EP3032181B1 - Heizsystem mit warmwasserbereitstellung - Google Patents

Heizsystem mit warmwasserbereitstellung Download PDF

Info

Publication number
EP3032181B1
EP3032181B1 EP15198630.4A EP15198630A EP3032181B1 EP 3032181 B1 EP3032181 B1 EP 3032181B1 EP 15198630 A EP15198630 A EP 15198630A EP 3032181 B1 EP3032181 B1 EP 3032181B1
Authority
EP
European Patent Office
Prior art keywords
heat
hot water
heat source
heating
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15198630.4A
Other languages
English (en)
French (fr)
Other versions
EP3032181A1 (de
Inventor
Peter Menne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3032181A1 publication Critical patent/EP3032181A1/de
Application granted granted Critical
Publication of EP3032181B1 publication Critical patent/EP3032181B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0089Additional heating means, e.g. electric heated buffer tanks or electric continuous flow heaters, located close to the consumer, e.g. directly before the water taps in bathrooms, in domestic hot water lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1393Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0235Three-way-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user

Definitions

  • the invention relates to a heating system with hot water supply.
  • DHW heating usually either storage tank systems or continuous heating systems are used.
  • storage tank systems usually drinking water pipe spiral storage and stratified storage are used, which are heated indirectly by means of heated heating water.
  • Continuous heating systems offer gas-fired instantaneous water heaters and instantaneous water heaters.
  • this also includes indirect water heaters, such as gas-fired combi heaters, as well as systems with heating water buffer - in these cases, the heat is transferred via an additional heat exchanger in the continuous flow of heated heating water to the drinking water.
  • the patent application EP 2 407 729 A1 discloses a hot water system with a heat pump, a heated by the heat pump hot water tank and an additional water heater.
  • Hot water can be taken from the hot water tank via a tap.
  • the hot water is either passed through the additional water heater and heated there.
  • a bypass valve can be opened so that the hot water flows directly from the store to the paying agency.
  • the heating of the additional water heater is interrupted by means of a control unit.
  • This object is achieved according to the features of claim 1, characterized in that in addition to the stored in the heated by a main heat source heat storage hot water or stored heat transfer medium for hot water preparation in parallel an additional heat source is provided, which can provide hot water with high temperature when needed. The two hot water streams are then brought together in a node and fed to a tap.
  • An essential advantage of the heating system according to the invention results from the fact that the heat energy of the additional heat source can be fed in at any time independently of the load of the heat accumulator. If the additional heat source on the flow side as in the prior art connected in series with the heat storage, this is not possible.
  • the additional heat source can contribute little heat, which in particular results in a heat storage, which is designed as a layer memory with good thermal insulation, the effect that only the heat energy of the memory is used first, and then only the heat energy of the additional heat source.
  • the fresh water, before it is heated in a water heater passed through a heat exchanger, which is heated by the main heat source.
  • the hot water is provided by three heat sources. These are the heat storage, the main heat source and the additional heat source.
  • the two hot water flows are each set by valves in terms of their mass flow.
  • the heat storage can be a drinking water storage, which is either constructed conventionally and is heated by an integrated heat exchanger through the main heat source or designed as a layer storage. Also, the Heat storage contain a heat transfer medium that emits its heat via a heat exchanger to the hot water.
  • the heat source is preferably a heat pump, the additional heat source preferably an electric instantaneous water heater.
  • control system By means of a control system it can be ensured that the hot water flows from the heat storage and from the additional heat source are mixed in the correct ratio to the desired setpoint temperature. This can either be stored in the control unit itself or be requested individually by the user. For example, different temperatures are desired for showering than washing dishes.
  • the hot water is purchased with upper priority over the heat storage. Only when the temperature of the hot water is insufficient to reach the desired setpoint temperature, hot water is added via the additional heat source.
  • the additional heat source is already operated even if the heat storage, although the setpoint temperature, but is almost exhausted. This is the case with a stratified storage tank when the setpoint temperature is only present in the uppermost layer. In a conventional storage this is the case when the temperature is just above the set temperature or at a phase change material when this is largely solidified.
  • the heating system 1 comprises a main heat source 2, for example a compact heat pump.
  • an additional heat source 26 for example an electric instantaneous water heater, is connected in parallel to a heat accumulator 20.
  • the additional heat source 26 may also be a reduced module block of a water heater, which consists essentially only of the Elektrowarepatrone, a flow meter and a safety temperature limiter. If 31 hot water taken at a tapping point, the fresh water flows through the fresh water supply line 21 into the heat storage 20 in FIG. 1 and pushes heated drinking water from the top of the heat accumulator 20 into the hot water pipe 30 to the tapping point 31.
  • the user can report this via the control unit 50 to the device control.
  • the controller 50 then opens the second valve 28 and releases the auxiliary heat source 26 for operation.
  • the fresh water then flows through the fresh water supply line 21 to the heat storage 20 and parallel via the branch point 22 in the supply line 24 to the additional heat source 26, in which the fresh water is heated to a desired temperature, and then through the second drain line 27 and the opened second valve 28 for Node 34 of the hot water line 30.
  • the water of the additional heat source 26 mixes with the water of the Heat storage 20, so that at the tapping point 31, a higher amount of hot water with the desired mass flow and the desired temperature results.
  • the hot water temperature may also be stored in the controller 50 and compared to the actual temperature level of the heat accumulator 20. If the temperature is insufficient, the additional heat source 26 is switched on.
  • a first valve 33 can be arranged in the sub-branch of the store, either in the feed line 23 or the first discharge line 32.
  • the first valve 33 may be a fixed throttle.
  • the first valve 33 can be tuned so that about 2/3 of the amount of water flow through the heat accumulator 20, and 1/3 on the additional heat source 26.
  • the tuning of the valves with one another according to the invention can also be done adaptively to achieve the desired temperature at the current mass flow.
  • the auxiliary heat source 26 may be either directly, as in FIG. 2 represented, or via a heat exchanger 11, as in FIG. 1 shown connected to the fresh water supply line 21.
  • the main heat source 2 which supplies heated heating water via the supply line 3 to the coiled tubing 5 of the heat accumulator 20 supplies this alternative to the heat exchanger 11.
  • the heating water instead of the coiled tube 5 to the heat exchanger 11 by means of a switching valve 7 be so that the heat energy of the main heat source 2, if necessary, instead of heating the water in the heat storage 20 for preheating the drinking water, the Additional heat source 26 flows, can be used.
  • a switching valve 7 is installed either in the flow 3 or the return 6 of the heat pump.
  • the heating water flows for example via the feed line 3 to the branch point 4, from there via the supply line 10 to the heat exchanger 11, and via the third drain line 12 to the switching valve 7 and then back into the return line 6 to the main heat source 2.
  • the heat is transferred from the heating water to the drinking water, which enters the fresh water from the fresh water supply line 21 via the branch point 22 and the supply line 24 to the heat exchanger 11 and flows as preheated drinking water from the line 25 to the additional heat source 26.
  • the powers of the main heat source 2 and the additional heat source 26 are coordinated so that the desired temperature is achieved at the present mass flow. In this case, the energy efficiency of the heat sources 2, 26 is taken into account.
  • the heat pump can contribute a maximum performance, up to which a coefficient of performance significantly greater than 1 is achieved. The remaining power can be provided by the water heater.
  • the second valve 28 is only opened when the additional heat source 26 is used for hot water, for example, when the user reports an increased hot water demand to the control unit 50.
  • An increased hot water requirement can also be determined, for example, by a suitable arrangement and evaluation of a plurality of storage temperature sensors 80. So even when Betreib a circulation pump 41, the second valve 28 remains closed as long as no hot water tap with operation of the additional heat source 26 is present.
  • control of the additional heat source 26 can be done not only on a target temperature specification of the outlet temperature of the water heater, but also via a further temperature sensor 35, located in the hot water pipe 30 behind the Junction 34 is located so as to have a better influence on the actual tapping temperature at the tap 31.
  • this can also be designed as a stratified storage 70 with an external plate heat exchanger 71 and a stratified charge pump 72.
  • the heat exchanger 11 and the switching valve 7 is not essential, since the main heat source can continue to heat even in a hot water tap heat in the heat storage 70.
  • the main heat source 2 in this case supplies heated heating water via the supply line 3 to the plate heat exchanger 71, and from there via the return line 6 back to the main heat source 2. From the storage charge pump 72, the cold water from the lower portion of the heat storage 70 via the supply line 73 to the plate heat exchanger 71 transported there heated by the heating water and layered via the drain line 74 in the upper region of the heat accumulator 70 in the memory.
  • a heat pump used to heat the heat accumulator 20 as the main heat source 2 it may be advantageous if the main heat source 2 during a hot water tap not further loads the heat storage 20, but is used for preheating the drinking water. This can be done by means of a priority switching valve 7 by means of a heat exchanger 11 in the manner described above. Since a heat pump is often designed only for a low heat output, the contribution of the main heat source 2 for heating the water in the heat storage 20 during a hot water tap is comparatively low and virtually unusable. By contrast, the main heat source 2 can be very well used during a hot water tap for preheating the drinking water, if anyway the additional heat source 26 contributes to the hot water.
  • the second valve 28 remains closed, and the switching valve 7 remains switched so that the main heat source 2 heats the heat storage 20.

Description

  • Die Erfindung betrifft ein Heizsystem mit Warmwasserbereitstellung. Für die Trinkwassererwärmung werden üblicherweise entweder Speicherbehältersysteme oder Durchlaufheizersysteme eingesetzt. Bei den Speicherbehältersystemen werden üblicherweise Trinkwasser-Rohrwendelspeicher und Schichtenspeicher verwendet, die indirekt mittels erwärmtem Heizwasser beheizt werden.
  • Als Durchlaufheizersysteme werden gasbeheizte Durchlauferhitzer und Elektro-Durchlauferhitzer angeboten. Zudem zählen hierzu auch die indirekten Wassererwärmer, wie gasbeheizte Kombi-Heizgeräte, als auch Systeme mit Heizwasser-Pufferspeicher - in diesen Fällen wird die Wärme über einen zusätzlichen Wärmetauscher im Durchlaufprinzip von erwärmtem Heizwasser auf das Trinkwasser übertragen.
  • Bei Trinkwasserspeichern, die mit Solarwärme beheizt werden, ist es weiterhin bekannt, einen Elektro-Durchlauferhitzer strömungsseitig hinter den Trinkwasserspeicher anzuordnen, der bei zu geringer Trinkwassertemperatur im Speicher das Trinkwasser soweit nacherwärmen kann, dass die gewünschte Warmwasser-Auslauftemperatur erreicht wird.
  • Im Neubau werden aufgrund des hohen Wärmedämmstandards für Wohnhäuser nur noch vergleichsweise geringe Heizleistungen benötigt. Hinsichtlich des Warmwasserkomforts dagegen besteht ein steigender Leistungsbedarf, resultierend aus heute üblichen Komfort-Badewannen und Duschsystemen mit hohem Wasserverbrauch. Wird eine Wärmepumpe als Wärmeerzeuger verwendet, die im Wesentlichen den Heizwärmebedarf decken soll, reicht die Leistung oft nur für eine eingeschränkte Warmwasserbereitung. Es ist zwar möglich, mit einem hinreichend großen Wärmespeicher die benötigte Menge an Warmwasser über einen längeren Zeitraum zu erwärmen und vorzuhalten. Insbesondere bei Kompaktwärmepumpen, die auf engem Raum Wärmepumpe und Trinkwasserspeicher sowie die erforderliche Hydraulik vereinen, ist jedoch nur ein begrenztes Trinkwasservolumen realisierbar, womit die Warmwasserbereitung weiter eingeschränkt ist. Zudem können mit einer Wärmepumpe nur unter Inkaufnahme einer schlechten Leistungszahl hohe Warmwassertemperaturen erreicht werden, während z.B. Gebäude mit Fußbodenheizung mit einer Vorlauftemperatur von 30 bis 40 °C beheizt werden können.
  • Die eingangs genannte aus der solaren Wärmegewinnung bekannte Lösung, bei einem Warmwasserspeicher stömungsseitig in Reihe hinter dem Speicher einen Durchlauferhitzer anzuordnen hat den Nachteil, dass ein Elektro-Durchlauferhitzer einen hohen strömungsseitigen Druckverlust aufweist und so nur ein vergleichsweise geringer Warmwassermassenstrom ermöglicht wird. Sind Speicher und Durchlauferhitzer hintereinander geschaltet, begrenzt dies auch die Warmwassermenge, die durch den Warmwasserspeicher fließt.
  • Die Patentanmeldung EP 2 407 729 A1 offenbart ein Warmwassersystem mit einer Wärmepumpe, einem durch die Wärmepumpe beheizten Warmwasserspeicher und einem zusätzlichen Warmwassergerät. Über eine Zapfstelle kann Warmwasser aus dem Warmwasserspeicher entnommen werden. Dabei wird das Warmwasser entweder über das zusätzliche Warmwassergerät geleitet und dort nach erhitzt. Optional kann ein Bypassventil geöffnet werden, so dass das Warmwasser direkt aus dem Speicher zur Zahlstelle strömt. Dabei wird mittels eines Steuergeräts die Beheizung des zusätzlichen Warmwassergeräts unterbrochen.
  • Ein entsprechendes System offenbart die Patentanmeldung KR 10-2013-0060155 A . Hier wird vorgeschlagen, dass das Bypassventil auch kontinuierlich öffnet.
  • Es ist daher Aufgabe der Erfindung, ein Heizsystem zum Beheizen eines Gebäudes und zum Erwärmen von Warmwasser bereitzustellen, das die genannten Nachteile nicht aufweist. Diese Aufgabe wird gemäß den Merkmalen des Anspruchs 1 dadurch gelöst, dass zusätzlich zu dem in dem von einer Hauptwärmequelle beheizten Wärmespeicher gespeicherten Warmwasser bzw. gespeicherten Wärmeträgermedium zur Warmwasserbereitung parallel eine Zusatzwärmequelle vorgesehen ist, die bei Bedarf Warmwasser mit hoher Temperatur bereitstellen kann. Die beiden Warmwasser-Ströme werden dann in einem Knotenpunkt zusammengeführt und einer Zapfstelle zugeführt. Ein wesentlicher Vorteil ergibt sich beim Erfindungsgemäßen Heizsystem dadurch, dass die Wärmeenergie der Zusatzwärmequelle jederzeit unabhängig von der Beladung des Wärmespeichers in voller Höhe eingespeist werden kann. Wird die Zusatzwärmequelle strömungsseitig wie im Stand der Technik in Reihe mit dem Wärmespeicher geschaltet, ist dies nicht möglich. Ist der Speicher beispielsweise auf 60 °C aufgeheizt, kann die Zusatzwärmequelle nur noch wenig Wärme beisteuern, was insbesondere bei einem Wärmespeicher, welcher als Schichtenspeicher mit guter Wärmeschichtung ausgeführt ist, zu dem Effekt führt, dass zuerst nur die Wärmeenergie des Speichers genutzt wird, und anschließend nur die Wärmeenergie der Zusatzwärmequelle. Dabei wird erfindungsgemäß das Frischwasser, bevor es im Durchlauferhitzer erwärmt wird, durch einen Wärmetauscher geleitet, der von der Hauptwärmequelle beheizt wird. Dies hat den Vorteil, dass bei sehr hohen Warmwasserbedarf das Warmwasser durch drei Wärmequellen bereitgestellt wird. Dies sind der Wärmespeicher, die Hauptwärmequelle und die Zusatzwärmequelle. Bevorzugt werden die beiden Warmwasserströme jeweils durch Ventile hinsichtlich ihres Massenstroms eingestellt.
  • Der Wärmespeicher kann ein Trinkwasserspeicher sein, der entweder konventionell aufgebaut ist und über einen integrierten Wärmetauscher durch die Hauptwärmequelle erwärmt wird oder als Schichtenspeicher ausgeführt ist. Ebenfalls kann der Wärmespeicher ein Wärmeträgermedium enthalten, dass über einen Wärmetauscher seine Wärme an das Warmwasser abgibt.
  • Die Wärmequelle ist bevorzugt eine Wärmepumpe, die Zusatzwärmequelle bevorzugt ein elektrischer Durchlauferhitzer.
  • Durch ein Steuersystem kann sichergestellt werden, dass die Warmwasserströme aus dem Wärmespeicher und aus der Zusatzwärmequelle im richtigen Verhältnis zu der gewünschten Solltemperatur gemischt werden. Diese kann entweder im Steuergerät selbst gespeichert sein oder individuell vom Benutzer angefordert werden. So sind beispielsweise zum Duschen andere Temperaturen gewünscht als zum Geschirr spülen.
  • Bei einem Verfahren zum Betreiben des erfindungsgemäßen Heizsystems wird das Warmwasser mit oberer Priorität über den Wärmespeicher bezogen. Erst wenn die Temperatur des Warmwassers nicht ausreicht, um die gewünschte Solltemperatur zu erreichen, wird Warmwasser über die Zusatzwärmequelle zugemischt.
  • In einer Weiterbildung des Verfahrens wird die Zusatzwärmequelle auch dann schon betrieben, wenn der Wärmespeicher zwar die Solltemperatur aufweist, jedoch nahezu erschöpft ist. Dies ist bei einem Schichtenspeicher der Fall, wenn die Solltemperatur nur noch in der obersten Schicht vorliegt. Bei einem konventionellen Speicher ist dies der Fall, wenn die Temperatur nur knapp oberhalb der Solltemperatur liegt oder bei einem Phasenwechselmaterial, wenn dieses überwiegend erstarrt ist.
  • Die Erfindung wird nun anhand der Figuren detailliert erläutert. Es stellen dar:
    • Figur 1: ein erfindungsgemäßes Heizsystem
    • Figur 2: eine alternative Ausführungsform des erfindungsgemäßen Heizsystems.
    Die nachfolgende Beschreibung richtet sich auf beide Figuren. Auf die Unterschiede der Ausführungsformen wird gesondert hingewiesen. Figur 1 zeigt als Wärmespeicher 20 einen Trinkwasserspeicher, der über eine Rohrwendel 5 beheizt wird. Figur 2 hingegen zeigt einen Schichtenspeicher 70. Zudem ist in Figur 1 der Zusatzwärmequelle 26 ein Wärmetauscher 11 vorgeschaltet. Die Merkmale der Figuren 1 und 2 sind kombinierbar. Zudem kann der Wärmespeicher 20, 70 auch mit einem Wärmeträgermedium, z.B. Wasser oder ein Phasenwechselmaterial, befüllt sein, das die Wärme über einen hier nicht dargestellten Wärmetauscher an das Trinkwasser überträgt. In diesem Fall ist der hier nicht dargestellte Wärmetauscher als Bestandteil des Wärmespeichers 20, 70 zu betrachten.
  • Das erfindungsgemäße Heizsystem 1 umfasst eine Hauptwärmequelle 2, zum Beispiel eine kompakte Wärmepumpe. Erfindungsgemäß ist eine Zusatzwärmequelle 26, zum Beispiel ein Elektro-Durchlauferhitzer, parallel zu einem Wärmespeicher 20 geschaltet. Die Zusatzwärmequelle 26 kann auch ein reduzierter Modulblock eines Durchlauferhitzers sein, der im Wesentlichen nur aus der Elektroheizpatrone, einem Durchflussmesser und einem Sicherheitstemperaturbegrenzer besteht. Wird an einer Zapfstelle 31 Warmwasser entnommen, fließt das Frischwasser über die Frischwasserzuleitung 21 in den Wärmespeicher 20 in Figur 1 und schiebt erwärmtes Trinkwasser oben aus dem Wärmespeicher 20 in die Warmwasserleitung 30 zur Zapfstelle 31.
  • Liegt ein erhöhter Bedarf an Warmwasser bezüglich des Massenstroms oder der Temperatur vor, kann der Nutzer dies über das Steuergerät 50 an die Gerätesteuerung melden. Das Steuergerät 50 öffnet dann das zweite Ventil 28 und gibt die Zusatzwärmequelle 26 zum Betrieb frei. Das Frischwasser fließt dann über die Frischwasserzuleitung 21 zum Wärmespeicher 20 und parallel über die Abzweigstelle 22 in die Zuleitung 24 zur Zusatzwärmequelle 26, in der das Frischwasser bis auf eine Wunschtemperatur erwärmt wird, und anschließend durch die zweite Ablaufleitung 27 und das geöffnete zweite Ventil 28 zum Knotenpunkt 34 der Warmwasserleitung 30. Am Knotenpunkt 34 mischt sich das Wasser der Zusatzwärmequelle 26 mit dem Wasser des Wärmespeichers 20, sodass sich an der Zapfstelle 31 eine höhere Warmwassermenge mit dem gewünschten Massenstrom und der gewünschten Temperatur ergibt. Die Warmwasser-Temperatur kann auch im Steuergerät 50 gespeichert sein und wird mit dem tatsächlichen Temperatur-Niveau des Wärmespeichers 20 verglichen. Reicht die Temperatur nicht aus, wird die Zusatzwärmequelle 26 zugeschaltet.
  • Aufgrund des hohen strömungsseitigen Druckverlustes der Zusatzwärmequelle 26 müssen die teildurchströmten Kreise, einmal über die Zusatzwärmequelle 26, zum anderen über den Wärmespeicher 20, aufeinander abgestimmt werden. Hierzu kann in den Teilstrang des Speichers, entweder in die Zuleitung 23 oder die erste Ablaufleitung 32, beispielsweise ein erstes Ventil 33 angeordnet werden. Im einfachsten Fall kann das erste Ventil 33 eine Festdrossel sein. Das erste Ventil 33 kann beispielsweise hierbei so abgestimmt werden, dass etwa 2/3 der Wassermenge über den Wärmespeicher 20 fließen, und 1/3 über die Zusatzwärmequelle 26. Werden die teildurchströmten Kreise nicht aufeinander abgestimmt, ergibt sich am Knotenpunkt 34 ein zu starkes Druckgefälle in der zweiten Ablaufleitung 27, sodass über die zweite Ablaufleitung 27 kein Wasser in die Warmwasserleitung 30 fließen kann und es zu einer Funktionsstörung der Zusatzwärmequelle 26 kommen kann. Die Abstimmung der Ventile untereinander kann erfindungsgemäß auch adaptiv erfolgen, um die gewünschte Temperatur bei dem aktuellen Massenstrom zu erreichen.
  • Die Zusatzwärmequelle 26 kann entweder direkt, wie in Figur 2 dargestellt, oder über einen Wärmetauscher 11, wie in Figur 1 dargestellt, mit der Frischwasserzuleitung 21 verbunden sein. In der zweiten Alternative liefert die Hauptwärmequelle 2, die im Betrieb erwärmtes Heizwasser über die Vorlaufleitung 3 zur Rohrwendel 5 des Wärmespeichers 20 liefert, dieses alternativ zum Wärmetauscher 11. Hierzu kann mittels eines Umschaltventils 7 das Heizwasser anstatt zu der Rohrwendel 5 zu dem Wärmetauscher 11 geleitet werden, sodass die Wärmeenergie der Hauptwärmequelle 2 bedarfsweise statt zur Erwärmung des Wassers im Wärmespeicher 20 zur Vorerwärmung des Trinkwassers, das zur Zusatzwärmequelle 26 fließt, genutzt werden kann. Hierzu wird ein Umschaltventil 7 entweder in den Vorlauf 3 oder den Rücklauf 6 der Wärmepumpe eingebaut. Das Heizwasser fließt beispielsweise über die Vorlaufleitung 3 zu der Abzweigstelle 4, von da über die Zuleitung 10 zum Wärmetauscher 11, und über die dritte Ablaufleitung 12 zum Umschaltventil 7 und dann in die Rücklaufleitung 6 zur Hauptwärmequelle 2 zurück. Im Wärmetauscher 11 wird die Wärme vom Heizwasser auf das Trinkwasser übertragen, das als Frischwasser von der Frischwasserzuleitung 21 über die Abzweigstelle 22 und die Zuleitung 24 zum Wärmetauscher 11 eintritt und als vorgewärmtes Trinkwasser aus der Leitung 25 zur Zusatzwärmequelle 26 fließt. Die Leistungen der Hauptwärmequelle 2 und die Zusatzwärmequelle 26 werden so koordiniert, dass die gewünschte Temperatur bei dem vorliegenden Massenstrom erreicht wird. Dabei wird die Energieeffizienz der Wärmequellen 2, 26 berücksichtigt. Im Falle einer Kombination einer Wärmepumpe mit einem elektrischen Durchlauferhitzer kann die Wärmepumpe eine maximale Leistung beisteuern, bis zu der eine Leistungszahl deutlich größer 1 erreicht wird. Die restliche Leistung kann durch den Durchlauferhitzer erbracht werden.
  • Das zweite Ventil 28 wird nur dann geöffnet, wenn die Zusatzwärmequelle 26 zur Warmwasserbereitung genutzt wird, beispielsweise wenn der Nutzer einen erhöhten Warmwasserbedarf an das Steuergerät 50 meldet. Ein erhöhter Warmwasserbedarf kann beispielsweise auch durch eine geeignete Anordnung und Auswertung von mehreren Speicher-Temperaturfühlern 80 ermittelt werden. Also auch bei Betreib einer Zirkulationspumpe 41 bleibt das zweite Ventil 28 geschlossen, solange keine Warmwasserzapfung mit Betrieb der Zusatzwärmequelle 26 vorliegt.
  • Wahlweise kann die Steuerung der Zusatzwärmequelle 26 nicht nur über eine Solltemperaturvorgabe der Auslauftemperatur am Durchlauferhitzer erfolgen, sondern auch über einen weiteren Temperaturfühler 35, die sich in der Warmwasserleitung 30 hinter dem Knotenpunkt 34 befindet, um so einen besseren Einfluss auf die tatsächliche Zapftemperatur an der Zapfstelle 31 zu haben.
  • Statt des Wärmespeichers 20 in Form eines Wasserspeichers 20 mit einer Rohrwendel 5 kann dieser auch als Schichtenspeicher 70 mit einem externen Plattenwärmetauscher 71 und einer Schichtladepumpe 72 ausgeführt sein. In diesem Fall ist der Wärmetauscher 11 und das Umschaltventil 7 nicht unbedingt erforderlich, da die Hauptwärmequelle auch bei einer Warmwasserzapfung weiterhin Wärme in den Wärmespeicher 70 einschichten kann.
  • Die Hauptwärmequelle 2 liefert in diesem Fall erwärmtes Heizwasser über die Vorlaufleitung 3 zum Plattenwärmetauscher 71, und von da über die Rücklaufleitung 6 zurück zur Hauptwärmequelle 2. Von der Speicherladepumpe 72 wird das kalte Wasser aus dem unteren Bereich des Wärmespeichers 70 über die Zuleitung 73 zum Plattenwärmetauscher 71 transportiert, dort vom Heizwasser erwärmt und über die Ablaufleitung 74 in den oberen Bereich des Wärmespeichers 70 im Speicher eingeschichtet.
  • Wird als Hauptwärmequelle 2 eine Wärmepumpe zur Beheizung des Wärmespeichers 20 verwendet, kann es von Vorteil sein, wenn die Hauptwärmequelle 2 während einer Warmwasserzapfung nicht weiter den Wärmespeicher 20 lädt, sondern für die Vorwärmung des Trinkwassers genutzt wird. Dies kann mit Hilfe eines Vorrangumschaltventils 7 mittels eines Wärmetauschers 11 in der oben beschriebenen Weise erfolgen. Da eine Wärmepumpe oft nur auf eine geringe Wärmeleistung ausgelegt ist, ist der Beitrag der Hauptwärmequelle 2 zur Erwärmung des Wassers im Wärmespeicher 20 während einer Warmwasserzapfung vergleichsweise gering und praktisch nicht nutzbar. Hingegen kann die Hauptwärmequelle 2 während einer Warmwasserzapfung sehr gut zur Vorwärmung des Trinkwassers genutzt werden, wenn ohnehin die Zusatzwärmequelle 26 mit zur Warmwasserbereitung beiträgt.
  • Wird die Zusatzwärmequelle 26 bei einer Warmwasserzapfung nicht genutzt, weil beispielsweise der Nutzer keinen erhöhten Warmwasserbedarf gemeldet hat, bleibt das zweite Ventil 28 geschlossen, und das Umschaltventil 7 bleibt so geschaltet, dass die Hauptwärmequelle 2 den Wärmespeicher 20 beheizt.
  • Bezugszeichenliste
  • 1
    Heizsystem
    2
    Hauptwärmequelle
    3
    Vorlaufleitung
    4
    Abzweigstelle
    5
    Rohrwendel
    6
    Rücklaufleitung
    7
    Umschaltventil
    10
    Zuleitung
    11
    Wärmetauscher
    12
    Dritte Ablaufleitung
    20
    Wärmespeicher
    21
    Frischwasserzuleitung
    22
    Abzweigstelle
    23, 24
    Zuleitung
    25
    Leitung
    26
    Zusatzwärmequelle
    27
    Zweite Ablaufleitung
    28
    Zweites Ventil
    30
    Warmwasserleitung
    31
    Zapfstelle
    32
    Erste Ablaufleitung
    33
    Erstes Ventil
    34
    Knotenpunkt
    35
    Temperaturfühler
    40
    Abzweigstelle
    41
    Zirkulationspumpe
    42
    Zirkulationsleitung
    50
    Steuergerät
    70
    Wärmespeicher
    71
    Plattenwärmetauscher
    72
    Schichtladepumpe
    73
    Zuleitung
    74
    Ablaufleitung
    80
    Temperaturfühler

Claims (9)

  1. Heizsystem (1) zum Beheizen eines Gebäudes und zum Erwärmen von Warmwasser, welches an einer Zapfstelle (31) bereitgestellt wird, umfassend eine Frischwasserzuleitung (21) zum Zuleiten von kaltem Wasser, eine Hauptwärmequelle (2), einen mit der Hauptwärmequelle (2) verbundenen Wärmespeicher (20) und eine Zusatzwärmequelle (26), wobei die Hauptwärmequelle (2) zum Beheizen des Gebäudes und/oder zum Erwärmen des Wärmespeichers (20) vorgesehen ist, wobei der Wärmespeicher (20) Warmwasser oder aber ein erwärmtes Wärmeträgermedium zur Erwärmung des Warmwassers speichert und wobei die Zusatzwärmequelle (26) zum Erwärmen des Warmwassers vorgesehen ist, wobei das Warmwasser vom Wärmespeicher (20) kommend über eine erste Ablaufleitung (32) geführt wird, wobei das Warmwasser von der Zusatzwärmequelle (26) über eine zweite Ablaufleitung (27) mit einem zweiten Ventil (28) geführt wird, wobei die erste Ablaufleitung (32) und die zweite Ablaufleitung (27) an einem Knotenpunkt (34) zusammengeführt werden, von wo aus eine Warmwasserleitung (30) das Warmwasser zur Zapfstelle (31) führt, dadurch gekennzeichnet, dass das Heizsystem (1) einen Wärmetauscher (11) umfasst, dass mit einem Umschaltventil (7) die Hauptwärmequelle (2) entweder mit dem Wärmespeicher (20) oder mit der ersten Seite des Wärmetauschers (11) verbunden werden kann, und dass die Zusatzwärmequelle (26) über die zweite Seite des Wärmetauschers so mit der Frischwasserzuleitung (21) verbunden ist, dass im Betrieb das kalte Frischwasser zunächst durch den Wärmetauscher (11) strömt und danach durch die Zusatzwärmequelle (26) strömt.
  2. Heizsystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass die erste Ablaufleitung (32) ein erstes Ventil (33) zum Drosseln oder Absperren und/oder dass die zweite Ablaufleitung (27) ein zweites Ventil (28) zum Drosseln oder Absperren umfasst.
  3. Heizsystem (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wärmespeicher (20) ein Trinkwasserspeicher ist.
  4. Heizsystem (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wärmespeicher (20) ein Speicher mit einem Wärmeträgermedium ist, und dass der Wärmespeicher (20) einen Wärmetauscher zur Übertragung der Wärme des Wärmeträgermediums auf Frischwasser umfasst.
  5. Heizsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptwärmequelle (2) eine Wärmepumpe ist.
  6. Heizsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusatzwärmequelle (26) ein Durchlauferhitzer ist.
  7. Heizsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Heizsystem (1) ein Steuergerät (50) umfasst, das mit einem oder mehreren Temperaturfühlern (80) zum Erfassen der vom Wärmespeicher (20) bereitgestellten Wärme verbunden ist, das mit Stellmitteln zum Betätigen der Ventile (28, 33) und gegebenenfalls mit einem Stellmittel für das Umschaltventil (7) verbunden ist und dass das Steuergerät (50) so konfiguriert ist, dass im Betrieb die Ventile (28, 33) und gegebenenfalls das Umschaltventil (7) so betätigt werden, dass die Temperatur an der Zapfstelle (31) einem gespeicherten oder vom Bediener eingegebenen Temperatur-Sollwertes entspricht.
  8. Verfahren zum Betreiben eines Heizgerätes nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass beim Zapfen von Warmwasser an der Zapfstelle (31) die Ventile (28, 33) und gegebenenfalls das Umschaltventil (7) so betätigt werden, dass zunächst das Warmwasser vom Wärmespeicher (20) bereitgestellt wird und in dem Fall, dass die Temperatur des vom Wärmespeicher (20) bereitgestellten Warmwassers unterhalb des gespeicherten oder vom Bediener eingegebenen Temperatur-Sollwertes ist, das Warmwasser zusätzlich oder ausschließlich von der Zusatzwärmequelle (26) bereitgestellt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Warmwasser auch dann schon zusätzlich von der Zusatzwärmequelle (26) bereitgestellt wird, wenn die Temperatur des vom Wärmespeicher (20) bereitgestellten Warmwassers oberhalb oder gleich des gespeicherten oder vom Bediener eingegebenen Temperatur-Sollwertes ist, jedoch bei einem Schichtenspeicher die Solltemperatur nur noch in der obersten Schicht vorliegt, bei einem konventionellen Speicher die Temperatur nur knapp oberhalb der Solltemperatur liegt oder bei einem Phasenwechselmaterial dieses überwiegend erstarrt ist und daher die im Speicher enthaltene Energiemenge nicht ausreicht, um eine ausreichendes Warmwasser- Volumen mit der Solltemperatur bereitzustellen.
EP15198630.4A 2014-12-12 2015-12-09 Heizsystem mit warmwasserbereitstellung Active EP3032181B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014225693.3A DE102014225693A1 (de) 2014-12-12 2014-12-12 Heizsystem mit Warmwasserbereitstellung

Publications (2)

Publication Number Publication Date
EP3032181A1 EP3032181A1 (de) 2016-06-15
EP3032181B1 true EP3032181B1 (de) 2018-01-31

Family

ID=54838261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15198630.4A Active EP3032181B1 (de) 2014-12-12 2015-12-09 Heizsystem mit warmwasserbereitstellung

Country Status (4)

Country Link
EP (1) EP3032181B1 (de)
DE (1) DE102014225693A1 (de)
DK (1) DK3032181T3 (de)
ES (1) ES2665179T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111197B3 (de) 2021-04-30 2022-05-05 Viessmann Climate Solutions Se Verfahren zum Betrieb einer wärmetechnischen Anlage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682001B2 (ja) * 2016-10-03 2020-04-15 三菱電機株式会社 貯湯式給湯機
WO2022168030A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Temporary water/energy flow reduction
GB202101678D0 (en) * 2021-02-07 2021-03-24 Octopus Energy Ltd Methods and systems and apparatus to support reduced energy and water usage
WO2022168023A1 (en) * 2021-02-07 2022-08-11 Octopus Energy Group Limited Energy storage arrangement and installations
EP4253847A1 (de) * 2022-03-28 2023-10-04 Mitsubishi Electric Corporation System und verfahren zum bereitstellen von brauchwarmwasser
NL2031715B1 (nl) * 2022-04-26 2023-11-10 Ti Green B V Verwarmingsinrichting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084768B2 (ja) * 2009-03-11 2012-11-28 リンナイ株式会社 給湯システム
JP5401531B2 (ja) * 2011-11-29 2014-01-29 リンナイ株式会社 貯湯式給湯システム
JP5712197B2 (ja) * 2012-12-04 2015-05-07 シャープ株式会社 ヒートポンプ熱源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111197B3 (de) 2021-04-30 2022-05-05 Viessmann Climate Solutions Se Verfahren zum Betrieb einer wärmetechnischen Anlage
EP4083520A1 (de) 2021-04-30 2022-11-02 Viessmann Climate Solutions SE Verfahren zum betrieb einer wärmetechnischen anlage

Also Published As

Publication number Publication date
EP3032181A1 (de) 2016-06-15
ES2665179T3 (es) 2018-04-24
DE102014225693A1 (de) 2016-06-16
DK3032181T3 (en) 2018-04-23

Similar Documents

Publication Publication Date Title
EP3032181B1 (de) Heizsystem mit warmwasserbereitstellung
EP2154436B1 (de) Verfahren und Vorrichtung zur Wärmenutzung
EP2217875B1 (de) Brauverfahren und brauereianlagen
EP2138776A2 (de) Anordnung und Verfahren zur Bereitstellung von warmem Trinkwasser mit einem Wärmeübertrager
DE2641601B2 (de) Wasserspeichererhitzer
DE102005035821B3 (de) Thermische Solaranlage
DE102016102718B4 (de) Trinkwassererwärmungssystem
DE19504730C1 (de) Warmwasserbereitungsanlage nach dem Durchflußprinzip mit Leistungsbegrenzung
EP2826505A1 (de) Dialyseanlage mit Wärmerückgewinnung
DE102015118826A1 (de) Anordnung und Verfahren zur Bereitstellung von warmem Trinkwasser mit einem Wärmeübertrager
EP2226571B1 (de) Anordnung und Verfahren zum Erwärmen von Trinkwasser für eine Verbrauchs- bzw. Zapfstelle
AT511697B1 (de) Vorrichtung zur erwärmung von brauchwasser
DE102010056370A1 (de) Vorrichtung zur Steigerung der Effizienz einer Wärmepumpe bei der Brauchwassererzeugung
EP2339247B1 (de) Verfahren zur Erwärmung von Brauchwasser
EP3015786A1 (de) Heizgerät und verfahren zum betreiben eines heizgeräts
DE102013112952A1 (de) System und Verfahren zur Erwärmung von Trink- und Heizwasser
DE102015207079A1 (de) Heizsystem
DE102013012724A1 (de) Vorrichtung zur Erwärmung von Heizwasser für eine Warmwasserbereitung
DE102013224628B4 (de) Vorrichtung zur Erwärmung von Trinkwasser für ein Verteilnetz
AT501612B1 (de) Verfahren zum betreiben einer warmwasserbereitungsanlage und warmwasserbereitungsanlage
EP3367005B1 (de) Heizsystem
EP3134687B1 (de) Heizgerät
EP2937636A1 (de) Pufferspeichersystem zur verwendung in einem nah- oder fernwärmenetz
EP2679927A2 (de) Heizungsanlage mit einem thermischen Pufferspeicher
WO2024083998A1 (de) Zentralheizungssystem und verfahren zum betrieb und/oder zur steuerung und/oder zur regelung eines zentralheizungssystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161212

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170816

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 967734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002962

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180416

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2665179

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 27008

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180501

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002962

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151209

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221128

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230102

Year of fee payment: 8

Ref country code: CH

Payment date: 20230101

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231204

Year of fee payment: 9

Ref country code: NL

Payment date: 20231128

Year of fee payment: 9

Ref country code: IT

Payment date: 20231227

Year of fee payment: 9

Ref country code: FR

Payment date: 20231220

Year of fee payment: 9

Ref country code: DK

Payment date: 20231129

Year of fee payment: 9

Ref country code: DE

Payment date: 20231130

Year of fee payment: 9

Ref country code: CZ

Payment date: 20231201

Year of fee payment: 9

Ref country code: AT

Payment date: 20231129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 9