EP3018191A1 - Schmierung für einen Schiffsmotor - Google Patents

Schmierung für einen Schiffsmotor Download PDF

Info

Publication number
EP3018191A1
EP3018191A1 EP14191729.4A EP14191729A EP3018191A1 EP 3018191 A1 EP3018191 A1 EP 3018191A1 EP 14191729 A EP14191729 A EP 14191729A EP 3018191 A1 EP3018191 A1 EP 3018191A1
Authority
EP
European Patent Office
Prior art keywords
composition
oil
mass
range
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14191729.4A
Other languages
English (en)
French (fr)
Inventor
James Dodd
John Smythe
Joseph Simpkins
Agata Sawyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP14191729.4A priority Critical patent/EP3018191A1/de
Publication of EP3018191A1 publication Critical patent/EP3018191A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • This invention relates to the lubrication of 4-stroke marine diesel internal combustion engines, usually referred to as trunk piston engines.
  • Lubricants therefor are usually known as trunk piston engine oils (“TPEO's").
  • Trunk piston engines may be used in marine, power-generation and rail traction applications and have a higher speed than cross-head engines.
  • a single lubricant (TPEO) is used for crankcase and cylinder lubrication. All major moving parts of the engine, i.e. the main and big end bearings, camshaft and valve gear, are lubricated by means of a pumped circulation system.
  • the cylinder liners are lubricated partially by splash lubrication and partially by oil from the circulation systems that finds its way to the cylinder wall through holes in the piston skirt via the connecting rod and gudgeon pin.
  • Trunk piston engines normally include a centrifuge to clean the TPEO.
  • Zinc dialkyl dithiophosphates are known in the art as additives for TPEO's to provide wear protection for gears and valve train in trunk piston engines. See for example EP-A-2 123740 ; EP-A-1 154 099 ; EP-A-1 528 099 ; and US-A-2009/0011966 .
  • the present invention provides the use of a zinc dihydrocarbyl dithiophosphate additive in an amount providing in the range of greater than 400 to 700, or 400 to 1000, ppm P by mass in a trunk piston marine lubricating oil composition for a medium-speed compression-ignited marine engine, fueled by a heavy fuel oil, and its lubrication by the composition, the composition having a BN in the range of 20 to 60, preferably 30 to 55, the use being to diminish the loss of BN and to diminish the increase in viscosity in comparison with analogous use when the amount of zinc dihydrocarbyl dithiophosphate falls outside of the above range.
  • a TPEO may employ 7-35, preferably 10-28, more preferably 12-24, mass % of a concentrate or additives package, the remainder being base stock (oil of lubricating viscosity).
  • the TPEO has a compositional TBN (using D2896) of 20-60, preferably 25 or 30-55.
  • Additive Mass% a.i. Broad
  • Mass % a.i. Preferred detergent(s) 0.5-12 2-8 dispersant(s) 0.5-5 1-3 anti-wear agent(s) 0.1-1.5 0.5-1.3 oxidation inhibitor 0.2-2 0.5-1.5 rust inhibitor 0.03-0.15 0.05-0.1 pour point dispersant 0.03-1.15 0.05-0.1 base stock balance balance
  • additive package(s) When a plurality of additives is employed it may be desirable, although not essential, to prepare one or more additive packages comprising the additives, whereby several additives can be added simultaneously to the oil of lubricating viscosity to form the lubricating oil composition. Dissolution of the additive package(s) into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
  • the additive package(s) will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration, and/or to carry out the intended function, in the final formulation when the additive package(s) is/are combined with a predetermined amount of base lubricant.
  • compounds in accordance with the present invention may be admixed with small amounts of base oil or other compatible solvents together with other desirable additives to form additive packages containing active ingredients.
  • Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
  • Preferred zinc dihydrocarbyl dithiophosphates are oil-soluble salts that may be represented by the following formula: where R 1 and R 2 may be the same or different hydrocarbyl groups containing 1 to 18, preferably 2 to 12, carbon atoms and include groups such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cyloaliphatic groups. Particularly preferred as R 1 and R 2 groups are alkyl groups of 2 to 8 carbon atoms.
  • the groups may, for example, be ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, see-butyl, amyl, n-hexyl, iso-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, propenyl and butenyl.
  • the total number of carbon atoms i.e. in R 1 and R 2
  • the total number of carbon atoms is generally five or more.
  • the zinc dihydrocarbyl dithiophospate may advantageously be a zinc dialkyl dithiophosphate, such as a secondary C 6 salt.
  • the salt or salts provide the TPEO with greater than 400 to 700, or greater than 400 to 1000 ppm by mass of P atoms.
  • Preferred are 450 to 700, such as 500 to 700 ppm P by mass.
  • a detergent is an additive that reduces formation of deposits, for example, high-temperature varnish and lacquer deposits, in engines; it has acid-neutralising properties and is capable of keeping finely divided solids in suspension. It is based on metal "soaps", that is metal salts of acidic organic compounds, sometimes referred to as surfactants.
  • a detergent comprises a polar head with a long hydrophobic tail.
  • Large amounts of a metal base are included by reacting an excess of a metal compound, such as an oxide or hydroxide, with an acidic gas such as carbon dioxide to give an overbased detergent which comprises neutralised detergent as the outer layer of a metal base (e.g. carbonate) micelle.
  • a metal compound such as an oxide or hydroxide
  • an acidic gas such as carbon dioxide
  • the detergent is preferably an alkali metal or alkaline earth metal additive such as an overbased oil-soluble or oil-dispersible calcium, magnesium, sodium or barium salt of a surfactant selected from phenol, sulphonic acid, carboxylic acid, salicylic acid and naphthenic acid, wherein the overbasing is provided by an oil-insoluble salt of the metal, e.g. carbonate, basic carbonate, acetate, formate, hydroxide or oxalate, which is stabilised by the oil-soluble salt of the surfactant.
  • the metal of the oil-soluble surfactant salt may be the same or different from that of the metal of the oil-insoluble salt.
  • the metal, whether the metal of the oil-soluble or oil-insoluble salt is calcium.
  • the TBN of the detergent may be low, i.e. less than 50 mg KOH/g, medium, i.e. 50-150 mg KOH/g, or high, i.e. over 150 mg KOH/g, as determined by ASTM D2896.
  • the TBN is medium or high, i.e. more than 50 TBN.
  • the TBN is at least 60, more preferably at least 100, more preferably at least 150, and up to 500, such as up to 350 mg KOH/g, as determined by ASTM D2896.
  • the detergent comprises an alkaline earth hydrocarbyl-substituted hydroxyl-benzoate salt such as a calcium alkylsalicylate salt.
  • 'oil-soluble' or 'oil-dispersable' do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
  • the lubricant compositions of this invention comprise defined individual (i.e. separate) components that may or may not remain the same chemically before and after mixing.
  • additive package(s) may be prepared, although not essential, to prepare one or more additive packages or concentrates comprising the additives, whereby the additives can be added simultaneously to the oil of lubricating viscosity to form the lubricating oil composition. Dissolution of the additive package(s) into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
  • the additive package(s) will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration, and/or to carry out the intended function in the final formulation when the additive package(s) is/are combined with a predetermined amount of base lubricant.
  • the additives may be admixed with small amounts of base oil or other compatible solvents together with other desirable additives to form additive packages containing active ingredients in an amount, based on the additive package, of, for example, from 2.5 to 90, preferably from 5 to 75, most preferably from 8 to 60, mass % of additives in the appropriate proportions, the remainder being base oil.
  • the lubricating oil composition of the invention may comprise further additives.
  • additional additives may, for example, include ashless dispersants, other metal detergents, other anti-wear agents, such as anti-oxidants such as aminic or phenolic anti-oxidants, and demulsifiers.
  • the lubricating oils present as a major proportion of the TPEO may range in viscosity from light distillate mineral oils to heavy lubricating oils. Generally, the viscosity of the oil ranges from 2 to 40 mm 2 /sec, as measured at 100°C.
  • Natural oils include animal oils and vegetable oils (e.g., caster oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkybenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulphides and derivative, analogs and homologs thereof.
  • polymerized and interpolymerized olefins
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester of tetraethylene glycol.
  • polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide
  • alkyl and aryl ethers of polyoxyalkylene polymers e.g.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
  • esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles oftetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes.
  • oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexy
  • Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
  • Unrefined, refined and re-refined oils can be used in lubricants of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations; petroleum oil obtained directly from distillation; or ester oil obtained directly from an esterification and used without further treatment would be an unrefined oil.
  • Refined oils are similar to unrefined oils except that the oil is further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to provide refined oils but begin with oil that has already been used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and are often subjected to additional processing using techniques for removing spent additives and oil breakdown products.
  • oils there may be mentioned the Group I and Group II oils. Also, there may be mentioned those of the above oils containing greater than or equal to 90% saturates and less than or equal to 0.03% sulphur as the oil of lubricating viscosity, eg Group II, III, IV or V. They also include basestocks derived from hydrocarbons synthesised by the Fischer-Tropsch process. In the Fischer-Tropsch process, synthesis gas containing carbon monoxide and hydrogen (or 'syngas') is first generated and then converted to hydrocarbons using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil.
  • syngas may, for example, be made from gas such as natural gas or other gaseous hydrocarbons by steam reforming, when the basestock may be referred to as gas-to-liquid (“GTL”) base oil; or from gasification of biomass, when the basestock may be referred to as biomass-to-liquid (“BTL” or "BMTL”) base oil; or from gasification of coal, when the basestock may be referred to as coal-to-liquid (“CTL”) base oil.
  • GTL gas-to-liquid
  • BTL biomass-to-liquid
  • CTL coal-to-liquid
  • the oil of lubricating viscosity in this invention contains 50 mass % or more said basestocks. It may contain 60, such as 70, 80 or 90, mass % or more of said basestock or a mixture thereof.
  • the oil of lubricating viscosity may be substantially all of said basestock or a mixture thereof.
  • additives may be prepared, although not essential, to prepare one or more additive packages or concentrates comprising additives, whereby additives can be added simultaneously to the oil of lubricating viscosity to form the TPEO.
  • the final formulations as a trunk piston engine oil may typically contain 30, preferably 10 to 28, more preferably 12 to 24, mass % of the additive package(s), the remainder being the oil of lubricating viscosity.
  • the trunk piston engine oil may have a compositional TBN (using ASTM D2896) of 20 to 60, such as, 30 to 55. For example, it may be 40 to 55 or 35 to 50.
  • the treat rate of additives contained in the lubricating oil composition may for example be in the range of 1 to 2.5, preferably 2 to 20, more preferably 5 to 18, mass %.
  • a first set of TPEO's was formulated comprising two TPEO's which differed only in the amount of secondary C 6 ZDDP they contained and base oil to balance.
  • Each TPEO contained a mixture of overbased calcium salicylate detergents, a mixture of aminic and phenolic anti-oxidants, and other co-additives. They contained the same amounts of base oil to balance.
  • TPEO TPEO was tested in a bulk oil oxidation test where the oil was contaminated with 0.5 % HFO (Heavy Fuel Oil) and subjected to oxidising conditions for 120 hours.
  • the test was the DKA oxidation test (CEC L-48-00) in which BN and viscosity change were assessed.
  • Example % ZDDP (expressed as ppm P) BN Initial BN End BN Change KV100 Initial KV100 End KV100 Change Ref 1 374 55.24 55.01 6% 15.45 19.07 23% Inv 1 544 52.61 51.68 2% 15.45 17.72 15%
  • the second set of TPEO's was subject to the same procedure as described above for the first set.
  • the second set comprised two TPEO's differing only in the amounts of the same ZDDP and the base oil.
  • Example % ZDDP (expressed as ppm P) BN Initial BN End BN Change KV100 Initial KV100 End KV100 Change Ref 2 408 48.32 46.07 5% 14.17 16.6 18% Inv 2 544 54.87 51.93 5% 14.65 15.81 8%
EP14191729.4A 2014-11-04 2014-11-04 Schmierung für einen Schiffsmotor Withdrawn EP3018191A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14191729.4A EP3018191A1 (de) 2014-11-04 2014-11-04 Schmierung für einen Schiffsmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14191729.4A EP3018191A1 (de) 2014-11-04 2014-11-04 Schmierung für einen Schiffsmotor

Publications (1)

Publication Number Publication Date
EP3018191A1 true EP3018191A1 (de) 2016-05-11

Family

ID=51870876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14191729.4A Withdrawn EP3018191A1 (de) 2014-11-04 2014-11-04 Schmierung für einen Schiffsmotor

Country Status (1)

Country Link
EP (1) EP3018191A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567498A (en) * 2017-10-16 2019-04-17 Castrol Ltd Trunk piston engine oil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849318A (en) * 1972-07-03 1974-11-19 Chevron Res Lubricating oil composition containing anti-wear agents
EP1154099A2 (de) 2000-05-08 2001-11-14 Plettac assco GmbH & Co. KG Gerüstbelag
EP1528099A1 (de) 2003-10-30 2005-05-04 Infineum International Limited Methode zur Verringerung der Bildung von Ablagerungen in einem Zentrifugensystem
US20090011966A1 (en) 2007-07-03 2009-01-08 James Christian Dodd Lubricating Oil Composition
EP2123740A1 (de) 2008-05-20 2009-11-25 Infineum International Limited Schmierung für einen Schiffsmotor
EP2128231A2 (de) * 2008-05-08 2009-12-02 Chevron Oronite Technology B.V. Schmierölzusammensetzung enthaltend ein Salz einer alkylsubstituierten Hydroxybenzoesäure und Verfahren zu ihrer Verwendung mit schwefelarmem Marine-Rückstandsöl
EP2604676A1 (de) * 2011-12-16 2013-06-19 Chevron Oronite Technology B.V. Schmierölzusammensetzungen für Tauchkolbenmotor
CA2850889A1 (en) * 2013-05-03 2014-11-03 Infineum International Limited Marine engine lubrication

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849318A (en) * 1972-07-03 1974-11-19 Chevron Res Lubricating oil composition containing anti-wear agents
EP1154099A2 (de) 2000-05-08 2001-11-14 Plettac assco GmbH & Co. KG Gerüstbelag
EP1528099A1 (de) 2003-10-30 2005-05-04 Infineum International Limited Methode zur Verringerung der Bildung von Ablagerungen in einem Zentrifugensystem
US20090011966A1 (en) 2007-07-03 2009-01-08 James Christian Dodd Lubricating Oil Composition
EP2128231A2 (de) * 2008-05-08 2009-12-02 Chevron Oronite Technology B.V. Schmierölzusammensetzung enthaltend ein Salz einer alkylsubstituierten Hydroxybenzoesäure und Verfahren zu ihrer Verwendung mit schwefelarmem Marine-Rückstandsöl
EP2123740A1 (de) 2008-05-20 2009-11-25 Infineum International Limited Schmierung für einen Schiffsmotor
EP2604676A1 (de) * 2011-12-16 2013-06-19 Chevron Oronite Technology B.V. Schmierölzusammensetzungen für Tauchkolbenmotor
CA2850889A1 (en) * 2013-05-03 2014-11-03 Infineum International Limited Marine engine lubrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Engine Oil Licensing and Certification System", December 1996, THE AMERICAN PETROLEUM INSTITUTE (API

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567498A (en) * 2017-10-16 2019-04-17 Castrol Ltd Trunk piston engine oil

Similar Documents

Publication Publication Date Title
EP2799529B1 (de) Schmierung für einen Schiffsmotor
EP3378924B1 (de) Schiffsmotorschmierung
EP3018191A1 (de) Schmierung für einen Schiffsmotor
EP3034587B1 (de) Schmierung für einen schiffsmotor
EP2607463A1 (de) Schmierung für einen Schiffsmotor
EP2607462B1 (de) Schmierung für einen Schiffsmotor
EP3112447B1 (de) Additivpaket für die schmierung eines schiffsmotors
EP3470499B1 (de) Verwendung von detergentien in schmiermitteln für verbrennungsmotoren
US11732210B2 (en) Marine engine lubrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160519