EP3052745B1 - Dispositif d'isolement contenant une anode dissoluble et un composé électrolytique - Google Patents

Dispositif d'isolement contenant une anode dissoluble et un composé électrolytique Download PDF

Info

Publication number
EP3052745B1
EP3052745B1 EP14878579.3A EP14878579A EP3052745B1 EP 3052745 B1 EP3052745 B1 EP 3052745B1 EP 14878579 A EP14878579 A EP 14878579A EP 3052745 B1 EP3052745 B1 EP 3052745B1
Authority
EP
European Patent Office
Prior art keywords
wellbore
isolation device
electrolyte
metal
electrolytic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14878579.3A
Other languages
German (de)
English (en)
Other versions
EP3052745A4 (fr
EP3052745A1 (fr
Inventor
Michael L. Fripp
Zachary W. WALTON
Zachary R. MURPHREE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/154,596 external-priority patent/US9777549B2/en
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP3052745A1 publication Critical patent/EP3052745A1/fr
Publication of EP3052745A4 publication Critical patent/EP3052745A4/fr
Application granted granted Critical
Publication of EP3052745B1 publication Critical patent/EP3052745B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/02Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground by explosives or by thermal or chemical means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs

Definitions

  • Isolation devices can be used to restrict fluid flow between intervals of a wellbore.
  • An isolation device can be removed from a wellbore after use. Methods of removing an isolation device using galvanic corrosion are provided.
  • US 2007/0107908 A1 discloses an oilfield element that comprises a combination of a normally insoluble metal with an element selected from a second metal, a semi-metallic material, and non-metallic materials; and one or more solubility-modified high strength and/or high-toughness polymeric materials selected from polyamides, polyethers, and liquid crystal polymers.
  • US 2013/0333899 A1 discloses a system including a first component, a second component disposed radially adjacent to the first component, and a centralizer disposed between the first component and the second component for at least partially filling a radial clearance between the first component and the second component.
  • the centralizer is formed at least partially from a disintegrable material responsive to a selected fluid.
  • US 2009/0025940 A1 discloses a latch for interconnecting a first wellbore element and a second wellbore element in a manner such that the first and second elements can be conveyed into a wellbore in tandem and then disconnected from one another includes a first latch head connectable to the first element, a second latch head connectable to the second element, and a lock mechanism connectable between the first and second latch heads, wherein the lock mechanism structurally degrades when exposed to the wellbore environment allowing disconnection of the first latch head and the second latch head.
  • first,” “second,” “third,” etc. are arbitrarily assigned and are merely intended to differentiate between two or more materials, layers, etc., as the case may be, and does not indicate any particular orientation or sequence. Furthermore, it is to be understood that the mere use of the term “first” does not require that there be any "second,” and the mere use of the term “second” does not require that there be any "third,” etc.
  • a “fluid” is a substance having a continuous phase that tends to flow and to conform to the outline of its container when the substance is tested at a temperature of 71 °F (22 °C) and a pressure of one atmosphere “atm” (0.1 megapascals "MPa”).
  • a fluid can be a liquid or gas.
  • Oil and gas hydrocarbons are naturally occurring in some subterranean formations.
  • a subterranean formation containing oil or gas is referred to as a reservoir.
  • a reservoir may be located under land or off shore. Reservoirs are typically located in the range of a few hundred feet (shallow reservoirs) to a few tens of thousands of feet (ultra-deep reservoirs).
  • a wellbore is drilled into a reservoir or adjacent to a reservoir. The oil, gas, or water produced from the wellbore is called a reservoir fluid.
  • a well can include, without limitation, an oil, gas, or water production well, or an injection well.
  • a "well” includes at least one wellbore.
  • a wellbore can include vertical, inclined, and horizontal portions, and it can be straight, curved, or branched.
  • the term "wellbore” includes any cased, and any uncased, open-hole portion of the wellbore.
  • a near-wellbore region is the subterranean material and rock of the subterranean formation surrounding the wellbore.
  • a "well” also includes the near-wellbore region. The near-wellbore region is generally considered the region within approximately 100 feet radially of the wellbore.
  • "into a well” means and includes into any portion of the well, including into the wellbore or into the near-wellbore region via the wellbore.
  • a portion of a wellbore may be an open hole or cased hole.
  • a tubing string may be placed into the wellbore.
  • the tubing string allows fluids to be introduced into or flowed from a remote portion of the wellbore.
  • a casing is placed into the wellbore that can also contain a tubing string.
  • a wellbore can contain an annulus.
  • annulus examples include, but are not limited to: the space between the wellbore and the outside of a tubing string in an open-hole wellbore; the space between the wellbore and the outside of a casing in a cased-hole wellbore; and the space between the inside of a casing and the outside of a tubing string in a cased-hole wellbore.
  • a zone is an interval of rock differentiated from surrounding rocks on the basis of its fossil content or other features, such as faults or fractures. For example, one zone can have a higher permeability compared to another zone. It is often desirable to treat one or more locations within multiples zones of a formation.
  • One or more zones of the formation can be isolated within the wellbore via the use of an isolation device.
  • An isolation device can be used for zonal isolation and functions to block fluid flow within a tubular, such as a tubing string, or within an annulus.
  • the blockage of fluid flow prevents the fluid from flowing into the zones located below the isolation device and isolates the zone of interest.
  • the relative term "below” means at a location further away from a wellhead and "above” means at a location closer to the wellhead compared to a reference object. In this manner, treatment techniques can be performed within the zone of interest.
  • Common isolation devices include, but are not limited to, a ball, a plug, a bridge plug, a wiper plug, and a packer. It is to be understood that reference to a "ball” is not meant to limit the geometric shape of the ball to spherical, but rather is meant to include any device that is capable of engaging with a seat.
  • a "ball” can be spherical in shape, but can also be a dart, a bar, or any other shape.
  • Zonal isolation can be accomplished, for example, via a ball and seat by dropping the ball from the wellhead onto the seat that is located within the wellbore. The ball engages with the seat, and the seal created by this engagement prevents fluid communication into other zones downstream of the ball and seat.
  • the wellbore can contain more than one ball seat.
  • a seat can be located within each zone.
  • the inner diameter (I.D.) of the ball seats are different for each zone.
  • the I.D. of the ball seats sequentially decrease at each zone, moving from the wellhead to the bottom of the well. In this manner, a smaller ball is first dropped into a first zone that is the farthest downstream; that zone is treated; a slightly larger ball is then dropped into another zone that is located upstream of the first zone; that zone is then treated; and the process continues in this fashion - moving upstream along the wellbore - until all the desired zones have been treated.
  • the relative term "upstream" means at a location closer to the wellhead.
  • a bridge plug is composed primarily of slips, a plug mandrel, and a rubber sealing element.
  • a bridge plug can be introduced into a wellbore and the sealing element can be caused to block fluid flow into downstream zones.
  • a packer generally consists of a sealing device, a holding or setting device, and an inside passage for fluids. A packer can be used to block fluid flow through the annulus located between the outside of a tubular and the wall of the wellbore or inside of a casing.
  • Isolation devices can be classified as permanent or retrievable. While permanent isolation devices are generally designed to remain in the wellbore after use, retrievable devices are capable of being removed after use. It is often desirable to use a retrievable isolation device in order to restore fluid communication between one or more zones. Traditionally, isolation devices are retrieved by inserting a retrieval tool into the wellbore, wherein the retrieval tool engages with the isolation device, attaches to the isolation device, and the isolation device is then removed from the wellbore. Another way to remove an isolation device from the wellbore is to mill at least a portion of the device or the entire device. Yet, another way to remove an isolation device is to contact the device with a solvent, such as an acid, thus dissolving all or a portion of the device.
  • a solvent such as an acid
  • some of the disadvantages to using traditional methods to remove a retrievable isolation device include: it can be difficult and time consuming to use a retrieval tool; milling can be time consuming and costly; and premature dissolution of the isolation device can occur.
  • premature dissolution can occur if acidic fluids are used in the well prior to the time at which it is desired to dissolve the isolation device.
  • Galvanic corrosion can be used to dissolve materials making up an isolation device. Galvanic corrosion occurs when two different metals or metal alloys are in electrical connectivity with each other and both are in contact with an electrolyte.
  • electrical connectivity means that the two different metals or metal alloys are either touching or in close enough proximity to each other such that when the two different metals are in contact with an electrolyte, the electrolyte becomes electrically conductive and ion migration occurs between one of the metals and the other metal, and is not meant to require an actual physical connection between the two different metals, for example, via a metal wire.
  • metal is meant to include pure metals and also metal alloys without the need to continually specify that the metal can also be a metal alloy.
  • metal or metal alloy in one sentence or paragraph does not mean that the mere use of the word "metal” in another sentence or paragraph is meant to exclude a metal alloy.
  • metal alloy means a mixture of two or more elements, wherein at least one of the elements is a metal. The other element(s) can be a non-metal or a different metal.
  • An example of a metal and non-metal alloy is steel, comprising the metal element iron and the non-metal element carbon.
  • An example of a metal and metal alloy is bronze, comprising the metallic elements copper and tin.
  • the metal that is less noble, compared to the other metal, will dissolve in the electrolyte.
  • the less noble metal is often referred to as the anode, and the more noble metal is often referred to as the cathode.
  • Galvanic corrosion is an electrochemical process whereby free ions in the electrolyte make the electrolyte electrically conductive, thereby providing a means for ion migration from the anode to the cathode - resulting in deposition formed on the cathode.
  • Metals can be arranged in a galvanic series. The galvanic series lists metals in order of the most noble to the least noble.
  • An anodic index lists the electrochemical voltage (V) that develops between a metal and a standard reference electrode (gold (Au)) in a given electrolyte.
  • the actual electrolyte used can affect where a particular metal or metal alloy appears on the galvanic series and can also affect the electrochemical voltage. For example, the dissolved oxygen content in the electrolyte can dictate where the metal or metal alloy appears on the galvanic series and the metal's electrochemical voltage.
  • the anodic index of gold is -0 V; while the anodic index of beryllium is -1.85 V.
  • a metal that has an anodic index greater than another metal is more noble than the other metal and will function as the cathode.
  • the metal that has an anodic index less than another metal is less noble and functions as the anode.
  • the anodic index of the lesser noble metal is subtracted from the other metal's anodic index, resulting in a positive value.
  • the rate of galvanic corrosion There are several factors that can affect the rate of galvanic corrosion.
  • One of the factors is the distance separating the metals on the galvanic series chart or the difference between the anodic indices of the metals.
  • beryllium is one of the last metals listed at the least noble end of the galvanic series and platinum is one of the first metals listed at the most noble end of the series.
  • tin is listed directly above lead on the galvanic series.
  • the difference between the anodic index of gold and beryllium is 1.85 V; whereas, the difference between tin and lead is 0.05 V. This means that galvanic corrosion will occur at a much faster rate for magnesium or beryllium and gold compared to lead and tin.
  • the following is a partial galvanic series chart using a deoxygenated sodium chloride water solution as the electrolyte.
  • the metals are listed in descending order from the most noble (cathodic) to the least noble (anodic).
  • the following list is not exhaustive, and one of ordinary skill in the art is able to find where a specific metal or metal alloy is listed on a galvanic series in a given electrolyte.
  • Another factor that can affect the rate of galvanic corrosion is the temperature and concentration of the electrolyte. The higher the temperature and concentration of the electrolyte, the faster the rate of corrosion. Yet another factor that can affect the rate of galvanic corrosion is the total amount of surface area of the least noble (anodic metal). The greater the surface area of the anode that can come in contact with the electrolyte, the faster the rate of corrosion. The cross-sectional size of the anodic metal pieces can be decreased in order to increase the total amount of surface area per total volume of the material. Yet another factor that can affect the rate of galvanic corrosion is the ambient pressure. Depending on the electrolyte chemistry and the two metals, the corrosion rate can be slower at higher pressures than at lower pressures if gaseous components are generated.
  • an electrolyte is any substance containing free ions (i.e., a positive- or negative-electrically charged atom or group of atoms) that make the substance electrically conductive.
  • An electrolyte can be selected from the group consisting of, solutions of an acid, a base, a salt, and combinations thereof.
  • a salt can be dissolved in water, for example, to create a salt solution.
  • Common free ions in an electrolyte include sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), chloride (Cl - ), hydrogen phosphate (HPO 4 2- ), and hydrogen carbonate (HCO 3 - ).
  • the number of free ions in the electrolyte will decrease as the galvanic reaction occurs because the free ions in the electrolyte enable the electrochemical reaction to occur between the metals by donating its free ions.
  • the electrolyte may be depleted of free ions if there are any remaining anode and cathode metals that have not reacted. If this occurs, the galvanic corrosion that causes the anode to dissolve will stop.
  • an electrolyte may not be present in the wellbore to enable the galvanic reaction to proceed. Examples of this can include water- or steam-injection wells in which freshwater is needed to prevent salt or scale buildup within the pores of the subterranean formation.
  • a wellbore isolation device comprises: a first material, wherein the first material: (A) is a metal or a metal alloy; and (B) partially dissolves when an electrically conductive path exists between the first material and a second material and at least a portion of the first and second materials are in contact with an electrolyte; and an electrolytic compound, wherein the electrolytic compound dissolves in a fluid located within the wellbore to form free ions that are electrically conductive.
  • a method of removing a wellbore isolation device comprises: placing the wellbore isolation device into the wellbore; and allowing at least a portion of the first material to dissolve.
  • isolation device any component related to the isolation device (e.g., the electrolyte) is intended to apply to all of the apparatus and method examples and embodiments.
  • Fig. 1 depicts a well system 10.
  • the well system 10 can include at least one wellbore 11.
  • the wellbore 11 can penetrate a subterranean formation 20.
  • the subterranean formation 20 can be a portion of a reservoir or adjacent to a reservoir.
  • the wellbore 11 can include a casing 12.
  • the wellbore 11 can include only a generally vertical wellbore section or can include only a generally horizontal wellbore section.
  • a first section of tubing string 15 can be installed in the wellbore 11.
  • a second section of tubing string 16 (as well as multiple other sections of tubing string, not shown) can be installed in the wellbore 11.
  • the well system 10 can comprise at least a first zone 13 and a second zone 14.
  • the well system 10 can also include more than two zones, for example, the well system 10 can further include a third zone, a fourth zone, and so on.
  • the well system 10 can further include one or more packers 18.
  • the packers 18 can be used in addition to the isolation device to isolate each zone of the wellbore 11.
  • the isolation device can be the packers 18.
  • the packers 18 can be used to prevent fluid flow between one or more zones (e.g., between the first zone 13 and the second zone 14 ) via an annulus 19.
  • the tubing string 15/16 can also include one or more ports 17.
  • One or more ports 17 can be located in each section of the tubing string.
  • not every section of the tubing string needs to include one or more ports 17.
  • the first section of tubing string 15 can include one or more ports 17, while the second section of tubing string 16 does not contain a port. In this manner, fluid flow into the annulus 19 for a particular section can be selected based on the specific oil or gas operation.
  • the well system 10 is illustrated in the drawings and is described herein as merely one example of a wide variety of well systems in which the principles of this disclosure can be utilized. It should be clearly understood that the principles of this disclosure are not limited to any of the details of the well system 10, or components thereof, depicted in the drawings or described herein. Furthermore, the well system 10 can include other components not depicted in the drawing. For example, the well system 10 can further include a well screen. By way of another example, cement may be used instead of packers 18 to aid the isolation device in providing zonal isolation. Cement may also be used in addition to packers 18.
  • the isolation device is capable of restricting or preventing fluid flow between a first zone 13 and a second zone 14.
  • the first zone 13 can be located upstream or downstream of the second zone 14. In this manner, depending on the oil or gas operation, fluid is restricted or prevented from flowing downstream or upstream into the second zone 14.
  • isolation devices capable of restricting or preventing fluid flow between zones include, but are not limited to, a ball and seat, a plug, a bridge plug, a wiper plug, and a packer.
  • the isolation device comprises at least a first material 51, wherein the first material is capable of at least partially dissolving when an electrically conductive path exists between the first material 51 and a second material 52.
  • the first material 51 and the second material 52 are metals or metal alloys.
  • the metal or metal of the metal alloy can be selected from the group consisting of, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, radium, aluminum, gallium, indium, tin, thallium, lead, bismuth, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, lanthanum, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, graphite, and combinations thereof.
  • the metal or metal of the metal alloy is selected from the group consisting of beryllium, tin, iron, nickel, copper, zinc, and combinations thereof. According to an embodiment, the metal is neither radioactive, unstable, nor theoretical.
  • the first material 51 and the second material 52 are different metals or metal alloys.
  • the first material 51 can be nickel and the second material 52 can be gold.
  • the first material 51 can be a metal and the second material 52 can be a metal alloy.
  • the first material 51 and the second material 52 can be a metal and the first and second material can be a metal alloy.
  • the second material 52 has a greater anodic index than the first material 51. Stated another way, the second material 52 is listed higher on a galvanic series than the first material 51.
  • the second material 52 is more noble than the first material 51. In this manner, the first material 51 acts as an anode and the second material 52 acts as a cathode. Moreover, in this manner, the first material 51 (acting as the anode) at least partially dissolves when in electrical connectivity with the second material 52 and when the first and second materials are in contact with an electrolyte.
  • the methods include the step of allowing at least a portion of the first material to dissolve. At least a portion of the first material 51 can dissolve in a desired amount of time.
  • the desired amount of time can be pre-determined, based in part, on the specific oil or gas well operation to be performed. The desired amount of time can be in the range from about 1 hour to about 2 months.
  • the first material 51 and the second material 52 are selected such that the at least a portion of the first material 51 dissolves in the desired amount of time.
  • the greater the difference between the second material's anodic index and the first material's anodic index the faster the rate of dissolution.
  • the less the difference between the second material's anodic index and the first material's anodic index the slower the rate of dissolution.
  • the farther apart the first material and the second material are from each other in a galvanic series the faster the rate of dissolution; and the closer together the first and second material are to each other in the galvanic series, the slower the rate of dissolution.
  • the proximity of the first material 51 to the second material 52 Another factor that can affect the rate of dissolution of the first material 51 is the proximity of the first material 51 to the second material 52.
  • a more detailed discussion regarding different embodiments and examples of the proximity of the first and second materials is presented below.
  • the closer the first material 51 is physically to the second material 52 the faster the rate of dissolution of the first material 51.
  • the farther apart the first and second materials are from one another the slower the rate of dissolution.
  • the distance between the first material 51 and the second material 52 should not be so great that an electrically conductive path ceases to exist between the first and second materials.
  • any distance between the first and second materials 51/52 is selected such that the at least a portion of the first material 51 dissolves in the desired amount of time.
  • the first section of tubing string 15 can be located within the first zone 13 and the second section of tubing string 16 can be located within the second zone 14.
  • the wellbore isolation device can be a ball, a plug, a bridge plug, a wiper plug, or a packer.
  • the wellbore isolation device can restrict fluid flow past the device.
  • the wellbore isolation device may be a free falling device, may be a pumped-down device, or it may be tethered to the surface.
  • the isolation device can be a ball 30 (e.g., a first ball 31 or a second ball 32 ) and a seat 40 ( e.g., a first seat 41 or a second seat 42 ).
  • the ball 30 can engage the seat 40.
  • the seat 40 can be located on the inside of a tubing string.
  • the inner diameter (I.D.) of the first seat 41 can be less than the I.D. of the second seat 42.
  • a first ball 31 can be placed into the first section of tubing string 15.
  • the first ball 31 can have a smaller diameter than a second ball 32.
  • the first ball 31 can engage a first seat 41. Fluid can now be temporarily restricted or prevented from flowing into any zones located downstream of the first zone 13.
  • the second ball 32 can be placed into second section of tubing string 16 and will be prevented from falling into the first section of tubing string 15 via the second seat 42 or because the second ball 32 has a larger outer diameter (O.D.) than the I.D. of the first seat 41.
  • the second ball 32 can engage the second seat 42.
  • the ball (whether it be a first ball 31 or a second ball 32 ) can engage a sliding sleeve 50 during placement. This engagement with the sliding sleeve 50 can cause the sliding sleeve to move; thus, opening a port 17 located adjacent to the seat.
  • the port 17 can also be opened via a variety of other mechanisms instead of a ball.
  • fluid can be flowed from, or into, the subterranean formation 20 via one or more opened ports 17 located within a particular zone. As such, a fluid can be produced from the subterranean formation 20 or injected into the formation.
  • Figs. 2 and 3 depict examples of the isolation device.
  • the isolation device can be a ball 30.
  • the isolation device can comprise the first material 51, the second material 52, and the electrolytic compound 53.
  • the first and second materials 51/52 and the electrolytic compound 53 can be nuggets of material or a powder.
  • this example depicted in Fig. 2 illustrates the isolation device as a ball, it is to be understood that this example and discussion thereof is equally applicable to an isolation device that is a bridge plug, packer, etc.
  • the first material 51, the second material 52, and the electrolytic compound 53 can be bonded together in a variety of ways, including but not limited to powder metallurgy, in order to form the isolation device. At least a portion of the outside of the nuggets of the first material 51 can be in direct contact with at least a portion of the outside of the nuggets of the second material 52. By contrast, the outside of the nuggets of the first material 51 do not have to be in direct contact with the outside of the nuggets of the second material 52.
  • the electrolytic compound 53 can be an intermediary substance located between the outsides of the nuggets of the first and second materials 51/52.
  • the first and second materials 51/52 need to be capable of being contacted by the electrolyte. If the wellbore contains a fluid that is an electrolyte, then preferably, at least a portion of one or more nugget of the first material 51 and the second material 52 form the outside of the isolation device, such as a ball 30. In this manner, at least a portion of the first and second materials 51/52 are capable of being contacted with the electrolyte wellbore fluid. In the event the wellbore fluid is not an electrolyte, then preferably, the electrolytic compound 53 also forms the outside of the isolation device. In this manner, the electrolytic compound 53 can dissolve in a fluid located within the wellbore to form free ions ( e.g., an electrolyte).
  • free ions e.g., an electrolyte
  • the size, shape and placement of the nuggets of the first and second materials 51/52 can be adjusted to control the rate of dissolution of the first material 51.
  • the smaller the cross-sectional area of each nugget the faster the rate of dissolution.
  • the smaller cross-sectional area increases the ratio of the surface area to total volume of the material, thus allowing more of the material to come in contact with the electrolyte.
  • the cross-sectional area of each nugget of the first material 51 can be the same or different
  • the cross-sectional area of each nugget of the second material 52 can be the same or different
  • the cross-sectional area of the nuggets of the first material 51 and the nuggets of the second material 52 can be the same or different.
  • the cross-sectional area of the nuggets forming the outer portion of the isolation device and the nuggets forming the inner portion of the isolation device can be the same or different.
  • the cross-sectional area of the individual nuggets comprising the outer portion can be smaller compared to the cross-sectional area of the nuggets comprising the inner portion.
  • the shape of the nuggets of the first and second materials 51/52 can also be adjusted to allow for a greater or smaller cross-sectional area.
  • the proximity of the first material 51 to the second material 52 can also be adjusted to control the rate of dissolution of the first material 51.
  • the first and second materials 51/52 are within 2 inches, preferably less than 1 inch of each other.
  • Fig. 3 depicts the isolation device according to another example.
  • the isolation device such as a ball 30, can be made of the first material 51.
  • the electrolytic compound 53 can be a layer that coats the outside of the first material 51.
  • the second material 52 coats the electrolytic compound 53 and the first material 51 coats the second material 52. This embodiment may be useful when the wellbore fluid is an electrolyte. In this manner, the first material 51 and second material 52 can start to dissolve, thereby exposing the electrolytic compound 53.
  • the electrolytic compound 53 can then dissolve in the wellbore fluid to increase the concentration of free ions available in the electrolyte fluid.
  • At least a portion of a seat 40 can comprise the second material 52.
  • at least a portion of the first material 51 of the ball 30 can come in contact with at least a portion of the second material 52 of the seat 40.
  • at least a portion of a tubing string can comprise the second material 52.
  • This embodiment can be useful for a ball, bridge plug, packer, etc. isolation device.
  • the portion of the tubing string that comprises the second material 52 is located adjacent to the isolation device comprising the first material 51.
  • the portion of the tubing string that comprises the second material 52 is located adjacent to the isolation device comprising the first material 51 after the isolation device is situated in the desired location within the wellbore 11.
  • the portion of the tubing string that comprises the second material 52 is preferably located within a maximum distance to the isolation device comprising the first material 51.
  • the maximum distance can be a distance such that an electrically conductive path exists between the first material 51 and the second material 52.
  • the first material 51 is capable of withstanding a specific pressure differential (for example, the isolation device depicted in Fig. 3 ).
  • a specific pressure differential for example, the isolation device depicted in Fig. 3 .
  • the pressure differential can be the downhole pressure of the subterranean formation 20 across the device.
  • the term “downhole” means the location of the wellbore where the first material 51 is located. Formation pressures can range from about 1,000 to about 30,000 pounds force per square inch (psi) (about 6.9 to about 206.8 megapascals "MPa"). The pressure differential can also be created during oil or gas operations.
  • a fluid when introduced into the wellbore 11 upstream or downstream of the substance, can create a higher pressure above or below, respectively, of the isolation device.
  • Pressure differentials can range from 100 to over 10,000 psi (about 0.7 to over 68.9 MPa).
  • both, the first and second materials 51/52 are capable of withstanding a specific pressure differential (for example, the isolation device depicted in Fig. 2 ).
  • the rate of dissolution of the first material 51 can be controlled using a variety of factors.
  • at least the first material 51 includes one or more tracers (not shown).
  • the tracer(s) can be, without limitation, radioactive, chemical, electronic, or acoustic.
  • the second material 52 and/or the electrolytic compound 53 can also include one or more tracers.
  • each nugget of the first material 51 can include a tracer. At least one tracer can be located near the outside of the isolation device and/or at least one tracer can be located near the inside of the device. Moreover, at least one tracer can be located in multiple layers of the device.
  • a tracer can be useful in determining real-time information on the rate of dissolution of the first material 51.
  • a first material 51 containing a tracer upon dissolution can be flowed through the wellbore 11 and towards the wellhead or into the subterranean formation 20.
  • workers at the surface can make on-the-fly decisions that can affect the rate of dissolution of the remaining first material 51.
  • the electrolytic compound 53 dissolves in a fluid located within the wellbore (i.e., the wellbore fluid) to form free ions that are electrically conductive. Prior to contact with the wellbore fluid, the electrolytic compound 53 will be inert and will not degrade the isolation device.
  • the wellbore fluid is an electrolyte and the free ions formed increase the concentration of the free ions in the electrolyte. This embodiment is useful when the wellbore fluid is a brine or seawater or otherwise already contains free ions available to initiate the galvanic reaction between the first material 51 and the second material 52.
  • the concentration of free ions available in the electrolyte wellbore fluid can be reduced to such a low concentration that the galvanic reaction stops or the reaction slows to an undesirable rate. Therefore, the free ions formed from the dissolution of the electrolytic compound 53 in the wellbore fluid increases the concentration of free ions available to either maintain the galvanic reaction or increase the reaction rate.
  • the wellbore fluid does not contain a sufficient amount of free ions to initiate the galvanic reaction between the first material 51 and the second material 52.
  • the electrolytic compound 53 dissolves in the wellbore fluid to form an electrolyte. The free ions formed are now available to initiate the galvanic reaction. Subsequent dissolution of the electrolytic compound 53 can maintain the galvanic reaction or increase the rate of the reaction.
  • the electrolytic compound 53 is preferably soluble in the fluid located within the wellbore.
  • the wellbore fluid can comprise, without limitation, freshwater, brackish water, saltwater, and any combination thereof.
  • the wellbore fluid can contain free ions in which the fluid is an electrolyte or it may not contain a sufficient amount of free ions to function as an electrolyte.
  • the electrolytic compound 53 is a water-soluble acid, base, or salt.
  • the water-soluble salt can be a neutral salt, an acid salt, a basic salt, or an alkali salt.
  • an “acid salt” is a compound formed from the partial neutralization of a diprotic or polyprotic acid
  • a “basic salt” and “alkali salt” are compounds formed from the neutralization of a strong base and a weak acid, wherein the base of the alkali salt is an alkali metal or alkali earth metal.
  • the water-soluble salt is selected from the group consisting of sodium chloride, sodium bromide, sodium acetate, sodium sulfide, sodium hydrosulfide, sodium bisulfate, monosodium phosphate, disodium phosphate, sodium bicarbonate, sodium percarbonate, calcium chloride, calcium bromide, calcium bicarbonate, potassium chloride, potassium bromide, potassium nitrate, potassium metabisulphite, magnesium chloride, cesium formate, cesium acetate, alkali metasilicate, and any combination thereof.
  • Common free ions in an electrolyte or formed from dissolution include, but are not limited to, sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), chloride (Cl - ), hydrogen phosphate (HPO 4 2- ), and hydrogen carbonate (HCO 3 - ).
  • An acid salt, basic salt, or alkali salt may be useful when it is desirable to buffer the pH of the wellbore fluid. For example, during galvanic corrosion, the wellbore fluid may become undesirably acidic or basic. The electrolytic compound, once dissolved in the wellbore fluid, can then bring the pH to a desirable value.
  • Another factor that can affect the rate of dissolution of the first material 51 is the concentration of free ions and the temperature of the electrolyte.
  • concentration of free ions the faster the rate of dissolution of the first material 51, and the lower the concentration of the free ions, the slower the rate of dissolution.
  • temperature of the electrolytic fluid the faster the rate of dissolution of the first material 51, and the lower the temperature of the electrolytic fluid, the slower the rate of dissolution.
  • One of ordinary skill in the art can select: the exact metals and/or metal alloys, the proximity of the first and second materials, and the concentration of the electrolytic compound 53 based on an anticipated temperature in order for the at least a portion of the first material 51 to dissolve in the desired amount of time.
  • the concentration of the electrolytic compound 53 within the isolation device 30 is selected such that the at least a portion of the first material 51 dissolves in the desired amount of time. If more than one type of electrolytic compound 53 is used, then the exact electrolytic compound and the concentration of each electrolytic compound are selected such that the first material 51 dissolves in a desired amount of time.
  • the concentration can be determined based on at least the specific metals or metal alloys selected for the first and second materials 51/52 and the bottomhole temperature of the well. The location of the electrolytic compound 53 within the isolation device and concentration at each location can be adjusted to control the rate of dissolution of the first material 51.
  • the nuggets of the electrolytic compound 53 located closer to the perimeter of the isolation device 30 can be smaller (or larger depending on the desired initial reaction rate) than the nuggets of electrolytic compound 53 located closer to the center of the isolation device 30.
  • the thickness of the electrolytic compound 53 layer(s) can be selected to provide the desired concentration of free ions once dissolved in the wellbore fluid. It is to be understood that when discussing the concentration of an electrolyte, it is meant to be a concentration prior to contact with either the first and second materials 51/52, as the concentration will decrease during the galvanic corrosion reaction.
  • the methods include placing the isolation device into the wellbore 11. More than one isolation device can also be placed in multiple portions of the wellbore.
  • the methods can further include the step of removing all or a portion of the dissolved first material 51 and/or all or a portion of the second material 52, wherein the step of removing is performed after the step of allowing the at least a portion of the first material to dissolve.
  • the step of removing can include flowing the dissolved first material 51 and/or the second material 52 from the wellbore 11. According to an embodiment, a sufficient amount of the first material 51 dissolves such that the isolation device is capable of being flowed from the wellbore 11.
  • the isolation device should be capable of being flowed from the wellbore via dissolution of the first material 51, without the use of a milling apparatus, retrieval apparatus, or other such apparatus commonly used to remove isolation devices.
  • dissolution of the first material 51 and/or the second material 52 has a cross-sectional area less than 0.05 square inches, preferably less than 0.01 square inches.
  • compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods also can “consist essentially of” or “consist of” the various components and steps.
  • any number and any included range falling within the range is specifically disclosed.
  • every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b") disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values.
  • the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
  • the indefinite articles “a” or “an”, as used in the claims are defined herein to mean one or more than one of the element that it introduces.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Gas Separation By Absorption (AREA)

Claims (14)

  1. Procédé de retrait de dispositif d'isolement d'un puits de forage (30, 31, 32, 40, 41, 42) comprenant :
    la mise en place du dispositif d'isolement du puits de forage (30, 31, 32, 40, 41, 42) dans le puits de forage (11), le dispositif d'isolement (30, 31, 32, 40, 41, 42) comprenant :
    (A) un premier matériau (51), le premier matériau (51) :
    (i) étant un métal ou un alliage métallique ; et
    (ii) se dissolvant partiellement lorsqu'un trajet électriquement conducteur existe entre le premier matériau (51) et un second matériau (52) et qu'au moins une partie du premier (51) et une partie du second (52) matériaux sont en contact avec un électrolyte, le second matériau (52) étant un métal ou un alliage métallique, et le second matériau (52) disposant d'un indice anodique supérieur à celui du premier matériau (51) ; et
    (B) un composé électrolytique (53), le composé électrolytique (53) se dissolvant dans un fluide se trouvant dans le puits de forage pour former des ions libres qui sont électriquement conducteurs ; et
    permettant à au moins une partie du premier matériau (51) de se dissoudre, le dispositif d'isolement (30, 31, 32, 40, 41, 42) comprenant en outre le second matériau (52), caractérisé en ce que
    le second matériau (52) sert de revêtement au composé électrolytique (53), et le premier matériau (51) sert de revêtement au second matériau (52).
  2. Procédé selon la revendication 1, dans lequel le dispositif d'isolement (30, 31, 32, 40, 41, 42) est capable de restreindre ou d'empêcher l'écoulement du fluide entre une première zone (13) et une seconde zone (14) du puits de forage (11) ; et/ou
    dans lequel le dispositif d'isolement (30, 31, 32, 40, 41, 42) est une bille et un siège, un bouchon, un bouchon provisoire, un bouchon de cimentation ou une garniture d'étanchéité.
  3. Procédé selon la revendication 1 ou 2, dans lequel le métal ou le métal de l'alliage métallique du premier matériau (51) et du second matériau (52) sont choisis dans le groupe constitué par : le béryllium, l'étain, le fer, le nickel, le cuivre, le zinc et leurs combinaisons.
  4. Procédé selon une quelconque revendication précédente, dans lequel le fluide se trouvant dans le puits de forage (11) comprend de l'eau saumâtre, de l'eau salée, et toute combinaison de ces dernières.
  5. Procédé selon une quelconque revendication précédente, dans lequel le fluide se trouvant dans le puits de forage (11) est l'électrolyte et les ions libres formés augmentent la concentration en ions libres dans l'électrolyte.
  6. Procédé selon une quelconque revendication précédente, dans lequel le composé électrolytique (53) se dissout dans le fluide se trouvant à l'intérieur du puits de forage (11) pour former l'électrolyte.
  7. Procédé selon une quelconque revendication précédente, dans lequel le composé électrolytique (53) est un acide hydrosoluble, une base, ou un sel, le sel hydrosoluble étant éventuellement un sel neutre, un sel d'acide, un sel basique ou un sel alcalin, le sel hydrosoluble étant en outre éventuellement choisi dans le groupe constitué par le chlorure de sodium, le bromure de sodium, l'acétate de sodium, le sulfure de sodium, l'hydrosulfure de sodium, le bisulfate de sodium, le phosphate monosodique, le phosphate disodique, le bicarbonate de sodium, le percarbonate de sodium, le chlorure de calcium, le bromure de calcium, le bicarbonate de calcium, le chlorure de potassium, le bromure de potassium, le nitrate de potassium, le métabisulfite de potassium, le chlorure de magnésium, le formate de césium, l'acétate de césium, le métasilicate alcalin et toute combinaison de ces derniers.
  8. Procédé selon une quelconque revendication précédente, dans lequel la concentration du composé électrolytique (53) à l'intérieur du dispositif d'isolement (30, 31, 32, 40, 41, 42) est choisie de sorte que l'au moins une partie du premier matériau (51) se dissolve dans un laps de temps souhaité.
  9. Procédé selon une quelconque revendication précédente, dans lequel l'emplacement du composé électrolytique (53) à l'intérieur du dispositif d'isolement (30, 31, 32, 40, 41, 42) et la concentration à chaque emplacement sont ajustés pour réguler la vitesse de dissolution du premier matériau (51).
  10. Procédé selon une quelconque revendication précédente, comprenant en outre l'étape d'élimination de tout ou partie du premier matériau dissous (51), l'étape d'élimination étant réalisée après l'étape consistant à laisser se dissoudre l'au moins une partie du premier matériau (51).
  11. Dispositif d'isolement de puits de forage (30, 31, 32, 40, 41, 42) comprenant :
    un premier matériau (51), le premier matériau (51) :
    (A) étant un métal ou un alliage métallique ; et
    (B) se dissolvant partiellement lorsqu'un trajet électriquement conducteur existe entre le premier matériau (51) et un second matériau (52) et lorsqu'au moins une partie du premier (51) et une partie du second (52) matériaux sont en contact avec un électrolyte ; et
    un composé électrolytique (53), le composé électrolytique (53) se dissolvant dans un fluide se trouvant dans le puits de forage (11) pour former des ions libres électriquement conducteurs, le dispositif d'isolement (30, 31, 32, 40, 41, 42) comprenant en outre le second matériau (52), caractérisé en ce que
    le second matériau (52) sert de revêtement au composé électrolytique (53), et le premier matériau (51) sert de revêtement au second matériau (52).
  12. Dispositif (30, 31, 32, 40, 41, 42) selon la revendication 11, dans lequel le fluide se trouvant dans le puits de forage (11) est l'électrolyte et les ions libres formés augmentent la concentration d'ions libres dans l'électrolyte.
  13. Dispositif (30, 31, 32, 40, 41, 42) selon la revendication 11 ou 12, dans lequel le composé électrolytique (53) se dissout dans le fluide se trouvant dans le puits de forage (11) pour former l'électrolyte.
  14. Dispositif selon la revendication 11, 12 ou 13, dans lequel le composé électrolytique (53) est un acide hydrosoluble, une base ou un sel.
EP14878579.3A 2014-01-14 2014-12-03 Dispositif d'isolement contenant une anode dissoluble et un composé électrolytique Active EP3052745B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/154,596 US9777549B2 (en) 2012-06-08 2014-01-14 Isolation device containing a dissolvable anode and electrolytic compound
PCT/US2014/068372 WO2015108627A1 (fr) 2014-01-14 2014-12-03 Dispositif d'isolement contenant une anode dissoluble et un composé électrolytique

Publications (3)

Publication Number Publication Date
EP3052745A1 EP3052745A1 (fr) 2016-08-10
EP3052745A4 EP3052745A4 (fr) 2017-05-24
EP3052745B1 true EP3052745B1 (fr) 2018-09-19

Family

ID=53543319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14878579.3A Active EP3052745B1 (fr) 2014-01-14 2014-12-03 Dispositif d'isolement contenant une anode dissoluble et un composé électrolytique

Country Status (7)

Country Link
EP (1) EP3052745B1 (fr)
AR (1) AR099058A1 (fr)
AU (2) AU2014377594B2 (fr)
CA (1) CA2927400C (fr)
DK (1) DK3052745T3 (fr)
MX (1) MX2016005498A (fr)
WO (1) WO2015108627A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077200B1 (en) * 2004-04-23 2006-07-18 Schlumberger Technology Corp. Downhole light system and methods of use
US8211247B2 (en) * 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
US8231947B2 (en) * 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
US7909096B2 (en) * 2007-03-02 2011-03-22 Schlumberger Technology Corporation Method and apparatus of reservoir stimulation while running casing
US7757773B2 (en) 2007-07-25 2010-07-20 Schlumberger Technology Corporation Latch assembly for wellbore operations
US8584746B2 (en) * 2010-02-01 2013-11-19 Schlumberger Technology Corporation Oilfield isolation element and method
US9057242B2 (en) * 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US20130153236A1 (en) * 2011-12-20 2013-06-20 Baker Hughes Incorporated Subterranean Tool Actuation Using a Controlled Electrolytic Material Trigger
US8905147B2 (en) * 2012-06-08 2014-12-09 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion
US9016384B2 (en) 2012-06-18 2015-04-28 Baker Hughes Incorporated Disintegrable centralizer

Also Published As

Publication number Publication date
AR099058A1 (es) 2016-06-29
DK3052745T3 (en) 2018-11-05
WO2015108627A1 (fr) 2015-07-23
AU2014377594A1 (en) 2016-04-28
MX2016005498A (es) 2016-07-22
AU2017200304B2 (en) 2017-11-09
EP3052745A4 (fr) 2017-05-24
EP3052745A1 (fr) 2016-08-10
AU2017200304A1 (en) 2017-02-02
AU2014377594B2 (en) 2016-12-22
CA2927400A1 (fr) 2015-07-23
CA2927400C (fr) 2018-05-29

Similar Documents

Publication Publication Date Title
US9863201B2 (en) Isolation device containing a dissolvable anode and electrolytic compound
EP2825725B1 (fr) Procédés de dépose d'un dispositif d'isolation de forage en utilisant une corrosion galvanique
US9689227B2 (en) Methods of adjusting the rate of galvanic corrosion of a wellbore isolation device
US9458692B2 (en) Isolation devices having a nanolaminate of anode and cathode
EP3105412B1 (fr) Rétablissement sélectif de communication fluidique entre intervalles de puits de forage à l'aide de substances dégradables
US9816340B2 (en) Decomposing isolation devices containing a buffering agent
EP3052745B1 (fr) Dispositif d'isolement contenant une anode dissoluble et un composé électrolytique
CA2933023C (fr) Procedes permettant de reguler la vitesse de la corrosion galvanique d'un dispositif d'isolation de puits de forage
US9850735B2 (en) Isolation devices containing a transforming matrix and a galvanically-coupled reinforcement area
WO2015167640A1 (fr) Dispositifs d'isolation comportant un nanostratifie d'anode et de cathode
AU2014377730A1 (en) Isolation devices containing a transforming matrix and a galvanically-coupled reinforcement area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170425

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 29/02 20060101AFI20170419BHEP

Ipc: E21B 33/12 20060101ALI20170419BHEP

Ipc: E21B 23/04 20060101ALI20170419BHEP

17Q First examination report despatched

Effective date: 20171205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014032817

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20181022

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180919

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1043467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014032817

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014032817

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231106

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20231204

Year of fee payment: 10

Ref country code: NO

Payment date: 20231123

Year of fee payment: 10

Ref country code: DK

Payment date: 20231121

Year of fee payment: 10