EP3032918B1 - Method for operating an assembly for emitting light with adjustable intensity and/or colour location - Google Patents

Method for operating an assembly for emitting light with adjustable intensity and/or colour location Download PDF

Info

Publication number
EP3032918B1
EP3032918B1 EP14197378.4A EP14197378A EP3032918B1 EP 3032918 B1 EP3032918 B1 EP 3032918B1 EP 14197378 A EP14197378 A EP 14197378A EP 3032918 B1 EP3032918 B1 EP 3032918B1
Authority
EP
European Patent Office
Prior art keywords
led light
arrangement
light source
dominant wavelength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14197378.4A
Other languages
German (de)
French (fr)
Other versions
EP3032918A1 (en
Inventor
Hannes Laky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumitech Patentverwertung GmbH
Original Assignee
Lumitech Patentverwertung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumitech Patentverwertung GmbH filed Critical Lumitech Patentverwertung GmbH
Priority to ES14197378T priority Critical patent/ES2912742T3/en
Priority to EP14197378.4A priority patent/EP3032918B1/en
Publication of EP3032918A1 publication Critical patent/EP3032918A1/en
Application granted granted Critical
Publication of EP3032918B1 publication Critical patent/EP3032918B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/28Circuit arrangements for protecting against abnormal temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the invention relates to a method for operating an arrangement designed to emit light whose brightness and/or color location can be adjusted and which has at least two electrically controllable LED light sources which differ from one another in a dominant wavelength of the light they generate in each case, wherein the light emitted by the arrangement is generated by additively mixing the light generated by the individual LED light sources, the LED light sources being supplied individually in such a way that a predetermined dominant wavelength of the light emitted by the arrangement is independent of the respective brightness of this light is constant and/or that a predetermined brightness of the light emitted by the arrangement is constant independently of the respective dominant wavelength of this light.
  • the invention also relates to a system for generating light whose brightness and/or color location can be adjusted, having at least one arrangement for emitting light whose brightness can be adjusted and at least one electronic control unit configured to control the arrangement, the arrangement having at least two electrically has controllable LED light sources which differ from one another in a dominant wavelength of the light they generate in each case, the LED light sources being designed to be controllable and arranged in relation to one another in such a way that the light emitted by the arrangement is produced by additively mixing the light emitted by the individual LED Light sources each light generated is generated, the control unit being set up in such a way that the LED light sources are supplied individually in such a way that a predetermined dominant wavelength of the light emitted by the arrangement is independent of the respective brightness of this light s is constant and/or that a predetermined brightness of the light emitted by the arrangement is constant independently of the respective dominant wavelength of this light.
  • a dominant wavelength provides a way of describing a polychromatic mixture of light in terms of a monochromatic light that produces a similar hue perception to the polychromatic mixture of light.
  • a line which corresponds to that in the white point contained in the CIE chromaticity diagram and a point representing the color of a polychromatic light mixture produced by a light source can be extrapolated in such a way that the line intersects the edge of the CIE chromaticity diagram at two points of intersection.
  • the point of intersection that is closer to the point for the color of the polychromatic light mixture represents the dominant wavelength of the color of this light mixture as a wavelength of a monochromatic light or a certain pure spectral color.
  • the dominant wavelength depends on the entire course of the optical spectrum, which the light to be characterized with regard to the color locus has.
  • a spectrum is often characterized by Parameters such as peak wavelength and FWHM are described.
  • the color locus is only clearly defined by these parameters if further information about the spectrum is known, such as symmetry properties. For example, if an LED has a Gaussian curve, the spectrum and thus the dominant wavelength is clearly determined by specifying the peak wavelength and the half-width. However, this does not apply to any other, in particular asymmetrical, spectra. For this reason, in the present description, the color locus is described by the dominant wavelength and not by other spectral parameters.
  • Arrangements for emitting light whose brightness can be adjusted which have at least two LED light sources, are known.
  • This pulsed driving of corresponding arrays causes the light emitted by the arrays to be pulsed.
  • the dominant wavelength or the color locus in the CIE standard chromaticity diagram of a light generated by an LED light source is highly dependent on the amperage of the current with which the LED light source is supplied. Not only the peak wavelength can change, but also the shape and/or the width of the spectrum.
  • the amperage of the current supplying the LED light sources is constant during a pulse width, as a result of which the light generated by the LED light sources of the arrangement or the light emitted by the arrangement during a pulse width is essentially a constant dominant wavelength or has a constant color locus.
  • a disadvantage of the conventional arrangements is that the pulsed light emitted by these arrangements is unsuitable if it leads to undesirable effects when used. This is the case in particular when such lighting is used for film recordings, since the frequency of the pulsed light with the image refresh rate can lead to beats. This effect could be eliminated by synchronizing the pulse frequency of a light emitted by the arrangement with the frame rate, ie the frame refresh rate with which the images of a film recording are generated. However, this would lead to an undesirably high level of technical complexity.
  • the different pulse widths of the different LED light sources can lead to disturbing image segments with the wrong color or black stripes in the image display.
  • long-term exposure to pulsating light with frequencies ⁇ 1 kHz is perceived by the human eye as disturbing and questionable in terms of well-being.
  • the object of the invention is to make it possible to emit a light that can be adjusted in terms of its brightness and/or its color location with an arrangement of the type mentioned at the outset, in which the above-mentioned disadvantages do not occur.
  • the LED light sources of the arrangement are supplied with a direct current, ie with an unpulsed current, so that the light emitted by the arrangement is not pulsed—as is conventional—but is continuous. This avoids the disadvantages described above with reference to the prior art. Controlling the brightness and/or the color locus of the light emitted by the arrangement is achieved by controlling the current strength of the direct current individually supplying the individual LED light sources.
  • the LED light sources are supplied with direct current in such a way that a predetermined dominant wavelength of the light emitted by the arrangement is constant regardless of the respective brightness of this light or - in the entire range in which the brightness of the light, i.e. the photometric radiant power (i.e the luminous flux measured in lumens) can be adjusted only varies by a predetermined maximum amount.
  • the set dominant wavelength or the color locus of the light emitted by the arrangement is always the same, regardless of the brightness set in each case. This can be achieved by individually supplying the individual LED light sources of the arrangement with direct current.
  • the LED light sources are individually supplied with direct current in such a way that a predetermined brightness of the light emitted by the arrangement is constant regardless of the respective dominant wavelength of this light or - in the entire range in which the brightness of the light, i.e. the photometric Radiant power (i.e. the luminous flux measured in lumens) can be adjusted, only varies by a predetermined maximum amount.
  • the set brightness of the light emitted by the arrangement is always the same, regardless of the respective, in particular changeable, dominant wavelength of this light. This can be achieved by individually supplying the individual LED light sources of the arrangement with direct current.
  • An arrangement operated according to the method according to the invention can also have three or more LED light sources.
  • a plurality of LED light sources, in particular connected in series with one another, can also be present from each type of LED light source.
  • the arrangement can be set up to emit colored, white and/or variable light in terms of its color locus.
  • the LED light sources of the arrangement can be supplied with a direct current by means of a driver circuit, the current intensity of which can be set via the driver circuit, but is kept constant at a desired value after the respective setting.
  • At least one LED light source is supplied with direct current, taking into account a predetermined dependence of the dominant wavelength of the light generated by this LED light source on a current intensity of a direct current supplying this LED light source.
  • a characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the current intensity of the direct current supplying this LED light source.
  • Such a characteristic curve can additionally contain a predetermined dependency of the dominant wavelength of the light generated by the LED light source on a temperature of this LED light source and/or on a temperature of the arrangement.
  • the predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.
  • the individual drive currents for the individual LED light sources can be determined in a variety of ways from the individual characteristic curves or characteristic curve fields for all individual LED light sources .
  • a multidimensional dependency of the luminous flux which defines the brightness, of the light generated by the entire arrangement can be established from the associated individual drive currents for the individual LED light sources.
  • a value for the luminous flux can then be specified with a manipulated variable (e.g. the resistance value of a potentiometer or a digital value of a control signal).
  • the individual drive current for the individual LED light sources can then be determined immediately from the known dependency and selected or set accordingly.
  • the multidimensional dependency can also include and take into account the temperature dependency of the dominant wavelengths of the individual LED light sources. The aging or degradation of the LED light sources can also be taken into account in this way.
  • the brightness control can also be effected in such a way that an LED light source, which can be referred to as a lead LED light source, is supplied with an arbitrary current. Since the dependency of the dominant wavelength of this guide LED light source is known, all other LED light sources can be controlled with a direct current selected in such a way, taking into account their dependencies of the respective dominant wavelength on the respective supply direct current, that the specified dominant wavelength of the entire arrangement emitted light remains constant or only fluctuates within a tolerated value range. Here, therefore, it is not the luminous flux of the light generated by the entire arrangement that can be specified, but rather the amperage of the drive current for the guide LED light source.
  • the LED light source becomes the leading LED light source use that makes the greatest contribution to the luminous flux of the light generated by the entire arrangement.
  • a temperature of at least one LED light source is detected, this LED light source being supplied with direct current taking into account a predetermined dependency of the dominant wavelength of the light generated by this LED light source on the temperature of this LED light source.
  • a separate characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the temperature of the respective LED light source.
  • Such a characteristic curve can be used during operation of the arrangement to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the LED light source or to cancel it by appropriate control of the power supply of the LED light source.
  • LED light sources each taking into account a predetermined dependence of the dominant wavelength of the light generated by the respective LED light source on the temperature of the respective LED light source.
  • the temperature of an LED light source can be detected using a temperature sensor.
  • the predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.
  • a further advantageous embodiment provides that at least one LED light source is supplied with direct current, taking into account a predetermined dependence of the dominant wavelength of the light emitted by the arrangement on a current intensity of a direct current supplying the arrangement as a whole.
  • a characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the current intensity of the direct current supplying the arrangement as a whole.
  • Such a characteristic curve can also have a predetermined dependence of the dominant wavelength of the light generated by the LED light source on a temperature of this LED light source and/or a temperature of the assembly.
  • Two or more, in particular all, LED light sources can also be supplied with direct current, taking into account a predetermined dependency of the dominant wavelength of the light generated by the respective LED light source on the current strength of the direct current supplying the arrangement as a whole.
  • the predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.
  • At least one LED light source is supplied with direct current, taking into account a predetermined dependency of the dominant wavelength of the light emitted by the arrangement on a temperature of the arrangement.
  • a characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the temperature of the arrangement.
  • Such a characteristic curve can be used during operation of the arrangement to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the LED light source or to cancel it by appropriate control of the power supply of the LED light source.
  • two or more, in particular all, LED light sources to be supplied with direct current, each taking into account a predetermined dependency of the dominant wavelength of the light generated by the respective LED light source on the temperature of the arrangement.
  • the predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.
  • At least one LED light source is supplied with direct current, taking into account the current intensity of a direct current supplying at least one further LED light source.
  • Two or more LED light sources can also be supplied with direct current, each taking into account the current strength of a direct current supplying at least one further LED light source.
  • a characteristic curve or a family of characteristic curves can be used which, for predetermined dominant wavelengths or color coordinates of the light emitted by the arrangement, shows the dependence of the current intensity of the current supplying the at least one LED light source on the current intensity of the at least one other LED light source powering direct current reproduces.
  • the current supplying the at least one LED light source can be tracked in order to keep the dominant wavelength or the color locus of the light emitted by the arrangement constant.
  • the tracking can take place continuously or discretely at intervals of about 10 ms to about 100 ms, with characteristic curves or characteristic curve fields arranged sufficiently close to one another, which differ from one another only by small differences in the current intensity of the direct current supplying the at least one further LED light source , the respective next characteristic or the respective next family of characteristics can be selected for determining the current intensity of the direct current supplying the at least one LED light source.
  • a linear interpolation between values from two characteristic curves or characteristic curve fields arranged adjacent to one another or a non-linear interpolation from values for more than two characteristic curves or characteristic curve fields arranged adjacent to one another can also be undertaken.
  • Such a characteristic or such a family of characteristics can additionally contain a predetermined dependence of the dominant wavelength of the light generated by the LED light source on a temperature of this LED light source and/or on a temperature of the arrangement.
  • the LED light sources are supplied with direct current in such a way that the color locus of the light emitted by the arrangement is on or near the Planck curve in at least one predetermined sub-range of a color temperature range of 1500 K to 10000 K.
  • the size of the partial range is preferably at least 1000 K, preferably at least 2000 K or particularly preferably at least 3000 K.
  • the partial range preferably extends from 3500 K to 4500 K, preferably from 3500 K to 5500 K or particularly preferably from 2700 K to 6500 K.
  • the Planckian curve is contained in the 1931 CIE chromaticity chart, which is known to those skilled in the art.
  • the shape of the Planckian curve is defined by the colors of the radiation from a blackbody at different temperatures.
  • the LED light sources are supplied with direct current in such a way that the color locus of the light emitted in each case by the arrangement is within a MacAdam ellipse associated with a reference hue lying on Planck's curve the preferred value is 10, 6, 4, 3 or less. These values are a measure of the size of the MacAdam ellipse.
  • the color locus can thus lie within a MacAdam ellipse with the value 10, 6, 4, 3 or smaller on or near the Planckian curve.
  • This high level of accuracy with regard to the desired optimal position of the color point of the light emitted by the arrangement makes it possible to keep the color point of the light emitted by the arrangement as close as possible or on the Planckian curve.
  • the electronic control unit can include at least one microprocessor.
  • the control of the arrangement that can be achieved with the electronic control unit can optimally adapt the arrangement to the respective application.
  • the LED light sources can be controlled by means of the electronic control unit with regard to the electrical power consumed or the optical radiometric power emitted or the photometric power emitted by them in such a way that the desired color locus results.
  • the electronic control unit can include a driver circuit which controls the LED light sources, each with a predetermined electrical power, in order to generate light with an overall spectrum which has the desired color temperature and has the desired color locus, in particular on or near the Planckian curve.
  • each individual LED light source can be connected to an associated output of the driver circuit.
  • one output of the driver circuit can also be provided for each light source, it being possible for the individual LED light sources to be connected in series and/or in parallel to the output of the driver circuit.
  • the LED light sources of the arrangement at least one LED light source set up to generate blue light, in particular with a dominant wavelength between 380 nm and 480 nm, which has at least one light-emitting diode, at least one LED light source set up to generate conversion light with a color lying in a conversion range, which has at least one light-emitting diode set up for generating blue light and at least one conversion unit set up for photoluminescence, and/or at least one for generating red light, in particular with a dominant wavelength between 600 nm and 640 nm, or green light, in particular with a dominant wavelength between 500 nm nm and 560 nm furnished LED light source, which has at least one light-emitting diode.
  • the arrangement can also have two or more LED light sources of each type of LED light source, for example connected in series with one another.
  • the arrangement can also have two or more blue light-emitting diodes, conversion light sources and/or red light sources and different combinations of these components in order to be able to optimally adapt the arrangement to different applications, in particular with regard to the intensity of the light it can emit.
  • the LED light sources can be controlled by the electronic control unit in terms of the electrical power they consume or the optical radiometric power they deliver or the photometric power they deliver in such a way that a desired color locus results, in particular on or near the Planckian curve .
  • This controllability of the arrangement or its components allows, for example, a very precise simulation of real daylight in a room, for example an office, by simulating the course of the color temperature of daylight (yellowish in the morning and evening and more bluish at noon).
  • the arrangement can also be driven to generate white light with a constant color temperature.
  • the LED light source set up to generate conversion light can have one, two or more light-emitting diodes set up to generate blue light, part of the light of which is emitted by the arrangement and part of which is used to excite the conversion unit set up for photoluminescence.
  • the dominant wavelength of the blue light generated by a light-emitting diode of the LED light source set up to generate conversion light can be smaller than the dominant wavelength of the conversion light generated by photoluminescence from the conversion unit excited with this blue light.
  • the LED light source configured to generate red light can also have at least one conversion unit and at least one light-emitting diode, the light-emitting diode being arranged relative to the conversion unit in such a way that at least part of the light generated by the light-emitting diode impinges on the conversion unit. Accordingly, instead of a red light-emitting diode emitting red light, a light-emitting diode, in particular generating blue light, and a suitable conversion unit are used to form the LED light source set up to generate red light. Alternatively, a red light-emitting diode configured to generate red light can be used to form the LED light source configured to generate red light.
  • the system has at least one temperature sensor with which the temperature of at least one LED light source can be detected, in particular directly or indirectly.
  • the temperature of two or more, in particular all, LED light sources or of the entire arrangement can also be detected with the temperature sensor.
  • the temperature sensor is connected wirelessly or wired to the electronic control unit.
  • the temperature of at least one LED light source can also be determined indirectly from the light generated by the LED light source, for example from the peak wavelength or half-width of the spectrum generated.
  • the temperature of at least one LED light source can be determined from the electrical properties, such as voltage drop or capacitance.
  • information is stored in at least one non-volatile electronic memory which is used to determine the current strengths of the individual supply currents for at least one of the at least two of the LED light sources.
  • This dependency or dependencies can be taken into account via separate characteristic curves for controlling the power supply of the LED light source.
  • the dependency or the dependencies can be contained in a characteristic curve which reproduces at least one of the dependencies of the advantageous embodiment mentioned immediately above.
  • figure 1 shows a schematic representation of an exemplary embodiment of a system 1 according to the invention for generating light whose brightness and/or color location can be adjusted.
  • the system 1 comprises an arrangement 2 for emitting light whose brightness can be adjusted and an electronic control unit 3 which is set up for controlling the arrangement 2.
  • the arrangement 2 comprises three electrically controllable LED light sources 4, 5 and 6, which are in the dominant wavelength of the light generated by them differ from one another, with the LED light sources 4, 5 and 6 being designed to be controllable and arranged relative to one another such that the light emitted by the arrangement 2 is generated by additive mixing of the light generated by the individual LED light sources 4, 5 and 6 in each case.
  • the LED light sources 4, 5 and 6 of the arrangement 2 comprise an LED light source 4 set up to generate blue light, which has at least one light-emitting diode (not shown), an LED light source 5 set up to generate conversion light with a color lying in a conversion range , which has at least one light-emitting diode, not shown, set up to generate blue light and at least one conversion unit, not shown, set up for photoluminescence, and an LED light source 6 set up to generate red light, which has at least one light-emitting diode, not shown.
  • the system 1 also includes one or more temperature sensors 7 with which the temperature of the individual LED light sources 4 , 5 and 6 or the arrangement 2 can be detected and which emits temperature signals to the electronic control unit 3 . If several temperature sensors 7 are provided, one temperature sensor 7 can be assigned to a specific LED light source 4, 5 or 6 or to a light-emitting diode of the light source 4, 5 or 6 in question. It is of course also possible to assign one of several temperature sensors 7 to several selected LED light sources 4, 5 or 6.
  • the temperature sensor or sensors 7 can be designed in any way, both as independent components and as sensors designed at least partially integrated with other components. For example, the forward voltage or the specific emission behavior of the LED light sources 4, 5 and 6 or one or more of the relevant light-emitting diodes can also be used to determine the temperature.
  • the non-volatile electronic memory 8 can be in the form of an EPROM or EEPROM and is connected to the electronic control unit 3 in terms of communication.
  • a dependence of the dominant wavelength of the light generated by at least one LED light source 4, 5 or 6 on the temperature of this LED light source 4, 5 or 6 and/or a dependence of the dominant wavelength of the Arrangement 2 emitted light be stored by a temperature of the arrangement 2.
  • the electronic control unit 3 is set up to supply the LED light sources 4, 5 and 6 individually with direct current in such a way that a dominant wavelength of the light emitted by the arrangement 2 is constant regardless of the respective brightness of this light.
  • the arrangement 2, in particular its conductor tracks, is connected to the control unit 3 and the control unit 3 is designed in such a way that each of the LED light sources 4, 5 and 6 can be controlled or is controlled with such an electrical power that the respective LED -Light source 4, 5 or 6 emits such a spectrum that the additively mixed overall spectrum represents light with the desired properties.
  • the electronic control unit 3 can also be set up to supply the LED light sources 4, 5 and 6 individually with direct current in such a way that the brightness of the light emitted by the arrangement 2 is constant regardless of the changeable, dominant wavelength of this light.
  • the control unit 3 has an electronic controller 9 and three driver circuits 10, 11 and 12 connected to the electronic controller for communication purposes, with one driver output being connected to one of the LED light sources 4, 5 or 6 in each case.
  • the driver circuits 10, 11 and 12 can be controlled in such a way that the LED light sources 4, 5 and 6 are operated individually with a predetermined constant direct current, so that the spectra generated by the LED light sources 4, 5 and 6 have the desired properties, in particular the radiometric or photometric output set by the brightness setting according to the invention.
  • the electronic controller 9 can include at least one microcontroller.
  • the electronic controller 9 is connected in terms of communication to an input interface 18, via which default values for a desired color locus or for a dominant wavelength of the light emitted by the arrangement 2 and/or a desired brightness of the light emitted by the arrangement 2 can be generated, which can be wirelessly generated or can be transmitted to the electronic control by cable.
  • the input interface 18 can include, for example, a potentiometer, a wirelessly coupled mobile unit, for example a mobile radio terminal, in particular a smartphone, or the like.
  • the input interface 18 can also include a unit for generating digital values corresponding to the default values, which can be processed by the electronic controller 9 or its microcontroller .
  • a receiving unit can be present for the electronic control 9 in order to be able to receive the digital values generated by the smartphone.
  • FIG. 12 shows a diagram which contains the CIE standard color table 1931 identified by the reference number 13.
  • FIG. The diagram also shows a color locus 14 of the light generated by an LED light source 4 set up to generate blue light, a color locus 15 of the light generated by an LED light source 6 set up to generate red light, and a color locus 16 of the light generated by a LED light source 5, which is set up to generate conversion light with a color lying in a conversion range, generates light, the color locus 16 lying in a green-yellow color range.
  • Planck's curve 17 is also drawn in the diagram.
  • the color locations 14, 15 and 16 are connected to one another via lines to form a triangle, with the triangle all having a corresponding arrangement 2 possible adjustable color coordinates of the light emitted by the arrangement 2 are defined.
  • figure 3 shows a section of the in figure 2 diagram shown in the area of the color locus 14, which shows the dependence of the color locus 14 of the light generated by the LED light source 4 set up to generate blue light on the current intensity of the direct current supplying this LED light source 4.
  • a color locus 14 is drawn in for each set current intensity, the color locus 14 with the greatest y-value being associated with a current of 1 mA and the color locus 14 with the smallest y-value being associated with a current of 200 mA.
  • the color locations 14 were each determined shortly after the current was switched on by the LED light source 4 in order to rule out temperature effects when the LED light source 4 is operated with direct current.
  • figure 4 shows a section of the in figure 2 diagram shown in the area of the color locus 15, which shows the dependence of the color locus 15 of the light generated by the LED light source 6 set up to generate red light on the current strength of the direct current supplying this LED light source 6.
  • a color locus 15 is drawn in for each set current intensity, the color locus 15 with the greatest y-value being associated with a current of 1 mA and the color locus 15 with the smallest y-value being associated with a current of 40 mA.
  • the color locations 15 were each determined shortly after the current was switched on by the LED light source 6 in order to rule out temperature effects when the LED light source 6 was operated with direct current.
  • figure 5 shows a diagram of the CIE standard color table 13 and color locations 14, 15 and 16 of LED light sources 4, 5 and 6 of an exemplary embodiment of a system 1 according to the invention at different temperatures of the LED light sources 4, 5 and 6 in a range of approx -40°C to about 120°C. This is more accurate figures 6 and 7 refer to.
  • figure 6 shows a section of the in figure 5 diagram shown in the area of the color locus 14, which shows the dependence of the color locus 14 of the light generated by the LED light source 4 set up to generate blue light on the temperature of this LED light source 4. It is a color locus for different temperatures 14 are drawn in, the color location 14 with the largest y-value being associated with the temperature 120°C and the color location 14 with the smallest y-value being associated with the temperature -40°C.
  • the measured values shown were recorded with current pulses with a duration of 500 ns and a repetition rate of 500 ⁇ s in order to be able to rule out any influence of the heating of the barrier layer of the LED light source 4 .
  • figure 7 shows another section of the in figure 5 shown diagram in the area of the color point 15, which shows the dependence of the color point 15 of the light generated by the LED light source 6 set up to generate red light on the temperature of this LED light source 6.
  • a color locus 15 is drawn in for different temperatures, the color locus 15 with the largest y-value being associated with the temperature -40°C and the color locus 15 with the smallest y-value being associated with the temperature 120°C.
  • the measured values shown were recorded with current pulses with a duration of 500 ns and a repetition rate of 500 ⁇ s in order to be able to rule out any influence of the heating of the barrier layer of the LED light source 6 .
  • the dependence of the color locus of the light emitted by the arrangement 2 from the individual direct currents I 1 to I n through the individual LED light sources 1 to n is deliberately switched off in the conventional pulse width modulated control of LED light sources.
  • the at least one characteristic curve or the at least one characteristic field takes into account the additional dependency of the color locus of the light emitted by the arrangement 2 on the temperatures T of the individual LED light sources 1 to n or the temperatures of the junction layers of the individual LED light sources 1 to n.
  • a characteristic field can thus be used in which all possible n-tuples for the variables I 1 to I n , ⁇ d , Q (brightness of the light emitted by the arrangement 2), T are contained within value ranges for the individual variables.
  • the luminous flux PHI measured in lumens, can also be used for the brightness Q.
  • a normalized brightness for example between zero (or a lower limit, e.g. 10% of the maximum achievable brightness) and 100% of the maximum achievable brightness (this can also depend on the color point).
  • the currents I 1 to I n are real independent parameters (within specified value ranges).
  • the parameters ⁇ d and Q depend on the independent parameters I 1 to I n and result from the independent parameters.
  • the parameter T is also not completely independent of the independent parameters I 1 to I n .
  • the independent parameters I 1 to I n influence the junction temperature of the respective LED light source 1 to n.
  • the respective junction temperature also depends on the respective ambient temperature and the respective heat transfer resistance, which is decisive for the release of heat from the respective junction to the environment is.
  • starting values for currents I0 1 to I0n can be determined as a function of specified values for the color locus or ⁇ d and the desired brightness Q (eg 80% of the maximum brightness). These starting values can be taken from the large characteristic diagram for a normal temperature T, for example. Instead, a separate characteristic map can be used for this, which links the values for I0 1 to I0 n , ⁇ d and Q for a specific temperature T (eg room temperature).
  • the influence of temperature can then be taken into account, where a temperature sensor 7 supplies a temperature value which initially deviates from an initial temperature. New values for the direct currents I 1 to I n for the new temperature value can then be taken from the characteristics map, or from a separate characteristics map, and the LED light sources 1 to n can be controlled accordingly.
  • the second step can also be divided into two sub-steps, with only the temperature influence on the direct currents I 1 to I n being corrected in a first sub-step in order to retain ⁇ d .
  • a characteristic map used for this purpose can only take into account the temperature dependency, without taking into account the influence of the changed direct currents I 1 to I n on the color locus of the light emitted by the arrangement 2 .
  • Such a characteristic field can be sufficient for the control/regulation of LED light sources 1 to n driven in a pulsed manner since there is no dependence of the color locus of the light emitted by the arrangement 2 on the direct currents I 1 to I n of temperature effects.
  • the changed direct currents I 1 to I n can then be corrected by means of a further characteristic diagram, in which the dependence of the color locus of the light emitted by the arrangement 2 on the direct currents I 1 to I n is taken into account, so that the desired Color point of the light emitted by the arrangement 2 is achieved or maintained.
  • the changed direct currents I 1 to I n will then again have an influence on the temperature T, etc. In the manner described, a desired state of equilibrium can be achieved after three such iterative steps.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer zum Emittieren von in seiner Helligkeit und/oder seinem Farbort einstellbarem Licht eingerichteten Anordnung, die wenigstens zwei elektrisch ansteuerbare LED-Lichtquellen aufweist, welche sich in einer dominanten Wellenlänge des jeweils von ihnen erzeugten Lichts voneinander unterscheiden, wobei das von der Anordnung emittierte Licht durch additives Mischen des von den einzelnen LED-Lichtquellen jeweils erzeugten Lichts erzeugt wird, wobei die LED-Lichtquellen derart individuell versorgt werden, dass eine vorgegebene dominante Wellenlänge des von der Anordnung emittierten Lichts unabhängig von der jeweiligen Helligkeit dieses Lichts konstant ist und/oder dass eine vorgegebene Helligkeit des von der Anordnung emittierten Lichts unabhängig von der jeweiligen dominanten Wellenlänge dieses Lichts konstant ist.The invention relates to a method for operating an arrangement designed to emit light whose brightness and/or color location can be adjusted and which has at least two electrically controllable LED light sources which differ from one another in a dominant wavelength of the light they generate in each case, wherein the light emitted by the arrangement is generated by additively mixing the light generated by the individual LED light sources, the LED light sources being supplied individually in such a way that a predetermined dominant wavelength of the light emitted by the arrangement is independent of the respective brightness of this light is constant and/or that a predetermined brightness of the light emitted by the arrangement is constant independently of the respective dominant wavelength of this light.

Des Weiteren betrifft die Erfindung ein System zum Erzeugen von in seiner Helligkeit und/oder seinem Farbort einstellbarem Licht, aufweisend wenigstens eine Anordnung zum Emittieren von in seiner Helligkeit einstellbarem Licht und wenigstens eine zum Ansteuern der Anordnung eingerichtete elektronische Steuereinheit, wobei die Anordnung wenigstens zwei elektrisch ansteuerbare LED-Lichtquellen aufweist, welche sich in einer dominanten Wellenlänge des jeweils von ihnen erzeugten Lichts voneinander unterscheiden, wobei die LED-Lichtquellen derart ansteuerbar ausgebildet und zueinander angeordnet sind, dass das von der Anordnung emittierte Licht durch additives Mischen des von den einzelnen LED-Lichtquellen jeweils erzeugten Lichts erzeugt wird, wobei die Steuereinheit derart eingerichtet ist, dass die LED-Lichtquellen derart individuell versorgt werden, dass eine vorgegebene dominante Wellenlänge des von der Anordnung emittierten Lichts unabhängig von der jeweiligen Helligkeit dieses Lichts konstant ist und/oder dass eine vorgegebene Helligkeit des von der Anordnung emittierten Lichts unabhängig von der jeweiligen dominanten Wellenlänge dieses Lichts konstant ist.The invention also relates to a system for generating light whose brightness and/or color location can be adjusted, having at least one arrangement for emitting light whose brightness can be adjusted and at least one electronic control unit configured to control the arrangement, the arrangement having at least two electrically has controllable LED light sources which differ from one another in a dominant wavelength of the light they generate in each case, the LED light sources being designed to be controllable and arranged in relation to one another in such a way that the light emitted by the arrangement is produced by additively mixing the light emitted by the individual LED Light sources each light generated is generated, the control unit being set up in such a way that the LED light sources are supplied individually in such a way that a predetermined dominant wavelength of the light emitted by the arrangement is independent of the respective brightness of this light s is constant and/or that a predetermined brightness of the light emitted by the arrangement is constant independently of the respective dominant wavelength of this light.

Eine dominante Wellenlänge stellt eine Möglichkeit dar, eine polychromatische Lichtmischung durch ein monochromatisches Licht, welches eine ähnliche Farbtonwahrnehmung wie die polychromatische Lichtmischung hervorruft, zu beschreiben. In der dem Fachmann bekannten CIE-Normfarbtafel von 1931 kann eine Linie, die den in der CIE-Normfarbtafel enthaltenen Weißpunkt und einen Punkt für die Farbe einer von einer Lichtquelle erzeugten polychromatischen Lichtmischung miteinander verbindet, so extrapoliert werden, dass die Linie den Rand der CIE-Normfarbtafel in zwei Schnittpunkten schneidet. Derjenige Schnittpunkt, der näher an dem Punkt für die Farbe der polychromatischen Lichtmischung liegt, repräsentiert die dominante Wellenlänge der Farbe dieser Lichtmischung als Wellenlänge eines monochromatischen Lichts bzw. einer bestimmten reinen spektralen Farbe. Die dominante Wellenlänge ist abhängig vom gesamten Verlauf des optischen Spektrums, welches das hinsichtlich des Farbortes zu charakterisierende Licht aufweist. Häufig wird ein Spektrum auch durch charakteristische Parameter, wie die Peakwellenlänge und die Halbwertsbreite, beschrieben. Allerdings ist der Farbort durch diese Parameter nur dann eindeutig festgelegt, wenn weitere Informationen über das Spektrum bekannt sind, wie z.B. Symmetrieeigenschaften. Weist eine LED beispielsweise einen gaußförmigen Verlauf auf, so ist das Spektrum und damit die dominante Wellenlänge durch die Angabe der Peakwellenlänge und der Halbwertsbreite eindeutig bestimmt. Dies gilt jedoch nicht für beliebige andere, insbesondere unsymmetrische Spektren. Aus diesem Grund wird in der vorliegenden Beschreibung der Farbort durch die dominante Wellenlänge und nicht durch andere spektrale Parameter beschrieben.A dominant wavelength provides a way of describing a polychromatic mixture of light in terms of a monochromatic light that produces a similar hue perception to the polychromatic mixture of light. In the CIE standard color table from 1931, which is known to the person skilled in the art, a line which corresponds to that in the white point contained in the CIE chromaticity diagram and a point representing the color of a polychromatic light mixture produced by a light source can be extrapolated in such a way that the line intersects the edge of the CIE chromaticity diagram at two points of intersection. The point of intersection that is closer to the point for the color of the polychromatic light mixture represents the dominant wavelength of the color of this light mixture as a wavelength of a monochromatic light or a certain pure spectral color. The dominant wavelength depends on the entire course of the optical spectrum, which the light to be characterized with regard to the color locus has. A spectrum is often characterized by Parameters such as peak wavelength and FWHM are described. However, the color locus is only clearly defined by these parameters if further information about the spectrum is known, such as symmetry properties. For example, if an LED has a Gaussian curve, the spectrum and thus the dominant wavelength is clearly determined by specifying the peak wavelength and the half-width. However, this does not apply to any other, in particular asymmetrical, spectra. For this reason, in the present description, the color locus is described by the dominant wavelength and not by other spectral parameters.

Anordnungen zum Emittieren von in seiner Helligkeit einstellbarem Licht, die wenigstens zwei LED-Lichtquellen aufweisen, sind bekannt. Solche Anordnungen werden zur Steuerung der Helligkeit des von ihnen emittierten Lichts üblicherweise mit einem gepulsten elektrischen Strom versorgt, dessen Pulsbreite entsprechend der gewünschten Helligkeit moduliert wird. Es wird somit laufend zwischen einer Stromstärke Null und einer konstanten Stromstärke hin und her geschaltet, wobei die dadurch hervorgerufene mittlere Stromstärke die optische radiometrische Strahlungsleistung bzw. die photometrische Strahlungsleistung und somit die Helligkeit des jeweils von den Anordnungen emittierten Lichts festlegt. Diese gepulste Ansteuerung von entsprechenden Anordnungen bewirkt, dass das von den Anordnungen emittierte Licht gepulst ist.Arrangements for emitting light whose brightness can be adjusted, which have at least two LED light sources, are known. In order to control the brightness of the light they emit, such arrangements are usually supplied with a pulsed electrical current, the pulse width of which is modulated in accordance with the desired brightness. It is thus continuously switched back and forth between a current intensity of zero and a constant current intensity, with the mean current intensity caused thereby determining the optical radiometric radiant power or the photometric radiant power and thus the brightness of the light emitted by the respective arrangements. This pulsed driving of corresponding arrays causes the light emitted by the arrays to be pulsed.

Es ist bekannt, dass die dominante Wellenlänge bzw. der Farbort in der CIE-Normfarbtafel eines von einer LED-Lichtquelle erzeugten Lichts stark von der Stromstärke des Stroms abhängt, mit dem die LED-Lichtquelle versorgt wird. Dabei kann sich nicht nur die Peakwellenlänge ändern, sondern auch die Form und/oder die Breite des Spektrums. Bei der vorbeschriebenen gepulsten Ansteuerung einer Anordnung ist die Stromstärke des die LED-Lichtquellen versorgenden Stroms während einer Pulsbreite konstant, wodurch das von den LED-Lichtquellen der Anordnung erzeugte Licht bzw. das von der Anordnung emittierte Licht während einer Pulsbreite im Wesentlichen eine konstante dominante Wellenlänge bzw. einen konstanten Farbort aufweist. Eine geringfügige Änderung der dominanten Wellenlänge bzw. des Farborts des Lichts wird bei der vorbeschriebenen Ansteuerung einer Anordnung jedoch dadurch bewirkt, dass bei einer geringeren mittleren Stromstärke des die LED-Lichtquellen der Anordnung versorgenden Stroms, d. h. bei einer Reduzierung der Pulsbreite gegenüber einer Pulspause, die elektrische Verlustleistung geringer ist. Dies geht im Betrieb einer Anordnung mit einer geringeren Erwärmung der Anordnung bzw. der LED-Lichtquellen der Anordnung und damit mit einer Beeinflussung des spektralen Verhaltens der LED-Lichtquellen, insbesondere mit einer Verschiebung der dominanten Wellenlänge und gegebenenfalls mit einer Veränderung der Form des von einer LED-Lichtquelle erzeugten Lichtspektrums, einher. Es ist bekannt, diesen Temperatureffekt mittels einer entsprechenden Kennlinie bzw. eines entsprechenden Kennlinienfeldes zu korrigieren, welche bzw. welches zur Einstellung der LED-Lichtquelle bzw. LED-Lichtquellen mit gepulstem Strom verwendet wird.It is known that the dominant wavelength or the color locus in the CIE standard chromaticity diagram of a light generated by an LED light source is highly dependent on the amperage of the current with which the LED light source is supplied. Not only the peak wavelength can change, but also the shape and/or the width of the spectrum. In the above-described pulsed control of an arrangement, the amperage of the current supplying the LED light sources is constant during a pulse width, as a result of which the light generated by the LED light sources of the arrangement or the light emitted by the arrangement during a pulse width is essentially a constant dominant wavelength or has a constant color locus. However, a slight change in the dominant wavelength or the color locus of the light is caused in the above-described control of an arrangement by the fact that at a lower average current intensity of the current supplying the LED light sources of the arrangement, ie with a reduction in the pulse width compared to a Pulse pause, the electrical power loss is lower. This is possible during operation of an arrangement with less heating of the arrangement or the LED light sources of the arrangement and thus with an influence on the spectral behavior of the LED light sources, in particular with a shift in the dominant wavelength and possibly with a change in the shape of one LED light source generated light spectrum, along. It is known to correct this temperature effect by means of a corresponding characteristic curve or a corresponding family of characteristic curves, which is used to adjust the LED light source or LED light sources with pulsed current.

Ein Verfahren und ein System mit den eingangs genannten Merkmalen ist aus WO 2008/137984 A1 , bei welchen das von der Anordnung emittierte Licht von einem Sensor erfasst wird und die Stromversorgung der individuellen LED-Lichtquellen auf der Basis des erfassten Lichts nachgeregelt wird. Weitere Verfahren und Systeme sind aus DE 10 2013 207961 A1 und Deurenberg P et al: "Achieving color point stability in RGB multi-chip LED modules using various control loops", Proceedings of SPIE, SPIE - International Society for optical engineering, US, Bd. 5941, 7. September 2005, Seiten 59410C-1, XP002428542 , bekannt. Weitere Verfahren und Systeme sind aus WO 2007/148250 A1 , WO 2011/157604 A1 und WO 2012/077046 A2 bekannt.A method and a system with the features mentioned above are out WO 2008/137984 A1 , in which the light emitted by the arrangement is detected by a sensor and the power supply of the individual LED light sources is readjusted on the basis of the detected light. Other procedures and systems are out DE 10 2013 207961 A1 and Deurenberg P et al: "Achieving color point stability in RGB multi-chip LED modules using various control loops", Proceedings of SPIE, SPIE - International Society for optical engineering, US, Vol. 5941, 7 September 2005, pages 59410C-1 , XP002428542 , famous. Other procedures and systems are out WO 2007/148250 A1 , WO 2011/157604 A1 and WO 2012/077046 A2 famous.

Nachteilig bei den herkömmlichen Anordnungen ist, dass das von diesen Anordnungen emittierte gepulste Licht ungeeignet ist, wenn es bei seiner Verwendung zu unerwünschten Effekten führt. Dies ist insbesondere bei einer Verwendung einer derartigen Beleuchtung für Filmaufnahmen der Fall, da hierbei die Frequenz des gepulsten Lichts mit der Bildwiederholfrequenz zu Schwebungen führen kann. Dieser Effekt könnte durch eine Synchronisation der Pulsfrequenz eines von der Anordnung emittierten Lichts mit der Bildrate, d. h. der Bildwiederholfrequenz mit welcher die Bilder einer Filmaufnahme erzeugt werden, beseitigt werden. Dies würde jedoch zu einem unerwünscht hohen technischen Aufwand führen. Zudem kann es bei digitaler Bildverarbeitung aufgrund unterschiedlicher Pulsweiten der unterschiedlichen LED-Lichtquellen zu störenden falschfarbigen Bildsegmenten oder schwarzen Streifen in der Bildwiedergabe kommen. Zusätzlich wird vom menschlichen Auge pulsierendes Licht mit Frequenzen < 1kHz bei langfristiger Exposition als störend und in Hinblick auf das Wohlbefinden als bedenklich wahrgenommen.A disadvantage of the conventional arrangements is that the pulsed light emitted by these arrangements is unsuitable if it leads to undesirable effects when used. This is the case in particular when such lighting is used for film recordings, since the frequency of the pulsed light with the image refresh rate can lead to beats. This effect could be eliminated by synchronizing the pulse frequency of a light emitted by the arrangement with the frame rate, ie the frame refresh rate with which the images of a film recording are generated. However, this would lead to an undesirably high level of technical complexity. In addition, with digital image processing, the different pulse widths of the different LED light sources can lead to disturbing image segments with the wrong color or black stripes in the image display. In addition, long-term exposure to pulsating light with frequencies < 1 kHz is perceived by the human eye as disturbing and questionable in terms of well-being.

Aufgabe der Erfindung ist es, ein Emittieren eines in seiner Helligkeit und/oder seinem Farbort einstellbaren Lichts mit einer Anordnung eingangs genannter Art zu ermöglichen, bei dem die oben genannten Nachteile nicht auftreten.The object of the invention is to make it possible to emit a light that can be adjusted in terms of its brightness and/or its color location with an arrangement of the type mentioned at the outset, in which the above-mentioned disadvantages do not occur.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 1 oder Patentanspruch 2 und durch ein System mit den Merkmalen gemäß Patentanspruch 5 oder Patentanspruch 6 gelöst. Vorteilhafte Ausge-staltungen sind in den Unteransprüchen und der Beschreibung wiedergegeben, welche jeweils für sich genommen oder in verschiedener Kombination miteinander einen Aspekt der Erfindung darstellen können.This object is achieved by a method having the features of claim 1 or claim 2 and by a system having the features of claim 5 or claim 6. Advantageous designs are given in the subclaims and the description, which, taken individually or in various combinations with one another, can represent an aspect of the invention.

Gemäß der Erfindung werden die LED-Lichtquellen der Anordnung mit einem Gleichstrom, also mit einem ungepulsten Strom, versorgt, so dass das von der Anordnung emittierte Licht nicht - wie herkömmlich - gepulst, sondern kontinuierlich ist. Hierdurch werden die oben mit Bezug auf den Stand der Technik beschriebenen Nachteile vermieden. Eine Steuerung der Helligkeit und/oder des Farbortes des von der Anordnung emittierten Lichts wird durch eine Steuerung der Strom stärke des die einzelnen LED-Lichtquellen jeweils individuell versorgenden Gleichstroms bewirkt.According to the invention, the LED light sources of the arrangement are supplied with a direct current, ie with an unpulsed current, so that the light emitted by the arrangement is not pulsed—as is conventional—but is continuous. This avoids the disadvantages described above with reference to the prior art. Controlling the brightness and/or the color locus of the light emitted by the arrangement is achieved by controlling the current strength of the direct current individually supplying the individual LED light sources.

Erfindungsgemäß werden die LED-Lichtquellen derart mit Gleichstrom versorgt, dass eine vorgegebene dominante Wellenlänge des von der Anordnung emittierten Lichts unabhängig von der jeweiligen Helligkeit dieses Lichts konstant ist oder - im gesamten Bereich, in dem die Helligkeit des Lichts, also die photometrische Strahlungsleistung (d.h. der in Lumen gemessene Lichtstrom), eingestellt werden kann, nur um einen vorgegebenen maximalen Betrag variiert. Dies bedeutet, dass die eingestellte dominante Wellenlänge bzw. der Farbort des von der Anordnung emittierten Lichts unabhängig von der jeweils eingestellten Helligkeit stets gleich ist. Dies kann durch die individuelle Versorgung der einzelnen LED-Lichtquellen der Anordnung mit Gleichstrom erreicht werden.According to the invention, the LED light sources are supplied with direct current in such a way that a predetermined dominant wavelength of the light emitted by the arrangement is constant regardless of the respective brightness of this light or - in the entire range in which the brightness of the light, i.e. the photometric radiant power (i.e the luminous flux measured in lumens) can be adjusted only varies by a predetermined maximum amount. This means that the set dominant wavelength or the color locus of the light emitted by the arrangement is always the same, regardless of the brightness set in each case. This can be achieved by individually supplying the individual LED light sources of the arrangement with direct current.

Zusätzlich oder alternativ werden die LED-Lichtquellen derart individuell mit Gleichstrom versorgt, dass eine vorgegebene Helligkeit des von der Anordnung emittierten Lichts unabhängig von der jeweiligen dominanten Wellenlänge dieses Lichts konstant ist oder - im gesamten Bereich, in dem die Helligkeit des Lichts, also die photometrische Strahlungsleistung (d.h. der in Lumen gemessene Lichtstrom), eingestellt werden kann, nur um einen vorgegebenen maximalen Betrag variiert. Dies bedeutet, dass die eingestellte Helligkeit des von der Anordnung emittierten Lichts unabhängig von der jeweiligen, insbesondere veränderbaren dominanten Wellenlänge dieses Lichts stets gleich ist. Dies kann durch die individuelle Versorgung der einzelnen LED-Lichtquellen der Anordnung mit Gleichstrom erreicht werden.Additionally or alternatively, the LED light sources are individually supplied with direct current in such a way that a predetermined brightness of the light emitted by the arrangement is constant regardless of the respective dominant wavelength of this light or - in the entire range in which the brightness of the light, i.e. the photometric Radiant power (i.e. the luminous flux measured in lumens) can be adjusted, only varies by a predetermined maximum amount. This means that the set brightness of the light emitted by the arrangement is always the same, regardless of the respective, in particular changeable, dominant wavelength of this light. This can be achieved by individually supplying the individual LED light sources of the arrangement with direct current.

Eine nach dem erfindungsgemäßen Verfahren betriebene Anordnung kann auch drei oder mehrere LED-Lichtquellen aufweisen. Auch können von jeder LED-Lichtquellenart mehrere, insbesondere in Reihe zueinander geschaltete, LED-Lichtquellen vorhanden sein. Die Anordnung kann zum Emittieren von farbigem, weißem und/oder in seinem Farbort veränderlichem Licht eingerichtet sein.An arrangement operated according to the method according to the invention can also have three or more LED light sources. A plurality of LED light sources, in particular connected in series with one another, can also be present from each type of LED light source. The arrangement can be set up to emit colored, white and/or variable light in terms of its color locus.

Die LED-Lichtquellen der Anordnung können mittels einer Treiberschaltung mit einem Gleichstrom versorgt werden, dessen Stromstärke über die Treiberschaltung einstellbar ist, jedoch nach dem jeweiligen Einstellen auf einem gewünschten Wert konstant gehalten wird.The LED light sources of the arrangement can be supplied with a direct current by means of a driver circuit, the current intensity of which can be set via the driver circuit, but is kept constant at a desired value after the respective setting.

Gemäß einer vorteilhaften Ausgestaltung wird wenigstens eine LED-Lichtquelle unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von dieser LED-Lichtquelle erzeugten Lichts von einer Stromstärke eines diese LED-Lichtquelle versorgenden Gleichstroms mit Gleichstrom versorgt. Hierzu kann eine Kennlinie verwendet werden, welche die Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von der Stromstärke des diese LED-Lichtquelle versorgenden Gleichstroms wiedergibt. Eine solche Kennlinie kann zusätzlich eine vorgegebene Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von einer Temperatur dieser LED-Lichtquelle und/oder von einer Temperatur der Anordnung enthalten. Es können auch zwei oder mehrere oder alle LED-Lichtquellen jeweils unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von der jeweiligen LED-Lichtquelle erzeugten Lichts von der Stromstärke des die jeweilige LED-Lichtquelle versorgenden Gleichstroms mit Gleichstrom versorgt werden. Die vorgegebene Abhängigkeit kann bezüglich der dominanten Wellenlänge bzw. des Farborts des von der jeweiligen LED-Lichtquelle erzeugten Lichts Koordinaten der ClE-Normfarbtafel enthalten.According to an advantageous embodiment, at least one LED light source is supplied with direct current, taking into account a predetermined dependence of the dominant wavelength of the light generated by this LED light source on a current intensity of a direct current supplying this LED light source. A characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the current intensity of the direct current supplying this LED light source. Such a characteristic curve can additionally contain a predetermined dependency of the dominant wavelength of the light generated by the LED light source on a temperature of this LED light source and/or on a temperature of the arrangement. It is also possible for two or more or all LED light sources to be operated, each taking into account a predetermined dependency of the dominant wavelength of the light generated by the respective LED light source on the current strength of the direct current supplying the respective LED light source be supplied with direct current. The predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.

Aus den individuellen Kennlinien bzw. Kennlinienfeldern für alle einzelnen LED-Lichtquellen können die individuellen Ansteuerströme für die einzelnen LED-Lichtquellen, die gewährleisten, dass der Farbort des von der gesamten Anordnung emittierten Lichts (innerhalb vorgegebener Grenzen) konstant ist, in vielfältiger Weise bestimmt werden. Beispielsweise kann eine mehrdimensionale Abhängigkeit des die Helligkeit definierenden Lichtstroms des von der gesamten Anordnung erzeugten Lichts von den zugehörigen individuellen Ansteuerströmen für die einzelnen LED-Lichtquellen aufgestellt werden. Dann kann mit einer Stellgröße (z.B. dem Widerstandswert eines Potentiometers oder einem digitalen Wert eines Stellsignals) ein Wert für den Lichtstrom eingestellt vorgegeben werden. Aus der bekannten Abhängigkeit kann dann sofort der individuelle Ansteuerstrom für die einzelnen LED-Lichtquellen ermittelt und entsprechend gewählt bzw. eingestellt werden. Die mehrdimensionale Abhängigkeit kann dabei auch die Temperaturabhängigkeit der dominanten Wellenlängen der einzelnen LED-Lichtquellen umfassen und berücksichtigen. Auch die Alterung bzw. Degradation der LED-Lichtquellen kann so berücksichtigt werden.The individual drive currents for the individual LED light sources, which ensure that the color locus of the light emitted by the entire arrangement (within specified limits) is constant, can be determined in a variety of ways from the individual characteristic curves or characteristic curve fields for all individual LED light sources . For example, a multidimensional dependency of the luminous flux, which defines the brightness, of the light generated by the entire arrangement can be established from the associated individual drive currents for the individual LED light sources. A value for the luminous flux can then be specified with a manipulated variable (e.g. the resistance value of a potentiometer or a digital value of a control signal). The individual drive current for the individual LED light sources can then be determined immediately from the known dependency and selected or set accordingly. The multidimensional dependency can also include and take into account the temperature dependency of the dominant wavelengths of the individual LED light sources. The aging or degradation of the LED light sources can also be taken into account in this way.

Die Helligkeitssteuerung kann auch so bewirkt werden, dass eine LED-Lichtquelle, die als Führungs-LED-Lichtquelle bezeichnet werden kann, mit einem frei wählbaren Strom versorgt wird. Da die Abhängigkeit der dominanten Wellenlänge dieser Führungs-LED-Lichtquelle bekannt ist, können alle übrigen LED-Lichtquellen unter Berücksichtigung deren Abhängigkeiten der jeweiligen dominanten Wellenlänge vom jeweiligen Versorgungsgleichstrom mit einem derart gewählten Gleichstrom angesteuert werden, dass die vorgegebene dominante Wellenlänge des von der gesamten Anordnung emittierten Lichts konstant bleibt bzw. nur innerhalb eines tolerierten Wertebereichs schwankt. Hier ist also nicht der Lichtstrom des von der gesamten Anordnung erzeugten Lichts vorgebbar, sondern die Stromstärke des Ansteuerstroms für die Führungs-LED-Lichtquelle. Diese hängt natürlich auch mit dem Lichtstrom des von der Führungs-LED-Lichtquelle erzeugten Lichts zusammen, allerdings meist nicht linear über den gesamten gewünschten Einstellbereich für den Lichtstrom der Führungs-LED-Lichtquelle. Als Führungs-LED-Lichtquelle wird man dabei diejenige LED-Lichtquelle verwenden, die den größten Beitrag zum Lichtstrom des von der gesamten Anordnung erzeugten Lichts liefert.The brightness control can also be effected in such a way that an LED light source, which can be referred to as a lead LED light source, is supplied with an arbitrary current. Since the dependency of the dominant wavelength of this guide LED light source is known, all other LED light sources can be controlled with a direct current selected in such a way, taking into account their dependencies of the respective dominant wavelength on the respective supply direct current, that the specified dominant wavelength of the entire arrangement emitted light remains constant or only fluctuates within a tolerated value range. Here, therefore, it is not the luminous flux of the light generated by the entire arrangement that can be specified, but rather the amperage of the drive current for the guide LED light source. Of course, this also depends on the luminous flux of the light generated by the guide LED light source, but usually not linearly over the entire desired adjustment range for the luminous flux of the guide LED light source. The LED light source becomes the leading LED light source use that makes the greatest contribution to the luminous flux of the light generated by the entire arrangement.

Nach einer weiteren vorteilhaften Ausgestaltung wird eine Temperatur von wenigstens einer LED-Lichtquelle erfasst, wobei diese LED-Lichtquelle unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von dieser LED-Lichtquelle erzeugten Lichts von der Temperatur dieser LED-Lichtquelle mit Gleichstrom versorgt wird. Hierzu kann eine eigene Kennlinie verwendet werden, welche die Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von der Temperatur der jeweiligen LED-Lichtquelle wiedergibt. Eine solche Kennlinie kann während des Betriebs der Anordnung dazu eingesetzt werden, eine temperaturabhängige Veränderung der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts zu kompensieren bzw. durch eine entsprechende Steuerung der Stromversorgung der LED-Lichtquelle aufzuheben. Es können auch zwei oder mehrere, insbesondere alle, LED-Lichtquellen jeweils unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von der jeweiligen LED-Lichtquelle erzeugten Lichts von der Temperatur der jeweiligen LED-Lichtquelle versorgt werden. Die Temperatur einer LED-Lichtquelle kann mittels eines Temperatursensors erfasst werden. Die vorgegebene Abhängigkeit kann bezüglich der dominanten Wellenlänge bzw. des Farborts des von der jeweiligen LED-Lichtquelle erzeugten Lichts Koordinaten der CIE-Normfarbtafel enthalten.According to a further advantageous embodiment, a temperature of at least one LED light source is detected, this LED light source being supplied with direct current taking into account a predetermined dependency of the dominant wavelength of the light generated by this LED light source on the temperature of this LED light source. A separate characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the temperature of the respective LED light source. Such a characteristic curve can be used during operation of the arrangement to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the LED light source or to cancel it by appropriate control of the power supply of the LED light source. It is also possible for two or more, in particular all, LED light sources to be supplied, each taking into account a predetermined dependence of the dominant wavelength of the light generated by the respective LED light source on the temperature of the respective LED light source. The temperature of an LED light source can be detected using a temperature sensor. The predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.

Eine weitere vorteilhafte Ausgestaltung sieht vor, dass wenigstens eine LED-Lichtquelle unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von der Anordnung emittierten Lichts von einer Stromstärke eines die Anordnung insgesamt versorgenden Gleichstroms mit Gleichstrom versorgt wird. Hierzu kann eine Kennlinie verwendet werden, welche die Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von der Stromstärke des die Anordnung insgesamt versorgenden Gleichstroms wiedergibt. Eine solche Kennlinie kann zusätzlich eine vorgegebene Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von einer Temperatur dieser LED-Lichtquelle und/oder von einer Temperatur der Anordnung enthalten. Es können auch zwei oder mehrere, insbesondere alle, LED-Lichtquellen jeweils unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von der jeweiligen LED-Lichtquelle erzeugten Lichts von der Stromstärke des die Anordnung insgesamt versorgenden Gleichstroms mit Gleichstrom versorgt werden. Die vorgegebene Abhängigkeit kann bezüglich der dominanten Wellenlänge bzw. des Farborts des von der jeweiligen LED-Lichtquelle erzeugten Lichts Koordinaten der CIE-Normfarbtafel enthalten.A further advantageous embodiment provides that at least one LED light source is supplied with direct current, taking into account a predetermined dependence of the dominant wavelength of the light emitted by the arrangement on a current intensity of a direct current supplying the arrangement as a whole. A characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the current intensity of the direct current supplying the arrangement as a whole. Such a characteristic curve can also have a predetermined dependence of the dominant wavelength of the light generated by the LED light source on a temperature of this LED light source and/or a temperature of the assembly. Two or more, in particular all, LED light sources can also be supplied with direct current, taking into account a predetermined dependency of the dominant wavelength of the light generated by the respective LED light source on the current strength of the direct current supplying the arrangement as a whole. The predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.

Es wird des Weiteren als vorteilhaft erachtet, wenn wenigstens eine LED-Lichtquelle unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von der Anordnung emittierten Lichts von einer Temperatur der Anordnung mit Gleichstrom versorgt wird. Hierzu kann eine Kennlinie verwendet werden, welche die Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von der Temperatur der Anordnung wiedergibt. Eine solche Kennlinie kann während des Betriebs der Anordnung dazu eingesetzt werden, eine temperaturabhängige Veränderung der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts zu kompensieren bzw. durch eine entsprechende Steuerung der Stromversorgung der LED-Lichtquelle aufzuheben. Es können auch zwei oder mehrere, insbesondere alle, LED-Lichtquellen jeweils unter Berücksichtigung einer vorgegebenen Abhängigkeit der dominanten Wellenlänge des von der jeweiligen LED-Lichtquelle erzeugten Lichts von der Temperatur der Anordnung mit Gleichstrom versorgt werden. Die vorgegebene Abhängigkeit kann bezüglich der dominanten Wellenlänge bzw. des Farborts des von der jeweiligen LED-Lichtquelle erzeugten Lichts Koordinaten der CIE-Normfarbtafel enthalten.Furthermore, it is considered advantageous if at least one LED light source is supplied with direct current, taking into account a predetermined dependency of the dominant wavelength of the light emitted by the arrangement on a temperature of the arrangement. A characteristic can be used for this purpose, which reflects the dependency of the dominant wavelength of the light generated by the LED light source on the temperature of the arrangement. Such a characteristic curve can be used during operation of the arrangement to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the LED light source or to cancel it by appropriate control of the power supply of the LED light source. It is also possible for two or more, in particular all, LED light sources to be supplied with direct current, each taking into account a predetermined dependency of the dominant wavelength of the light generated by the respective LED light source on the temperature of the arrangement. The predetermined dependency can contain coordinates of the CIE standard color table with regard to the dominant wavelength or the color locus of the light generated by the respective LED light source.

Nach einer weiteren vorteilhaften Ausgestaltung wird wenigstens eine LED-Lichtquelle unter Berücksichtigung der Stromstärke eines wenigstens eine weitere LED-Lichtquelle versorgenden Gleichstroms mit Gleichstrom versorgt. Es können auch zwei oder mehrere LED-Lichtquellen jeweils unter Berücksichtigung der Stromstärke eines wenigstens eine weitere LED-Lichtquelle versorgenden Gleichstroms mit Gleichstrom versorgt werden. Hierzu kann eine Kennlinie bzw. ein Kennlinienfeld verwendet werden, welches für vorgegebene dominante Wellenlängen bzw. Farborte des von der Anordnung emittierten Lichts die Abhängigkeit der Stromstärke des die wenigstens eine LED-Lichtquelle versorgenden Stroms von der Stromstärke des die wenigstens eine weitere LED-Lichtquelle versorgenden Gleichstroms wiedergibt. Dadurch kann bei einer Änderung der Stromstärke des die wenigstens eine weitere LED-Lichtquelle versorgenden Stroms die Stärke des die wenigstens eine LED-Lichtquelle versorgenden Stroms nachgeführt werden, um die dominante Wellenlänge bzw. den Farbort des von der Anordnung emittierten Lichts konstant zu halten. Die Nachführung kann kontinuierlich oder diskret in zeitlichen Abständen von etwa 10 ms bis etwa 100 ms erfolgen, Bei genügend dicht zueinander angeordneten Kennlinien bzw. Kennlinienfeldern, die sich nur um geringe Differenzen in der Stromstärke des die wenigstens eine weitere LED-Lichtquelle versorgenden Gleichstroms voneinander unterscheiden, kann die jeweils nächste Kennlinie bzw. das jeweils nächste Kennlinienfeld zur Festlegung der Stromstärke des die wenigstens eine LED-Lichtquelle versorgenden Gleichstroms gewählt werden. Stattdessen kann auch eine lineare Interpolation zwischen Werten aus zwei benachbart zueinander angeordneten Kennlinien bzw. Kennlinienfeldern oder eine nicht lineare Interpolation aus Werten für jeweils mehr als zwei benachbart zueinander angeordnete Kennlinien bzw. Kennlinienfelder vorgenommen werden. Eine solche Kennlinie bzw. ein solches Kennlinienfeld kann zusätzlich eine vorgegebene Abhängigkeit der dominanten Wellenlänge des von der LED-Lichtquelle erzeugten Lichts von einer Temperatur dieser LED-Lichtquelle und/oder von einer Temperatur der Anordnung enthalten.According to a further advantageous embodiment, at least one LED light source is supplied with direct current, taking into account the current intensity of a direct current supplying at least one further LED light source. Two or more LED light sources can also be supplied with direct current, each taking into account the current strength of a direct current supplying at least one further LED light source. For this purpose, a characteristic curve or a family of characteristic curves can be used which, for predetermined dominant wavelengths or color coordinates of the light emitted by the arrangement, shows the dependence of the current intensity of the current supplying the at least one LED light source on the current intensity of the at least one other LED light source powering direct current reproduces. As a result, when there is a change in the current supplying the at least one further LED light source, the current supplying the at least one LED light source can be tracked in order to keep the dominant wavelength or the color locus of the light emitted by the arrangement constant. The tracking can take place continuously or discretely at intervals of about 10 ms to about 100 ms, with characteristic curves or characteristic curve fields arranged sufficiently close to one another, which differ from one another only by small differences in the current intensity of the direct current supplying the at least one further LED light source , the respective next characteristic or the respective next family of characteristics can be selected for determining the current intensity of the direct current supplying the at least one LED light source. Instead, a linear interpolation between values from two characteristic curves or characteristic curve fields arranged adjacent to one another or a non-linear interpolation from values for more than two characteristic curves or characteristic curve fields arranged adjacent to one another can also be undertaken. Such a characteristic or such a family of characteristics can additionally contain a predetermined dependence of the dominant wavelength of the light generated by the LED light source on a temperature of this LED light source and/or on a temperature of the arrangement.

Gemäß einer weiteren vorteilhaften Ausgestaltung werden die LED-Lichtquellen derart mit Gleichstrom versorgt, dass der Farbort des jeweils von der Anordnung emittierten Lichts in zumindest einem vorgegebenen Teilbereich eines Farbtemperaturbereichs von 1500 K bis 10000 K auf oder in der Nähe der Planck'schen Kurve liegt. Vorzugsweise ist die Größe des Teilbereichs wenigstens 1000 K, bevorzugt wenigstens 2000 K oder besonders bevorzugt wenigstens 3000 K. Vorzugsweise erstreckt sich der Teilbereich von 3500 K bis 4500 K, bevorzugt von 3500 K bis 5500 K oder besonders bevorzugt von 2700 K bis 6500 K. Die Planck'sche Kurve ist in der CIE-Normfarbtafel von 1931 enthalten, was dem Fachmann bekannt ist. Der Verlauf der Planck'schen Kurve ist durch die Farben der Strahlung eines schwarzen Strahlers bei verschiedenen Temperaturen definiert.According to a further advantageous embodiment, the LED light sources are supplied with direct current in such a way that the color locus of the light emitted by the arrangement is on or near the Planck curve in at least one predetermined sub-range of a color temperature range of 1500 K to 10000 K. The size of the partial range is preferably at least 1000 K, preferably at least 2000 K or particularly preferably at least 3000 K. The partial range preferably extends from 3500 K to 4500 K, preferably from 3500 K to 5500 K or particularly preferably from 2700 K to 6500 K. The Planckian curve is contained in the 1931 CIE chromaticity chart, which is known to those skilled in the art. The shape of the Planckian curve is defined by the colors of the radiation from a blackbody at different temperatures.

Vorteilhafterweise werden die LED-Lichtquellen derart mit Gleichstrom versorgt, dass der Farbort des jeweils von der Anordnung emittierten Lichts innerhalb einer einem auf der Planck'schen Kurve liegenden Bezugsfarbton zugeordneten MacAdam-Ellipse mit dem bevorzugten Wert 10, 6, 4, 3 oder kleiner liegt. Diese Werte sind ein Maß für die Größe der MacAdam-Ellipse. Der mathematische Zusammenhang für die MacAdam-Ellipse ist 12,5*X2 + 17,5*X*Y + 33,25*Y2 + 6,25 - 12,5*X - 27,5*Y = 0 und X + Y + Z = 1, wobei X, Y und Z die Tristimuluswerte darstellen. Der Farbort kann somit innerhalb einer MacAdam-Ellipse mit dem Wert 10, 6, 4, 3 oder kleiner auf oder in der Nähe der Planck'schen Kurve liegen. Diese hohe Genauigkeit bezüglich der gewünschten optimalen Lage des Farborts des jeweils mit der Anordnung emittierten Lichts ermöglicht es, die Farborte des von der Anordnung emittierten Lichts möglichst nahe bzw. auf der Planck'schen Kurve zu halten.Advantageously, the LED light sources are supplied with direct current in such a way that the color locus of the light emitted in each case by the arrangement is within a MacAdam ellipse associated with a reference hue lying on Planck's curve the preferred value is 10, 6, 4, 3 or less. These values are a measure of the size of the MacAdam ellipse. The mathematical relationship for the MacAdam ellipse is 12.5*X 2 + 17.5*X*Y + 33.25*Y 2 + 6.25 - 12.5*X - 27.5*Y = 0 and X + Y + Z = 1, where X, Y and Z represent the tristimulus values. The color locus can thus lie within a MacAdam ellipse with the value 10, 6, 4, 3 or smaller on or near the Planckian curve. This high level of accuracy with regard to the desired optimal position of the color point of the light emitted by the arrangement makes it possible to keep the color point of the light emitted by the arrangement as close as possible or on the Planckian curve.

Mit dem erfindungsgemäßen System sind die oben mit Bezug auf das Verfahren genannten Vorteile und Ausführungsformen entsprechend verbunden. Die elektronische Steuereinheit kann wenigstens einen Mikroprozessor umfassen. Die mit der elektronischen Steuereinheit erzielbare Steuerung der Anordnung kann die Anordnung optimal an den jeweiligen Einsatzzweck anpassen. Insbesondere sind die LED-Lichtquellen mittels der elektronischen Steuereinheit hinsichtlich der von ihnen jeweils aufgenommenen elektrischen Leistung bzw. abgegebenen optischen radiometrischen Leistung bzw. abgegebenen photometrischen Leistung so ansteuerbar, dass sich der gewünschte Farbort ergibt.The advantages and embodiments mentioned above in relation to the method are correspondingly associated with the system according to the invention. The electronic control unit can include at least one microprocessor. The control of the arrangement that can be achieved with the electronic control unit can optimally adapt the arrangement to the respective application. In particular, the LED light sources can be controlled by means of the electronic control unit with regard to the electrical power consumed or the optical radiometric power emitted or the photometric power emitted by them in such a way that the desired color locus results.

Die elektronische Steuereinheit kann eine Treiberschaltung umfassen, welche die LED-Lichtquellen mit jeweils einer vorgegebenen elektrischen Leistung ansteuert, um Licht mit einem Gesamtspektrum zu erzeugen, welches die gewünschte Farbtemperatur und den gewünschten Farbort, insbesondere auf oder in der Nähe der Planck'schen Kurve, aufweist. Hierzu kann jede einzelne LED-Lichtquelle mit einem zugeordneten Ausgang der Treiberschaltung verbunden sein. Es kann aber auch pro Lichtquelle ein Ausgang der Treiberschaltung vorgesehen sein, wobei die einzelnen LED-Lichtquellen in Serie und/oder parallel geschaltet mit dem Ausgang der Treiberschaltung verbunden sein können.The electronic control unit can include a driver circuit which controls the LED light sources, each with a predetermined electrical power, in order to generate light with an overall spectrum which has the desired color temperature and has the desired color locus, in particular on or near the Planckian curve. For this purpose, each individual LED light source can be connected to an associated output of the driver circuit. However, one output of the driver circuit can also be provided for each light source, it being possible for the individual LED light sources to be connected in series and/or in parallel to the output of the driver circuit.

Nach einer vorteilhaften Ausgestaltung umfassen die LED-Lichtquellen der Anordnung wenigstens eine zum Erzeugen von blauem Licht, insbesondere mit einer dominanten Wellenlänge zwischen 380 nm und 480 nm, eingerichtete LED-Lichtquelle, welche zumindest eine Leuchtdiode aufweist, wenigstens eine zum Erzeugen von Konversionslicht mit einer in einem Konversionsbereich liegenden Farbe eingerichtete LED-Lichtquelle, die zumindest eine zum Erzeugen von blauem Licht eingerichtete Leuchtdiode und zumindest eine zur Photolumineszenz eingerichtete Konversionseinheit aufweist, und/oder wenigstens eine zum Erzeugen von rotem, insbesondere mit einer dominanten Wellenlänge zwischen 600 nm und 640nm, oder grünem Licht, insbesondere mit einer dominanten Wellenlänge zwischen 500 nm und 560 nm eingerichtete LED-Lichtquelle, welche zumindest eine Leuchtdiode aufweist.According to an advantageous embodiment, the LED light sources of the arrangement at least one LED light source set up to generate blue light, in particular with a dominant wavelength between 380 nm and 480 nm, which has at least one light-emitting diode, at least one LED light source set up to generate conversion light with a color lying in a conversion range, which has at least one light-emitting diode set up for generating blue light and at least one conversion unit set up for photoluminescence, and/or at least one for generating red light, in particular with a dominant wavelength between 600 nm and 640 nm, or green light, in particular with a dominant wavelength between 500 nm nm and 560 nm furnished LED light source, which has at least one light-emitting diode.

Die Anordnung kann je nach Verwendungszweck auch von jeder LED-Lichtquellenart zwei oder mehrere, beispielsweise in Reihe zueinander geschaltete, LED-Lichtquellen aufweisen. Im Rahmen der Erfindung kann die Anordnung auch zwei oder mehrere blaue Leuchtdioden, Konversionslichtquellen und/oder rote Lichtquellen sowie unterschiedliche Kombinationen dieser Bauteile aufweisen, um die Anordnung, insbesondere hinsichtlich der Intensität des von ihr emittierbaren Lichts, optimal an verschiedene Anwendungen anpassen zu können. Die LED-Lichtquellen sind hinsichtlich der von ihnen jeweils aufgenommenen elektrischen Leistung bzw. abgegebenen optischen radiometrischen Leistung bzw. abgegebenen photometrischen Leistung mittels der elektronischen Steuereinheit so ansteuerbar, dass sich ein gewünschter Farbort, insbesondere auf oder in der Nähe der Planck'schen Kurve, ergibt. Durch diese Ansteuerbarkeit der Anordnung bzw. ihrer Komponenten kann beispielsweise eine sehr exakte Simulation von realem Tageslicht in einem Raum, beispielsweise einem Büroraum, erfolgen, indem der Verlauf der Farbtemperatur des Tageslichts (gelblich morgens und abends sowie bläulicher mittags) simuliert wird. Jedoch kann die Anordnung auch zum Erzeugen von weißem Licht mit einer konstanten Farbtemperatur angesteuert werden.Depending on the intended use, the arrangement can also have two or more LED light sources of each type of LED light source, for example connected in series with one another. Within the scope of the invention, the arrangement can also have two or more blue light-emitting diodes, conversion light sources and/or red light sources and different combinations of these components in order to be able to optimally adapt the arrangement to different applications, in particular with regard to the intensity of the light it can emit. The LED light sources can be controlled by the electronic control unit in terms of the electrical power they consume or the optical radiometric power they deliver or the photometric power they deliver in such a way that a desired color locus results, in particular on or near the Planckian curve . This controllability of the arrangement or its components allows, for example, a very precise simulation of real daylight in a room, for example an office, by simulating the course of the color temperature of daylight (yellowish in the morning and evening and more bluish at noon). However, the arrangement can also be driven to generate white light with a constant color temperature.

Die zum Erzeugen von Konversionslicht eingerichtete LED-Lichtquelle kann eine, zwei oder mehrere zum Erzeugen von blauem Licht eingerichtete Leuchtdioden aufweisen, deren Licht zum Teil von der Anordnung emittiert und zum Teil zur Anregung der zur Photolumineszenz eingerichteten Konversionseinheit verwendet wird. Die dominante Wellenlänge des von einer Leuchtdiode der zum Erzeugen von Konversionslicht eingerichteten LED-Lichtquelle erzeugten blauen Lichts kann kleiner als die dominante Wellenlänge des von der mit diesem blauen Licht angeregten Konversionseinheit durch Photolumineszenz erzeugten Konversionslichts sein.The LED light source set up to generate conversion light can have one, two or more light-emitting diodes set up to generate blue light, part of the light of which is emitted by the arrangement and part of which is used to excite the conversion unit set up for photoluminescence. The dominant wavelength of the blue light generated by a light-emitting diode of the LED light source set up to generate conversion light can be smaller than the dominant wavelength of the conversion light generated by photoluminescence from the conversion unit excited with this blue light.

Die zum Erzeugen von rotem Licht eingerichtete LED-Lichtquelle kann ebenfalls wenigstens eine Konversionseinheit und wenigstens eine Leuchtdiode aufweisen, wobei die Leuchtdiode derart zu der Konversionseinheit anzuordnen ist, dass wenigstens ein Teil des von der Leuchtdiode erzeugten Lichts auf die Konversionseinheit trifft. Hiernach wird somit zur Ausbildung der zum Erzeugen von rotem Licht eingerichteten LED-Lichtquelle statt einer rotes Licht emittierenden roten Leuchtdiode eine, insbesondere blaues Licht erzeugende, Leuchtdiode und eine geeignete Konversionseinheit eingesetzt. Alternativ kann eine zum Erzeugen von rotem Licht eingerichtete rote Leuchtdiode zur Ausbildung der zum Erzeugen von rotem Licht eingerichteten LED-Lichtquelle verwendet werden.The LED light source configured to generate red light can also have at least one conversion unit and at least one light-emitting diode, the light-emitting diode being arranged relative to the conversion unit in such a way that at least part of the light generated by the light-emitting diode impinges on the conversion unit. Accordingly, instead of a red light-emitting diode emitting red light, a light-emitting diode, in particular generating blue light, and a suitable conversion unit are used to form the LED light source set up to generate red light. Alternatively, a red light-emitting diode configured to generate red light can be used to form the LED light source configured to generate red light.

Gemäß einer weiteren vorteilhaften Ausgestaltung weist das System wenigstens einen Temperatursensor auf, mit dem die Temperatur von wenigstens einer LED-Lichtquelle, insbesondere direkt oder indirekt erfassbar ist. Mit dem Temperatursensor kann auch die Temperatur von zwei oder mehreren, insbesondere allen, LED-Lichtquellen bzw. der gesamten Anordnung erfasst werden. Der Temperatursensor ist kabellos oder kabelgebunden mit der elektronischen Steuereinheit verbunden. Die Temperatur von wenigstens einer LED-Lichtquelle kann alternativ auch indirekt aus dem von der LED-Lichtquelle erzeugtem Licht, beispielsweise aus der Peak Wellenlänge oder Halbwertsbreite des erzeugten Spektrums, bestimmt werden. Ferner kann die Temperatur von wenigstens einer LED-Lichtquelle aus den elektrischen Eigenschaften, wie beispielsweise Spannungsabfall oder Kapazität, bestimmt werden.According to a further advantageous embodiment, the system has at least one temperature sensor with which the temperature of at least one LED light source can be detected, in particular directly or indirectly. The temperature of two or more, in particular all, LED light sources or of the entire arrangement can also be detected with the temperature sensor. The temperature sensor is connected wirelessly or wired to the electronic control unit. Alternatively, the temperature of at least one LED light source can also be determined indirectly from the light generated by the LED light source, for example from the peak wavelength or half-width of the spectrum generated. Furthermore, the temperature of at least one LED light source can be determined from the electrical properties, such as voltage drop or capacitance.

Nach einer weiteren Ausführungsform des Systems nach der Erfindung sind in wenigstens einem nichtflüchtigen elektronischen Speicher Informationen gespeichert, welche zur Ermittlung der Stromstärken der individuellen Versorgungsströme für wenigstens eine der wenigstens zwei der LED-Lichtquellen dienen.According to a further embodiment of the system according to the invention, information is stored in at least one non-volatile electronic memory which is used to determine the current strengths of the individual supply currents for at least one of the at least two of the LED light sources.

Es wird des Weiteren als vorteilhaft erachtet, wenn das System wenigstens einen nichtflüchtigen elektronischen Speicher aufweist, in dem zumindest abgelegt ist

  • eine Abhängigkeit der dominanten Wellenlänge des von wenigstens einer LED-Lichtquelle erzeugten Lichts von einer Stromstärke eines diese LED-Lichtquelle versorgenden Gleichstroms oder eine andere, diese Abhängigkeit beinhaltende Information und/oder,
  • eine Abhängigkeit der dominanten Wellenlänge des von der Anordnung emittierten Lichts von einer Stromstärke eines die Anordnung versorgenden Gleichstroms oder eine andere, diese Abhängigkeit beinhaltende Information, und/oder
  • eine Abhängigkeit einer Stromstärke eines wenigstens eine LED-Lichtquelle versorgenden Gleichstroms von der Stromstärke eines wenigstens eine weitere LED-Lichtquelle versorgenden Gleichstroms oder eine andere, diese Abhängigkeit beinhaltende Information.
Furthermore, it is considered advantageous if the system has at least one non-volatile electronic memory in which at least one is stored
  • a dependency of the dominant wavelength of the light generated by at least one LED light source on a current intensity of a power supply of this LED light source direct current or any other information containing this dependency and/or,
  • a dependency of the dominant wavelength of the light emitted by the arrangement on a current intensity of a direct current supplying the arrangement or other information containing this dependency, and/or
  • a dependency of a current intensity of a direct current supplying at least one LED light source on the current intensity of a direct current supplying at least one further LED light source, or other information containing this dependency.

Mit dieser Ausgestaltung sind die oben mit Bezug auf das Verfahren genannten Vorteile und Ausführungsformen entsprechend verbunden.The advantages and embodiments mentioned above in relation to the method are correspondingly associated with this configuration.

Ferner wird vorgeschlagen, dass in dem nichtflüchtigen elektronischen Speicher abgelegt ist

  • eine Abhängigkeit der dominanten Wellenlänge des von wenigstens einer LED-Lichtquelle erzeugten Lichts von der Temperatur, insbesondere von der Temperatur einer Sperrschicht dieser LED-Lichtquelle oder eine andere, diese Abhängigkeit beinhaltende Information, und/oder
  • eine Abhängigkeit der dominanten Wellenlänge des von der Anordnung emittierten Lichts von einer Temperatur der Anordnung oder eine andere, diese Abhängigkeit beinhaltende Information.
It is also proposed that the non-volatile electronic memory be stored
  • a dependency of the dominant wavelength of the light generated by at least one LED light source on the temperature, in particular on the temperature of a barrier layer of this LED light source or other information containing this dependency, and/or
  • a dependency of the dominant wavelength of the light emitted by the arrangement on a temperature of the arrangement or other information containing this dependency.

Diese Abhängigkeit bzw. Abhängigkeiten können über separate Kennlinien zur Steuerung der Stromversorgung der LED-Lichtquelle berücksichtigt werden. Alternativ kann die Abhängigkeit bzw. können die Abhängigkeiten in einer Kennlinie enthalten sein, welche wenigstens eine der Abhängigkeiten der unmittelbar zuvor genannten vorteilhaften Ausgestaltung wiedergibt.This dependency or dependencies can be taken into account via separate characteristic curves for controlling the power supply of the LED light source. Alternatively, the dependency or the dependencies can be contained in a characteristic curve which reproduces at least one of the dependencies of the advantageous embodiment mentioned immediately above.

Im Folgenden wird die Erfindung unter Bezugnahme auf die anliegenden Figuren anhand von bevorzugten Ausführungsbeispielen exemplarisch erläutert, wobei die nachfolgend dargestellten Merkmale sowohl jeweils für sich genommen als auch in unterschiedlicher Kombination miteinander einen Aspekt der Erfindung darstellen können. Es zeigen

Fig. 1:
eine schematische Darstellung eines Ausführungsbeispiels für ein erfindungsgemäßes System;
Fig. 2:
ein Diagramm, das die CIE-Normfarbtafel und Farborte von LED-Lichtquellen eines Ausführungsbeispiels für ein erfindungsgemäßes System enthält;
Fig. 3:
einen Ausschnitt des in Figur 2 gezeigten Diagramms, der die Abhängigkeit eines Farbortes des von einer LED-Lichtquelle erzeugten Lichts von der Stromstärke des diese LED-Lichtquelle versorgenden Gleichstroms zeigt;
Fig. 4:
einen weiteren Ausschnitt des in Figur 2 gezeigten Diagramms, der die Abhängigkeit eines weiteren Farbortes des von einer weiteren LED-Lichtquelle erzeugten Lichts von der Stromstärke des diese LED-Lichtquelle versorgenden Gleichstroms zeigt;
Fig. 5:
ein Diagramm, das die CIE-Normfarbtafel und Farborte von LED-Lichtquellen eines Ausführungsbeispiels für ein erfindungsgemäßes System bei verschiedenen Temperaturen der LED-Lichtquellen enthält;
Fig. 6:
einen Ausschnitt des in Figur 5 gezeigten Diagramms, der die Abhängigkeit eines Farbortes des von einer LED-Lichtquelle erzeugten Lichts von der Temperatur dieser LED-Lichtquelle zeigt;
Fig. 7:
einen weiteren Ausschnitt des in Figur 5 gezeigten Diagramms, der die Abhängigkeit eines weiteren Farbortes des von einer weiteren LED-Lichtquelle erzeugten Lichts von der Temperatur dieser LED-Lichtquelle zeigt.
In the following, the invention is explained by way of example with reference to the enclosed figures using preferred exemplary embodiments, with the features presented below being able to represent an aspect of the invention both individually and in various combinations with one another. Show it
Figure 1:
a schematic representation of an embodiment of a system according to the invention;
Figure 2:
a diagram containing the CIE standard color chart and color locations of LED light sources of an embodiment of a system according to the invention;
Figure 3:
a section of the in figure 2 diagram shown, which shows the dependency of a color locus of the light generated by an LED light source on the amperage of the direct current supplying this LED light source;
Figure 4:
another section of the in figure 2 diagram shown, which shows the dependency of a further color locus of the light generated by a further LED light source on the amperage of the direct current supplying this LED light source;
Figure 5:
a diagram containing the CIE standard color table and color locations of LED light sources of an exemplary embodiment for a system according to the invention at different temperatures of the LED light sources;
Figure 6:
a section of the in figure 5 diagram shown, which shows the dependency of a color locus of the light generated by an LED light source on the temperature of this LED light source;
Figure 7:
another section of the in figure 5 diagram shown, which shows the dependency of a further color locus of the light generated by a further LED light source on the temperature of this LED light source.

Figur 1 zeigt eine schematische Darstellung eines Ausführungsbeispiels für ein erfindungsgemäßes System 1 zum Erzeugen von in seiner Helligkeit und/oder seinem Farbort einstellbarem Licht. Das System 1 umfasst eine Anordnung 2 zum Emittieren von in seiner Helligkeit einstellbarem Licht und eine zum Ansteuern der Anordnung 2 eingerichtete elektronische Steuereinheit 3. figure 1 shows a schematic representation of an exemplary embodiment of a system 1 according to the invention for generating light whose brightness and/or color location can be adjusted. The system 1 comprises an arrangement 2 for emitting light whose brightness can be adjusted and an electronic control unit 3 which is set up for controlling the arrangement 2.

Die Anordnung 2 umfasst drei elektrisch ansteuerbare LED-Lichtquellen 4, 5 und 6, welche sich in der dominanten Wellenlänge des jeweils von ihnen erzeugten Lichts voneinander unterscheiden, wobei die LED-Lichtquellen 4, 5 und 6 derart ansteuerbar ausgebildet und zueinander angeordnet sind, dass das von der Anordnung 2 emittierte Licht durch additives Mischen des von den einzelnen LED-Lichtquellen 4, 5 und 6 jeweils erzeugten Lichts erzeugt wird.The arrangement 2 comprises three electrically controllable LED light sources 4, 5 and 6, which are in the dominant wavelength of the light generated by them differ from one another, with the LED light sources 4, 5 and 6 being designed to be controllable and arranged relative to one another such that the light emitted by the arrangement 2 is generated by additive mixing of the light generated by the individual LED light sources 4, 5 and 6 in each case.

Die LED-Lichtquellen 4, 5 und 6 der Anordnung 2 umfassen eine zum Erzeugen von blauem Licht eingerichtete LED-Lichtquelle 4, welche zumindest eine nicht dargestellte Leuchtdiode aufweist, eine zum Erzeugen von Konversionslicht mit einer in einem Konversionsbereich liegenden Farbe eingerichtete LED-Lichtquelle 5, die zumindest eine zum Erzeugen von blauem Licht eingerichtete nicht dargestellte Leuchtdiode und zumindest eine zur Photolumineszenz eingerichtete nicht dargestellte Konversionseinheit aufweist, und eine zum Erzeugen von rotem Licht eingerichteten LED-Lichtquelle 6, welche zumindest eine nicht dargestellte Leuchtdiode aufweist.The LED light sources 4, 5 and 6 of the arrangement 2 comprise an LED light source 4 set up to generate blue light, which has at least one light-emitting diode (not shown), an LED light source 5 set up to generate conversion light with a color lying in a conversion range , which has at least one light-emitting diode, not shown, set up to generate blue light and at least one conversion unit, not shown, set up for photoluminescence, and an LED light source 6 set up to generate red light, which has at least one light-emitting diode, not shown.

Das System 1 umfasst des Weiteren einen oder mehrere Temperatursensoren 7, mit dem / denen die Temperatur der einzelnen LED-Lichtquellen 4, 5 und 6 bzw. der Anordnung 2 erfassbar ist und der Temperatursignale an die elektronische Steuereinheit 3 abgibt. Werden mehrere Temperatursensoren 7 vorgesehen, so kann jeweils ein Temperatursensor 7 einer bestimmten LED-Lichtquelle 4, 5 oder 6 oder einer Leuchtdiode der betreffenden Lichtquelle 4, 5 oder 6 zugeordnet sein. Es ist selbstverständlich auch möglich, einen von mehreren Temperatursensoren 7 mehreren ausgewählten LED-Lichtquellen 4, 5 bzw. 6 zuzuordnen. Der oder die Temperatursensoren 7 können auf beliebige Weise ausgebildet sein, sowohl als eigenständige Komponenten als auch als zumindest teilweise mit anderen Komponenten integriert ausgebildete Sensoren. So kann beispielsweise die Durchlassspannung oder das spezifische Emissionsverhalten der LED-Lichtquellen 4, 5 und 6 bzw. einer oder mehrerer der betreffenden Leuchtdioden zur Bestimmung der Temperatur mit herangezogen werden.The system 1 also includes one or more temperature sensors 7 with which the temperature of the individual LED light sources 4 , 5 and 6 or the arrangement 2 can be detected and which emits temperature signals to the electronic control unit 3 . If several temperature sensors 7 are provided, one temperature sensor 7 can be assigned to a specific LED light source 4, 5 or 6 or to a light-emitting diode of the light source 4, 5 or 6 in question. It is of course also possible to assign one of several temperature sensors 7 to several selected LED light sources 4, 5 or 6. The temperature sensor or sensors 7 can be designed in any way, both as independent components and as sensors designed at least partially integrated with other components. For example, the forward voltage or the specific emission behavior of the LED light sources 4, 5 and 6 or one or more of the relevant light-emitting diodes can also be used to determine the temperature.

Das System 1 weist des Weiteren einen nichtflüchtigen elektronischen Speicher 8 auf, in dem zumindest abgelegt ist

  • eine Abhängigkeit der dominanten Wellenlänge des von wenigstens einer LED-Lichtquelle 4, 5 oder 6 erzeugten Lichts von einer Stromstärke eines diese LED-Lichtquelle 4, 5 bzw. 6 versorgenden Gleichstroms,
  • eine Abhängigkeit der dominanten Wellenlänge des von der Anordnung 2 emittierten Lichts von einer Stromstärke eines die Anordnung 2 insgesamt versorgenden Gleichstroms, und/oder
  • eine Abhängigkeit einer Stromstärke eines wenigstens eine LED-Lichtquelle 4, 5 oder 6 versorgenden Gleichstroms von der Stromstärke eines wenigstens eine weitere LED-Lichtquelle 4, 5 oder 6 versorgenden Gleichstroms.
The system 1 also has a non-volatile electronic memory 8 in which at least one is stored
  • a dependency of the dominant wavelength of the light generated by at least one LED light source 4, 5 or 6 on a current intensity of a direct current supplying this LED light source 4, 5 or 6,
  • a dependence of the dominant wavelength of the light emitted by the arrangement 2 on a current intensity of a direct current supplying the arrangement 2 as a whole, and/or
  • a dependency of a current intensity of a direct current supplying at least one LED light source 4, 5 or 6 on the current intensity of a direct current supplying at least one further LED light source 4, 5 or 6.

Der nichtflüchtige elektronische Speicher 8 kann als EPROM oder EEPROM ausgebildet sein und ist kommunikationstechnisch mit der elektronischen Steuereinheit 3 verbunden.The non-volatile electronic memory 8 can be in the form of an EPROM or EEPROM and is connected to the electronic control unit 3 in terms of communication.

In dem nichtflüchtigen elektronischen Speicher kann zusätzlich eine Abhängigkeit der dominanten Wellenlänge des von wenigstens einer LED-Lichtquelle 4, 5 oder 6 erzeugten Lichts von der Temperatur dieser LED-Lichtquelle 4, 5 bzw. 6 und/oder eine Abhängigkeit der dominanten Wellenlänge des von der Anordnung 2 emittierten Lichts von einer Temperatur der Anordnung 2 abgelegt sein.In the non-volatile electronic memory, a dependence of the dominant wavelength of the light generated by at least one LED light source 4, 5 or 6 on the temperature of this LED light source 4, 5 or 6 and/or a dependence of the dominant wavelength of the Arrangement 2 emitted light be stored by a temperature of the arrangement 2.

Die elektronische Steuereinheit 3 ist eingerichtet, die LED-Lichtquellen 4, 5 und 6 derart individuell mit Gleichstrom zu versorgen, dass eine dominante Wellenlänge des von der Anordnung 2 emittierten Lichts unabhängig von der jeweiligen Helligkeit dieses Lichts konstant ist. Hierzu ist die Anordnung 2, insbesondere deren Leiterbahnen, so mit der Steuereinheit 3 verbunden und die Steuereinheit 3 so ausgebildet, dass jede der LED-Lichtquellen 4, 5 und 6 mit einer solchen elektrischen Leistung ansteuerbar ist bzw. angesteuert wird, dass die jeweilige LED-Lichtquelle 4, 5 oder 6 ein solches Spektrum emittiert, dass das additiv gemischte Gesamtspektrum Licht mit den gewünschten Eigenschaften darstellt.The electronic control unit 3 is set up to supply the LED light sources 4, 5 and 6 individually with direct current in such a way that a dominant wavelength of the light emitted by the arrangement 2 is constant regardless of the respective brightness of this light. For this purpose, the arrangement 2, in particular its conductor tracks, is connected to the control unit 3 and the control unit 3 is designed in such a way that each of the LED light sources 4, 5 and 6 can be controlled or is controlled with such an electrical power that the respective LED -Light source 4, 5 or 6 emits such a spectrum that the additively mixed overall spectrum represents light with the desired properties.

Die elektronische Steuereinheit 3 kann auch dazu eingerichtet sein, die LED-Lichtquellen 4, 5 und 6 derart individuell mit Gleichstrom zu versorgen, dass eine Helligkeit des von der Anordnung 2 emittierten Lichts unabhängig von der veränderbaren, dominanten Wellenlänge dieses Lichts konstant ist.The electronic control unit 3 can also be set up to supply the LED light sources 4, 5 and 6 individually with direct current in such a way that the brightness of the light emitted by the arrangement 2 is constant regardless of the changeable, dominant wavelength of this light.

Hierzu weist die Steuereinheit 3 eine elektronische Steuerung 9 und drei kommunikationstechnisch mit der elektronischen Steuerung verbundene Treiberschaltungen 10, 11 und 12 auf, wobei jeweils ein Treiberausgang mit einer der LED-Lichtquellen 4, 5 oder 6 verbunden ist. Die Treiberschaltungen 10, 11 und 12 sind dabei so ansteuerbar, dass die LED-Lichtquellen 4, 5 und 6 individuell mit einem vorgegebenen konstanten Gleichstrom betrieben werden, so dass die von den LED-Lichtquellen 4, 5 und 6 erzeugten Spektren die gewünschten Eigenschaften aufweisen, insbesondere die durch die erfindungsgemäße Helligkeitseinstellung eingestellte radiometrische oder photometrische Leistung. Die elektronische Steuerung 9 kann wenigstens einen Mikrocontroller umfassen.For this purpose, the control unit 3 has an electronic controller 9 and three driver circuits 10, 11 and 12 connected to the electronic controller for communication purposes, with one driver output being connected to one of the LED light sources 4, 5 or 6 in each case. The driver circuits 10, 11 and 12 can be controlled in such a way that the LED light sources 4, 5 and 6 are operated individually with a predetermined constant direct current, so that the spectra generated by the LED light sources 4, 5 and 6 have the desired properties, in particular the radiometric or photometric output set by the brightness setting according to the invention. The electronic controller 9 can include at least one microcontroller.

Die elektronische Steuerung 9 ist kommunikationstechnisch mit einer Eingabeschnittstelle 18 verbunden, über die Vorgabewerte für einen gewünschten Farbort beziehungsweise für eine dominante Wellenlänge des von der Anordnung 2 emittierten Lichts und/oder einer gewünschten Helligkeit des von der Anordnung 2 emittierten Lichts erzeugt werden können, welche kabellos oder kabelgebunden an die elektronische Steuerung übermittelbar sind. Die Eingabeschnittstelle 18 kann beispielsweise ein Potentiometer, eine drahtlos gekoppelte mobile Einheit, beispielsweise ein Mobilfunkendgerät, insbesondere ein Smartphone, oder dergleichen umfassen. Bei Verwendung eines Potentiometers zur Einstellung des gewünschten Farborts bzw. der Helligkeit des von der Anordnung 2 emittierten Lichts kann die Eingabeschnittstelle 18 zudem eine Einheit zum Erzeugen von den Vorgabewerten entsprechenden digitalen Werten umfassen, welche von der elektronischen Steuerung 9 bzw. von deren Mikrocontroller verarbeitbar sind. Bei Verwendung eines Smartphones, welches den Vorgabewerten entsprechende digitale Werte erzeugen und direkt an die elektronische Steuerung 9 bzw. deren Mikrocontroller übermitteln kann, kann eine Empfangseinheit für die elektronische Steuerung 9 vorhanden sein, um die von dem Smartphone erzeugten digitalen Werte empfangen zu können.The electronic controller 9 is connected in terms of communication to an input interface 18, via which default values for a desired color locus or for a dominant wavelength of the light emitted by the arrangement 2 and/or a desired brightness of the light emitted by the arrangement 2 can be generated, which can be wirelessly generated or can be transmitted to the electronic control by cable. The input interface 18 can include, for example, a potentiometer, a wirelessly coupled mobile unit, for example a mobile radio terminal, in particular a smartphone, or the like. When using a potentiometer to set the desired color locus or the brightness of the light emitted by the arrangement 2, the input interface 18 can also include a unit for generating digital values corresponding to the default values, which can be processed by the electronic controller 9 or its microcontroller . When using a smartphone, which can generate digital values corresponding to the default values and transmit them directly to the electronic control 9 or its microcontroller, a receiving unit can be present for the electronic control 9 in order to be able to receive the digital values generated by the smartphone.

Figur 2 zeigt ein Diagramm, welches die mit dem Bezugszeichen 13 gekennzeichnete CIE-Normfarbtafel 1931 enthält. Des Weiteren sind in dem Diagramm ein Farbort 14 des von einer zum Erzeugen von blauem Licht eingerichteten LED-Lichtquelle 4 erzeugten Lichts, ein Farbort 15 des von einer zum Erzeugen von rotem Licht eingerichteten LED-Lichtquelle 6 erzeugten Lichts sowie ein Farbort 16 des von einer zum Erzeugen von Konversionslicht mit einer in einem Konversionsbereich liegenden Farbe eingerichtete LED-Lichtquelle 5 erzeugten Lichts, wobei der Farbort 16 in einem grüngelben Farbbereich liegt. Ferner ist in dem Diagramm die Planck'sche Kurve 17 eingezeichnet. Die Farborte 14, 15 und 16 sind unter Ausbildung eines Dreiecks über Linien miteinander verbunden, wobei durch das Dreieck alle mit einer entsprechenden Anordnung 2 möglich einstellbaren Farborte des von der Anordnung 2 emittierten Lichts definiert sind. figure 2 FIG. 12 shows a diagram which contains the CIE standard color table 1931 identified by the reference number 13. FIG. The diagram also shows a color locus 14 of the light generated by an LED light source 4 set up to generate blue light, a color locus 15 of the light generated by an LED light source 6 set up to generate red light, and a color locus 16 of the light generated by a LED light source 5, which is set up to generate conversion light with a color lying in a conversion range, generates light, the color locus 16 lying in a green-yellow color range. Planck's curve 17 is also drawn in the diagram. The color locations 14, 15 and 16 are connected to one another via lines to form a triangle, with the triangle all having a corresponding arrangement 2 possible adjustable color coordinates of the light emitted by the arrangement 2 are defined.

Figur 3 zeigt einen Ausschnitt des in Figur 2 gezeigten Diagramms im Bereich des Farborts 14, der die Abhängigkeit des Farbortes 14 des von der zum Erzeugen von blauem Licht eingerichteten LED-Lichtquelle 4 erzeugten Lichts von der Stromstärke des diese LED-Lichtquelle 4 versorgenden Gleichstroms zeigt. Es ist für jede eingestellte Stromstärke ein Farbort 14 eingezeichnet, wobei der Farbort 14 mit dem größten y-Wert einer Stromstärke in Höhe von 1 mA und der Farbort 14 mit dem kleinsten y-Wert einer Stromstärke in Höhe von 200 mA zugeordnet ist. Die Farborte 14 wurden jeweils kurz nach dem Einschalten des Stroms durch die LED-Lichtquelle 4 bestimmt, um Temperatureffekte beim Betrieb der LED-Lichtquelle 4 mit Gleichstrom auszuschließen. figure 3 shows a section of the in figure 2 diagram shown in the area of the color locus 14, which shows the dependence of the color locus 14 of the light generated by the LED light source 4 set up to generate blue light on the current intensity of the direct current supplying this LED light source 4. A color locus 14 is drawn in for each set current intensity, the color locus 14 with the greatest y-value being associated with a current of 1 mA and the color locus 14 with the smallest y-value being associated with a current of 200 mA. The color locations 14 were each determined shortly after the current was switched on by the LED light source 4 in order to rule out temperature effects when the LED light source 4 is operated with direct current.

Figur 4 zeigt einen Ausschnitt des in Figur 2 gezeigten Diagramms im Bereich des Farborts 15, der die Abhängigkeit des Farbortes 15 des von der zum Erzeugen von rotem Licht eingerichteten LED-Lichtquelle 6 erzeugten Lichts von der Stromstärke des diese LED-Lichtquelle 6 versorgenden Gleichstroms zeigt. Es ist für jede eingestellte Stromstärke ein Farbort 15 eingezeichnet, wobei der Farbort 15 mit dem größten y-Wert einer Stromstärke in Höhe von 1 mA und der Farbort 15 mit dem kleinsten y-Wert einer Stromstärke in Höhe von 40 mA zugeordnet ist. Die Farborte 15 wurden jeweils kurz nach dem Einschalten des Stroms durch die LED-Lichtquelle 6 bestimmt, um Temperatureffekte beim Betrieb der LED-Lichtquelle 6 mit Gleichstrom auszuschließen. figure 4 shows a section of the in figure 2 diagram shown in the area of the color locus 15, which shows the dependence of the color locus 15 of the light generated by the LED light source 6 set up to generate red light on the current strength of the direct current supplying this LED light source 6. A color locus 15 is drawn in for each set current intensity, the color locus 15 with the greatest y-value being associated with a current of 1 mA and the color locus 15 with the smallest y-value being associated with a current of 40 mA. The color locations 15 were each determined shortly after the current was switched on by the LED light source 6 in order to rule out temperature effects when the LED light source 6 was operated with direct current.

Figur 5 zeigt ein Diagramm, das die CIE-Normfarbtafel 13 und Farborte 14, 15 und 16 von LED-Lichtquellen 4, 5 und 6 eines Ausführungsbeispiels für ein erfindungsgemäßes System 1 bei verschiedenen Temperaturen der LED-Lichtquellen 4, 5 und 6 in einem Bereich von etwa -40°C bis etwa 120 °C enthält. Dies ist genauer den Figuren 6 und 7 zu entnehmen. figure 5 shows a diagram of the CIE standard color table 13 and color locations 14, 15 and 16 of LED light sources 4, 5 and 6 of an exemplary embodiment of a system 1 according to the invention at different temperatures of the LED light sources 4, 5 and 6 in a range of approx -40°C to about 120°C. This is more accurate figures 6 and 7 refer to.

Figur 6 zeigt einen Ausschnitt des in Figur 5 gezeigten Diagramms im Bereich des Farborts 14, der die Abhängigkeit des Farbortes 14 des von der zum Erzeugen von blauem Licht eingerichteten LED-Lichtquelle 4 erzeugten Lichts von der Temperatur dieser LED-Lichtquelle 4 zeigt. Es ist für verschiedene Temperaturen jeweils ein Farbort 14 eingezeichnet, wobei der Farbort 14 mit dem größten y-Wert der Temperatur 120°C und der Farbort 14 mit dem kleinsten y-Wert der Temperatur -40°C zugeordnet ist. Die in Figur 6 dargestellten Messwerte wurden mit Strompulsen mit einer Zeitdauer von 500ns und einer Wiederholrate von 500µs aufgenommen, um einen etwaigen Einfluss der Erwärmung der Sperrschicht der LED-Lichtquelle 4 ausschließen zu können. figure 6 shows a section of the in figure 5 diagram shown in the area of the color locus 14, which shows the dependence of the color locus 14 of the light generated by the LED light source 4 set up to generate blue light on the temperature of this LED light source 4. It is a color locus for different temperatures 14 are drawn in, the color location 14 with the largest y-value being associated with the temperature 120°C and the color location 14 with the smallest y-value being associated with the temperature -40°C. In the figure 6 The measured values shown were recorded with current pulses with a duration of 500 ns and a repetition rate of 500 μs in order to be able to rule out any influence of the heating of the barrier layer of the LED light source 4 .

Figur 7 zeigt einen weiteren Ausschnitt des in Figur 5 gezeigten Diagramms im Bereich des Farborts 15, der die Abhängigkeit des Farbortes 15 des von der zum Erzeugen von rotem Licht eingerichteten LED-Lichtquelle 6 erzeugten Lichts von der Temperatur dieser LED-Lichtquelle 6 zeigt. Es ist für verschiedene Temperaturen jeweils ein Farbort 15 eingezeichnet, wobei der Farbort 15 mit dem größten y-Wert der Temperatur -40°C und der Farbort 15 mit dem kleinsten y-Wert der Temperatur 120°C zugeordnet ist. Die in Figur 7 dargestellten Messwerte wurden mit Strompulsen mit einer Zeitdauer von 500ns und einer Wiederholrate von 500µs aufgenommen, um einen etwaigen Einfluss der Erwärmung der Sperrschicht der LED-Lichtquelle 6 ausschließen zu können. figure 7 shows another section of the in figure 5 shown diagram in the area of the color point 15, which shows the dependence of the color point 15 of the light generated by the LED light source 6 set up to generate red light on the temperature of this LED light source 6. A color locus 15 is drawn in for different temperatures, the color locus 15 with the largest y-value being associated with the temperature -40°C and the color locus 15 with the smallest y-value being associated with the temperature 120°C. In the figure 7 The measured values shown were recorded with current pulses with a duration of 500 ns and a repetition rate of 500 μs in order to be able to rule out any influence of the heating of the barrier layer of the LED light source 6 .

Die in den Figuren 2 bis 7 gezeigten Abhängigkeiten der LED-Lichtquellen 4, 5 und 6 bzw. des von den LED-Lichtquellen 4, 5 und 6 jeweils erzeugten Lichts von der Temperatur der LED-Lichtquellen 4, 5 und 6 sowie der Stromstärke des jeweils die LED-Lichtquellen 4, 5 und 6 versorgenden Gleichstroms wird über entsprechende Abhängigkeiten enthaltende Kennlinien bzw. Kennlinienfelder bei der individuellen Versorgung der LED-Lichtquellen 4, 5 und 6 mit Gleichstrom berücksichtigt, um die Helligkeit eines von einer entsprechenden Anordnung 2 emittierten Lichts einstellen zu können, ohne den Farbort dieses additiv gemischten Lichts zu verändern.The in the Figures 2 to 7 dependencies shown of the LED light sources 4, 5 and 6 or of the light generated by the LED light sources 4, 5 and 6 in each case on the temperature of the LED light sources 4, 5 and 6 and the current intensity of the respective LED light sources 4, 5 and 6 supplying direct current is taken into account via corresponding dependencies containing characteristic curves or characteristic curves in the individual supply of the LED light sources 4, 5 and 6 with direct current in order to be able to adjust the brightness of a light emitted by a corresponding arrangement 2 without changing the color locus of this to change additively mixed light.

Im Folgenden wird eine beispielhafte Ausführung des erfindungsgemäßen Verfahrens beschrieben, bei der eine Steuerung der Versorgung von n LED-Lichtquellen 1 bis n mit den individuellen Gleichströmen I1 bis In auf spezielle Art und Weise erfolgt. Zu dieser Steuerung sind ein oder mehrere Kennlinien bzw. Kennfelder nötig, in welchen zum einen die Abhängigkeit des Farbortes bzw. der dominanten Wellenlänge λd des von der Anordnung 2 emittierten Lichts von den einzelnen Gleichströmen I1 bis In durch die einzelnen LED-Lichtquellen 1 bis n berücksichtigt wird, ohne den Einfluss der jeweiligen Temperatur der einzelnen LED-Lichtquellen 1 bis n, welche, wie beschrieben, ermittelt wird, indem man die Gleichströme I1 bis In durch die LED-Lichtquellen 1 bis n nur kurz einschaltet und dabei die dominante Wellenlänge erfasst. Die Abhängigkeit des Farbortes des von der Anordnung 2 emittierten Lichts von den einzelnen Gleichströmen I1 bis In durch die einzelnen LED-Lichtquellen 1 bis n ist bei der herkömmlichen pulsbreiten-modulierten Ansteuerung von LED-Lichtquellen bewusst ausgeschaltet. Zum anderen berücksichtigt die wenigstens eine Kennlinie bzw. das wenigstens eine Kennfeld die zusätzliche Abhängigkeit des Farbortes des von der Anordnung 2 emittierten Lichts von den Temperaturen T der einzelnen LED-Lichtquellen 1 bis n bzw. den Temperaturen der Sperrschichten der einzelnen LED-Lichtquellen 1 bis n.An exemplary embodiment of the method according to the invention is described below, in which the supply of n LED light sources 1 to n with the individual direct currents I 1 to I n is controlled in a special way. For this control, one or more characteristic curves or characteristic diagrams are necessary, in which on the one hand the dependence of the color locus or the dominant wavelength λ d of the light emitted by the arrangement 2 on the individual direct currents I 1 to I n through the individual LED light sources 1 to n is taken into account, without the influence of the respective temperature of the individual LED light sources 1 to n, which, as described, is determined by switching on the direct currents I 1 to I n through the LED light sources 1 to n only briefly and thereby detecting the dominant wavelength. The dependence of the color locus of the light emitted by the arrangement 2 from the individual direct currents I 1 to I n through the individual LED light sources 1 to n is deliberately switched off in the conventional pulse width modulated control of LED light sources. On the other hand, the at least one characteristic curve or the at least one characteristic field takes into account the additional dependency of the color locus of the light emitted by the arrangement 2 on the temperatures T of the individual LED light sources 1 to n or the temperatures of the junction layers of the individual LED light sources 1 to n.

Es kann somit ein Kennfeld verwendet werden, in dem innerhalb von Wertebereichen für die einzelnen Größen alle möglichen n-Tupel für die Größen I1 bis In, λd, Q(Helligkeit des von der Anordnung 2 emittierten Lichts), T enthalten sind. Für die Helligkeit Q kann theoretisch auch der in Lumen gemessene Lichtstrom PHI verwendet werden. Allerdings wird man in der Praxis eher dazu neigen, eine normierte Helligkeit, beispielsweise zwischen Null (bzw. einer Untergrenze, z.B. 10 % der maximal erreichbaren Helligkeit) und 100 % der maximal erreichbaren Helligkeit (diese kann auch abhängig vom Farbort sein) zu verwenden. Bei dem Kennfeld sind einzig die Ströme I1 bis In echte unabhängige Parameter (innerhalb vorgegebener Wertebereiche). Die Parameter λd und Q sind abhängig von den unabhängigen Parametern I1 bis In und resultieren aus den unabhängigen Parametern. Auch der Parameter T ist nicht vollkommen von den unabhängigen Parametern I1 bis In unabhängig. Die unabhängigen Parameter I1 bis In beeinflussen die Sperrschichttemperatur der jeweiligen LED-Lichtquelle 1 bis n. Allerdings hängt die jeweilige Sperrschichttemperatur zusätzlich von der jeweiligen Umgebungstemperatur und vom jeweiligen Wärmeübergangswiderstand ab, welcher für die Abgabe von Wärme von der jeweiligen Sperrschicht an die Umgebung maßgeblich ist.A characteristic field can thus be used in which all possible n-tuples for the variables I 1 to I n , λ d , Q (brightness of the light emitted by the arrangement 2), T are contained within value ranges for the individual variables. Theoretically, the luminous flux PHI, measured in lumens, can also be used for the brightness Q. However, in practice one tends to use a normalized brightness, for example between zero (or a lower limit, e.g. 10% of the maximum achievable brightness) and 100% of the maximum achievable brightness (this can also depend on the color point). In the characteristics map, only the currents I 1 to I n are real independent parameters (within specified value ranges). The parameters λ d and Q depend on the independent parameters I 1 to I n and result from the independent parameters. The parameter T is also not completely independent of the independent parameters I 1 to I n . The independent parameters I 1 to I n influence the junction temperature of the respective LED light source 1 to n. However, the respective junction temperature also depends on the respective ambient temperature and the respective heat transfer resistance, which is decisive for the release of heat from the respective junction to the environment is.

In einem ersten Schritt können Startwerte für Ströme I01 bis I0n abhängig von vorgegebenen Werten für den Farbort bzw. λd und die gewünschte Helligkeit Q (z.B. 80 % der maximalen Helligkeit) ermittelt werden. Diese Startwerte können beispielsweise für eine normale Temperatur T aus dem großen Kennfeld entnommen werden. Stattdessen kann hierfür auch ein eigenes Kennfeld verwendet werden, welches die Werte für I01 bis I0n, λd und Q für eine bestimmte Temperatur T (z.B. Zimmertemperatur) verknüpft.In a first step, starting values for currents I0 1 to I0n can be determined as a function of specified values for the color locus or λ d and the desired brightness Q (eg 80% of the maximum brightness). These starting values can be taken from the large characteristic diagram for a normal temperature T, for example. Instead, a separate characteristic map can be used for this, which links the values for I0 1 to I0 n , λ d and Q for a specific temperature T (eg room temperature).

In einem zweiten Schritt kann dann der Temperatureinfluss berücksichtigt werden, wobei ein Temperatursensor 7 einen Temperaturwert liefert, der bereits anfangs von einer Ausgangstemperatur abweicht. Aus dem Kennfeld, oder einem separaten Kennfeld, können dann neue Werte für die Gleichströme I1 bis In für den neuen Temperaturwert entnommen und die LED-Lichtquellen 1 bis n entsprechend angesteuert werden.In a second step, the influence of temperature can then be taken into account, where a temperature sensor 7 supplies a temperature value which initially deviates from an initial temperature. New values for the direct currents I 1 to I n for the new temperature value can then be taken from the characteristics map, or from a separate characteristics map, and the LED light sources 1 to n can be controlled accordingly.

Der zweite Schritt kann auch aufgeteilt werden in zwei Teilschritte, wobei in einem ersten Teilschritt nur der Temperatureinfluss auf die Gleichströme I1 bis In korrigiert wird, um λd beizubehalten. Ein hierzu verwendetes Kennfeld kann nur die Temperaturabhängigkeit berücksichtigen, ohne den Einfluss der geänderten Gleichströme I1 bis In auf den Farbort des von der Anordnung 2 emittierten Lichts zu berücksichtigen. Ein solches Kennfeld kann zur Steuerung/Reglung von gepulst angesteuerten LED-Lichtquellen 1 bis n genügen, da hier keine Abhängigkeit des Farborts des von der Anordnung 2 emittierten Lichts von den Gleichströmen I1 bis In von Temperatureffekten besteht. In einem zweiten Teilschritt können dann die geänderten Gleichströme I1 bis In mittels eines weiteren Kennfeldes, in dem die Abhängigkeit des Farborts des von der Anordnung 2 emittierten Lichts von den Gleichströmen I1 bis In berücksichtigt ist, so korrigiert werden, dass der gewünschte Farbort des von der Anordnung 2 emittierten Lichts erreicht bzw. beibehalten wird. Die geänderten Gleichströme I1 bis In werden dann wieder Einfluss auf die Temperatur T haben usw.. Auf die beschriebene Art und Weise kann ab drei solchen iterativen Schritten ein gewünschter Gleichgewichtszustand erreicht werden.The second step can also be divided into two sub-steps, with only the temperature influence on the direct currents I 1 to I n being corrected in a first sub-step in order to retain λ d . A characteristic map used for this purpose can only take into account the temperature dependency, without taking into account the influence of the changed direct currents I 1 to I n on the color locus of the light emitted by the arrangement 2 . Such a characteristic field can be sufficient for the control/regulation of LED light sources 1 to n driven in a pulsed manner since there is no dependence of the color locus of the light emitted by the arrangement 2 on the direct currents I 1 to I n of temperature effects. In a second sub-step, the changed direct currents I 1 to I n can then be corrected by means of a further characteristic diagram, in which the dependence of the color locus of the light emitted by the arrangement 2 on the direct currents I 1 to I n is taken into account, so that the desired Color point of the light emitted by the arrangement 2 is achieved or maintained. The changed direct currents I 1 to I n will then again have an influence on the temperature T, etc. In the manner described, a desired state of equilibrium can be achieved after three such iterative steps.

Bezugszeichenliste:Reference list:

11
Systemsystem
22
Anordnungarrangement
33
Steuereinheitcontrol unit
44
LED-LichtquelleLED light source
55
LED-LichtquelleLED light source
66
LED-LichtquelleLED light source
77
Temperatursensortemperature sensor
88th
nichtflüchtiger elektronischer Speichernon-volatile electronic memory
99
elektronische Steuerungelectronic control
1010
Treiberschaltungdriver circuit
1111
Treiberschaltungdriver circuit
1212
Treiberschaltungdriver circuit
1313
CIE-NormfarbtafelCIE standard color chart
1414
Farbortcolor location
1515
Farbortcolor location
1616
Farbortcolor location
1717
Planck'sche KurvePlanckian curve
1818
Eingabeschnittstelleinput interface

Claims (7)

  1. Method for operating an arrangement (2) designed to emit light that can be adjusted in brightness or colour coordinate, which has at least two electrically controllable LED light sources (4, 5, 6) that differ in a dominant wavelength of the light they generate, wherein the light emitted by the arrangement (2) is generated by additive mixing of the light generated by each LED light source (4, 5, 6), the LED light sources (4, 5, 6) being supplied individually in such a way that a predefined dominant wavelength of the light emitted by the arrangement (2) is constant regardless of the respective brightness of the light emitted by the arrangement (2), or that a predefined brightness of the light emitted by the arrangement (2) is constant regardless of the respective dominant wavelength of the light emitted by the arrangement (2),
    characterized in that
    the predefined dominant wavelength of the light emitted by the arrangement (2) or the predefined brightness of the light emitted by the arrangement (2) is set by a control system without a closed feedback loop, by
    the at least two LED light sources (4, 5, 6) each being supplied with an individual DC supply current, taking into account at least one characteristic curve or at least one characteristic curve family, wherein each at least one characteristic curve or each at least one characteristic curve family reproduces a predefined dependency of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on a current strength of an individual DC supply current supplying that LED light source (4, 5, 6),
    wherein in each case a temperature of the at least two LED light sources (4, 5, 6) or a temperature of the arrangement (2) is detected and the at least two LED light sources (4, 5, 6) are each supplied with the respective individual DC supply current, taking into account a predefined dependence of the dominant wavelength of the light generated by the respective LED light source (4, 5, 6) on the temperature of that LED light source (4, 5, 6) or taking into account a predefined dependence of the dominant wavelength of the light emitted by the arrangement (2) on a temperature of the arrangement (2), for which purpose one of the at least one characteristic curves is used that reflects the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the respective LED light source (4, 5, 6) or the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the arrangement (2), wherein in each case during the operation of the arrangement (2) the one of the at least one characteristic curves is used to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the respective LED light source (4, 5, 6).
  2. Method for operating an arrangement (2) designed to emit light that can be adjusted in brightness or colour coordinate, which has at least three electrically controllable LED light sources (4, 5, 6) that differ in a dominant wavelength of the light they generate, wherein the light emitted by the arrangement (2) is generated by additive mixing of the light generated by each LED light source (4, 5, 6), the LED light sources (4, 5, 6) being supplied individually in such a way that a predefined dominant wavelength of the light emitted by the arrangement (2) is constant regardless of the respective brightness of the light emitted by the arrangement (2), or that a predefined brightness of the light emitted by the arrangement (2) is constant regardless of the respective dominant wavelength of the light emitted by the arrangement (2),
    characterized in that
    the predefined dominant wavelength of the light emitted by the arrangement (2) or the predefined brightness of the light emitted by the arrangement (2) is set by a control system without a closed feedback loop, by the at least three LED light sources (4, 5, 6) each being supplied with an individual DC supply current, taking into account at least one characteristic curve or at least one characteristic curve family, wherein each at least one characteristic curve or each at least one characteristic curve family reproduces a predefined dependency of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on a current strength of an individual DC supply current supplying that LED light source (4, 5, 6),
    wherein in each case a temperature of the at least three LED light sources (4, 5, 6) or a temperature of the arrangement (2) is detected and the at least three LED light sources (4, 5, 6) are each supplied with the respective individual DC supply current, taking into account a predefined dependence of the dominant wavelength of the light generated by the respective LED light source (4, 5, 6) on the temperature of that LED light source (4, 5, 6) or taking into account a predefined dependence of the dominant wavelength of the light emitted by the arrangement (2) on a temperature of the arrangement (2), for which purpose one of the at least one characteristic curves is used that reflects the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the respective LED light source (4, 5, 6) or the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the arrangement (2), wherein in each case during the operation of the arrangement (2) the one of the at least one characteristic curves is used to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the respective LED light source (4, 5, 6).
  3. Method according to either of Claims 1 or 2, characterized in that the LED light sources (4, 5, 6) are each supplied with individual DC supply currents in such a way that the colour coordinate of the light emitted by the arrangement (2) lies on or near the Planck curve (17) in at least one predefined sub-range of a colour temperature range of 1,500 K to 10,000 K.
  4. Method according to any one of Claims 1 to 3, characterized in that the LED light sources (4, 5, 6) are each supplied with individual DC supply current in such a way that the colour coordinate of the light emitted by the arrangement (2) lies within a MacAdam ellipse assigned to a reference colour tone on the Planck curve (17) with the preferred value of 10, 6, 4, 3 or less.
  5. System (1) for generating light adjustable in its brightness or colour coordinate, having at least one arrangement (2) for emitting light that can be adjusted in brightness and at least one electronic control unit (3), configured to control the arrangement (2), wherein the arrangement (2) has at least two electrically controllable LED light sources (4, 5, 6) that differ in a dominant wavelength of the light they each generate, wherein the LED light sources (4, 5, 6) are designed to be controllable and arranged with respect to each other in such a way that the light emitted by the arrangement (2) is generated by additive mixing of the light generated by each individual LED light source (4, 5, 6), the control unit being configured in such a way that the LED light sources (4, 5, 6) are supplied individually in such a way that a predefined dominant wavelength of the light emitted by the arrangement (2) is constant regardless of the respective brightness of the light emitted by the arrangement (2), or that a predefined brightness of the light emitted by the arrangement (2) is constant regardless of the respective dominant wavelength of the light emitted by the arrangement (2),
    characterized in that
    the predefined dominant wavelength of the light emitted by the arrangement (2) or the predefined brightness of the light emitted by the arrangement (2) is set by a control system without a closed feedback loop, for which purpose
    at least one non-volatile electronic memory (8) is provided, which stores at least one characteristic curve or at least one characteristic curve family for each LED light source (4, 5, 6), wherein the at least one characteristic curve or the at least one characteristic curve family reproduces a predefined dependency of the dominant wavelength of the light generated by the respective LED light source (4, 5, 6) on a current strength of an individual DC supply current supplying that LED light source (4, 5, 6), and
    that the electronic control unit (3) is configured in such a way that the at least two LED light sources (4, 5, 6) are individually supplied with an individual supply DC current, taking into account the at least one characteristic curve or the at least one characteristic curve family, wherein
    the system comprises at least one temperature sensor (7) which detects a respective temperature of the at least two LED light sources (4, 5, 6) or a temperature of the arrangement (2), the electronic control unit (3) being configured in such a way that the at least two LED light sources (4, 5, 6) are each supplied with an individual DC supply current, taking into account a predefined dependence of the dominant wavelength of the light generated by the respective LED light source (4, 5, 6) on the temperature of that LED light source (4, 5, 6) or taking into account a predefined dependence of the dominant wavelength of the light emitted by the arrangement (2) on a temperature of the arrangement (2), for which purpose the non-volatile electronic memory (8) stores one of the at least one characteristic curves which reflects the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the respective LED light source (4, 5, 6) or the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the arrangement (2), wherein in each case during the operation of the arrangement (2) the one of the at least one characteristic curves is used to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the respective LED light source (4, 5, 6).
  6. System (1) for generating light adjustable in its brightness and colour coordinate, having at least one arrangement (2) for emitting light that can be adjusted in brightness and at least one electronic control unit (3), configured to control the arrangement (2), wherein the arrangement (2) has at least three electrically controllable LED light sources (4, 5, 6) that differ in a dominant wavelength of the light they generate, wherein the LED light sources (4, 5, 6) are designed to be controllable and are arranged with respect to each other in such a way that the light emitted by the arrangement (2) is generated by additive mixing of the light generated by each individual LED light source (4, 5, 6), the control unit being configured in such a way that the LED light sources (4, 5, 6) are supplied individually in such a way that a predefined dominant wavelength of the light emitted by the arrangement (2) is constant regardless of the respective brightness of the light emitted by the arrangement (2), or that a predefined brightness of the light emitted by the arrangement (2) is constant regardless of the respective dominant wavelength of the light emitted by the arrangement (2),
    characterized in that
    the predefined dominant wavelength of the light emitted by the arrangement (2) or the predefined brightness of the light emitted by the arrangement (2) is set by a control system without a closed feedback loop, for which purpose
    at least one non-volatile electronic memory (8) is provided, which stores at least one characteristic curve or at least one characteristic curve family for each LED light source (4, 5, 6), wherein the at least one characteristic curve or the at least one characteristic curve family reproduces a predefined dependency of the dominant wavelength of the light generated by the respective LED light source (4, 5, 6) on a current strength of an individual DC supply current supplying that LED light source (4, 5, 6), and
    that the electronic control unit (3) is configured in such a way that the at least three LED light sources (4, 5, 6) are individually supplied with an individual supply DC current, taking into account the at least one characteristic curve or the at least one characteristic curve family, wherein
    the system comprises at least one temperature sensor (7) which can detect a respective temperature of the at least two LED light sources (4, 5, 6) or a temperature of the arrangement (2), the electronic control unit (3) being configured in such a way that the at least three LED light sources (4, 5, 6) are each supplied with an individual DC supply current, taking into account a predefined dependence of the dominant wavelength of the light generated by the respective LED light source (4, 5, 6) on the temperature of that LED light source (4, 5, 6) or taking into account a predefined dependence of the dominant wavelength of the light emitted by the arrangement (2) on a temperature of the arrangement (2), for which purpose the non-volatile electronic memory (8) stores one of the at least one characteristic curves which reflects the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the respective LED light source (4, 5, 6) or the dependence of the dominant wavelength of the light generated by that LED light source (4, 5, 6) on the temperature of the arrangement (2), wherein in each case during the operation of the arrangement (2) the one of the at least one characteristic curves is used to compensate for a temperature-dependent change in the dominant wavelength of the light generated by the respective LED light source (4, 5, 6).
  7. System (1) according to Claim 5 or 6, characterized in that the LED light sources (4, 5, 6) of the arrangement comprise
    - at least one LED light source (4) configured to generate blue light, which has at least one light-emitting diode,
    - at least one LED light source (5), designed to generate conversion light with a colour located in a conversion range, which has at least one light-emitting diode configured to generate blue light and at least one conversion unit configured for photoluminescence, and/or
    - at least one LED light source (6) configured to produce red or green light, which has at least one light-emitting diode.
EP14197378.4A 2014-12-11 2014-12-11 Method for operating an assembly for emitting light with adjustable intensity and/or colour location Active EP3032918B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES14197378T ES2912742T3 (en) 2014-12-11 2014-12-11 Procedure for the operation of an arrangement configured to emit light adjustable in its luminosity and/or its color location
EP14197378.4A EP3032918B1 (en) 2014-12-11 2014-12-11 Method for operating an assembly for emitting light with adjustable intensity and/or colour location

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14197378.4A EP3032918B1 (en) 2014-12-11 2014-12-11 Method for operating an assembly for emitting light with adjustable intensity and/or colour location

Publications (2)

Publication Number Publication Date
EP3032918A1 EP3032918A1 (en) 2016-06-15
EP3032918B1 true EP3032918B1 (en) 2022-04-20

Family

ID=52101118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14197378.4A Active EP3032918B1 (en) 2014-12-11 2014-12-11 Method for operating an assembly for emitting light with adjustable intensity and/or colour location

Country Status (2)

Country Link
EP (1) EP3032918B1 (en)
ES (1) ES2912742T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208347A1 (en) * 2019-06-07 2020-12-10 Volkswagen Aktiengesellschaft Method for operating a light-emitting diode module and light-emitting diode module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157604A1 (en) * 2010-06-15 2011-12-22 Osram Gesellschaft mit beschränkter Haftung Method for operating a semiconductor lighting device and color control device for carrying out the method
WO2012077046A2 (en) * 2010-12-09 2012-06-14 Koninklijke Philips Electronics N.V. Electroluminescent device with adjustable color point

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109617A (en) * 2005-09-16 2007-04-26 Epson Imaging Devices Corp Light emitting device, lighting system, electrooptical device and electronic apparatus
CN101473695B (en) * 2006-06-20 2011-01-19 皇家飞利浦电子股份有限公司 Illumination system comprising a plurality of light sources
US20080238340A1 (en) * 2007-03-26 2008-10-02 Shun Kei Mars Leung Method and apparatus for setting operating current of light emitting semiconductor element
WO2008137984A1 (en) * 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting devices and methods for lighting
DE102013207961A1 (en) * 2013-04-30 2014-10-30 Tridonic Jennersdorf Gmbh A method of changing the color location of the visible light emitted by an LED module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157604A1 (en) * 2010-06-15 2011-12-22 Osram Gesellschaft mit beschränkter Haftung Method for operating a semiconductor lighting device and color control device for carrying out the method
WO2012077046A2 (en) * 2010-12-09 2012-06-14 Koninklijke Philips Electronics N.V. Electroluminescent device with adjustable color point

Also Published As

Publication number Publication date
EP3032918A1 (en) 2016-06-15
ES2912742T3 (en) 2022-05-27

Similar Documents

Publication Publication Date Title
EP2223568B1 (en) Method and arrangement for adjusting a color location, and illumination system
EP2186382B1 (en) Method and device for adjusting the color or photometric properties of an led illumination device
EP1938667B1 (en) Light source emitting multi-coloured light and method for controlling the colour location of such a light source
EP2433472B1 (en) Method for setting a chromaticity coordinate
DE102008029816A1 (en) Circuit for dimming a lamp and associated method
DE102008010470A1 (en) Color management control unit for a constant color point in a time sequence lighting system
DE102013113053B4 (en) Driver circuit with a semiconductor light source and method for operating a driver circuit
DE102017125405B4 (en) Method and device for calibrating and operating RGB-LED lighting
DE102010030061A1 (en) Method for operating a semiconductor luminescent device and color control device for carrying out the method
DE102015108217B3 (en) Technique for adjusting the brightness of LED lamps
DE102007059131A1 (en) Method and arrangement for setting a color location and luminous system
DE102021103286A1 (en) SYSTEMS, PROCEDURES AND DEVICES FOR INFLUENCING THE SPECTRAL CONTENT OF A LIGHT OUTPUT
DE102011079796B4 (en) Method for determining PWM values for LED modules
AT16692U1 (en) LED module with changeable color location and lighting device with such an LED module
DE112014005132T5 (en) A solid state lighting device and circuits including LED segments configured for targeted spectral power distribution and methods of operating the same
EP3032918B1 (en) Method for operating an assembly for emitting light with adjustable intensity and/or colour location
DE102007004834A1 (en) Light device and method for realizing a desired color mixture
DE202013004095U1 (en) LED lighting system
WO2018189007A1 (en) Controlling a lighting device having at least two electric light sources
DE202006012864U1 (en) Light producing device, has control unit connected with four different colored LEDs for controlling LEDs, and transforming input signal into control signal and including channel for each of LEDs
DE102007052854A1 (en) LED lamp&#39;s light emission controlling method, involves selecting color temperature based on luminance reference value, and controlling LEDs for adjusting selected color temperature with respect to desired luminance of LED lamp
DE102015205808A1 (en) Circuit arrangement for operating at least a first and exactly a second cascade of LEDs
DE102015110003A1 (en) Method for controlling a lighting device, method for determining control signal information for the control and lighting device
DE102015117852A1 (en) Method for controlling a lighting device and lighting device
DE102007055670B4 (en) Method for reversing between mixed light colors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181001

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LUMITECH PATENTVERWERTUNG GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014016203

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0047280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 47/10 20200101ALI20211011BHEP

Ipc: H05B 47/28 20200101AFI20211011BHEP

INTG Intention to grant announced

Effective date: 20211115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016203

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1486188

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016203

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221211

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

Ref country code: AT

Payment date: 20231214

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420