EP3051233B1 - Cycles de pompage de chaleur à compression hybride à base de plantes - Google Patents

Cycles de pompage de chaleur à compression hybride à base de plantes Download PDF

Info

Publication number
EP3051233B1
EP3051233B1 EP15075005.7A EP15075005A EP3051233B1 EP 3051233 B1 EP3051233 B1 EP 3051233B1 EP 15075005 A EP15075005 A EP 15075005A EP 3051233 B1 EP3051233 B1 EP 3051233B1
Authority
EP
European Patent Office
Prior art keywords
coil
pressure
heat
low
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15075005.7A
Other languages
German (de)
English (en)
Other versions
EP3051233A1 (fr
Inventor
Mihail-Dan Staicovici
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP15075005.7A priority Critical patent/EP3051233B1/fr
Publication of EP3051233A1 publication Critical patent/EP3051233A1/fr
Application granted granted Critical
Publication of EP3051233B1 publication Critical patent/EP3051233B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Definitions

  • the present invention is destined to production of cooling and heating for industrial, agricultural, or household purposes, achieved by plants supplied with sink, heat sink and electrical, or mechanical power sources, on one side, and with sources suffering the useful cooling and heating effects, respectively, on the other side.
  • the deep cooling applications e.g. ((-40) - (-70))°C
  • the compressor of the cooling plant to compress refrigerants with very low densities, or equally, with very high specific volumes. This leads to very high volumes to be compressed, especially to high capacity applications, and ultimately to an important increase of the compressor clearance diagram.
  • ammonia for instance, the most utilized refrigerant in the low temperature applications needed in industry, and of the ammonia compressors.
  • ammonia/water absorption plant For deep cooling applications, the ammonia/water absorption plant is mostly indicated, because it uses absorption instead of mechanical compression in order to handle the high specific volume refrigerants, but, unfortunately, this technology needs quite high temperature heat supply, e.g. (150 - 180)°C and low sink sources, e.g. (15 - 18)°C, which not always are available.
  • WO2013/021323 discloses a hybrid compression based cooling plant incorporating the synergy between two known technologies based compartments, a 1 st compartment of mechanical vapor compression, including a compressor, a low pressure evaporator, a high pressure condenser, an expansion valve and an adequate working fluid and a 2 nd compartment of absorption, including on one side a refrigerant-absorbent mixture loop, consisting of a high pressure generator-rectifier, a low pressure absorber, a pump, an expansion valve and a recovery heat exchanger and on the other side a high pressure condenser, an expansion valve and a low pressure evaporator.
  • the absorber or the condenser of the absorption compartment is thermally coupled to the evaporator of the mechanical vapor compression compartment.
  • the generator-rectifier of the absorption compartment is thermally coupled to the condenser of the mechanical vapor compression compartment.
  • a first object of the present invention is to find a technical solution which is avoiding the compressor operation with high discharge gas temperature in deep cooling and high temperature heating applications.
  • a second object of the present invention is to keep the plants high effectiveness in cooling and heating applications, similar to the COP of TWRC and TTRC methods based plants, achieved in same operation conditions.
  • a third object of the present invention is to enable an absorption plant to run in cooling and heating applications without to depend on the heat and low sink sources availability.
  • the invention provides a hybrid compression based cooling plant according to claims 1 and 3.
  • the invention achieves the first object by introducing a new cooling and heating technology based plants, those with hybrid compression. Similar to the mechanical vapor compression plants, the hybrid compression plants need only two external supplying sources, a sink source and an electrical or mechanical source. Within the frame of hybrid compression plant achievement, the mechanical vapor compression plant, implied classically usually alone in the cooling and heating task fulfilment, is replaced in our case by the synergy between two known technologies based compartments, of mechanical vapor compression and of absorption. These two compartments act together in such a way that the first compartment plays the role of a sink and heat or just heat supplier for the latter, while the latter is performing the useful task of cooling or heating, respectively. According to the cooling or heating hybrid compression plant achievement, the compressor operation with high discharge gas temperatures is avoided this time because it works with much lower compression ratios as compared to those obtained by TWRC and TTRC based plants, therefore with much lower discharge gas temperatures.
  • the invention achieves the second object as low compression ratios lead to diminished specific mechanical work consumption of the compressor, therefore to higher COP in cooling and heating for same operating parameters.
  • the invention achieves the third object because the mechanical vapor compression compartment is running with just the external electrical or mechanical energy input and the external sink source supply, available to most applications, and in this case the hybrid compression plant is capable to provide with internal sink and heat or only with internal heat sources the absorption plant, in order to ensure its operation, that is the cooling or heating task fulfilment, in an independent way of the existence or not of an external heat supply.
  • the hybrid compression cooling plant represented in Figure 1 .
  • the compressor 1 is compressing an adequate refrigerant gas from the evaporator 2 low pressure and temperature p E and T E , respectively, till the condenser 3 high pressure and temperature, p c and T c , respectively, with T c > T E , according to the adiabatic process a-b.
  • the evaporator 2 constant pressure and temperature evaporation process d-a is supplied by a heating source, provided by a 1 st intermediary heat transfer fluid circulated through the evaporator coil 4, while the condenser 3 constant pressure and temperature condensation process b-c is supplied by a cooling source, provided by a 2 nd intermediary heat transfer fluid circulated through condenser coil 5.
  • the refrigerant condensate is expanded from the high condenser pressure p c till the low evaporator pressure p E by means of the expansion valve 6, following the isenthalpic process c-d, in order to close the mechanical vapor compression cycle based compartment.
  • the operation of the single-stage absorption cooling cycle based compartment is secondly described, following the same Figure 1 .
  • the refrigerant-absorbent working combination is covering the solution loop consisting of a low-pressure absorber 7, a high-pressure generator rectifier 8, which is generating almost pure refrigerant vapor, a pump 9, pumping the rich refrigerant-absorbent solution pressure from that of the absorber 7 low pressure value till that of the generator-rectifier 8 high pressure value, an expansion valve 10, decreasing the poor refrigerant-absorbent solution pressure from that of the generator-rectifier 8 high value till that of the absorber 7 low value and a recovery heat exchanger 11, which is subcooling the poor solution coming of the generator-rectifier 8 by means of the rich solution superheating, coming of absorber 7.
  • the absorber 7 absorption process is supplied by a cooling source, provided by the 1 st intermediary heat transfer fluid circulated through absorber coil 12, while the generator-rectifier 8 generation process is supplied by a heating source, provided by the 2 nd intermediary heat transfer fluid circulated through the generator-rectifier coil 13.
  • T M is the temperature of the coabsorbent cycle mixing point M, which in our case is slightly higher than the evaporator 2 temperature T E , that is T E ⁇ T M .
  • the absorbent exiting the generator-rectifier 8 has a temperature T GO , which is slightly higher or equal to the external sink source temperature, T ss and slightly lower than the condenser 3 temperature, T c , that is T ss ⁇ T GO ⁇ T c .
  • T GO the external sink source temperature
  • T c the condenser 3 temperature
  • the refrigerant condensate is subcooled in a recovery way in the subcooler 16, it is expanded in the expansion valve 17 from the condenser 14 high pressure till the absorber 7 low pressure, it enters the low pressure absorption plant evaporator 18, where it is producing the useful effect of cooling the source to be cooled 19, the non-evaporated refrigerant enters the absorber 7 and the refrigerant vapor it is exiting the evaporator 18 by means of the pipe 20, it is superheated in the subcooler 16 and it is absorbed in the low pressure absorber 7, in order to close the absorption cycle compartment.
  • the source 19 is cooled till a temperature close to that of absorption plant evaporator 18 or desorber inlet, TDI, noted like this according to the coabsorbent technology.
  • the heat released by absorber 7 and condenser 14 of the absorption plant compartment is taken over by the evaporator 2 by means of the 1 st intermediary heat transfer fluid which is covering a closed loop consisting of the evaporator coil 4, pipe 21, pump 22, absorber coil 12, pipe 23, condenser coil 15, and pipe 24, in order to close the absorber 7 and condenser 14 internal sink source circuit.
  • the heat supplied to the generator-rectifier 8 is provided by the condenser 3 by means of the 2 nd intermediary heat transfer fluid which is covering a closed loop consisting of the condenser coil 5, pipe 25, pump 26, generator-rectifier coil 13, pipe 27 and the heat exchanger 28, in which coil 29 and the 2 nd intermediary heat transfer fluid is cooled finally till a temperature close to the sink source temperature T ss by means of the external sink source 30, in order to close the generator-rectifier 8 heating circuit and the hybrid compression plant operation.
  • the generator-rectifier 8 benefits of a compressor 31 mounted on the pipe 32, which is sucking its generated-rectified refrigerant, it compresses it from the generation process intermediary pressure, higher than the low pressure of the absorber 7 and evaporator 18 absorption compartment bottom, till the high pressure of the condenser 14, and it delivers it to the condenser 14, in order to be cooled and condensed till the temperature T M , with T M > T E .
  • the hybrid operation which the generator-rectifier 8 is provided with, benefits, in fact, to a certain extent the hybrid compression plant behavior, because the absorption compartment generation takes place to lower generation temperature, comparatively, and for that two positive consequences hold true, firstly the generator-rectifier 8 consumes less rectification heat during the generation-rectification process, and secondly, the mechanical vapor compression burden decreases as the compression ratio of the compressor 1 diminishes correspondingly, because T c , hence p c , decrease, comparatively, with good effects on COP increase and its clearance diagram decrease.
  • the absorption compartment operates not with just the single-stage absorption cooling cycle construction, but with a double-effect absorption cooling cycle structure, based on a thermal cascade of two single-stage absorption cooling subcycles subcompartments, consisting of the 2 nd subcycle subcompartment, labeled with index "2", operating to higher generation temperature and numbered identically as to the absorption cooling cycle construction of Figure 1 and the 1 st subcycle subcompartment, labeled with index "1" and operating to lower generation temperature due to the recovery of its generator-rectifier of the heat released by the absorber 7 of the 2 nd subcycle subcompartment.
  • the refrigerant-absorbent working combination of the 1 st absorption subcycle subcompartment is covering the solution loop consisting of a low pressure absorber 33, a high pressure generator-rectifier 34, generating almost pure refrigerant vapor, a pump 35, pumping the rich refrigerant-absorbent solution from the absorber 33 low pressure, equal to absorber 7 low pressure, till the generator-rectifier 34 high pressure, equal to the generator-rectifier 8 high pressure, an expansion valve 36, decreasing the poor refrigerant-absorbent solution pressure from that of the generator-rectifier 34 high value till that of the absorber 33 low value and a recovery heat exchanger 37, which is subcooling the poor solution coming of the generator-rectifier 34 by means of the rich solution superheating, coming of absorber 33.
  • the absorber 33 absorption process is supplied by a cooling source, provided by the 1 st intermediary heat transfer fluid circulated through absorber coil 38, while the generator-rectifier 34 generation process is supplied by a heating source, provided by a 3 rd intermediary heat transfer fluid circulated through the generator-rectifier coil 39.
  • the absorbent exiting the absorber 33 is cooled till is cooled till a temperature T M 1 , which is the internal sink temperature of the 1 st absorption subcycle subcompartment and according to the hybrid compression plant achievement is much lower than the external sink temperature T ss and T M 2 , that is T ss >> T M 2 >> T M 1 , but slightly higher than the evaporator 2 temperature, T E , that is T E ⁇ T M 1 .
  • the absorbent exiting the generator-rectifier 34 has a temperature T GO 1 , which is slightly lower than the internal sink temperature, T M 2 , of the 2 nd absorption subcycle compartment, T GO 1 ⁇ T M 2 .
  • T M 2 internal sink temperature
  • T GO 1 the internal sink temperature
  • T M 2 the internal sink temperature
  • T GO 1 the internal sink temperature
  • T M 2 the internal sink temperature
  • T GO 1 the refrigerant vapor coming of the generator-rectifier 34 is condensed in the high pressure condenser 40 and cooled till the same temperature T M 1 by the 1 st intermediary heat transfer fluid circulated through the condenser coil 41.
  • the refrigerant condensate is subcooled in a recovery way in the subcooler 42, it is expanded in the expansion valve 43 from the condenser 40 high pressure till the absorber 33 low pressure, it enters the low pressure absorption plant evaporator 44, where it is producing the useful effect of cooling the source to be cooled 45, the non-evaporated refrigerant enters the absorber 33 and the refrigerant vapor is exiting the evaporator 44 by means of the pipe 46, it is superheated in the subcooler 42 and it is absorbed in the low pressure absorber 33, in order to close the absorption cycle compartment.
  • the source 45 is cooled till a temperature close to that of evaporator 44, T DI .
  • the heat released by absorber 33 and condenser 40 is taken over by the evaporator 2 by means of the 1 st intermediary heat transfer fluid which is covering a closed loop consisting of the evaporator coil 4, pipe 21, pump 22, absorber coil 38, pipe 23, condenser coil 15, condenser coil 41 and pipe 24.
  • the heat released by the absorber 7 is supplied to the generator-rectifier 34 by the 3 rd intermediary heat transfer fluid which is covering a closed loop consisting of the absorber coil 12, pump 47, pipe 48, generator-rectifier coil 39 and pipe 49, in order to close the hybrid compression plant operation.
  • the hybrid compression heating plant represented in Figure 4
  • the single-stage mechanical vapor compression cycle based compartment is the same as all similar compartments described in Figures 1-3 .
  • the absorption cycle based compartment is different and will be described next, following the same Figure 4 .
  • this compartment bases on an Osenbrück cycle construction and operation, consisting, on one side, of a refrigerant-absorbent solution loop which includes a low pressure desorber 50, a high pressure resorber 51, a pump 52, pumping the absorbent from the desorber 50 low pressure till the resorber 51 high pressure, an expansion valve 53, decreasing the absorbent pressure from that of the resorber 51 high value till that of the desorber 50 low value and a recovery heat exchanger 54, superheating the poor absorbent prior to enter the resorber 51 through the subcooling of the rich absorbent prior to enter the desorber 50, and, on the other side, a compressor 55, mounted on the pipe 56 and sucking the low pressure vapor desorbed by the desorber 50 and compressing it till the resorber 51 high pressure, where it is resorbed.
  • a refrigerant-absorbent solution loop which includes a low pressure desorber 50, a high pressure resorber 51,
  • the useful resorption process heat release is supplied by a cooling source, provided by a 1 st intermediary heat transfer fluid circulated through the resorber coil 57, while the desorber 50 desorption process is supplied by a heating source, provided by a 2 nd intermediary heat transfer fluid circulated through the desorber coil 58.
  • the desorber 50 absorbent outlet temperature T DO is smaller than the condenser temperature, T C , that is T C > T DO
  • the heating useful effect temperature, T h,u is lower than the resorber 51 absorbent actual inlet temperature, T RI . that is T RI > T h,u .
  • the condenser 3 condensing heat is supplying the desorber 50 by means of the 2 nd intermediary heat transfer fluid which is covering a closed loop consisting of the condenser coil 5, pipe 59, pump 60, desorber coil 58 and pipe 61, in order to close the desorber 50 heating loop.
  • the evaporator 2 is supplied with heat from a depleted or low grade heat source by means of a 3 rd intermediary heat transfer fluid which is covering a closed loop consisting of the evaporator coil 4, pipe 62, heat exchanger 63, heat exchanger coil 64, pump 65, pipe 66, enabling the low grade heat source 67 to supply with heat the coil 64, in order to close the evaporator 2 heating loop.
  • the evaporator temperature T E is smaller than the low grade source temperature, T ss , that is T E ⁇ T ss .
  • the usefully heated fluid loop is supplied with heat coming from the resorber 51, by means of the 1 st intermediary heat transfer fluid which is covering a closed loop consisting of the resorber coil 57, pipe 68, heat exchanger 69, enabling the resorber heat to be transferred from heat exchanger coil 70 to the usefully heated fluid 71, and pump 72 mounted on the pipe 73, in order to close the resorber 51 heating loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Claims (3)

  1. Système de refroidissement basé sur la compression hybride, intégrant par la synergie entre deux compartiments basés sur des technologies connues, comprenant
    1. un premier compartiment à compression mécanique de vapeur, comprenant
    • un premier compresseur (1),
    • un premier évaporateur basse pression (2),
    • un premier condensateur haute pression (3),
    • un premier détendeur (6) et
    • un fluide de travail approprié et
    2. un deuxième compartiment d'absorption, comprenant
    - d'une part un circuit avec un mélange réfrigérant-absorbant, y compris
    • un générateur-redresseur (8) de haute pression,
    • un absorbeur basse pression (7),
    • la première pompe (9),
    • un deuxième détendeur (10) et
    • un échangeur de chaleur (11) pour la récupération et
    - de l'autre côté, comprenant
    • un deuxième condensateur haute pression (14),
    • un sous-refroidisseur de liquide de refroidissement condensé (16),
    • un troisième détendeur (17) et
    • un deuxième évaporateur basse pression (18),
    caractérisé par le fait que
    le premier compartiment qui comprend en outre, pour le fonctionnement, deux sources d'alimentation externes, une source froide (30) et une source électrique ou mécanique, est capable d'exécuter simultanément deux tâches, une première tâche, celle d'être le fournisseur de la source froide interne pour le second compartiment, en prenant en même temps la chaleur éliminée par l'absorbeur basse pression (7) et par le second condensateur (14) haute pression du compartiment d'absorption au moyen du premier évaporateur (2) basse pression du compartiment de compression mécanique de vapeur, à l'aide d'un premier fluide caloporteur intermédiaire, qui traverse un premier circuit fermé, consistant en
    • un serpentin (4) du premier évaporateur basse pression, qui cède au premier évaporateur basse pression (2) la chaleur évacuée par le premier absorbeur basse pression (7) et par le deuxième condensateur haute pression (14),
    • un serpentin (12) de l'absorbeur basse pression, qui reprend la chaleur éliminée par l'absorbeur basse pression (7),
    • un serpentin (15) du deuxième condensateur haute pression, connecté en série avec la bobine mentionnée (12) de l'absorbeur basse pression et qui capte la chaleur évacuée par le deuxième condensateur haute pression (14),
    • une deuxième pompe (22) qui pompe le premier fluide caloporteur intermédiaire dans le premier circuit fermé,
    • un premier tuyau (21), qui relie le serpentin mentionné (4) du premier évaporateur basse pression, à la deuxième pompe (22) mentionnée et le serpentin mentionné (12) de l'absorbeur basse pression,
    • un deuxième tuyau (23) qui relie le serpentin mentionnée (12) de l'absorbeur basse pression et le serpentin mentionné (15) du second condensateur haute pression, et
    • un troisième tuyau (24) qui relie le serpentin mentionné (15) du deuxième condensateur haute pression et le serpentin mentionné (4) du premier évaporateur basse pression, et une deuxième tâche consistant à fournir la source de chaleur interne du générateur-redresseur haute pression (8) du compartiment d'absorption au moyen du premier condenseur (3) haute pression du compartiment de compression mécanique de vapeur, au moyen d'un deuxième fluide intermédiaire transfert de chaleur, qui passe par un deuxième circuit fermé constitué de
    • un serpentin (5) du premier condensateur haute pression, qui transfère la chaleur évacuée du premier condensateur haute pression (3) au générateur redresseur (8) et enfin à un échangeur de chaleur (28),
    • un serpentin (13) du générateur-redresseur, connecté en série avec le serpentin (5) mentionné du premier condensateur et qui reprend la partie de la chaleur transférée par le premier condensateur (3) haute pression pour alimenter avec une source de chaleur le générateur-redresseur (8) haute pression,
    • un échangeur de chaleur (28) permettant de transférer la partie finale de la chaleur évacuée par le premier condensateur haute pression (3) vers la source froide (30) mentionnée au moyen de son serpentin principal (29) de l'échangeur de chaleur (28),
    • une troisième pompe (26) qui pompe le deuxième fluide caloporteur intermédiaire dans le deuxième circuit fermé,
    • un quatrième tuyau (25), qui relie le serpentin mentionné (5) du premier condensateur à haute pression, la troisième pompe (26) et le serpentin mentionné (13) du générateur-redresseur,
    • et un cinquième tuyau (27), qui relie le serpentin mentionné (13) du générateur-redresseur, le serpentin primaire mentionnée (29) et le serpentin mentionné (5) du premier condensateur haute pression,
    de sorte que le deuxième compartiment remplit la tâche utile de refroidissement indépendamment de l'existence d'une source de chaleur externe.
  2. Système de refroidissement basé sur la compression hybride, selon la revendication 1, caractérisé par le fait que le premier compartiment de compression mécanique de vapeur est prévu avec une compression de récupération genre thermo - mécanique ou une compression de récupération thermo - thermique ou est un système de chauffage basé par la compression hybride.
  3. Système de chauffage basé sur la compression hybride, intégré par synergie entre deux compartiments basés sur des technologies connues, comprenant
    1. un premier compartiment à compression mécanique de vapeur, comprenant
    • un premier compresseur (1),
    • un premier évaporateur basse pression (2),
    • un premier condensateur haute pression (3),
    • un premier détendeur (6) et
    • un fluide de travail approprié et
    2. un deuxième compartiment d'absorption, comme par exemple le type Osenbrück, comprenant
    - d'une part un circuit avec un mélange réfrigérant-absorbant, y compris
    • un résorbeur haute pression (51), comprenant un serpentin (57) du résorbeur,
    • un désorbeur basse pression (50),
    • la première pompe (52),
    • un deuxième détendeur (53) et
    • un premier échangeur de chaleur (54) pour la récupération et
    - d'autre part
    • un deuxième compresseur (55) sur le cinquième tuyau (56),
    caractérisé par le fait que
    le premier compartiment comprenant en outre, pour le fonctionnement, deux alimentations externes, une source de chauffage froide (67) et une source électrique ou mécanique, est capable d'exécuter simultanément deux tâches, une première tâche, celle d'extraire de la chaleur à travers un deuxième échangeur de chaleur (63) provenant de la source de chauffage froide (67) mentionnée au moyen d'un serpentin (64) d'un deuxième échangeur de chaleur au moyen d'un troisième fluide caloporteur intermédiaire qui passe ensuite dans un circuit fermé constitué de
    • un serpentin (4) du premier évaporateur basse pression, qui transmet la chaleur extraite de la source de chauffage froide (67) mentionnée au premier évaporateur basse pression (2),
    • une deuxième pompe (65) qui pompe le troisième fluide caloporteur intermédiaire dans le circuit fermé,
    • un premier tuyau (62), qui relie le serpentin mentionné (4) du premier évaporateur basse pression au serpentin mentionné (64) de l'échangeur de chaleur, et
    • un deuxième tuyau (66), qui relie la bobine mentionnée (64) de l'échangeur de chaleur à la bobine mentionnée (4) du premier évaporateur basse pression, et
    une deuxième tâche consiste à augmenter le niveau thermique de la chaleur extraite de la source de chauffage froide (67) mentionnée comme source de chaleur pour le deuxième compartiment au moyen d'un deuxième fluide caloporteur intermédiaire, traversant un circuit fermé composé de
    • un serpentin (5) du premier condenseur haute pression, qui absorbe la chaleur évacuée du condenseur haute pression mentionné (3) pour alimenter le désorbeur (50) à travers un serpentin (58) du désorbeur,
    • une troisième pompe (60) pour pomper le deuxième fluide caloporteur intermédiaire dans le circuit fermé mentionné,
    • un troisième tuyau (59), qui relie le serpentin mentionné (5) du premier condensateur haute pression à la troisième pompe (60) mentionnée, et
    • un quatrième tuyau (61) qui relie le serpentin mentionné (58) du désorbeur au serpentin mentionné (5) du premier condensateur haute pression,
    de sorte que le deuxième compartiment puisse effectuer la tâche utile de chauffage par :
    - d'abord, l'alimentation du résorbeur haute pression mentionné (51) avec réfrigérant provenant du désorbant mentionné (50), à l'aide du deuxième compresseur (55) et
    - d'autre part, l'extraction de la chaleur provenant du résorbeur haute pression (51) au moyen du serpentin mentionné (57) du résorbeur, à l'aide d'un premier fluide caloporteur intermédiaire traversant un circuit fermé constitué du serpentin (57) mentionné du résorbeur et de
    • un troisième échangeur de chaleur (69) avec un troisième serpentin (70) de l'échangeur de chaleur, qui permet au résorbeur haute pression (51) de transférer la chaleur du troisième serpentin (70) mentionné de l'échangeur de chaleur d'un fluide (71) chauffé utile,
    • une quatrième pompe (72) qui pompe le premier fluide caloporteur intermédiaire dans le circuit fermé,
    • un sixième tuyau (73) qui relie le serpentin mentionné (70) du troisième échangeur de chaleur au serpentin mentionné (57) du résorbeur, et
    • un septième tuyau (68), qui relie se serpentin mentionné (57) du résorbeur avec un serpentin (70) du troisième échangeur de chaleur.
EP15075005.7A 2015-01-29 2015-01-29 Cycles de pompage de chaleur à compression hybride à base de plantes Active EP3051233B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15075005.7A EP3051233B1 (fr) 2015-01-29 2015-01-29 Cycles de pompage de chaleur à compression hybride à base de plantes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15075005.7A EP3051233B1 (fr) 2015-01-29 2015-01-29 Cycles de pompage de chaleur à compression hybride à base de plantes

Publications (2)

Publication Number Publication Date
EP3051233A1 EP3051233A1 (fr) 2016-08-03
EP3051233B1 true EP3051233B1 (fr) 2020-08-26

Family

ID=52462123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15075005.7A Active EP3051233B1 (fr) 2015-01-29 2015-01-29 Cycles de pompage de chaleur à compression hybride à base de plantes

Country Status (1)

Country Link
EP (1) EP3051233B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177540A1 (fr) * 2021-11-08 2023-05-10 Mihail-Dan Staicovici Compression hybride mère-père pour le travail et le chauffage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018067818A1 (fr) * 2016-10-05 2018-04-12 Johnson Controls Technology Company Pompe à chaleur pour un système hvac&r

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU533300B2 (en) * 1980-04-17 1983-11-17 Matsushita Electric Industrial Co., Ltd. Compressor control in compression absorption hybrid refrigeration plant
ITTO20110732A1 (it) * 2011-08-05 2013-02-06 Innovation Factory S C A R L Sistema a pompa di calore e metodo di raffrescamento e/o riscaldamento attuabile tramite tale sistema
DE102013210177A1 (de) * 2013-05-31 2014-12-04 Siemens Aktiengesellschaft Kühlsystem und Kühlprozess für den Einsatz in Hochtemperatur-Umgebungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4177540A1 (fr) * 2021-11-08 2023-05-10 Mihail-Dan Staicovici Compression hybride mère-père pour le travail et le chauffage

Also Published As

Publication number Publication date
EP3051233A1 (fr) 2016-08-03

Similar Documents

Publication Publication Date Title
Colorado et al. Performance comparison between a conventional vapor compression and compression-absorption single-stage and double-stage systems used for refrigeration
Arora et al. Theoretical analysis of LiBr/H2O absorption refrigeration systems
Sun et al. Theoretical study on a novel CO2 Two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system
Mosaffa et al. Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers
Ustaoglu Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach
CN103438598B (zh) 基于正逆循环耦合的复叠式制冷系统及方法
CN101059291A (zh) 氨水吸收与压缩复合制冷循环系统及制冷循环方法
CN106225316B (zh) 第三类热驱动压缩式热泵
Chen et al. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle
Chen et al. An improved cascade mechanical compression–ejector cooling cycle
Mohammadi et al. Energy and exergy performance comparison of different configurations of an absorption-two-stage compression cascade refrigeration system with carbon dioxide refrigerant
Shi et al. Thermodynamic analysis of a novel GAX absorption refrigeration cycle
Zhang et al. Energy, exergy, economic and environmental analyses of a cascade absorption-compression refrigeration system using two-stage compression with complete intercooling
He et al. Utilization of ultra-low temperature heat by a novel cascade refrigeration system with environmentally-friendly refrigerants
Dixit et al. Energy and exergy analysis of absorption-compression cascade refrigeration system
DALKİLİC Parametric study of energy, exergy and thermoeconomic analyses on vapor-compression system cascaded with libr/water and nh3/water absorbtion cascade refrigeration cycle
EP3051233B1 (fr) Cycles de pompage de chaleur à compression hybride à base de plantes
CN103615824A (zh) 一种基于膨胀功回收驱动的多温区冷量获取方法及装置
Izquierdo et al. Exergetic analysis of a double stage LiBr–H2O thermal compressor cooled by air/water and driven by low grade heat
Yari et al. Simulation study of the combination of absorption refrigeration and ejector-expansion systems
Wang et al. Performance comparison and analysis of a combined power and cooling system based on organic Rankine cycle
YILMAZ et al. Energy and exergy analyses of CO2/HFE7000 cascade cooling system
Pacheco-Cedeño et al. Comparison of an absorption-compression hybrid refrigeration system and the conventional absorption refrigeration system: Exergy analysis
Wang et al. An improved absorption refrigeration cycle driven by unsteady thermal sources below 100° C
CN108106050A (zh) 利用低品位废热制取冷冻水的制冷系统及方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190705

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1306770

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015057932

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1306770

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210127

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015057932

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210126

Year of fee payment: 7

Ref country code: DE

Payment date: 20210129

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

26N No opposition filed

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015057932

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220801

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220129

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826