud, moins visqueux et donc plus facile à extraire.During a phase of stimulation of the well (also known as " boosting " phase), implemented when the production of the well 22 begins to decline, the system makes it possible to limit without risk the over-cooling, difference between the hydrocarbon temperature and the evaporation temperature of these hydrocarbons at the same pressure (over-cooling corresponding to the English term "sub-cool" ). The over-cooling can then be lower without risk of runaway, that is to say without risk of spraying. By limiting the over-cooling, the hydrocarbons to be produced are hotter, less viscous and therefore easier to extract.

La suite de ce document expose particulièrement les différences entre les modes de réalisation d'installations 20 de production d'hydrocarbures fonctionnant selon le procédé précédent.The remainder of this document particularly sets out the differences between the embodiments of hydrocarbon production installations operating according to the preceding method.

Conformément au mode de réalisation de l'installation de production spécifiquement illustré en figure 2, la ligne 36 d'injection des gaz 38 débouche en surface dans le tube d'évacuation 26 de la ligne de production. Le gaz sous pression détendu 38 est ainsi injecté dans la partie en surface de ligne de production dénommée "conduite d'écoulement" (de l'expression anglaise "flow line"). L'injection du gaz sous pression détendu 38 dans la partie en surface de la ligne de production permet de réaliser une diminution de la pression hydrostatique de la ligne de production même lorsque la pression après détente est faible.In accordance with the embodiment of the production facility specifically illustrated in figure 2 , the gas injection line 36 opens at the surface into the evacuation tube 26 of the production line. The expanded pressurized gas 38 is thus injected into the surface portion of the production line referred to as "flow line" (of the English expression " flow line" ). Injection of the pressurized gas 38 into the surface portion of the production line makes it possible to reduce the hydrostatic pressure of the production line even when the pressure after expansion is low.

Selon un autre mode de réalisation illustré en figure 3, le gaz sous pression 38 est prévu pour être injecté dans la ligne de production au niveau du tube de production 24, de manière à activer la production d'hydrocarbures 80. Pour la partie de ligne d'injection 36 disposée dans le puits 22, la ligne d'injection 36 est sous la forme d'un annulaire autour du tube de production 24. Le gaz 38 est détendu par la turbine 30 avant d'être injecté dans la ligne de production du puits 22. De manière analogue au mode de réalisation illustré en figure 2, en figure 3 la production de d'hydrocarbures est facilitée d'une part par la pompe de fond 40 et d'autre part par l'injection de gaz. Toutefois, l'injection de gaz dans la ligne de production du puits 22 tel qu'illustrée en figure 3 correspond à une technique de gas lift, i.e. à de l'activation par injection de gaz. Particulièrement selon le mode de réalisation illustré en figure 3, l'injection du gaz 38 détendu est réalisée "en fond de puits" au-dessus de l'emplacement de la pompe de fond 40, directement dans la ligne de production au niveau du tube de production 24. Dans tous les cas, modes de réalisation de la figure 2 ou de la figure 3, l'injection de gaz est réalisée en aval de la pompe dans la ligne de production.According to another embodiment illustrated in figure 3 , the pressurized gas 38 is provided to be injected into the production line at the production tube 24, so as to activate the production of hydrocarbons 80. For the injection line portion 36 disposed in the well 22, the injection line 36 is in the form of an annulus around the production tube 24. The gas 38 is expanded by the turbine 30 before being injected into the production line of the well 22. In a similar manner to the illustrated achievement in figure 2 , in figure 3 the production of hydrocarbons is facilitated on the one hand by the bottom pump 40 and on the other hand by the injection of gas. However, the injection of gas into the production line of the well 22 as illustrated in FIG. figure 3 corresponds to a gas lift technique , ie activation by gas injection. Especially according to the embodiment illustrated in figure 3 , the injection of the expanded gas 38 is carried out "downhole" above the location of the bottom pump 40, directly in the production line at the level of the production tube 24. In all cases, the modes realization of the figure 2 or from figure 3 , gas injection is performed downstream of the pump in the production line.

L'expression "en fond de puits" est utilisée dans ce document comme caractérisant un positionnement proche des couches géologiques formant le réservoir du gisement d'hydrocarbures exploité par le puits 22. Cette expression est utilisée en opposition avec les expressions "en tête de puits" et "en surface". L'expression "en surface" caractérise dans ce document un positionnement au niveau du sol, au-dessus du sol ou immédiatement en-dessous du sol. Un dispositif disposé en surface peut ainsi correspondre à un dispositif enfoui à une profondeur négligeable par rapport à la profondeur du puits. L'expression "en tête de puits" caractérise dans ce document un positionnement "en surface", à l'aplomb du puits, c'est-à-dire à la verticale du puits. Ainsi la distance entre un positionnement "en tête de puits" et un positionnement "en fond du puits" est sensiblement égale à la longueur de la trajectoire du puits 22. Les traits mixtes modélisant la vue interrompue du puits 22 dans les figures séparent d'une part la tête de puits et la surface, au-dessus des traits mixtes, du fond de puits 22 d'autre part, en-dessous des traits mixtes.The term "downhole" is used in this document as characterizing a positioning close to the geological layers forming the reservoir of the hydrocarbon reservoir exploited by the well 22. This expression is used in opposition to the expressions "wellhead "and" on the surface ". The term "surface" characterizes in this document a positioning at ground level, above the ground or immediately below the ground. A device disposed on the surface can thus correspond to a device buried at a negligible depth relative to the depth of the well. The expression "at the wellhead" characterizes in this document a "surface" positioning, in line with the well, that is to say at the vertical of the well. Thus the distance between a "wellhead" positioning and a "well bottom" positioning is substantially equal to the length of the trajectory of the well 22. The mixed lines modeling the interrupted view of the well 22 in the figures separate from the one part the wellhead and the surface, above the mixed lines, the well bottom 22 on the other hand, below the mixed lines.

Dans le mode de réalisation illustré en figure 3, la turbine 30 est disposée en tête de puits 22. Pour ce mode de réalisation comme pour le mode de réalisation illustré en figure 2, la disposition de la turbine 30 en surface permet d'éviter que la détente des gaz sous pression 38 au niveau de la turbine 30 ne refroidisse l'hydrocarbure 80 en fond de puits 22. Le refroidissement de l'hydrocarbure 80 par le gaz peut par exemple entraîner la formation de dépôt, tel que la formation de dépôt de paraffine pour les hydrocarbures paraffiniques, autrement désignés par l'expression bruts paraffiniques. Les modes de réalisation illustrés en figures 2 et 3 présentent alors l'avantage de faciliter la gestion du risque de formation de dépôt qui est limité au niveau de l'injection du gaz détendu 38 dans la ligne de production, soit en surface du puits ou en tête de puits, respectivement.In the embodiment illustrated in figure 3 , the turbine 30 is disposed at the wellhead 22. For this embodiment as for the embodiment illustrated in FIG. figure 2 the arrangement of the turbine 30 at the surface makes it possible to prevent the expansion of the pressurized gases 38 at the turbine 30 from cooling the hydrocarbon 80 downhole 22. The cooling of the hydrocarbon 80 by the gas can for example, to cause deposition formation, such as paraffin deposition formation for paraffinic hydrocarbons, otherwise referred to as paraffinic crude. The embodiments illustrated in figures 2 and 3 then have the advantage of facilitating the management of the deposit formation risk which is limited at the level of the injection of the expanded gas 38 into the production line, either at the surface of the well or at the wellhead, respectively.

En outre, le mode de réalisation illustré en figure 3 permet éventuellement de disposer de plus de diamètre. Un tel mode de réalisation est alors particulièrement préféré pour la production d'hydrocarbures présents sous la forme d' "huile lourde". Pour une telle application à la production d' "huile lourde", la pompe de fond 40 est de préférence du type PCP. L'utilisation de la pompe 40 de type PCP pour la production d' "huile lourde" permet une stabilisation de l'activation par injection de gaz et un meilleur contrôle du débit notamment en début de production après l'injection du gaz sous pression 38 dans la ligne de production. Par ailleurs pour faciliter encore la production d'hydrocarbures du type "huile lourde", en complément du gas lift et de la pompe de fond 40, le gaz sous pression 38 peut être chauffé après avoir été détendu par la turbine 30.In addition, the embodiment illustrated in figure 3 possibly allows to have more diameter. Such an embodiment is then particularly preferred for the production of hydrocarbons present in the form of "heavy oil". For such an application to the production of "heavy oil", the bottom pump 40 is preferably of the PCP type. The use of the PCP type pump 40 for the production of "heavy oil" makes it possible to stabilize the activation by gas injection and better control of the flow, especially at the beginning of production after the injection of the gas under pressure. in the production line. Furthermore, to further facilitate the production of hydrocarbons of the "heavy oil" type, in addition to the gas lift and the bottom pump 40, the pressurized gas 38 can be heated after having been expanded by the turbine 30.

Le positionnement en surface de la turbine 30 contribue aussi à faciliter l'architecture de l'installation. En effet, dans les variantes de transmission mécanique de l'énergie de la turbine 30 à la pompe 40, le réducteur 44 peut être très volumineux, particulièrement dans le cas où le réducteur 44 est du type magnétique. La disposition en surface de la turbine 30 permet alors la disposition en surface du réducteur 44 entre la turbine 30 et la pompe 40, la surface étant moins soumise à des contraintes d'encombrement que le fond du puits 22.The surface positioning of the turbine 30 also contributes to facilitating the architecture of the installation. Indeed, in the mechanical transmission variants of the energy of the turbine 30 to the pump 40, the gearbox 44 can be very bulky, particularly in the case where the gear 44 is of the magnetic type. The surface arrangement of the turbine 30 then allows the surface arrangement of the gearbox 44 between the turbine 30 and the pump 40, the surface being less subject to space constraints than the bottom of the well 22.

L'installation proposée, notamment telle qu'illustrée en figure 3, permet un abaissement de la pression dans le puits 22 selon le diagramme de la figure 4. La figure 4 montre un diagramme de l'évolution de la pression, P, en fonction de la profondeur verticale, H, dans le puits 22. Le point BH, abréviation de l'expression anglaise "Bottom Hole", correspond à la profondeur verticale au fond du puits. L'installation illustrée en figure 3 permet à la pression de suivre la courbe 140 présentant une diminution de pression 142 à la profondeur à laquelle la pompe 40 est disposée. Cette diminution de pression 142 permet d'obtenir une faible pression de fond de puits au point 144. Cette faible pression au point 144 est à comparer à la pression obtenue au point 132 qui est la pression hydrostatique des hydrocarbures en fond de puits. Le point 132 est le point de la courbe de la pression hydrostatique en traits discontinus 130 à la profondeur au fond du puits. En d'autres termes, la courbe 130 correspond à l'évolution de la pression dans le puits à l'état naturel, c'est-à-dire en l'absence de dispositifs particuliers dans le puits pour faciliter la production du puits. La pression au fond du puits obtenue à l'aide de l'installation proposée correspond, par rapport au point 132 de pression hydrostatique en fond de puits 22, à une chute de pression 146 (également désignée par l'expression anglaise "draw down") favorisant l'extraction d'hydrocarbures du puits 22. L'utilisation d'une partie de l'énergie du gaz sous pression pour actionner la pompe de fond 40 et de l'autre partie de l'énergie du gaz sous pression utilisée en gas lift permet une extraction par double effet des hydrocarbures du puits 22 à partir d'une source unique.The proposed installation, particularly as illustrated in figure 3 , allows a lowering of the pressure in the well 22 according to the diagram of the figure 4 . The figure 4 shows a diagram of the evolution of the pressure, P, as a function of the vertical depth, H, in the well 22. The point BH, abbreviation of the expression English "Bottom Hole ", corresponds to the vertical depth at the bottom of the well. The installation illustrated in figure 3 allows the pressure to follow the curve 140 having a pressure decrease 142 to the depth at which the pump 40 is disposed. This reduction in pressure 142 makes it possible to obtain a low downhole pressure at point 144. This low pressure at point 144 is to be compared with the pressure obtained at point 132, which is the hydrostatic pressure of the hydrocarbons at the bottom of the well. Point 132 is the point of the hydrostatic pressure curve in broken lines 130 at the depth at the bottom of the well. In other words, the curve 130 corresponds to the evolution of the pressure in the well in the natural state, that is to say in the absence of particular devices in the well to facilitate the production of the well. The downhole pressure obtained using the proposed installation corresponds, with respect to hydrostatic pressure point 132 downhole 22, to a pressure drop 146 (also referred to as " draw down"). ) promoting the extraction of hydrocarbons from the well 22. The use of a portion of the energy of the gas under pressure to actuate the bottom pump 40 and the other part of the pressurized gas energy used in gas lift allows double- strand extraction of hydrocarbons from well 22 from a single source.

Lors de la mise en place d'un gas lift classique dans le puits 22, c'est-à-dire à l'aide du même gaz sous pression 38 mais sans détente avant injection, la pression en fonction de la profondeur suit la courbe en trait fin 134 pour atteindre une pression en fond de puits au point 136. Cette pression au fond du puits 22 permet une chute de pression 138 moins importante que la chute de pression 146 permise par l'installation proposée. L'extraction par double effet à partir d'une source unique permet alors une production plus importante du puits 22 en comparaison à l'utilisation de la totalité de l'énergie du gaz sous pression en gas lift. L'injection du gaz sous pression après la détente correspond en effet à une utilisation du gas lift dans son domaine efficace, tel que pour des pressions de l'ordre de ou inférieure à 30 bars, l'énergie excédentaire étant utilisée sous forme d'énergie mécanique pour l'entraînement de la pompe 40.When setting up a conventional gas lift in the well 22, that is to say using the same pressurized gas 38 but without detente before injection, the pressure as a function of the depth follows the curve in thin line 134 to reach a downhole pressure at point 136. This pressure at the bottom of the well 22 allows a lower pressure drop 138 than the pressure drop 146 allowed by the proposed installation. The double-effect extraction from a single source then allows a greater production of the well 22 in comparison with the use of all the energy of the pressurized gas gas lift. The injection of the pressurized gas after the expansion corresponds in fact to a use of the gas lift in its effective range, such as for pressures of the order of or less than 30 bar, the excess energy being used in the form of mechanical energy for driving the pump 40.

Par ailleurs, cette production plus importante peut être réalisée avec des niveaux de pression du gaz sous pression 38 de l'ordre 70 bars ou 65 bars. L'utilisation de niveaux de pression de l'ordre de 70 bars ou 65 bars limite les risques d'usure de l'installation et augmente le nombre de technologies utilisables en comparaison à l'utilisation de pressions plus élevées en gas lift pour obtenir une efficacité comparable à celle de l'extraction par double effet proposée.Moreover, this larger production can be achieved with pressure levels of the pressurized gas 38 of the order of 70 bars or 65 bars. The use of pressure levels of the order of 70 bar or 65 bar limits the risk of wear of the installation and increases the number of usable technologies compared to the use of higher pressures in gas lift to obtain a efficiency comparable to that of the proposed double-effect extraction.

En alternative au positionnement de la turbine 30 en surface, la figure 5 montre un mode de réalisation de l'installation où la turbine 30 est disposée en fond de puits. Ce mode de réalisation est particulièrement avantageux lorsque les hydrocarbures 80 à produire sont très chauds. La chaleur des hydrocarbures 80 à produire limite l'influence sur la production du refroidissement des hydrocarbures 80 par l'injection du gaz sous pression 38 détendu. Dans un tels cas d'hydrocarbures à produire à température élevée, dans l'installation proposée la pompe 40 peut être de type roto-dynamique à haute vitesse de préférence à une pompe submersible électrique haute température (type de pompe également désigné par l'expression anglaise "Electric Submersible Pump High Temperature" abrégée en "ESP-HT") plus couteuse. La disposition de la turbine 30 en fond de puits peut être aussi envisagée lorsqu'il est prévu de préchauffé le gaz sous pression 38 dans la partie annulaire de la ligne d'injection 36, pour limiter le refroidissement des hydrocarbures à produire. Dans tous les cas, du fait du positionnement en fond de puits de la turbine, le gaz sous pression avant détente est plus chaud que dans les modes réalisations décrits précédemment en référence aux figures 2 et 3.As an alternative to positioning the turbine 30 on the surface, the figure 5 shows an embodiment of the installation where the turbine 30 is disposed downhole. This embodiment is particularly advantageous when the hydrocarbons 80 to produce are very hot. The heat of the hydrocarbons 80 to be produced limits the influence on the production of the cooling of the hydrocarbons 80 by the injection of the pressurized gas 38 expanded. In such cases of hydrocarbons to be produced at high temperature, in the proposed installation the pump 40 may be of rotodynamic type at high speed, preferably a high temperature electric submersible pump (pump type also designated by the expression English " Electric Submersible Pump High Temperature " abbreviated " ESP-HT ") more expensive. The arrangement of the turbine 30 downhole can also be considered when it is planned to preheat the pressurized gas 38 in the annular portion of the injection line 36, to limit the cooling of the hydrocarbons to be produced. In all cases, because of the positioning at the bottom of the well of the turbine, the gas under pressure before expansion is hotter than in the embodiments described above with reference to figures 2 and 3 .

Le mode de réalisation illustré en figure 5 avec le moteur pneumatique en fond de puits 22, illustré sous forme de turbine 30, est préféré au mode de réalisation illustré en figure 3 avec le moteur en tête de puits pour la phase précitée de stimulation du puits 22 lorsque les hydrocarbures sont des huiles lourdes. D'une manière générale, le mode de réalisation illustré en figure 5 est également préféré pour les puits 22 de bruts standards. Inversement, le mode de réalisation illustré en figure 3 est préféré pour la phase précitée de montée en régime de l'exploitation du puits 22 lorsque les hydrocarbures sont des huiles lourdes.The embodiment illustrated in figure 5 with the downhole air motor 22, shown as a turbine 30, is preferred to the embodiment illustrated in FIG. figure 3 with the engine at the wellhead for the aforementioned phase of stimulation of the well 22 when the hydrocarbons are heavy oils. In general, the embodiment illustrated in figure 5 is also preferred for wells 22 of standard crudes. Conversely, the embodiment illustrated in figure 3 is preferred for the aforementioned phase of ramping up the operation of the well 22 when the hydrocarbons are heavy oils.

Bien entendu, la présente invention n'est pas limitée aux exemples et aux modes de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.Of course, the present invention is not limited to the examples and embodiments described and shown, but it is capable of numerous variants accessible to those skilled in the art.

En particulier, l'injection des gaz sous pression détendu peut être réalisée pour une même installation de production d'hydrocarbures à la fois dans le tube de production 24 en fond de puits et dans le tube de refoulement 26 en surface. Une telle variante correspond ainsi à la combinaison des modes de réalisation illustrés par la figure 2 et par la figure 3.In particular, the injection of gases under expanded pressure can be carried out for the same hydrocarbon production facility both in the production tube 24 downhole and in the discharge tube 26 at the surface. Such a variant thus corresponds to the combination of the embodiments illustrated by the figure 2 and by figure 3 .

Par ailleurs, en complément de la pompe de fond 40 et de l'éventuel gas lift, la ligne d'injection du gaz sous pression peut comprendre un ou des surpresseurs (non représentés) pour augmenter la pression du gaz sous pression en amont de la turbine. Cette augmentation de pression permise par les surpresseurs permet de disposer de plus d'énergie pour la turbine et/ou de plus d'énergie après la détente réalisée pour la turbine pour l'activation du puits par injection du gaz détendu. Cette augmentation de pression par les surpresseurs permet en définitive une amélioration encore plus importante de la production du puits.Furthermore, in addition to the bottom pump 40 and the possible gas lift, the injection line of the pressurized gas may comprise one or more boosters (not shown) to increase the pressure of the gas under pressure upstream of the turbine. This increase in pressure allowed by the boosters makes it possible to have more energy for the turbine and / or more energy after the expansion performed for the turbine for the activation of the well by injection of the expanded gas. This increase in pressure by the boosters ultimately allows an even greater improvement in the production of the well.

Claims (12)

  1. Hydrocarbon production facility, comprising:
    - a well (22) of hydrocarbons;
    - a hydrocarbon production line comprising:
    * in the well (22), a production tube (24), and
    * on the surface, an evacuation tube (26) from the production tube (24) ;
    - on the surface, a source (34) of pressurized gas (38);
    - an injection line (36) of pressurized gas (38) in the hydrocarbon production line, the injection line (36) being connected to the source (34) of pressurized gas (38) and which opens into the evacuation tube (26) of the production line, downstream of the circulation pump (40);
    - a pump (40) for circulation of hydrocarbon from the well (22) to the hydrocarbon production line;
    - a pneumatic motor (30) for supplying power to the pump (40), disposed on the injection line (36) of the pressurized gas (38) and adapted to be rotated by expansion of the pressurized gas (38).
  2. A facility according to claim 1, comprising a mechanical transmission shaft (42) connecting the pneumatic motor (30) to the pump (40).
  3. A facility according to claim 1, where the pneumatic motor (30) is an electric generator.
  4. A facility according to one of claims 1 to 3, wherein the pump (40) in the well (22) is an electric submersible type or a progressive cavity type.
  5. A facility according to one of claims 1 to 4, wherein the pump (40) is disposed in the well bottom hole.
  6. A facility according to claim 5, wherein the injection line (36) opens into the well bottom hole (22), preferably in the production tube (24) of the hydrocarbon production line.
  7. A facility according to claim 6, wherein the pneumatic motor (30) is at the wellhead (22).
  8. A facility according to claim 6, wherein the pneumatic motor (30) is at the well bottom hole (22).
  9. A method of operating a hydrocarbon (80) production well (22) activated by gas injection, using the hydrocarbon production facility according to one of the claims 1 to 8 and comprising the well (22), the method comprising:
    a) providing a pressurized gas (38) from the pressurized gas (38) source (34) at the surface of the facility;
    b) recovering energy by the expansion of the pressurized gas (38) using the facility pneumatic motor (30);
    c) actuating the pump (40) for circulation of hydrocarbon from the well (22) using the energy recovered in step b);
    d) injecting an expanded pressurized gas (38) in a hydrocarbon production line of the facility.
  10. A method according to claim 9, wherein the pressurized gas (28) is at a pressure higher than or equal to 70 bars prior to expansion.
  11. A method according to claim 9 or 10, wherein the pressurized gas (38) is expanded by the pneumatic motor (30) at a pressure less than or equal to 30 bars.
  12. A method of operating a hydrocarbon (80) production well (22) activated by gas injection, using the hydrocarbon production facility according to one of the claims 1 to 8, the method making use of:
    - a well (22) of hydrocarbons;
    - a hydrocarbon production line comprising:
    * in the well (22), a production tube (24), and
    * on the surface, an evacuation tube (26) from the production tube (24);
    - on the surface, a source (34) of pressurized gas (38);
    - an injection line (36) of pressurized gas (38) in the hydrocarbon production line, the injection line (36) being connected to the source (34) of pressurized gas (38) and which opens into the evacuation tube (26) of the production line, downstream of the circulation pump (40);
    the method comprising the upgrade of the facility by:
    - positioning a pump (40) for circulation of hydrocarbon from the well (22); and
    - positioning, on the injection line (36) of pressurized gas (38), a pneumatic motor (30) for supplying power to the pump (40), adapted to be rotated by expansion of the pressurized gas (38).
EP14784222.3A 2013-10-14 2014-10-14 Hydrocarbon production plant, production process and upgrading process Active EP3058167B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359993A FR3011874B1 (en) 2013-10-14 2013-10-14 HYDROCARBON PRODUCTION FACILITY, PRODUCTION METHOD AND UPGRADE METHOD
PCT/EP2014/072006 WO2015055645A1 (en) 2013-10-14 2014-10-14 Hydrocarbon production plant, production process and upgrading process

Publications (2)

Publication Number Publication Date
EP3058167A1 EP3058167A1 (en) 2016-08-24
EP3058167B1 true EP3058167B1 (en) 2017-08-16

Family

ID=51417296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14784222.3A Active EP3058167B1 (en) 2013-10-14 2014-10-14 Hydrocarbon production plant, production process and upgrading process

Country Status (9)

Country Link
US (1) US10030488B2 (en)
EP (1) EP3058167B1 (en)
AR (1) AR098012A1 (en)
BR (1) BR112016008277B1 (en)
CA (1) CA2927242C (en)
DK (1) DK3058167T3 (en)
FR (1) FR3011874B1 (en)
NO (1) NO3058167T3 (en)
WO (1) WO2015055645A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3551841A1 (en) * 2016-12-09 2019-10-16 ExxonMobil Upstream Research Company Hydrocarbon wells and methods cooperatively utilizing a gas lift assembly and an electric submersible pump

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751192A (en) * 1971-04-12 1973-08-07 Borg Warner Submersible pump drive system
US5488993A (en) * 1994-08-19 1996-02-06 Hershberger; Michael D. Artificial lift system
EP0756065A1 (en) * 1995-07-24 1997-01-29 Shell Internationale Researchmaatschappij B.V. System for controlling production from a gas-lifted oil well
US6032737A (en) * 1998-04-07 2000-03-07 Atlantic Richfield Company Method and system for increasing oil production from an oil well producing a mixture of oil and gas
FR2783557B1 (en) 1998-09-21 2000-10-20 Elf Exploration Prod CONDUCT METHOD OF AN ACTIVE HYDROCARBON PRODUCTION WELL BY GAS INJECTION
GB0128262D0 (en) * 2001-11-24 2002-01-16 Rotech Holdings Ltd Artificial lift pump
US7445049B2 (en) * 2002-01-22 2008-11-04 Weatherford/Lamb, Inc. Gas operated pump for hydrocarbon wells
US20060000357A1 (en) * 2004-03-23 2006-01-05 Keith Michael Method and system for producing inert gas from combustion by-products
FR2944828B1 (en) 2009-04-23 2012-08-17 Total Sa PROCESS FOR EXTRACTING HYDROCARBONS FROM A RESERVOIR AND AN EXTRACTION FACILITY FOR HYDROCARBONS
WO2011127305A1 (en) * 2010-04-07 2011-10-13 David Randolph Smith Submersible hydraulic artificial lift systems and methods of operating same
US20110308812A1 (en) * 2010-06-22 2011-12-22 Terry Bullen Artificial lift system
GB201112460D0 (en) 2011-07-20 2011-08-31 Downhole Energy Ltd Downhole pump and method of deployment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160258262A1 (en) 2016-09-08
BR112016008277B1 (en) 2022-01-25
BR112016008277A2 (en) 2017-08-01
US10030488B2 (en) 2018-07-24
DK3058167T3 (en) 2017-11-20
CA2927242C (en) 2021-09-07
CA2927242A1 (en) 2015-04-23
NO3058167T3 (en) 2018-01-13
AR098012A1 (en) 2016-04-27
WO2015055645A1 (en) 2015-04-23
FR3011874B1 (en) 2015-11-06
EP3058167A1 (en) 2016-08-24
FR3011874A1 (en) 2015-04-17

Similar Documents

Publication Publication Date Title
US8789609B2 (en) Submersible hydraulic artificial lift systems and methods of operating same
CA2204664C (en) System for compressing a fluid in several phases with a centrifugal pump
FR2920817A1 (en) Hydrocarbon effluent containing heavy oil production installation, has automaton optimizing flow of diluent, and regulating pump speed according to quantity such that pump speed and quantity are comprised in range of predetermined values
EP3129619B1 (en) Solid propellant device for assisting a propulsion system of a single-engine helicopter, single-engine helicopter comprising such a device
FR2867627A1 (en) APPARATUS AND METHOD FOR PRODUCING ELECTRICAL ENERGY IN A SURVEY
EP3194713B1 (en) System and method for gas extraction from a well
FR2794498A1 (en) Rotary, positive displacement mono- or Moineau pump, for e.g. oil industry wastes, is constructed with metal liner inside elastomer and casing, in positive contact with rotor to assure required pressure increase
CN113692475B (en) Electro-hydraulic high pressure oilfield pumping system
FR2622645A1 (en) METHOD FOR RE-STARTING THE CENTRAL FLOW OF VERY VISCOUS OILS IN A CONDUCT AFTER A STOP PERIOD
FR2875533A1 (en) METHOD AND SYSTEM FOR DRILLING WITH REVERSE CIRCULATION
EP3058167B1 (en) Hydrocarbon production plant, production process and upgrading process
AU2018202862B2 (en) Artificial lifting system for oil extraction
EP0457879B1 (en) Device and method for cleaning an underground well
CA2885071A1 (en) Rotation lock torque anchor for a well production column, pump and rotation lock system, and pumping facility equipped with such a torque anchor
FR3009036A1 (en) POLYPHASE PUMPING DEVICE
CA3227356A1 (en) Turboprop capable of providing an emergency wind-turbine function and aircraft comprising such a turboprop
EP4053395A1 (en) Method for producing electricity in an oil platform and installation for implementation thereof
CA2822038C (en) Pumping facility for a deep well
FR3014475B1 (en) INJECTION OF A FLUID IN A HYDROCARBON RESERVOIR
FR2459386A1 (en) METHOD AND HIGH PRESSURE PUMPING MACHINE FOR OIL WELLS
FR2643939A1 (en) Method and device for directional drilling using rotating connectors with a hydraulic evolution cycle
EP3904680B1 (en) Driving device for a very high pressure pump with a precise and safe hydraulic regulation system
FR3014474A1 (en) BRAKING A FLUID IN A HYDROCARBON RESERVOIR
WO2015052404A2 (en) Fluid discharge device
WO2019243676A1 (en) Control of torque transmitted by an automatic transmission of a vehicle during a gear change

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014013286

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171113

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 919238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014013286

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180517

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171014

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20190923

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231025

Year of fee payment: 10

Ref country code: IT

Payment date: 20231026

Year of fee payment: 10

Ref country code: FR

Payment date: 20231026

Year of fee payment: 10

Ref country code: DE

Payment date: 20231020

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014013286

Country of ref document: DE

Owner name: TOTALENERGIES ONETECH, FR

Free format text: FORMER OWNER: TOTAL SA, COURBEVOIE, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240530 AND 20240605