EP3025048B1 - Control valve for a fuel injector - Google Patents

Control valve for a fuel injector Download PDF

Info

Publication number
EP3025048B1
EP3025048B1 EP14724771.2A EP14724771A EP3025048B1 EP 3025048 B1 EP3025048 B1 EP 3025048B1 EP 14724771 A EP14724771 A EP 14724771A EP 3025048 B1 EP3025048 B1 EP 3025048B1
Authority
EP
European Patent Office
Prior art keywords
diffuser
valve
diameter
switching valve
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14724771.2A
Other languages
German (de)
French (fr)
Other versions
EP3025048A1 (en
Inventor
Michael Krause
Lars Olems
Thomas Nierychlo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3025048A1 publication Critical patent/EP3025048A1/en
Application granted granted Critical
Publication of EP3025048B1 publication Critical patent/EP3025048B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves

Definitions

  • Fuel injectors as they are preferably used for fuel injection directly into the combustion chamber of an internal combustion engine, are known from the prior art, such as from DE 198 59 537 .
  • compressed fuel is made available in a rail by means of a high-pressure pump and injected by means of the fuel injectors into the respective combustion chambers of an internal combustion engine.
  • the injection is controlled by means of a nozzle needle arranged in the fuel injector, which performs a longitudinal movement and thereby opens and closes one or more injection openings.
  • the nozzle needle is moved by hydraulic forces acting on the nozzle needle due to a pressure in a control chamber.
  • the longitudinal movement of the nozzle needle can be controlled specifically.
  • the pressure in the control chamber is lowered by means of a switching valve by a hydraulic connection between the control chamber and a low-pressure chamber is opened, wherein the hydraulic connection is designed as a throttle.
  • Another example is from the DE 10 2007 004553 A1 known.
  • the present invention has for its object to provide a switching valve with a hydraulic connection for Abgresn the fuel from the control chamber in the low-pressure chamber, in which arise as few cavitation damage within the hydraulic connection.
  • the switching valve according to the invention with the features of claim 1 achieved even at very high pressures on the one hand a particularly advantageous injection course shaping and on the other hand, the occurrence of cavitation damage is minimized.
  • the switching valve of a fuel injector for internal combustion engines comprises a valve piece with a valve seat and a cooperating with the valve seat, liftable valve-closing armature, wherein in the valve piece a drain hole is formed with a circular cross-section.
  • the drainage bore comprises a first region serving as a throttle with a diameter d 1 , a second region serving as a diffuser, and a third region having a diameter d 3 serving as a subsequent flow geometry.
  • the second region has at least one section with a diameter d 2 and d 1 ⁇ d 2 ⁇ d 3 .
  • the third region B 3 serving as the subsequent flow geometry has a length l 3 , wherein the following applies to the ratio l 3 / d 3 : 2 ⁇ l 3 / d 3 ⁇ 4, preferably l 3 / d 3 is approximately equal to 2.5.
  • the subsequent flow geometry has a diameter d 3 of 1.0 mm to 1.5 mm, preferably about 1.3 mm.
  • the diameter d 3 is only slightly smaller than the diameter of the valve seat, so that the areas near the wall are as far away as possible from the flow axis and the imploding of the cavitation bubbles leads to no or only minimal cavitation damage.
  • the throttle has a length l 1 of about 0.80 mm and a diameter d 1 of about 0.25 mm.
  • the throttle diameter d 1 of about 0.25 mm leads to a particularly favorable injection rate shaping, especially during the opening stroke of the nozzle needle.
  • the length-diameter ratio l 1 / d 1 of the throttle is greater than 3, to turbulence of the To avoid or reduce fuel flow in the following areas. This results in an optimized throttle length l 1 of about 0.80 mm.
  • the diffuser has a second section with the diameter d 2b .
  • the diffuser is designed as a double diffuser, with a first diffuser, which adjoins the throttle, having a diameter d 2 or d 2a and a second diffuser having a diameter d 2b , where d 2b is > d 2a .
  • a double diffuser the flow throughout the drain hole is made advantageous: turbulence is reduced and the imploding of the vapor bubbles in near-wall "dead water areas" - ie areas with very low flow velocity, usually at inner edges - avoided as far as possible.
  • According to the flow cross-section of the second diffuser is about twice as large as the flow area of the first diffuser.
  • the unfavorably high ⁇ value (water vapor diffusion resistance) due to the throttling is lowered again.
  • the first diffuser has a length l 2a and has a length-diameter ratio l 2a / d 2a of about 1. This ratio achieves the best compromise flow pattern, flow rate, reduction of ⁇ value and occurrence of cavitation.
  • the second diffuser advantageously has a length l 2b and has a length-diameter ratio l 2b / d 2b of about 1.
  • the first diffuser has a diameter d 2a of about 0.35 mm.
  • d 2a of about 0.35 mm.
  • d 1 of about 0.25 mm
  • the diameter of the second diffuser d 2b is about 0.50 mm.
  • the switching valve is designed as a substantially pressure-balanced valve.
  • the switching valve is thus very well suited for multiple injections.
  • the switching valve is designed as a solenoid valve.
  • the structure of the switching valve according to the invention especially the proximity of drain throttle to valve seat, promotes electromagnetic excitation of the valve closing armature.
  • a pressure boost with an additional throttle point can be omitted.
  • Fig.1 shows a switching valve 10 according to the invention , which is used here in a fuel injector 100 .
  • the fuel injector 100 has a housing which comprises a nozzle body 2 and a valve housing 40 screwed to the nozzle body 2 .
  • a high-pressure pressure chamber 3 is formed, which is connected in operation with a not shown under high pressure fuel source, typically a common rail.
  • a guided in a sleeve 6 nozzle needle 4 is arranged longitudinally displaceable, which serves for opening and closing of injection openings, not shown, which open into a combustion chamber, not shown, of an internal combustion engine.
  • valve piece 11 is arranged, which bears against a shoulder in the valve housing 40 and projects into the pressure chamber 3 .
  • the opening and closing movement of the nozzle needle 4 is controlled by the pressure in a control chamber 5 .
  • the control chamber 5 is limited by the nozzle needle 4, the sleeve 6 and the valve piece 11 .
  • an inlet bore 7 is formed, which connects the pressure chamber 3 with the control chamber 5 .
  • a drain hole 30 is formed, which connects the control chamber 5 switchable with a low-pressure chamber 50 which is formed in the valve housing 40 .
  • Valve piece 6 and sleeve 11 can be made in one piece as a large valve piece 6, 11 in other embodiments, so that the nozzle needle 4 in the valve piece 6, 11 is guided and both Zulaufborhung 7 and 30 drain hole in the valve piece 6, 11 are formed.
  • a switching valve 10 is arranged which includes a solenoid adjacent the valve element 11 42, a valve-closing armature 20 and a valve pin 44th
  • the valve member 11 and the solenoid 42 with the interposition of a valve sleeve 41 by a clamping screw 43 are firmly clamped.
  • the clamping screw 43 of the valve pin 44 is fixedly connected, is guided on the axially displaceable valve closing armature 20 in an anchor bore 21 formed therein.
  • a quasi-pressure-balanced switching valve 10 is realized by the rigidly arranged valve pin 44 .
  • valve-closing armature 20 is urged by the force of a spring 45 which is disposed between valve pin 44 and valve-closing armature 20, against a piece 11 formed on the valve seat 12th
  • the diameter of the valve seat 12 and the diameter of the valve pin 44 are almost equal.
  • this can be implemented, for example, by a stepped anchorage bore 21 .
  • the low-pressure chamber 50 is hydraulically connected to the low-pressure return system of the fuel injector 100 .
  • the drainage bore 30 is subdivided from the control chamber 5 to the low-pressure chamber 50 into three regions: a first region serving as a restrictor 31 , a second region serving as a diffuser 32 and a third region serving as a subsequent flow geometry 33 .
  • the flow cross section of the throttle 31 is less than the flow cross section of the diffuser 32, which in turn is less than the flow area of the subsequent flow geometry 33.
  • Fig.2 shows a detailed representation of the discharge bore 30 in the valve piece 11.
  • the throttle 31 is arranged struraumnah in the first region and has a length l 1 and a circular flow cross-section of diameter d1. Its length-diameter ratio l 1 / d 1 ⁇ 3 is advantageous.
  • the diffuser 32 with the length l 2 adjoins the throttle 31 in the second region, which is designed as a double diffuser 32 and has a larger flow cross-section than the throttle 31
  • the double diffuser 32 is composed of a throttle-proximate first diffuser 32a of length l 2a and a second diffuser 32b of length l 2b , the second diffuser 32b of diameter d 2b having a larger flow area than the first diffuser 32a of diameter d 2a .
  • the subsequent flow geometry 33 of the third region adjoins the double diffuser 32 at low pressure space; it has the length l 3 and the diameter d 3 .
  • transitions between the different flow cross-sections - that is from throttle 31 to first diffuser 32a, from first diffuser 32a to second diffuser 32b and from second diffuser 32b to the subsequent flow geometry 33 - are configured by chamfers, which may be rounded.
  • the transitions from throttle 31 to first diffuser 32a and from first diffuser 32a to second diffuser 32b each have a 45 ° phase and the transition from second diffuser 32b to the subsequent flow geometry 33 has a 30 ° phase.
  • the operation of the switching valve 10 is as follows: Before the start of the injection process, the nozzle needle 4 and the switching valve 10 are closed, there is no fuel flowing into the combustion chamber of the internal combustion engine. closed Switching valve 10 means that the valve-closing armature 20 is pressed against the valve seat 12 and seals it.
  • the control chamber 5 is at high pressure, which corresponds approximately to the high pressure of the common rail.
  • the solenoid 42 is electrically energized and thereby exerts an attractive force on the valve-closing armature 20 .
  • the valve closing armature 20 performs a lifting movement against the force of the spring 45 in the direction of the electromagnet 42 and thus stands out from the valve seat 12 .
  • the control chamber 5 is now connected via the drain hole 30 to the low-pressure chamber 50 . Fuel then flows from the control chamber 5 in the low-pressure chamber 50 , which is also referred to as Abêtung of the fuel. The pressure in the control chamber 5 decreases because more fuel is diverted via the drain hole 30 than flows through the inlet bore 7 .
  • the resulting hydraulic force on the nozzle needle 4 decreases in the direction of the injection openings.
  • the nozzle needle 4 lifts off from a nozzle needle seat and releases the injection openings; Fuel flows into the combustion chamber of the internal combustion engine.
  • the electrical control of the electromagnet 42 is stopped.
  • the solenoid 42 no longer exerts any attractive force on the valve-closing armature 20 , and the valve-closing armature 20 is pressed against the valve seat 12 again by the spring force of the spring 45 .
  • About the inlet bore 7 of the control chamber 5 is filled with high-pressure fuel until the same pressure prevails in the control chamber 5 as in the pressure chamber 3 and the common rail. With the pressure in the control chamber 5 , the hydraulic force on the nozzle needle 4 increases in the direction of the injection openings and the nozzle needle 4 is pressed against its nozzle needle seat again. There is no more fuel flowing into the combustion chamber of the internal combustion engine.
  • the reflected implosion bubbles which may have pressure peaks up to 40 kbar, are detrimental if they occur close to the wall; it comes to material erosion, this is called cavitation erosion or cavitation damage.
  • cavitation erosion or cavitation damage Especially vulnerable areas of the switching valve 10 with respect. Cavitation damages are thus the end portion of the throttle 31, the diffuser 32, the subsequent flow geometry 33, the valve seat 12, the valve-closing armature 20 and the valve pin 44, so the highly pressurized areas of the switching valve 10 downstream of the throttle 31.
  • the task of the throttle 31 is to throttle the fuel when it is being scavenged out of the control chamber 5 and thus to control the movements of the nozzle needle 4 in such a way that an optimized injection curve shaping for the fuel injector 100 is achieved.
  • the throttle function is essentially determined by the diameter d 1 of the circular flow cross-section of the throttle 31 . Hydraulic interpretations of the injection progression molding show that with a throttle diameter d 1 of 0.2... 0.3 mm, in particular approx. 0.25 mm, the most favorable injection profile formations are achieved.
  • the length-diameter ratio of the throttle 31 is ideally slightly greater than 3, so that the length l 1 of the throttle 31 is 0.7 ... 1.0 mm, in particular about 0.8 mm.
  • a flow change by moving the damage area from the diffuser 32 to the throttle 31 is thereby avoided. It continues to happen less strong turbulence of the fuel flowing through in the following areas, ie in the diffuser 32, than in the case of shorter throttles. Turbulence can carry the vapor bubbles near the wall, causing cavitation damage.
  • a long throttle 31 concentrates the steam-laden bleed flow entering the diffuser 32 more on the flow axis, ie on the symmetry axis of the drainage bore 30.
  • the length-diameter ratio of the throttle 31 can also be selected larger, but would then require more space, without additionally improving the fuel flow.
  • An unavoidable disadvantage of the comparatively long throttle 31 is the deterioration of the ⁇ value (water vapor diffusion resistance): With increasing throttle length, the ⁇ value increases, which in turn results in a high return back pressure. As a result, the flow or the "diffusion" of the vapor bubbles in the subsequent flow geometry 33 is associated with a higher resistance, which accordingly leads to undesirable turbulence.
  • the task of the diffuser 32 is to lower the ⁇ value again by optimizing pressure recovery.
  • this object is achieved by the use of a double diffuser 32 .
  • the diameter expansions in the double diffuser 32 have a decisive influence on the fuel flow in the entire drain hole 30 and thus also on the ⁇ value.
  • an enlargement of the diameter is designed so that the flow cross section per stage approximately doubles. That is, the flow area A 2a of the first diffuser 32a is about twice as large as the flow area A 1 of the throttle 31 and the flow area A 2b of the second diffuser 32b is about twice as large as A 2a .
  • d 2a of the circular flow cross section of the first diffuser 32a 0.28 to 0.42 mm, in particular 0.35 mm.
  • d 2b of the circular flow cross-section of the second diffuser 32b 0.40 ... 0.60 mm, in particular about 0.50 mm.
  • a ratio of about 1 per diameter enlargement is particularly fluid favorably exposed. This ratio achieves the best compromise between flow pattern, flow rate, ⁇ -value reduction and cavitation.
  • the diameter expansions of restrictor 31 to first diffuser 32a and from first diffuser 32a to second diffuser 32b extend conically at 45 °, ie with a 45 ° bevel, which can be rounded at its edges.
  • so-called dead water areas would develop in the region of the inner edges of the double diffuser 32 , which in turn could lead to the formation of negative pressure zones and thus additional cavitation bubbles close to the wall.
  • the subsequent to the double diffuser 32 subsequent flow geometry 33 has the function of raising at a constant Abströmmenge between valve seat 12 and valve-closing armature 20, the static pressure level in the subsequent flow geometry 33 in order to achieve a reduced vapor formation. This is achieved over a comparatively large volume. The remaining vapor bubble formation and above all implosion of the vapor bubbles is also distributed to a larger volume and kept away from valve seat 12 and valve closing anchor 20 . Cavitation damage in the areas downstream of the diffuser 32 is thus minimized.
  • a long subsequent flow geometry 33 lowers the ⁇ value by forming a homogeneous flow pattern, which improves the functionality of the fuel injector 100 .
  • the diameter extension for the subsequent flow geometry 33 no longer has to be limited to twice the flow cross section.
  • the diameter d 3 of the subsequent flow geometry 33 is only slightly smaller than the diameter of the valve seat 12 and is in the range 1.0 ... 1.5 mm, preferably 1.3 mm.
  • the comparatively large diameter of the valve seat 12 has the advantage that even at low lift of the valve closing armature 20 the required Abêtmenge between valve seat 12 and valve closing armature 20 can be removed.
  • the length-diameter ratio l 3 / d 3 of the subsequent flow geometry 33 need not be greater than 3, since throttle 31 and double diffuser 32 have already degraded a large part of the high pressure in the control chamber 5 ; in the following flow geometry 33 , significantly less vapor bubble formation occurs.
  • the length l 3 must be chosen so that there is a sufficient decrease in the ⁇ value.
  • l 3 / d 3 2 ... 4
  • ideally l 3 / d 3 about 2.5 is chosen.
  • a long subsequent flow geometry 33 also has the advantage that the stress critical areas of the drain hole 30 , namely the diameter transitions from throttle 31 to diffuser 32 and diffuser 32 to subsequent flow geometry 33 can be positioned so that the existing due to the screwing of the valve piece 11 static Strains are superimposed favorably with the dynamic stresses caused by the high-pressure loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Kraftstoffinjektoren, wie sie vorzugsweise zur Kraftstoffeinspritzung direkt in den Brennraum einer Brennkraftmaschine verwendet werden, sind aus dem Stand der Technik bekannt, wie beispielsweise aus der DE 198 59 537 . Bei Einspritzsystemen, die nach dem sogenannten Common-Rail-Prinzip arbeiten, wird mittels einer Hochdruckpumpe verdichteter Kraftstoff in einem Rail zur Verfügung gestellt und mittels der Kraftstoffinjektoren in die jeweiligen Brennräume einer Brennkraftmaschine eingespritzt. Die Einspritzung wird mittels einer im Kraftstoffinjektor angeordneten Düsennadel gesteuert, die eine Längsbewegung ausführt und dadurch eine oder mehrere Einspritzöffnungen öffnet und schließt. Die Düsennadel wird über hydraulische Kräfte bewegt, die aufgrund eines Druckes in einem Steuerraum auf die Düsennadel wirken. Durch Änderung des Drucks im Steuerraum und damit der Schließkraft auf die Düsennadel kann die Längsbewegung der Düsennadel gezielt gesteuert werden. Für die Öffnungsbewegung der Düsennadel wird der Druck im Steuerraum mittels eines Schaltventils abgesenkt, indem eine hydraulische Verbindung zwischen dem Steuerraum und einem Niederdruckraum geöffnet wird, wobei die hydraulische Verbindung als Drossel ausgebildet ist.Fuel injectors, as they are preferably used for fuel injection directly into the combustion chamber of an internal combustion engine, are known from the prior art, such as from DE 198 59 537 , In injection systems which operate according to the so-called common rail principle, compressed fuel is made available in a rail by means of a high-pressure pump and injected by means of the fuel injectors into the respective combustion chambers of an internal combustion engine. The injection is controlled by means of a nozzle needle arranged in the fuel injector, which performs a longitudinal movement and thereby opens and closes one or more injection openings. The nozzle needle is moved by hydraulic forces acting on the nozzle needle due to a pressure in a control chamber. By changing the pressure in the control chamber and thus the closing force on the nozzle needle, the longitudinal movement of the nozzle needle can be controlled specifically. For the opening movement of the nozzle needle, the pressure in the control chamber is lowered by means of a switching valve by a hydraulic connection between the control chamber and a low-pressure chamber is opened, wherein the hydraulic connection is designed as a throttle.

Aus der DE 198 59 537 ist auch bekannt, dass durch eine Kombination von Drossel und Diffusor als hydraulische Verbindung eine besonders vorteilhafte Einspritzverlaufsformung erzielt werden kann. Aufgrund der immer weiter steigenden Anforderungen bzgl. des Hochdrucks des einzuspritzenden Kraftstoffs steigt auch der im Steuerraum anliegende Hochdruck und damit auch der über die Drossel abzusteuernde Hochdruck. Dadurch erhöht sich das Risiko von Kavitationsschäden in Drossel und nachfolgender Strömungsgeometrie aufgrund zunehmender Dampfblasenbildung im abgesteuerten Kraftstoff.From the DE 198 59 537 It is also known that a particularly advantageous injection rate shaping can be achieved by a combination of throttle and diffuser as a hydraulic connection. Due to the ever-increasing demands regarding the high pressure of the fuel to be injected, the high pressure applied in the control chamber and thus also the high pressure to be removed via the throttle increases. This increases the risk of cavitation damage in throttle and subsequent flow geometry due to increasing vapor bubble formation in the discharged fuel.

Ein anderes Beispiel ist aus der DE 10 2007 004553 A1 bekannt.Another example is from the DE 10 2007 004553 A1 known.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Schaltventil mit einer hydraulischen Verbindung zum Absteuern des Kraftstoffs vom Steuerraum in den Niederdruckraum zu schaffen, bei dem innerhalb der hydraulischen Verbindung möglichst wenige Kavitationsschäden entstehen.The present invention has for its object to provide a switching valve with a hydraulic connection for Absteuern the fuel from the control chamber in the low-pressure chamber, in which arise as few cavitation damage within the hydraulic connection.

Offenbarung der ErfindungDisclosure of the invention

Das erfindungsgemäße Schaltventil mit den Merkmalen des Anspruchs 1 erzielt selbst bei sehr hohen Drücken zum einen eine besonders vorteilhafte Einspritzverlaufsformung und zum anderen wird das Auftreten von Kavitationsschäden minimiert.The switching valve according to the invention with the features of claim 1 achieved even at very high pressures on the one hand a particularly advantageous injection course shaping and on the other hand, the occurrence of cavitation damage is minimized.

Dazu umfasst das Schaltventil eines Kraftstoffinjektors für Brennkraftmaschinen ein Ventilstück mit einem Ventilsitz sowie einen mit dem Ventilsitz zusammenwirkenden, hubbeweglichen Ventilschließanker, wobei im Ventilstück eine Ablaufbohrung mit kreisrundem Querschnitt ausgebildet ist. Die Ablaufbohrung umfasst einen als Drossel dienenden ersten Bereich mit einem Durchmesser d1, einen als Diffusor dienenden zweiten Bereich und einen als nachfolgende Strömungsgeometrie dienenden dritten Bereich mit einem Durchmesser d3. Der zweite Bereich weist wenigstens einen Abschnitt mit einem Durchmesser d2 auf und es gilt d1 < d2 < d3. Der als nachfolgende Strömungsgeometrie dienende dritte Bereich B3 besitzt eine Länge l3, wobei für das Verhältnis l3/d3 gilt: 2 < l3/d3 < 4, vorzugsweise ist l3/d3 etwa gleich 2,5.For this purpose, the switching valve of a fuel injector for internal combustion engines comprises a valve piece with a valve seat and a cooperating with the valve seat, liftable valve-closing armature, wherein in the valve piece a drain hole is formed with a circular cross-section. The drainage bore comprises a first region serving as a throttle with a diameter d 1 , a second region serving as a diffuser, and a third region having a diameter d 3 serving as a subsequent flow geometry. The second region has at least one section with a diameter d 2 and d 1 <d 2 <d 3 . The third region B 3 serving as the subsequent flow geometry has a length l 3 , wherein the following applies to the ratio l 3 / d 3 : 2 <l 3 / d 3 <4, preferably l 3 / d 3 is approximately equal to 2.5.

Vorteilhafterweise besitzt die nachfolgende Strömungsgeometrie einen Durchmesser d3 von 1,0 mm bis 1,5 mm, vorzugsweise etwa 1,3 mm. Der Durchmesser d3 ist nur etwas kleiner ausgeführt als der Durchmesser des Ventilsitzes, so dass die wandnahen Bereiche in möglichst großer Entfernung zur Strömungsachse liegen und das Implodieren der Kavitationsblasen zu keinen bzw. nur zu minimalen Kavitationsschäden führt.Advantageously, the subsequent flow geometry has a diameter d 3 of 1.0 mm to 1.5 mm, preferably about 1.3 mm. The diameter d 3 is only slightly smaller than the diameter of the valve seat, so that the areas near the wall are as far away as possible from the flow axis and the imploding of the cavitation bubbles leads to no or only minimal cavitation damage.

Vorteilhafterweise besitzt die Drossel eine Länge l1 von ca. 0,80 mm und einen Durchmesser d1 von ca. 0,25 mm. Der Drosseldurchmesser d1 von ca. 0,25 mm führt zu einer besonders günstigen Einspritzverlaufsformung, speziell während der Öffnungshubbewegung der Düsennadel. Bevorzugt ist das Längen-Durchmesser-Verhältnis l1/d1 der Drossel größer als 3, um Verwirbelungen der Kraftstoffströmung in den nachfolgenden Bereichen zu vermeiden bzw. zu reduzieren. So ergibt sich eine optimierte Drossellänge l1 von ca. 0,80 mm. Erfindungsgemäß weist der Diffusor einen zweiten Abschnitt mit dem Durchmesser d2b auf. Dadurch ist der Diffusor als Doppeldiffusor ausgebildet, mit einem sich an die Drossel anschließenden ersten Diffusor mit Durchmesser d2 bzw. d2a und einem zweiten Diffusor mit Durchmesser d2b, wobei d2b > d2a ist. Durch den Einsatz eines Doppeldiffusors wird die Strömung in der gesamten Ablaufbohrung vorteilhaft gestaltet: Verwirbelungen werden reduziert und das Implodieren der Dampfblasen in wandnahen "Totwassergebieten" - also Gebieten mit sehr geringer Strömungsgeschwindigkeit, meist an Innenkanten - weitestmöglich vermieden. Erfindungsgemäß ist der Durchflussquerschnitt des zweiten Diffusors etwa doppelt so groß wie der Durchflussquerschnitt des ersten Diffusors. Dadurch wird der aufgrund der Drosselung ungünstig hohe µ-Wert (Wasserdampfdiffusionswiderstand) wieder gesenkt.Advantageously, the throttle has a length l 1 of about 0.80 mm and a diameter d 1 of about 0.25 mm. The throttle diameter d 1 of about 0.25 mm leads to a particularly favorable injection rate shaping, especially during the opening stroke of the nozzle needle. Preferably, the length-diameter ratio l 1 / d 1 of the throttle is greater than 3, to turbulence of the To avoid or reduce fuel flow in the following areas. This results in an optimized throttle length l 1 of about 0.80 mm. According to the invention, the diffuser has a second section with the diameter d 2b . As a result, the diffuser is designed as a double diffuser, with a first diffuser, which adjoins the throttle, having a diameter d 2 or d 2a and a second diffuser having a diameter d 2b , where d 2b is > d 2a . Through the use of a double diffuser, the flow throughout the drain hole is made advantageous: turbulence is reduced and the imploding of the vapor bubbles in near-wall "dead water areas" - ie areas with very low flow velocity, usually at inner edges - avoided as far as possible. According to the flow cross-section of the second diffuser is about twice as large as the flow area of the first diffuser. As a result, the unfavorably high μ value (water vapor diffusion resistance) due to the throttling is lowered again.

In vorteilhafter Ausgestaltung weist der erste Diffusor eine Länge l2a auf und besitzt ein Längen-Durchmesser-Verhältnis l2a/d2a von etwa 1. Dieses Verhältnis erzielt den besten Kompromiss aus Strömungsbild, Durchflussmenge, Reduzierung des µ-Wertes und Auftreten von Kavitation.In an advantageous embodiment, the first diffuser has a length l 2a and has a length-diameter ratio l 2a / d 2a of about 1. This ratio achieves the best compromise flow pattern, flow rate, reduction of μ value and occurrence of cavitation.

Analog dazu weist vorteilhaft auch der zweite Diffusor eine Länge l2b auf und besitzt ein Längen-Durchmesser-Verhältnis l2b/d2b von etwa 1.Similarly, the second diffuser advantageously has a length l 2b and has a length-diameter ratio l 2b / d 2b of about 1.

In bevorzugter Weise besitzt der erste Diffusor einen Durchmesser d2a von etwa 0,35 mm. Im Bereich des Doppeldiffusors ist es für eine Durchmessererweiterung besonders günstig, wenn sich der Durchflussquerschnitt pro Stufe ca. verdoppelt. So wird die Kraftstoffströmung mit möglichst nur geringen Verwirbelungen geführt bei gleichzeitig optimierter Druckrückgewinnung. Mit einem Drosseldurchmesser d1 von etwa 0,25 mm ergibt sich so für den Durchmesser d2a des ersten Diffusors etwa 0,35 mm.Preferably, the first diffuser has a diameter d 2a of about 0.35 mm. In the area of the double diffuser, it is particularly favorable for an enlargement of the diameter if the flow cross section per stage approximately doubles. Thus, the fuel flow with as little as possible turbulence is performed while optimizing pressure recovery. With a throttle diameter d 1 of about 0.25 mm, this results in about 0.35 mm for the diameter d 2a of the first diffuser.

Analog dazu beträgt der Durchmesser des zweiten Diffusors d2b etwa 0,50 mm.Similarly, the diameter of the second diffuser d 2b is about 0.50 mm.

Bevorzugterweise ist das Schaltventil als ein im Wesentlichen druckausgeglichenes Ventil ausgebildet. Dadurch können hohe Schaltgeschwindigkeiten erzielt werden und das Schaltventil ist somit sehr gut für Mehrfacheinspritzungen geeignet.Preferably, the switching valve is designed as a substantially pressure-balanced valve. As a result, high switching speeds can be achieved and the switching valve is thus very well suited for multiple injections.

Vorteilhaft ist das Schaltventil als Magnetventil ausgebildet. Der Aufbau des erfindungsgemäßen Schaltventils, besonders die Nähe von Ablaufdrossel zu Ventilsitz, begünstigt eine elektromagnetische Anregung des Ventilschließankers. Eine Druckübersetzung mit einer zusätzlichen Drosselstelle kann so entfallen.Advantageously, the switching valve is designed as a solenoid valve. The structure of the switching valve according to the invention, especially the proximity of drain throttle to valve seat, promotes electromagnetic excitation of the valve closing armature. A pressure boost with an additional throttle point can be omitted.

Zeichnungendrawings

Fig.1Fig.1
zeigt ein erfindungsgemäßes Schaltventil im Längsschnitt, wobei nur die wesentlichen Bereiche dargestellt sind.shows a switching valve according to the invention in longitudinal section, wherein only the essential areas are shown.
Fig.2Fig.2
zeigt einen vergrößerten Ausschnitt der Fig.1 mit dem Ventilstück des Schaltventils, wobei eine im Ventilstück ausgebildete Ablaufbohrung genauer dargestellt ist.shows an enlarged section of the Fig.1 with the valve piece of the switching valve, wherein a drain hole formed in the valve piece is shown in more detail.
Beschreibungdescription

Fig.1 zeigt ein erfindungsgemäßes Schaltventil 10, das hier in einem Kraftstoffinjektor 100 verwendet wird. Der Kraftstoffinjektor 100 weist ein Gehäuse auf, das einen Düsenkörper 2 und ein mit dem Düsenkörper 2 verschraubtes Ventilgehäuse 40 umfasst. In dem Düsenkörper 2 ist ein unter Hochdruck stehender Druckraum 3 ausgebildet, der im Betrieb mit einer nicht dargestellten unter Hochdruck stehenden Kraftstoffquelle, typischerweise einem Common-Rail, verbunden ist. Im Druckraum 3 ist längsverschiebbar eine in einer Hülse 6 geführte Düsennadel 4 angeordnet, die zum Öffnen und Schließen von nicht dargestellten Einspritzöffnungen dient, die in einen nicht dargestellten Brennraum einer Brennkraftmaschine münden. Fig.1 shows a switching valve 10 according to the invention , which is used here in a fuel injector 100 . The fuel injector 100 has a housing which comprises a nozzle body 2 and a valve housing 40 screwed to the nozzle body 2 . In the nozzle body 2 , a high-pressure pressure chamber 3 is formed, which is connected in operation with a not shown under high pressure fuel source, typically a common rail. In the pressure chamber 3 , a guided in a sleeve 6 nozzle needle 4 is arranged longitudinally displaceable, which serves for opening and closing of injection openings, not shown, which open into a combustion chamber, not shown, of an internal combustion engine.

Im Ventilgehäuse 40 ist ein Ventilstück 11 angeordnet, das an einer Schulter im Ventilgehäuse 40 anliegt und bis in den Druckraum 3 ragt.In the valve housing 40 , a valve piece 11 is arranged, which bears against a shoulder in the valve housing 40 and projects into the pressure chamber 3 .

Die Öffnungs- und Schließbewegung der Düsennadel 4 wird über den Druck in einem Steuerraum 5 gesteuert. Der Steuerraum 5 wird durch die Düsennadel 4, die Hülse 6 und das Ventilstück 11 begrenzt. In der Hülse 6 ist eine Zulaufbohrung 7 ausgebildet, die den Druckraum 3 mit dem Steuerraum 5 verbindet. Im Ventilstück 11 ist eine Ablaufbohrung 30 ausgebildet, die den Steuerraum 5 schaltbar mit einem Niederdruckraum 50 verbindet, der im Ventilgehäuse 40 ausgebildet ist. Ventilstück 6 und Hülse 11 können in anderen Ausführungsformen auch einteilig als großes Ventilstück 6, 11 ausgeführt werden, so dass die Düsennadel 4 im Ventilstück 6, 11 geführt wird und sowohl Zulaufborhung 7 als auch Ablaufbohrung 30 im Ventilstück 6, 11 ausgebildet sind.The opening and closing movement of the nozzle needle 4 is controlled by the pressure in a control chamber 5 . The control chamber 5 is limited by the nozzle needle 4, the sleeve 6 and the valve piece 11 . In the sleeve 6 , an inlet bore 7 is formed, which connects the pressure chamber 3 with the control chamber 5 . In the valve piece 11 , a drain hole 30 is formed, which connects the control chamber 5 switchable with a low-pressure chamber 50 which is formed in the valve housing 40 . Valve piece 6 and sleeve 11 can be made in one piece as a large valve piece 6, 11 in other embodiments, so that the nozzle needle 4 in the valve piece 6, 11 is guided and both Zulaufborhung 7 and 30 drain hole in the valve piece 6, 11 are formed.

Im Ventilgehäuse 40 ist ein Schaltventil 10 angeordnet, das neben dem Ventilstück 11 einen Elektromagnet 42, einen Ventilschließanker 20 und einen Ventilbolzen 44 umfasst. Im Ventilgehäuse 40 sind das Ventilstück 11 und der Elektromagnet 42 unter Zwischenlage einer Ventilhülse 41 durch eine Spannschraube 43 fest verspannt. Mit der Spannschraube 43 ist der Ventilbolzen 44 fest verbunden, auf dem axial verschiebbar der Ventilschließanker 20 in einer in ihm ausgebildeten Ankerbohrung 21 geführt ist. So wird ein quasi druckausgeglichenes Schaltventil 10 durch den starr angeordneten Ventilbolzen 44 realisiert.In the valve housing 40, a switching valve 10 is arranged which includes a solenoid adjacent the valve element 11 42, a valve-closing armature 20 and a valve pin 44th In the valve housing 40 , the valve member 11 and the solenoid 42 with the interposition of a valve sleeve 41 by a clamping screw 43 are firmly clamped. With the clamping screw 43 of the valve pin 44 is fixedly connected, is guided on the axially displaceable valve closing armature 20 in an anchor bore 21 formed therein. Thus, a quasi-pressure-balanced switching valve 10 is realized by the rigidly arranged valve pin 44 .

Der Ventilschließanker 20 wird durch die Kraft einer Feder 45, die zwischen Ventilbolzen 44 und Ventilschließanker 20 angeordnet ist, gegen einen am Ventilstück 11 ausgebildeten Ventilsitz 12 gedrückt. Der Durchmesser des Ventilsitzes 12 und der Durchmesser des Ventilbolzens 44 sind nahezu gleich groß. Dadurch sind die hydraulischen Kräfte auf den Ventilschließanker 20 in axialer Richtung nahezu Null, das Schaltventil 10 ist quasi druckausgeglichen. Konstruktiv kann das zum Beispiel durch eine gestufte Ankerbohrung 21 umgesetzt werden.The valve-closing armature 20 is urged by the force of a spring 45 which is disposed between valve pin 44 and valve-closing armature 20, against a piece 11 formed on the valve seat 12th The diameter of the valve seat 12 and the diameter of the valve pin 44 are almost equal. As a result, the hydraulic forces on the valve-closing armature 20 in the axial direction are virtually zero, the switching valve 10 is quasi pressure-balanced. Constructively, this can be implemented, for example, by a stepped anchorage bore 21 .

Der Niederdruckraum 50 ist hydraulisch mit dem unter Niederdruck stehenden Rücklaufsystem des Kraftstoffinjektors 100 verbunden.The low-pressure chamber 50 is hydraulically connected to the low-pressure return system of the fuel injector 100 .

Die Ablaufbohrung 30 unterteilt sich vom Steuerraum 5 zum Niederdruckraum 50 in drei Bereiche: einen als Drossel 31 dienenden ersten Bereich, einen als Diffusor 32 dienenden zweiten Bereich und einen als nachfolgende Strömungsgeometrie 33 dienenden dritten Bereich. Der Durchflussquerschnitt der Drossel 31 ist dabei geringer als der Durchflussquerschnitt des Diffusors 32, welcher wiederum geringer ist als der Durchflussquerschnitt der nachfolgenden Strömungsgeometrie 33. The drainage bore 30 is subdivided from the control chamber 5 to the low-pressure chamber 50 into three regions: a first region serving as a restrictor 31 , a second region serving as a diffuser 32 and a third region serving as a subsequent flow geometry 33 . The flow cross section of the throttle 31 is less than the flow cross section of the diffuser 32, which in turn is less than the flow area of the subsequent flow geometry 33.

Fig.2 zeigt eine detaillierte Darstellung der Ablaufbohrung 30 im Ventilstück 11. Die Drossel 31 ist steuerraumnah im ersten Bereich angeordnet und besitzt eine Länge l1 und einen kreisrunden Durchflussquerschnitt mit dem Durchmesser d1. Vorteilhaft ist ihr Längen-Durchmesser-Verhältnis l1/d1 ∼ 3. An die Drossel 31 schließt sich der Diffusor 32 mit der Länge l2 im zweiten Bereich an, der als Doppeldiffusor 32 ausgebildet ist und einen größeren Durchflussquerschnitt als die Drossel 31 aufweist: Der Doppeldiffusor 32 besteht aus einem drosselnahen ersten Diffusor 32a mit der Länge l2a und einem zweiten Diffusor 32b mit der Länge l2b, wobei der zweite Diffusor 32b mit dem Durchmesser d2b einen größeren Durchflussquerschnitt besitzt als der erste Diffusor 32a mit dem Durchmesser d2a. An den Doppeldiffusor 32 schließt sich niederdruckraumnah die nachfolgende Strömungsgeometrie 33 des dritten Bereichs an; sie weist die Länge l3 und den Durchmesser d3 auf. Fig.2 shows a detailed representation of the discharge bore 30 in the valve piece 11. The throttle 31 is arranged steuerraumnah in the first region and has a length l 1 and a circular flow cross-section of diameter d1. Its length-diameter ratio l 1 / d 1 ~ 3 is advantageous. The diffuser 32 with the length l 2 adjoins the throttle 31 in the second region, which is designed as a double diffuser 32 and has a larger flow cross-section than the throttle 31 The double diffuser 32 is composed of a throttle-proximate first diffuser 32a of length l 2a and a second diffuser 32b of length l 2b , the second diffuser 32b of diameter d 2b having a larger flow area than the first diffuser 32a of diameter d 2a . The subsequent flow geometry 33 of the third region adjoins the double diffuser 32 at low pressure space; it has the length l 3 and the diameter d 3 .

Alle drei Bereiche der Ablaufbohrung 30 sind durch kreisrunde Durchflussquerschnitte gekennzeichnet. Dabei gilt, dass sich die Durchflussquerschnitte von der Steuerraumseite zur Niederdruckraumseite stets erweitern:

  • d 1< d 2 < d 3 für eine Ablaufbohrung 30 mit einfachem Diffusor 32
  • d 1< d 2a <d 2b< d3 für eine Ablaufbohrung 30 mit Doppeldiffusor 32a & 32b
All three areas of the drain hole 30 are characterized by circular flow cross-sections. The following applies: The flow cross-sections always extend from the control room side to the low-pressure room side:
  • d 1 < d 2 < d 3 for a drain hole 30 with a simple diffuser 32
  • d 1 < d 2a <d 2b < d 3 for a drain hole 30 with double diffusers 32a & 32b

Die Übergänge zwischen den unterschiedlichen Durchflussquerschnitten - also von Drossel 31 zu erstem Diffusor 32a, von erstem Diffusor 32a zu zweitem Diffusor 32b und von zweitem Diffusor 32b zur nachfolgenden Strömungsgeometrie 33 - werden durch Fasen ausgestaltet, die abgerundet sein können. Vorzugsweise besitzen die Übergänge von Drossel 31 zu erstem Diffusor 32a und von erstem Diffusor 32a zu zweitem Diffusor 32b je eine 45°-Fase und der Übergang von zweitem Diffusor 32b zur nachfolgenden Strömungsgeometrie 33 eine 30°-Fase.The transitions between the different flow cross-sections - that is from throttle 31 to first diffuser 32a, from first diffuser 32a to second diffuser 32b and from second diffuser 32b to the subsequent flow geometry 33 - are configured by chamfers, which may be rounded. Preferably, the transitions from throttle 31 to first diffuser 32a and from first diffuser 32a to second diffuser 32b each have a 45 ° phase and the transition from second diffuser 32b to the subsequent flow geometry 33 has a 30 ° phase.

Die Funktionsweise des Schaltventils 10 ist wie folgt: Vor Beginn des Einspritzvorgangs sind die Düsennadel 4 und das Schaltventil 10 geschlossen, es strömt kein Kraftstoff in den Brennraum der Brennkraftmaschine. Geschlossenes Schaltventil 10 bedeutet, dass der Ventilschließanker 20 gegen den Ventilsitz 12 gedrückt ist und diesen abdichtet. Der Steuerraum 5 steht unter Hochdruck, der in etwa dem Hochdruck des Common-Rails entspricht.The operation of the switching valve 10 is as follows: Before the start of the injection process, the nozzle needle 4 and the switching valve 10 are closed, there is no fuel flowing into the combustion chamber of the internal combustion engine. closed Switching valve 10 means that the valve-closing armature 20 is pressed against the valve seat 12 and seals it. The control chamber 5 is at high pressure, which corresponds approximately to the high pressure of the common rail.

Zu Beginn des Einspritzvorgangs wird der Elektromagnet 42 elektrisch angesteuert und übt dadurch eine anziehende Kraft auf den Ventilschließanker 20 aus. Daraufhin führt der Ventilschließanker 20 eine Hubbewegung entgegen der Kraft der Feder 45 in Richtung des Elektromagneten 42 aus und hebt sich so vom Ventilsitz 12 ab. Der Steuerraum 5 ist jetzt über die Ablaufbohrung 30 mit dem Niederdruckraum 50 verbunden. Kraftstoff fließt daraufhin aus dem Steuerraum 5 in den Niederdruckraum 50, was auch als Absteuerung des Kraftstoffs bezeichnet wird. Der Druck im Steuerraum 5 sinkt, da mehr Kraftstoff über die Ablaufbohrung 30 abgesteuert wird als über die Zulaufbohrung 7 zufließt. Im gleichen Maße wie der Druck im Steuerraum 5 sinkt auch die resultierende hydraulische Kraft auf die Düsennadel 4 in Richtung der Einspritzöffnungen. Dadurch hebt die Düsennadel 4 von einem Düsennadelsitz ab und gibt die Einspritzöffnungen frei; Kraftstoff fließt in den Brennraum der Brennkraftmaschine.At the beginning of the injection process, the solenoid 42 is electrically energized and thereby exerts an attractive force on the valve-closing armature 20 . Thereafter, the valve closing armature 20 performs a lifting movement against the force of the spring 45 in the direction of the electromagnet 42 and thus stands out from the valve seat 12 . The control chamber 5 is now connected via the drain hole 30 to the low-pressure chamber 50 . Fuel then flows from the control chamber 5 in the low-pressure chamber 50 , which is also referred to as Absteuerung of the fuel. The pressure in the control chamber 5 decreases because more fuel is diverted via the drain hole 30 than flows through the inlet bore 7 . To the same extent as the pressure in the control chamber 5 , the resulting hydraulic force on the nozzle needle 4 decreases in the direction of the injection openings. As a result, the nozzle needle 4 lifts off from a nozzle needle seat and releases the injection openings; Fuel flows into the combustion chamber of the internal combustion engine.

Zur Beendigung des Einspritzvorgangs wird die elektrische Ansteuerung des Elektromagneten 42 beendet. Der Elektromagnet 42 übt keine anziehende Kraft mehr auf den Ventilschließanker 20 aus, und der Ventilschließanker 20 wird durch die Federkraft der Feder 45 wieder gegen den Ventilsitz 12 gedrückt. Über die Zulaufbohrung 7 wird der Steuerraum 5 mit unter Hochdruck stehendem Kraftstoff gefüllt, bis im Steuerraum 5 der gleiche Druck herrscht wie im Druckraum 3 bzw. im Common-Rail. Mit dem Druck im Steuerraum 5 steigt auch die hydraulische Kraft auf die Düsennadel 4 in Richtung der Einspritzöffnungen und die Düsennadel 4 wird wieder gegen ihren Düsennadelsitz gedrückt. Es fließt kein Brennstoff mehr in den Brennraum der Brennkraftmaschine.To end the injection process, the electrical control of the electromagnet 42 is stopped. The solenoid 42 no longer exerts any attractive force on the valve-closing armature 20 , and the valve-closing armature 20 is pressed against the valve seat 12 again by the spring force of the spring 45 . About the inlet bore 7 of the control chamber 5 is filled with high-pressure fuel until the same pressure prevails in the control chamber 5 as in the pressure chamber 3 and the common rail. With the pressure in the control chamber 5 , the hydraulic force on the nozzle needle 4 increases in the direction of the injection openings and the nozzle needle 4 is pressed against its nozzle needle seat again. There is no more fuel flowing into the combustion chamber of the internal combustion engine.

Aufgrund des Hochdrucks und der Einspritzverlaufsformung für die Einspritzung des Kraftstoffs in den Brennraum der Brennkraftmaschine werden an das Schaltventil 10 hohe Anforderungen hinsichtlich des abzusteuernden Kraftstoffs gestellt: zum einen treten während eines Schaltzyklusses große Druckunterschiede innerhalb des Steuerraums 5 und in der Ablaufbohrung 30 auf. Zum anderen erreicht der Kraftstoff beim Absteuern speziell in der Ablaufbohrung 30 hohe Durchflussgeschwindigkeiten. Mit steigender Durchflussgeschwindigkeit sinkt der statische Druck. Fällt dieser unter den Dampfdruck des Kraftstoffs, so bilden sich Dampfblasen. Die Dampfblasen werden mit der Strömung in Gebiete höheren statischen Drucks (also geringerer Durchflussgeschwindigkeit bzw. größeren Durchflussquerschnitts) befördert. Mit dem dortigen Anstieg des statischen Drucks über den Dampfdruck kondensieren die Dampfblasen schlagartig, und sie implodieren. Dieser Vorgang wird als Kavitation bezeichnet. Für die umgebende Strömungsgeometrie sind die reflektierten Implosionsblasen, die Druckpeaks bis 40 kbar aufweisen können, schädlich, wenn sie wandnah auftreten; es kommt zu Materialabtragungen, dabei spricht man von Kavitationserosion oder Kavitationsschäden. Besonders gefährdete Bereiche des Schaltventils 10 bzgl. Kavitationsschäden sind demzufolge der Endbereich der Drossel 31, der Diffusor 32, die nachfolgende Strömungsgeometrie 33, der Ventilsitz 12, der Ventilschließanker 20 und der Ventilbolzen 44, also die hochdruckbeaufschlagten Bereiche des Schaltventils 10 stromabwärts der Drossel 31.Due to the high pressure and the injection curve for the injection of the fuel into the combustion chamber of the internal combustion engine to the switching valve 10 high demands are made with respect to the fuel to be controlled: on the one hand occur during a Schaltzyklusses large pressure differences within the control chamber 5 and in the drain hole 30 . On the other hand, the fuel reaches high flow velocities during the shutdown especially in the drain hole 30 . With increasing flow speed of the sinks static pressure. If this falls below the vapor pressure of the fuel, then vapor bubbles form. The vapor bubbles are conveyed with the flow in areas of higher static pressure (ie lower flow rate or larger flow area). As the static pressure increases above the vapor pressure, the vapor bubbles suddenly condense and implode. This process is called cavitation. For the surrounding flow geometry, the reflected implosion bubbles, which may have pressure peaks up to 40 kbar, are detrimental if they occur close to the wall; it comes to material erosion, this is called cavitation erosion or cavitation damage. Especially vulnerable areas of the switching valve 10 with respect. Cavitation damages are thus the end portion of the throttle 31, the diffuser 32, the subsequent flow geometry 33, the valve seat 12, the valve-closing armature 20 and the valve pin 44, so the highly pressurized areas of the switching valve 10 downstream of the throttle 31.

Um Kavitationsschäden zu vermeiden bzw. zu reduzieren, werden hinsichtlich der Ausgestaltung der Ablaufbohrung 30 zwei Maßnahmen getroffen: zum einen wird die wandnahe Entstehung und Führung von Dampfblasen durch die spezielle Ausgestaltung der Drossel 31 und des Diffusors 32 reduziert, zum anderen wird das Implodieren der Dampfblasen durch die Verwendung einer nachfolgenden Strömungsgeometrie 33 mit großem Volumen auf einen großen, möglichst wandfernen Bereich verteilt.In order to prevent or reduce cavitation damage, two measures are taken with regard to the design of the drain hole 30 : on the one hand, the near-wall formation and management of vapor bubbles is reduced by the special design of the throttle 31 and the diffuser 32 , on the other hand, the imploding of the vapor bubbles distributed by the use of a subsequent flow geometry 33 with a large volume on a large, as far away from the wall area.

Die Aufgabe der Drossel 31 ist es den Kraftstoff beim Absteuern aus dem Steuerraum 5 zu drosseln und damit die Bewegungen der Düsennadel 4 so zu steuern, dass eine optimierte Einspritzverlaufsformung für den Kraftstoffinjektor 100 erzielt wird. Die Drosselfunktion wird wesentlich durch den Durchmesser d1 des kreisrunden Durchflussquerschnitts der Drossel 31 bestimmt. Hydraulische Auslegungen der Einspritzverlaufsformung zeigen, dass mit einem Drosseldurchmesser d1 von 0,2...0,3 mm, insbesondere ca. 0,25 mm, die günstigsten Einspritzverlaufsformungen erzielt werden.The task of the throttle 31 is to throttle the fuel when it is being scavenged out of the control chamber 5 and thus to control the movements of the nozzle needle 4 in such a way that an optimized injection curve shaping for the fuel injector 100 is achieved. The throttle function is essentially determined by the diameter d 1 of the circular flow cross-section of the throttle 31 . Hydraulic interpretations of the injection progression molding show that with a throttle diameter d 1 of 0.2... 0.3 mm, in particular approx. 0.25 mm, the most favorable injection profile formations are achieved.

Das Längen-Durchmesser-Verhältnis der Drossel 31 ist idealerweise etwas größer als 3, so dass die Länge l1 der Drossel 31 0,7... 1,0 mm, insbesondere ca. 0,8 mm beträgt. Eine Durchflussänderung durch Wandern des Schädigungsgebietes vom Diffusor 32 zur Drossel 31 wird dadurch vermieden. Weiterhin kommt es zu weniger starken Verwirbelungen des durchströmenden Kraftstoffs in den nachfolgenden Bereichen, also im Diffusor 32, als bei kürzeren Drosseln. Verwirbelungen können die Dampfblasen in wandnahe Bereiche tragen und so Kavitationsschäden verursachen. Eine lange Drossel 31 konzentriert die in den Diffusor 32 eintretende dampfbeladene Absteuerströmung mehr auf der Strömungsachse, also auf der Symmetrieachse der Ablaufbohrung 30. Natürlich kann das Längen-Durchmesser-Verhältnis der Drossel 31 auch größer gewählt werden, es würde dann aber mehr Bauraum erfordern, ohne die Kraftstoffströmung zusätzlich zu verbessern.The length-diameter ratio of the throttle 31 is ideally slightly greater than 3, so that the length l 1 of the throttle 31 is 0.7 ... 1.0 mm, in particular about 0.8 mm. A flow change by moving the damage area from the diffuser 32 to the throttle 31 is thereby avoided. It continues to happen less strong turbulence of the fuel flowing through in the following areas, ie in the diffuser 32, than in the case of shorter throttles. Turbulence can carry the vapor bubbles near the wall, causing cavitation damage. A long throttle 31 concentrates the steam-laden bleed flow entering the diffuser 32 more on the flow axis, ie on the symmetry axis of the drainage bore 30. Of course, the length-diameter ratio of the throttle 31 can also be selected larger, but would then require more space, without additionally improving the fuel flow.

Ein nicht umgehbarer Nachteil der vergleichsweise langen Drossel 31 ist die Verschlechterung des µ-Wertes (Wasserdampfdiffusionswiderstand): Mit zunehmender Drossellänge erhöht sich der µ-Wert, der wiederum einen hohen Rücklaufgegendruck zur Folge hat. Dadurch ist die Strömung bzw. die "Diffusion" der Dampfblasen in die nachfolgende Strömungsgeometrie 33 mit einem höheren Widerstand behaftet, was dementsprechend zu ungewünschten Verwirbelungen führt. Die Aufgabe des Diffusors 32 ist es, den µ-Wert durch optimierte Druckrückgewinnung wieder zu senken. Vorteilhafterweise wird diese Aufgabe durch den Einsatz eines Doppeldiffusors 32 erfüllt.An unavoidable disadvantage of the comparatively long throttle 31 is the deterioration of the μ value (water vapor diffusion resistance): With increasing throttle length, the μ value increases, which in turn results in a high return back pressure. As a result, the flow or the "diffusion" of the vapor bubbles in the subsequent flow geometry 33 is associated with a higher resistance, which accordingly leads to undesirable turbulence. The task of the diffuser 32 is to lower the μ value again by optimizing pressure recovery. Advantageously, this object is achieved by the use of a double diffuser 32 .

Die Durchmessererweiterungen im Doppeldiffusor 32 haben entscheidenden Einfluss auf die Kraftstoffströmung in der gesamten Ablaufbohrung 30 und damit auch auf den µ-Wert. Im Bereich des Doppeldiffusors 32 wird eine Durchmessererweiterung so gestaltet, dass sich der Durchflussquerschnitt pro Stufe ca. verdoppelt. D.h. der Durchflussquerschnitt A2a des ersten Diffusors 32a ist etwa doppelt so groß wie der Durchflussquerschnitt A1 der Drossel 31 und der Durchflussquerschnitt A2b des zweiten Diffusors 32b ist etwa doppelt so groß wie A2a. Somit ergibt sich für den Durchmesser d2a des kreisrunden Durchflussquerschnitts des ersten Diffusors 32a: d2a = 0,28...0,42 mm, insbesondere 0,35 mm. Und es ergibt sich für den Durchmesser d2b des kreisrunden Durchflussquerschnitts des zweiten Diffusors 32b: d2b = 0,40...0,60 mm, insbesondere ca. 0,50 mm.The diameter expansions in the double diffuser 32 have a decisive influence on the fuel flow in the entire drain hole 30 and thus also on the μ value. In the region of the double diffuser 32 , an enlargement of the diameter is designed so that the flow cross section per stage approximately doubles. That is, the flow area A 2a of the first diffuser 32a is about twice as large as the flow area A 1 of the throttle 31 and the flow area A 2b of the second diffuser 32b is about twice as large as A 2a . Thus, for the diameter d 2a of the circular flow cross section of the first diffuser 32a, d 2a = 0.28 to 0.42 mm, in particular 0.35 mm. And it follows for the diameter d 2b of the circular flow cross-section of the second diffuser 32b : d 2b = 0.40 ... 0.60 mm, in particular about 0.50 mm.

Für das Längen-Durchmesser-Verhältnis des Diffusors 32 bzw. des Doppeldiffusors 32 mit dem ersten Diffusor 32a und dem zweiten Diffusor 32b hat sich ein Verhältnis von ca. 1 pro Durchmessererweiterung als strömungstechnisch besonders günstig herausgestellt. Dieses Verhältnis erzielt den besten Kompromiss aus Strömungsbild, Durchflussmenge, Reduzierung des µ-Wertes und Auftreten von Kavitation.For the length-diameter ratio of the diffuser 32 and the double diffuser 32 with the first diffuser 32a and the second diffuser 32b , a ratio of about 1 per diameter enlargement is particularly fluid favorably exposed. This ratio achieves the best compromise between flow pattern, flow rate, μ-value reduction and cavitation.

Damit ergeben sich für den ersten Diffusor 32a eine Länge l2a = 0,28...0,42 mm, insbesondere ca. 0,35 mm und für den zweiten Diffusor 32b eine Länge l2b = 0,40...0,60 mm, insbesondere 0,50 mm.This results in a length l 2a = 0.28 ... 0.42 mm, in particular about 0.35 mm for the first diffuser 32a and a length l 2b = 0.40 ... 0 for the second diffuser 32b , 60 mm, in particular 0.50 mm.

Strömungstechnisch besonders günstig erfolgen die Durchmessererweiterungen von Drossel 31 zu dem ersten Diffusor 32a und vom ersten Diffusor 32a zum zweiten Diffusor 32b sich konisch unter 45° erweiternd, also mit einer 45° Fase, die an ihren Kanten abgerundet sein kann. Bei scharfkantigen, also 90°-Übergängen, entstünden sogenannte Totwassergebiete im Bereich der Innenkanten des Doppeldiffusors 32, die wiederum zur Bildung von Unterdruckzonen und damit zusätzlichen wandnahen Kavitationsblasen führen könnten.Particularly favorable in terms of flow technology, the diameter expansions of restrictor 31 to first diffuser 32a and from first diffuser 32a to second diffuser 32b extend conically at 45 °, ie with a 45 ° bevel, which can be rounded at its edges. In sharp-edged, ie 90 ° transitions, so-called dead water areas would develop in the region of the inner edges of the double diffuser 32 , which in turn could lead to the formation of negative pressure zones and thus additional cavitation bubbles close to the wall.

Die sich an den Doppeldiffusor 32 anschließende nachfolgende Strömungsgeometrie 33 hat die Aufgabe, bei gleichbleibender Abströmmenge zwischen Ventilsitz 12 und Ventilschließanker 20 das statische Druckniveau in der nachfolgenden Strömungsgeometrie 33 anzuheben, um eine verminderte Dampfbildung zu erzielen. Dies wird über ein vergleichsweise großes Volumen erreicht. Die verbleibende Dampfblasenbildung und vor allem auch Implosion der Dampfblasen wird zudem auf ein größeres Volumen verteilt und von Ventilsitz 12 und Ventilschließanker 20 ferngehalten. Kavitationsschäden in den Bereichen stromabwärts des Diffusors 32 werden so minimiert. Gleichzeitig senkt eine lange nachfolgende Strömungsgeometrie 33 den µ-Wert durch die Ausbildung eines homogenen Strömungsbildes, wodurch sich die Funktionalität das Kraftstoffinjektors 100 verbessert.The subsequent to the double diffuser 32 subsequent flow geometry 33 has the function of raising at a constant Abströmmenge between valve seat 12 and valve-closing armature 20, the static pressure level in the subsequent flow geometry 33 in order to achieve a reduced vapor formation. This is achieved over a comparatively large volume. The remaining vapor bubble formation and above all implosion of the vapor bubbles is also distributed to a larger volume and kept away from valve seat 12 and valve closing anchor 20 . Cavitation damage in the areas downstream of the diffuser 32 is thus minimized. At the same time, a long subsequent flow geometry 33 lowers the μ value by forming a homogeneous flow pattern, which improves the functionality of the fuel injector 100 .

Durch den vorherigen Einsatz des Doppeldiffusors 32 muss die Durchmessererweiterung für die nachfolgende Strömungsgeometrie 33 nicht mehr auf den doppelten Durchflussquerschnitt begrenzt werden. Vorteilhaft ist der Durchmesser d3 der nachfolgenden Strömungsgeometrie 33 nur geringfügig kleiner als der Durchmesser des Ventilsitzes 12 und liegt im Bereich 1,0... 1,5 mm, vorzugsweise bei 1,3 mm. Der vergleichsweise große Durchmesser des Ventilsitzes 12 hat den Vorteil, dass bereits bei geringem Hub des Ventilschließankers 20 die benötigte Absteuermenge zwischen Ventilsitz 12 und Ventilschließanker 20 abgeführt werden kann.Due to the previous use of the double diffuser 32 , the diameter extension for the subsequent flow geometry 33 no longer has to be limited to twice the flow cross section. Advantageously, the diameter d 3 of the subsequent flow geometry 33 is only slightly smaller than the diameter of the valve seat 12 and is in the range 1.0 ... 1.5 mm, preferably 1.3 mm. The comparatively large diameter of the valve seat 12 has the advantage that even at low lift of the valve closing armature 20 the required Absteuermenge between valve seat 12 and valve closing armature 20 can be removed.

Das Längen-Durchmesser-Verhältnis l3/d3 der nachfolgenden Strömungsgeometrie 33 muss nicht mehr größer als 3 gewählt werden, da Drossel 31 und Doppeldiffusor 32 schon einen großen Teil des Hochdrucks im Steuerraum 5 abgebaut haben; in der nachfolgenden Strömungsgeometrie 33 kommt es zu deutlich weniger Dampfblasenbildung. Jedoch muss die Länge l3 so gewählt werden, dass es zu einer ausreichenden Senkung des µ-Wertes kommt. Typischerweise wird l3/d3 = 2...4, idealerweise l3/d3 = ca. 2,5 gewählt. Damit ergibt sich für die nachfolgende Strömungsgeometrie 33 eine Länge l3 = 2,0...6,0 mm, insbesondere ca. 3,25 mm.The length-diameter ratio l 3 / d 3 of the subsequent flow geometry 33 need not be greater than 3, since throttle 31 and double diffuser 32 have already degraded a large part of the high pressure in the control chamber 5 ; in the following flow geometry 33 , significantly less vapor bubble formation occurs. However, the length l 3 must be chosen so that there is a sufficient decrease in the μ value. Typically, l 3 / d 3 = 2 ... 4, ideally l 3 / d 3 = about 2.5 is chosen. This results in the following flow geometry 33 has a length l 3 = 2.0 ... 6.0 mm, in particular about 3.25 mm.

Eine lange nachfolgende Strömungsgeometrie 33 hat zudem den Vorteil, dass die spannungskritischen Bereiche der Ablaufbohrung 30, nämlich die Durchmesserübergänge von Drossel 31 zu Diffusor 32 und von Diffusor 32 zu nachfolgender Strömungsgeometrie 33 so positioniert werden können, dass die aufgrund der Verschraubung des Ventilstücks 11 vorhandenen statischen Spannungen sich günstig mit den durch die Hochdruckbelastungen hervorgerufenen dynamischen Spannungen überlagern.A long subsequent flow geometry 33 also has the advantage that the stress critical areas of the drain hole 30 , namely the diameter transitions from throttle 31 to diffuser 32 and diffuser 32 to subsequent flow geometry 33 can be positioned so that the existing due to the screwing of the valve piece 11 static Strains are superimposed favorably with the dynamic stresses caused by the high-pressure loads.

Claims (9)

  1. Switching valve (10) for a fuel injector (100) for internal combustion engines, comprising a valve piece (11) with a valve seat (12) and comprising a valve closing armature (20) which interacts with the valve seat (12) and which can perform stroke movements, wherein an outflow bore (30) is formed in the valve piece (11), which outflow bore has a circular cross section and which outflow bore has a first region, which serves as throttle (31) and which has a diameter d1, a second region, which serves as diffuser (32), and a third region, which serves as a downstream flow geometry (33) and which has a diameter d3, wherein the second region has at least one section with a diameter d2, and d1 < d2 < d3 applies, wherein the third region B3 which serves as downstream flow geometry (33) has a length l3, wherein, for the ratio l3/d3, 2 < l3/d3 < 4 applies, wherein the second region which serves as diffuser (32) is formed as a double diffuser and has two cylindrical sections, with a first diffuser (32a), which adjoins the throttle (31) and which has a diameter d2a, and with a second diffuser (32b), which has a diameter d2b, wherein d2b > d2a applies, characterized in that the throughflow cross section of the second diffuser (32b) is approximately twice as large as the throughflow cross section of the first diffuser (32a).
  2. Switching valve (10) according to Claim 1,
    characterized in that the diameter d3 of the downstream flow geometry (33) amounts to 1.0 mm to 1.5 mm, preferably approximately 1.3 mm.
  3. Switching valve (10) according to Claim 1 or 2,
    characterized in that the throttle (31) has a length l1 of approximately 0.80 mm, and the diameter d1 of the throttle (31) amounts to approximately 0.25 mm.
  4. Switching valve (10) according to one of the preceding claims,
    characterized in that the first diffuser (32a) has a length l2a and a length-diameter ratio l2a/d2a of approximately 1.
  5. Switching valve (10) according to one of the preceding claims,
    characterized in that the second diffuser (32b) has a length l2b and a length-diameter ratio l2b/d2b of approximately 1.
  6. Switching valve (10) according to one of the preceding claims,
    characterized in that the diameter of the first diffuser (32a) d2a is approximately 0.35 mm.
  7. Switching valve (10) according to one of the preceding claims,
    characterized in that the diameter of the second diffuser (32a) d2b is approximately 0.50 mm.
  8. Switching valve (10) according to one of the preceding claims,
    characterized in that the switching valve (10) is formed as a substantially pressure-balanced valve.
  9. Fuel injector (100) having a switching valve (10) according to one of the preceding claims, wherein the switching valve (10) is formed as a solenoid valve.
EP14724771.2A 2013-07-25 2014-05-20 Control valve for a fuel injector Active EP3025048B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013214589.6A DE102013214589A1 (en) 2013-07-25 2013-07-25 Switching valve for a fuel injector
PCT/EP2014/060288 WO2015010805A1 (en) 2013-07-25 2014-05-20 Control valve for a fuel injector

Publications (2)

Publication Number Publication Date
EP3025048A1 EP3025048A1 (en) 2016-06-01
EP3025048B1 true EP3025048B1 (en) 2018-08-01

Family

ID=50733090

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14724771.2A Active EP3025048B1 (en) 2013-07-25 2014-05-20 Control valve for a fuel injector

Country Status (5)

Country Link
EP (1) EP3025048B1 (en)
KR (1) KR102166315B1 (en)
CN (1) CN105408616B (en)
DE (1) DE102013214589A1 (en)
WO (1) WO2015010805A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210800A1 (en) * 2015-06-12 2016-12-15 Continental Automotive Gmbh Valve device for a fuel injection system and fuel injection system
TR201820749A2 (en) * 2018-12-27 2020-07-21 Bosch Sanayi Ve Tic A S A FUEL FLOW PATH FOR A FUEL INJECTOR'S VALVE GROUP
DE102021201908A1 (en) 2021-03-01 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining a state of a switching valve of a fuel injector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859537A1 (en) * 1998-12-22 2000-07-06 Bosch Gmbh Robert Fuel injector
DE19963389A1 (en) * 1999-12-28 2001-07-05 Bosch Gmbh Robert Method of manufacturing a valve piece for a fuel injector
DE10152173A1 (en) * 2001-10-23 2003-04-30 Bosch Gmbh Robert Solenoid valve for controlling an injection valve
DE102006021741A1 (en) * 2006-05-10 2007-11-15 Robert Bosch Gmbh Fuel injector with pressure compensated control valve
DE102006034111A1 (en) * 2006-07-24 2008-01-31 Robert Bosch Gmbh Servo-valve-controlled injector for injecting fuel into cylinder combustion chambers of internal combustion engines; in particular common rail injector
DE102007004553A1 (en) * 2007-01-30 2008-07-31 Robert Bosch Gmbh Ball seat valve for use in injecting device, has diffuser arranged between choke valve and valve seat, and side turned towards seat is provided with narrowing that includes narrowing section turned away from seat
DE102007044357A1 (en) * 2007-06-21 2008-12-24 Robert Bosch Gmbh Control valve for a fuel injection valve
DE102008044096A1 (en) * 2008-11-27 2010-06-02 Robert Bosch Gmbh Method for producing throttle bores with a low caviation transfer point
DE102010028844A1 (en) * 2010-05-11 2011-11-17 Robert Bosch Gmbh switching valve
DE102010043306B4 (en) * 2010-11-03 2023-06-07 Robert Bosch Gmbh Method for operating a magnetic switching element, electrical circuit for operating the magnetic switching element and a control and/or regulating device

Also Published As

Publication number Publication date
KR20160034407A (en) 2016-03-29
EP3025048A1 (en) 2016-06-01
CN105408616A (en) 2016-03-16
WO2015010805A1 (en) 2015-01-29
KR102166315B1 (en) 2020-10-16
DE102013214589A1 (en) 2015-01-29
CN105408616B (en) 2019-07-16

Similar Documents

Publication Publication Date Title
EP2333304B1 (en) High pressure fuel pump
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP2078157B1 (en) Fuel injector having a restrictor plate and a solenoid valve
EP3025048B1 (en) Control valve for a fuel injector
DE102006026400A1 (en) Fuel injector with servo assistance
DE112009002373T5 (en) High pressure holding sleeve for a nozzle assembly and fuel injector with the same
DE102013224404A1 (en) fuel injector
DE102004028521A1 (en) Fuel injector with multipart injection valve member and with pressure booster
DE102015226070A1 (en) fuel injector
DE10126686A1 (en) Fuel injection system, for an IC motor, has a pressure amplifier with a sliding piston and controlled outflow cross section stages to set the fuel pressure according to the piston stroke and give a boot injection action
DE10209527A1 (en) Device for pressure-modulated shaping of the injection process
EP2798192B1 (en) Fuel injector for combustion engine
DE10334209A1 (en) Fuel injection device for an internal combustion engine
EP2966293A1 (en) Switching valve, in particular for metering a fluid for a delivery pump arranged downstream
EP2126333B1 (en) Fuel injector comprising a coupler
DE102009046373A1 (en) Magnetic valve e.g. pressure-balanced valve for use in common rail-injector for injecting diesel into combustion chamber of diesel internal combustion engine, has damping chamber connected with low-pressure area by connection
WO2008128884A1 (en) Fuel injector with a magnetic valve
EP1911966A2 (en) Fuel injector for a combustion engine
DE10160490B4 (en) Fuel injection device, fuel system and internal combustion engine
DE102006048727A1 (en) Fuel injector with solenoid valve
EP2267295A2 (en) Fuel injector
DE10252547B4 (en) Pressure compensated, directly controlled valve
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
DE102008000596A1 (en) Common rail injector for injecting fuel into combustion chamber of internal combustion engine, has nozzle needle comprising nozzle-sided part with extension, which is axially, displaceably guided into recess or hole on nozzle body
EP2138709A1 (en) Directly actuated fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1024597

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009044

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181102

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009044

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1024597

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 10