EP3036482B1 - Dual fuel nozzle system and apparatus - Google Patents

Dual fuel nozzle system and apparatus Download PDF

Info

Publication number
EP3036482B1
EP3036482B1 EP14838205.4A EP14838205A EP3036482B1 EP 3036482 B1 EP3036482 B1 EP 3036482B1 EP 14838205 A EP14838205 A EP 14838205A EP 3036482 B1 EP3036482 B1 EP 3036482B1
Authority
EP
European Patent Office
Prior art keywords
gas
fuel
fuel nozzle
liquid
transition zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14838205.4A
Other languages
German (de)
French (fr)
Other versions
EP3036482A4 (en
EP3036482A1 (en
Inventor
Timothy S. Snyder
Zhongtao Dai
Randolph J. Smith
Kristin KOPP-VAUGHAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP3036482A1 publication Critical patent/EP3036482A1/en
Publication of EP3036482A4 publication Critical patent/EP3036482A4/en
Application granted granted Critical
Publication of EP3036482B1 publication Critical patent/EP3036482B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/08Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air liquid and gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11101Pulverising gas flow impinging on fuel from pre-filming surface, e.g. lip atomizers

Definitions

  • the present disclosure relates to radial fuel injection in fuel nozzles, and more specifically, to radial fuel injection in dual fuel nozzle to improve gaseous fuel dispersion and/or penetration.
  • a gas turbine may generally include a fuel nozzle that is configured to supply one or more fuels to the combustor. This fuel may be mixed with air and/or pollution mitigation substances such as, for example, water. Dual fuel nozzles used in propulsion and energy production applications may comprise a radial fuel port. Dispersion and/or penetration of gas fuel may be affected by the location of the radial fuel port. Greater dispersion and/or penetration of gaseous fuel may increase the operating efficiency of a gas turbine.
  • a gas turbine fuel nozzle having the features of the preamble of claim 1 is disclosed in US 2010/308135 A1 .
  • a dual fuel nozzle having the features of the preamble of claim 8 is disclosed in EP 905443 A2 .
  • the invention provides a gas turbine fuel nozzle as set forth in claim 1.
  • the invention also provides a dual fuel gas nozzle as set forth in claim 8.
  • any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step.
  • any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option.
  • any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
  • phrases such as “make contact with,” “coupled to,” “touch,” “interface with” and “engage” may be used interchangeably. Different surface shading may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
  • a gas turbine engine may comprise a dual fuel nozzle.
  • the fuel nozzle may define one or more channels.
  • One or more of these channels may be configured to receive a gas and/or a liquid.
  • These channels may be operatively coupled and/or may be in fluid communication with one or more components of a gas turbine engine including, for example, the combustor.
  • the liquid, gas, and/or air supplied through the one or more channels may be conducted or carried from the fuel nozzle to the combustor.
  • the nozzle is configured to provide fuel in the form of a gas or a liquid to the combustor for starting or sustained operation of the gas turbine.
  • the nozzle is configured to provide air, and/or water in either gaseous form or liquid form, or combinations thereof to the combustor for starting or sustained operation of the gas turbine.
  • the gas turbine may be a gas turbine configured to provide power and/or a gas turbine configured to provide propulsion.
  • the gas turbine may be installed or operated in a power plant environment where the gas turbine drives electricity generating devices and supplies power to a structure and/or a utility provider.
  • the gas turbine may be installed on a vehicle such as, for example, an aircraft or other suitable machinery.
  • a gas turbine may comprise a typical dual fuel nozzle comprising a housing 110, a gas supply channel 112 and a liquid supply channel 118.
  • Housing 110 may define a gas distribution channel 114 and a liquid distribution channel 120.
  • Housing 110 may also define a mixing chamber 124.
  • Mixing chamber 124 may be in fluid communication with gas distribution channel 114.
  • Dual fuel nozzle 100 may further comprise a gas port 116 defined in an interior wall 117 of housing 110.
  • Gas port 116 may be located downstream of a shoulder 119 in interior wall 117 substantially near a transition zone 124' of a mixing chamber 124.
  • gas e.g., a gaseous fuel
  • the gas may be discharged through gas port 116 into mixing chamber 124 adjacent to transition zone 124'.
  • liquid may be supplied through liquid supply channel 118 and conducted into liquid distribution channel 120.
  • the liquid may be disbursed through a lip 122.
  • Dual fuel nozzle 100 may further comprise an impeller 126.
  • Housing 110 may define an air supply channel 128 along a centerline A-A' of dual fuel nozzle 100.
  • the impeller may be configured to conduct air through air supply channel 128 into a discharge zone 130.
  • the liquid, fuel and air may be mixed in discharge zone 130.
  • the liquid may be a liquid fuel and/or water. Where the dual fuel nozzle is installed in a power generation application, the liquid may be water that is used to mitigate or minimize carbon monoxide and/or mono-nitrogen oxide emissions (i.e., NO x ).
  • Fuel mixing is shown as letter G.
  • Fuel may be discharged through gas port 116 from fuel distribution channel 114 into mixing chamber 124.
  • Fuel distribution G generally shows that the fuel does not mix well into mixing chamber 124, but rather, remains clustered (e.g., close to) near interior wall 117 as the fuel propagates from mixing chamber 124 to transition zone 124'. This clustering or lack of fuel dispersion and/or penetration may result in inefficient combustion of fuel G.
  • the fluid velocity in mixing chamber 124 generally increases at transition zone 124'. This increase in fluid velocity may minimize fuel distribution G as the fuel propagates from mixing chamber 124 to transition zone 124' causing the fuel to cluster along a portion of interior wall 117 adjacent to transition zone 124'.
  • adjusting the position of fuel port 216 may increase fuel penetration (e.g., the distance the fuel travels into the mixing chamber 224) and dispersion (e.g., the spreading of a mass of fuel across a volume) . More specifically, moving fuel port 216 forward (e.g., in the direction associated with reference A of the A-A' centerline) further away from transition zone 224' may allow fuel discharged through fuel port 216 to further propagate into mixing chamber 224. In this regard, the fluid velocity in mixing chamber 224 may be lower upstream of transition zone 224', allowing for greater fuel penetration in mixing chamber 224.
  • the fuel port 216 is defined by interior wall 217 at shoulder 219.
  • fuel may be distributed or injected into mixing chamber 224 where the fluid velocity in the chamber is relatively low (e.g., the fluid velocity in an upstream portion of mixing chamber 224 may be lower than the fluid velocity in mixing chamber 224 near transition zone 224').
  • the fuel distribution G' demonstrates greater fuel penetration as compared to fuel distribution G, as shown in FIG. 1B .
  • fuel distribution G' illustrates that the fuel propagates across the entire volume of mixing chamber 224. This greater penetration provides for lower fuel density, a more suitable fuel-air mixture, and better ignition efficiency.
  • the fuel distribution G' illustrates that the fuel may propagate into the volume of mixing chamber 224 as opposed to clustering near interior wall 217.
  • the fuel may be conducted through the transition zone 224', and mixed with air supplied through channel 228, and a liquid supplied through channel 220 and lip 222.
  • This air,fuel, and water mixture may be further supplied to the combustor for ignition.
  • the mixture gas (e.g., fuel), liquid (e.g., fuel and/or water), and/or air) may be conducted to the combustor.
  • interior wall 217 may comprise a plurality of gas ports 216.
  • interior wall 217 may define 8-14 gas ports 216 around its diameter.
  • interior wall 217 may define 12 gas ports 216 around its diameter.
  • Gas ports 216 may be substantially aligned with one another around along a diameter of interior wall 217.
  • gas ports 216 may be equally spaced circumferentially around interior wall 217.
  • the holes may be of any suitable diameter (e.g., 0.090 inches - .110 inches/0.2286cm to 0.29784cm) and/or pitch.
  • the pitch may be a function of the shape and/or slope of shoulder 219.
  • the geometry of one or more gas ports 216 and/or number of gas ports may provide a Holdeman Parameter that is greater than the ratio of pitch to diameter.
  • a liquid B may be supplied through liquid supply 218 and conducted to channel 220 and discharged through lip 222 as B'.
  • a gas A may be supplied to gas distribution channel 212 through gas distribution channel 214 and out of gas port 216 into mixing chamber 224 as A'.
  • Air C may be supplied along channel 228 as C'.
  • gas A' and liquid B' may be mixed and supplied into channel 228 and mixed with air C'. The mixture is then conducted to a combustor for gas turbine operation, ignition and/or burning.
  • references to "one embodiment”, “an embodiment”, “various embodiments”, etc. indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

    FIELD
  • The present disclosure relates to radial fuel injection in fuel nozzles, and more specifically, to radial fuel injection in dual fuel nozzle to improve gaseous fuel dispersion and/or penetration.
  • BACKGROUND
  • A gas turbine may generally include a fuel nozzle that is configured to supply one or more fuels to the combustor. This fuel may be mixed with air and/or pollution mitigation substances such as, for example, water. Dual fuel nozzles used in propulsion and energy production applications may comprise a radial fuel port. Dispersion and/or penetration of gas fuel may be affected by the location of the radial fuel port. Greater dispersion and/or penetration of gaseous fuel may increase the operating efficiency of a gas turbine.
  • A gas turbine fuel nozzle having the features of the preamble of claim 1 is disclosed in US 2010/308135 A1 . A dual fuel nozzle having the features of the preamble of claim 8 is disclosed in EP 905443 A2 .
  • SUMMARY
  • From a first aspect, the invention provides a gas turbine fuel nozzle as set forth in claim 1.
  • The invention also provides a dual fuel gas nozzle as set forth in claim 8.
  • Features of embodiments of the invention are disclosed in the dependent claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
    • FIG. 1A illustrates a perspective cross sectional view of a prior art dual fuel nozzle.
    • FIG. 1B illustrates a gas fuel dispersion and/or penetrationof a prior art dual fuel nozzle.
    • FIG. 2A illustrates a perspective cross sectional view of a dual fuel nozzle, in accordance with various embodiments.
    • FIG. 2B illustrates a gaseous fuel dispersion and/or penetrationof a dual fuel nozzle, in accordance with various embodiments.
    • FIG. 2C illustrates a perspective cross sectional view of a portion of a dual fuel nozzle, in accordance with various embodiments.
    DETAILED DESCRIPTION
  • The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration and their best mode. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the inventions, it should be understood that other embodiments may be realized and that logical, chemical and mechanical changes may be made without departing from the scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation.
  • Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
  • As used herein, phrases such as "make contact with," "coupled to," "touch," "interface with" and "engage" may be used interchangeably. Different surface shading may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
  • In various embodiments, a gas turbine engine may comprise a dual fuel nozzle. The fuel nozzle may define one or more channels. One or more of these channels may be configured to receive a gas and/or a liquid. These channels may be operatively coupled and/or may be in fluid communication with one or more components of a gas turbine engine including, for example, the combustor. The liquid, gas, and/or air supplied through the one or more channels may be conducted or carried from the fuel nozzle to the combustor. In this regard, the nozzle is configured to provide fuel in the form of a gas or a liquid to the combustor for starting or sustained operation of the gas turbine. The nozzle is configured to provide air, and/or water in either gaseous form or liquid form, or combinations thereof to the combustor for starting or sustained operation of the gas turbine.
  • In various embodiments, the gas turbine may be a gas turbine configured to provide power and/or a gas turbine configured to provide propulsion. For example, in an embodiment where the gas turbine is configured to provide power, the gas turbine may be installed or operated in a power plant environment where the gas turbine drives electricity generating devices and supplies power to a structure and/or a utility provider. In an embodiment where the gas turbine is configured to provide propulsion, the gas turbine may be installed on a vehicle such as, for example, an aircraft or other suitable machinery.
  • In various embodiments and with reference to FIGs. 1A and 1B a gas turbine may comprise a typical dual fuel nozzle comprising a housing 110, a gas supply channel 112 and a liquid supply channel 118. Housing 110 may define a gas distribution channel 114 and a liquid distribution channel 120. Housing 110 may also define a mixing chamber 124. Mixing chamber 124 may be in fluid communication with gas distribution channel 114.
  • Dual fuel nozzle 100 may further comprise a gas port 116 defined in an interior wall 117 of housing 110. Gas port 116 may be located downstream of a shoulder 119 in interior wall 117 substantially near a transition zone 124' of a mixing chamber 124. In this regard, gas (e.g., a gaseous fuel) may be conducted through gas supply channel 112 and gas distribution channel 114. The gas may be discharged through gas port 116 into mixing chamber 124 adjacent to transition zone 124'.
  • In various embodiments, liquid may be supplied through liquid supply channel 118 and conducted into liquid distribution channel 120. The liquid may be disbursed through a lip 122. Dual fuel nozzle 100 may further comprise an impeller 126. Housing 110 may define an air supply channel 128 along a centerline A-A' of dual fuel nozzle 100. The impeller may be configured to conduct air through air supply channel 128 into a discharge zone 130. In various embodiments, the liquid, fuel and air may be mixed in discharge zone 130.
  • In various embodiments, the liquid may be a liquid fuel and/or water. Where the dual fuel nozzle is installed in a power generation application, the liquid may be water that is used to mitigate or minimize carbon monoxide and/or mono-nitrogen oxide emissions (i.e., NOx).
  • In various embodiments and with specific reference to FIG. 1B, fuel mixing is shown as letter G. Fuel may be discharged through gas port 116 from fuel distribution channel 114 into mixing chamber 124. Fuel distribution G generally shows that the fuel does not mix well into mixing chamber 124, but rather, remains clustered (e.g., close to) near interior wall 117 as the fuel propagates from mixing chamber 124 to transition zone 124'. This clustering or lack of fuel dispersion and/or penetration may result in inefficient combustion of fuel G. In this regard the fluid velocity in mixing chamber 124 generally increases at transition zone 124'. This increase in fluid velocity may minimize fuel distribution G as the fuel propagates from mixing chamber 124 to transition zone 124' causing the fuel to cluster along a portion of interior wall 117 adjacent to transition zone 124'.
  • In various embodiments and with reference to FIGs. 2A - 2C, adjusting the position of fuel port 216 may increase fuel penetration (e.g., the distance the fuel travels into the mixing chamber 224) and dispersion (e.g., the spreading of a mass of fuel across a volume) . More specifically, moving fuel port 216 forward (e.g., in the direction associated with reference A of the A-A' centerline) further away from transition zone 224' may allow fuel discharged through fuel port 216 to further propagate into mixing chamber 224. In this regard, the fluid velocity in mixing chamber 224 may be lower upstream of transition zone 224', allowing for greater fuel penetration in mixing chamber 224.
  • The fuel port 216 is defined by interior wall 217 at shoulder 219. With specific reference to FIG. 2B, fuel may be distributed or injected into mixing chamber 224 where the fluid velocity in the chamber is relatively low (e.g., the fluid velocity in an upstream portion of mixing chamber 224 may be lower than the fluid velocity in mixing chamber 224 near transition zone 224'). The fuel distribution G' demonstrates greater fuel penetration as compared to fuel distribution G, as shown in FIG. 1B. In this regard, fuel distribution G' illustrates that the fuel propagates across the entire volume of mixing chamber 224. This greater penetration provides for lower fuel density, a more suitable fuel-air mixture, and better ignition efficiency.
  • In various embodiments, the fuel distribution G' illustrates that the fuel may propagate into the volume of mixing chamber 224 as opposed to clustering near interior wall 217. The fuel may be conducted through the transition zone 224', and mixed with air supplied through channel 228, and a liquid supplied through channel 220 and lip 222. This air,fuel, and water mixture may be further supplied to the combustor for ignition. In this regard, the mixture (gas (e.g., fuel), liquid (e.g., fuel and/or water), and/or air) may be conducted to the combustor.
  • In various embodiments, interior wall 217 may comprise a plurality of gas ports 216. In various embodiments, interior wall 217 may define 8-14 gas ports 216 around its diameter. In various embodiments, interior wall 217 may define 12 gas ports 216 around its diameter. Gas ports 216 may be substantially aligned with one another around along a diameter of interior wall 217. Moreover, gas ports 216 may be equally spaced circumferentially around interior wall 217. The holes may be of any suitable diameter (e.g., 0.090 inches - .110 inches/0.2286cm to 0.29784cm) and/or pitch. The pitch may be a function of the shape and/or slope of shoulder 219. In this regard, the geometry of one or more gas ports 216 and/or number of gas ports may provide a Holdeman Parameter that is greater than the ratio of pitch to diameter.
  • In various embodiments and with reference to FIG. 2C, a portion of the dual fuel nozzle illustrating particular flow channels is provided. A liquid B may be supplied through liquid supply 218 and conducted to channel 220 and discharged through lip 222 as B'. Similarly, a gas A may be supplied to gas distribution channel 212 through gas distribution channel 214 and out of gas port 216 into mixing chamber 224 as A'. Air C may be supplied along channel 228 as C'. At transition zone 224', gas A' and liquid B' may be mixed and supplied into channel 228 and mixed with air C'. The mixture is then conducted to a combustor for gas turbine operation, ignition and/or burning.
  • Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the inventions. The scope of the inventions is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more." Moreover, where a phrase similar to "at least one of A, B, or C" is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
  • Systems, methods and apparatus are provided herein. In the detailed description herein, references to "one embodiment", "an embodiment", "various embodiments", etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
  • As used herein, the terms "comprises", "comprising", or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process,

Claims (15)

  1. A gas turbine fuel nozzle, comprising:
    a housing (210), defining a mixing chamber (224) including a transition zone (224'), the housing (210) comprising,
    an interior wall (217) comprising a first, upstream wall portion having a first diameter, a second, downstream wall portion having a second diameter smaller than the first diameter, and a sloping shoulder (219) joining the first and second wall portions;
    wherein the interior wall (217) defines a fuel gas port (216) configured to conduct a fuel gas into the mixing chamber (224), wherein the fuel propagates across a volume of the mixing chamber (224) prior to reaching the transition zone (224');
    characterized in that:
    the fuel gas port (216) is defined in the shoulder (219).
  2. The gas turbine fuel nozzle of claim 1, further comprising a liquid supply (218).
  3. The gas turbine fuel nozzle of claim 2, wherein the liquid supply (218) is configured to conduct a liquid to the transition zone (224').
  4. The gas turbine fuel nozzle of claim 3, wherein the liquid is at least one of a liquid fuel and water.
  5. The gas turbine fuel nozzle of any preceding claim, wherein the shoulder (219) defines a plurality of fuel gas ports (216).
  6. The gas turbine fuel nozzle of any preceding claim, wherein the fuel gas port (216) has a diameter of approximately 2.286mm (0.090inches) to approximately 2.794mm (0.110 inches).
  7. The gas turbine fuel nozzle of any preceding claim, wherein the fuel gas propagates away from the interior wall (217).
  8. A dual fuel nozzle, comprising:
    a gas supply;
    an interior wall (217) comprising a first, upstream wall portion having a first diameter, a second, downstream wall portion having a second diameter smaller than the first diameter, and a sloping shoulder (219) joining the first and second wall portions;
    a housing (210) defining a gas discharge zone configured to receive a gas from the gas port (216), the gas discharge zone comprising a transition zone (224');
    a liquid supply (218); and
    a liquid supply channel (220) configured to conduct a liquid into the transition zone (224'); characterised in that
    the shoulder (219) defines the gas port (216).
  9. The dual fuel nozzle of claim 8, wherein the liquid is a liquid fuel.
  10. The dual fuel nozzle of claim 8, wherein the liquid is water and is supplied to reduce emissions.
  11. The dual fuel nozzle of claim 8, 9 or 10, wherein the shoulder (219) defines a plurality of gas ports (216).
  12. The dual fuel nozzle of any of claims 8 to 11, wherein the gas penetrates a volume of the gas discharge zone (224).
  13. The dual fuel nozzle of any of claims 8 to 12, wherein the gas propagates away from the interior wall (217).
  14. The dual fuel nozzle of any of claims 8 to 13, wherein the gas and the liquid mix in the transition zone (224').
  15. The dual fuel nozzle of any of claims 8 to 14, further comprising an air channel (228) configured to conduct air to the transition zone (224'), wherein the air is mixed with the liquid and the gas.
EP14838205.4A 2013-08-20 2014-08-19 Dual fuel nozzle system and apparatus Active EP3036482B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361867869P 2013-08-20 2013-08-20
PCT/US2014/051582 WO2015026760A1 (en) 2013-08-20 2014-08-19 Dual fuel nozzle system and apparatus

Publications (3)

Publication Number Publication Date
EP3036482A1 EP3036482A1 (en) 2016-06-29
EP3036482A4 EP3036482A4 (en) 2017-05-03
EP3036482B1 true EP3036482B1 (en) 2020-10-21

Family

ID=52484086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14838205.4A Active EP3036482B1 (en) 2013-08-20 2014-08-19 Dual fuel nozzle system and apparatus

Country Status (3)

Country Link
US (1) US20160201897A1 (en)
EP (1) EP3036482B1 (en)
WO (1) WO2015026760A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605459B2 (en) * 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US10578306B2 (en) * 2017-06-16 2020-03-03 General Electric Company Liquid fuel cartridge unit for gas turbine combustor and method of assembly
DE102022201182A1 (en) 2022-02-04 2023-08-10 Rolls-Royce Deutschland Ltd & Co Kg Nozzle assembly with connecting pipe passing through a fuel pipe in a nozzle main body for air flow
DE102022207493A1 (en) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Connection device for flow connection between a fuel supply system and a nozzle device, nozzle device and gas turbine arrangement
DE102022207492A1 (en) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Nozzle device for adding at least one gaseous fuel and one liquid fuel, set, supply system and gas turbine arrangement
DE102022208339A1 (en) 2022-08-10 2024-02-15 Rolls-Royce Deutschland Ltd & Co Kg Combustion chamber arrangement for operation with liquid and/or gaseous fuel, gas turbine arrangement and method
DE102022210807A1 (en) 2022-10-13 2024-04-18 Rolls-Royce Deutschland Ltd & Co Kg Propulsion system for an aircraft, aircraft with a propulsion system and method for operating an aircraft

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123273A (en) * 1997-09-30 2000-09-26 General Electric Co. Dual-fuel nozzle for inhibiting carbon deposition onto combustor surfaces in a gas turbine
JP4683787B2 (en) * 2001-03-09 2011-05-18 大阪瓦斯株式会社 Burner device and gas turbine engine
US20020162333A1 (en) * 2001-05-02 2002-11-07 Honeywell International, Inc., Law Dept. Ab2 Partial premix dual circuit fuel injector
US6895755B2 (en) * 2002-03-01 2005-05-24 Parker-Hannifin Corporation Nozzle with flow equalizer
US6871501B2 (en) * 2002-12-03 2005-03-29 General Electric Company Method and apparatus to decrease gas turbine engine combustor emissions
JP5472863B2 (en) * 2009-06-03 2014-04-16 独立行政法人 宇宙航空研究開発機構 Staging fuel nozzle
US8661825B2 (en) * 2010-12-17 2014-03-04 General Electric Company Pegless secondary fuel nozzle including a unitary fuel injection manifold
US8925325B2 (en) * 2011-03-18 2015-01-06 Delavan Inc. Recirculating product injection nozzle
JP5772245B2 (en) * 2011-06-03 2015-09-02 川崎重工業株式会社 Fuel injection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160201897A1 (en) 2016-07-14
WO2015026760A1 (en) 2015-02-26
EP3036482A4 (en) 2017-05-03
EP3036482A1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
EP3036482B1 (en) Dual fuel nozzle system and apparatus
US9115896B2 (en) Fuel-air mixer for use with a combustor assembly
JP6196868B2 (en) Fuel nozzle and its assembly method
US8572981B2 (en) Self-oscillating fuel injection jets
JP4872992B2 (en) Combustor, fuel supply method for combustor, and modification method for combustor
EP2584268A2 (en) Flashback resistant tubes in tube LLI design
EP1826485B1 (en) Burner and method of combustion with the burner
CN107923620B (en) System and method for a multi-fuel premixing nozzle with integral liquid injector/evaporator
US9182124B2 (en) Gas turbine and fuel injector for the same
EP2481985B1 (en) Fuel injector assembly
US20190003713A1 (en) Air-shielded fuel injection assembly to facilitate reduced nox emissions in a combustor system
US20160061452A1 (en) Corrugated cyclone mixer assembly to facilitate reduced nox emissions and improve operability in a combustor system
US10054314B2 (en) Slotted injector for axial fuel staging
JP2011242123A (en) Late lean injection injector
CN102401380A (en) Apparatus and method for mixing fuel in gas turbine nozzle
EP3278030A1 (en) Pre-mixing based fuel nozzle for use in a combustion turbine engine
US10352570B2 (en) Turbine engine fuel injection system and methods of assembling the same
US9127844B2 (en) Fuel nozzle
US9677766B2 (en) Fuel nozzle for use in a turbine engine and method of assembly
EP2402653A1 (en) Swirled fuel injection
US20240263581A1 (en) High shear fuel distributor
US8863526B2 (en) Fuel injector
KR101884694B1 (en) Nozzle hub with fuel injection holes
US8950189B2 (en) Gas turbine engine staged fuel injection using adjacent bluff body and swirler fuel injectors
CN116928699A (en) Dual-fuel air premixing nozzle and gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SNYDER, TIMOTHY S.

Inventor name: KOPP-VAUGHAN, KRISTIN

Inventor name: DAI, ZHONGTAO

Inventor name: SMITH, RANDOLPH J.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNITED TECHNOLOGIES CORPORATION

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170330

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/28 20060101ALI20170325BHEP

Ipc: F02C 7/22 20060101ALI20170325BHEP

Ipc: F23R 3/36 20060101AFI20170325BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191118

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1326210

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014071524

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1326210

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201021

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RAYTHEON TECHNOLOGIES CORPORATION

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014071524

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

26N No opposition filed

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210819

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140819

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021