EP3018188A1 - Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content - Google Patents
Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content Download PDFInfo
- Publication number
- EP3018188A1 EP3018188A1 EP15306717.8A EP15306717A EP3018188A1 EP 3018188 A1 EP3018188 A1 EP 3018188A1 EP 15306717 A EP15306717 A EP 15306717A EP 3018188 A1 EP3018188 A1 EP 3018188A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fraction
- separation
- hydrocracking
- hydrotreatment
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 99
- 238000000926 separation method Methods 0.000 title claims abstract description 91
- 239000013049 sediment Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 65
- 230000035800 maturation Effects 0.000 title claims abstract description 37
- 230000008569 process Effects 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000295 fuel oil Substances 0.000 title description 18
- 239000003208 petroleum Substances 0.000 title description 5
- 239000007788 liquid Substances 0.000 claims abstract description 61
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 49
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 48
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 40
- 239000003054 catalyst Substances 0.000 claims description 70
- 239000003921 oil Substances 0.000 claims description 49
- 239000007789 gas Substances 0.000 claims description 47
- 229910052739 hydrogen Inorganic materials 0.000 claims description 45
- 239000001257 hydrogen Substances 0.000 claims description 45
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 38
- 230000005587 bubbling Effects 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 238000004821 distillation Methods 0.000 claims description 23
- 229910052717 sulfur Inorganic materials 0.000 claims description 21
- 230000032683 aging Effects 0.000 claims description 20
- 239000011593 sulfur Substances 0.000 claims description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 19
- 239000000446 fuel Substances 0.000 claims description 17
- 239000003350 kerosene Substances 0.000 claims description 15
- 238000009835 boiling Methods 0.000 claims description 13
- 239000010730 cutting oil Substances 0.000 claims description 10
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 9
- 238000004523 catalytic cracking Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 4
- 239000000314 lubricant Substances 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 235000015076 Shorea robusta Nutrition 0.000 claims description 2
- 244000166071 Shorea robusta Species 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims description 2
- 239000010779 crude oil Substances 0.000 claims description 2
- 238000010908 decantation Methods 0.000 claims description 2
- 238000005367 electrostatic precipitation Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000011295 pitch Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 230000005070 ripening Effects 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 238000005194 fractionation Methods 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- 150000002431 hydrogen Chemical class 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 12
- 238000005292 vacuum distillation Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 230000006837 decompression Effects 0.000 description 7
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000004064 recycling Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000004231 fluid catalytic cracking Methods 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910003294 NiMo Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- -1 silica-aluminas Chemical compound 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000020335 dealkylation Effects 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000010747 number 6 fuel oil Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010909 process residue Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/06—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/002—Apparatus for fixed bed hydrotreatment processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1059—Gasoil having a boiling range of about 330 - 427 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1077—Vacuum residues
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/205—Metal content
- C10G2300/206—Asphaltenes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/208—Sediments, e.g. bottom sediment and water or BSW
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/06—Gasoil
Definitions
- the present invention relates to the refining and the conversion of heavy hydrocarbon fractions containing, inter alia, sulfur-containing impurities. It relates more particularly to a process for converting heavy petroleum feeds of the atmospheric residue type and / or vacuum residue for the production of heavy fractions that can be used as fuel bases, in particular bunker oil bases, with a low sediment content.
- the process according to the invention also makes it possible to produce atmospheric distillates (naphtha, kerosene and diesel), vacuum distillates and light gases (C1 to C4).
- the sediment content according to ISO 10307-1 (also known as IP375) is different from the sediment content after aging according to ISO 10307-2 (also known as IP390).
- the sediment content after aging according to ISO 10307-2 is a much more stringent specification and corresponds to the specification for bunker fuels.
- a ship may therefore use a sulfur-containing fuel oil if the ship is equipped with a flue gas treatment system that reduces emissions of sulfur oxides.
- FR 2764300 and EP 0665282 describe a hydrotreatment process of heavy oils with the aim of extending the life of the reactors.
- the process described in FR 2764300 describes a process for obtaining fuels (gasoline and diesel) having in particular a low sulfur content.
- the fillers treated in this process do not contain asphaltenes.
- Fuel oils used in maritime transport generally include atmospheric distillates, vacuum distillates, atmospheric residues and vacuum residues from direct distillation or from refining processes, including hydrotreatment and conversion processes, which may be be used alone or mixed. These processes, although known to be suitable for heavy loads loaded with impurities, however, produce hydrocarbon fractions comprising catalyst fines and sediments which must be removed to satisfy a product quality such as bunker fuel oil.
- the sediments may be precipitated asphaltenes. Initially in the feed, the conversion conditions and in particular the temperature cause them to undergo reactions (dealkylation, polymerization, etc.) leading to their precipitation. Regardless of the nature of the charge, these phenomena generally occur during the implementation of severe conditions giving rise to conversion rates (for compounds boiling above 540 ° C: 540 + ° C), ie ie greater than 30, 40 or 50%.
- One of the objectives of the present invention is to propose a process for converting heavy petroleum feedstocks for the production of fuel oils and fuel bases.
- Another object of the present invention is to jointly produce, by the same method, atmospheric distillates (naphtha, kerosene, diesel), vacuum distillates and / or light gases (C1 to C4).
- the bases of the naphtha and diesel type can be upgraded to refineries for the production of automotive and aviation fuels, such as, for example, super-fuels, Jet fuels and gas oils.
- the feedstock treated in the process according to the invention is preferably a hydrocarbon feed having an initial boiling point of at least 340 ° C and a final boiling point of at least 440 ° C.
- its initial boiling point is at least 350 ° C., preferably at least 375 ° C.
- its final boiling point is at least 450 ° C., preferably at least 450 ° C. at least 460 ° C, more preferably at least 540 ° C, and even more preferably at least 600 ° C.
- the hydrocarbon feedstock according to the invention may be chosen from atmospheric residues, vacuum residues resulting from direct distillation, crude oils, crude head oils, deasphalting resins, asphalts or deasphalting pitches, process residues. conversion products, aromatic extracts from lubricant base production lines, oil sands or derivatives thereof, oil shales or their derivatives, source rock oils or their derivatives, whether alone or in combination.
- the fillers being treated are preferably atmospheric residues or vacuum residues, or mixtures of these residues.
- the hydrocarbon feedstock treated in the process may contain, among other things, sulfur-containing impurities.
- the sulfur content may be at least 0.1% by weight, at least 0.5% by weight, preferably at least 1% by weight, more preferably at least 4% by weight, still more preferably at least 5% by weight.
- the feedstock may contain at least 1% C7 asphaltenes and at least 5 ppm metals, preferably at least 2% C7 asphaltenes and at least 25 ppm metals.
- This co-charge may be a hydrocarbon fraction or a lighter hydrocarbon fraction mixture, which may preferably be chosen from the products resulting from a fluid catalytic cracking (FCC) process according to the English terminology. Saxon), a light cutting oil (LCO or "light cycle oil” according to the English terminology), a heavy cutting oil (HCO or "heavy cycle oil” according to the English terminology), a decanted oil, a FCC residue, a gas oil fraction, especially a fraction obtained by atmospheric distillation or under vacuum, such as vacuum gas oil, or may come from another refining process.
- FCC fluid catalytic cracking
- the co-charge may also advantageously be one or more cuts resulting from the liquefaction process of the coal or the biomass, aromatic extracts, or any other hydrocarbon cuts or non-petroleum fillers such as pyrolysis oil.
- the heavy hydrocarbon feedstock according to the invention may represent at least 50%, preferably 70%, more preferably at least 80%, and even more preferably at least 90% by weight of the total hydrocarbon feedstock treated by the process according to the invention.
- the process according to the invention therefore comprises a first step a) of fixed bed hydrotreatment, optionally a step b) of separating the effluent from step a) of hydrotreatment into a light fraction and a heavy fraction, followed by a step c) bubbling bed hydrocracking of at least a portion of the effluent from step a) or at least a portion of the heavy fraction from step b), a step d) of separating the effluent from step c) to obtain at least one gaseous fraction and at least one heavy liquid fraction and finally a curing step e) and a separation step f) carried out on the heavy liquid fraction making it possible to obtain a liquid hydrocarbon fraction having a sediment content after aging less than or equal to 0.1% by weight.
- the objective of hydrotreating is both to refine, that is to say to significantly reduce the content of metals, sulfur and other impurities, while improving the hydrogen to carbon ratio (H / C) and while transforming the hydrocarbon feed more or less partially into lighter cuts.
- the effluent obtained in the fixed bed hydrotreating step a) can then be sent to the bubbling bed hydrocracking step c) either directly or after being subjected to a light fraction separation step.
- Step c) allows a partial conversion of the feedstock to produce an effluent comprising in particular catalyst fines and sediments which must be removed to satisfy a product quality such as bunker oil.
- the process according to the invention is characterized by the fact that it comprises a maturation step e) and a separation step f) carried out under conditions making it possible to improve the sediment separation efficiency and thus to obtain fuel oils. or oil bases having a sediment content after aging less than or equal to 0.1% by weight.
- the filler according to the invention is subjected according to the process of the present invention to a fixed bed hydrotreating step a) in which the filler and hydrogen are contacted on a hydrotreatment catalyst.
- Hydrotreatment commonly known as HDT
- HDT Hydrotreatment
- hydrodesulfurization reactions commonly referred to as HDS
- hydrodenitrogenation reactions commonly referred to as HDN
- hydrodemetallation reactions commonly referred to as HDM
- the hydrotreatment stage a) comprises a hydrodemetallation first stage (1) (HDM) carried out in one or more hydrodemetallation zones in fixed beds and a second hydrodesulphurization second stage (a2) (HDS). performed in one or more hydrodesulfurization zones in fixed beds.
- first step a1) of hydrodemetallation the feedstock and hydrogen are brought into contact on a hydrodemetallization catalyst, under hydrodemetallation conditions, and then during said second hydrodesulfurization step a2), the effluent of the first hydrodemetallation step a1) is brought into contact with a hydrodesulphurization catalyst, in hydrodesulfurization conditions.
- This process known as HYVAHL-FTM, is for example described in the patent US 5417846 .
- hydrodemetallization step hydrodemetallation reactions are carried out but also a part of the other hydrotreatment reactions and in particular hydrodesulfurization reactions.
- hydrodesulphurization step hydrodesulphurization reactions are carried out, but also part of the other hydrotreatment reactions and in particular hydrodemetallation reactions.
- the hydrodemetallization step begins where the hydrotreatment step begins, where the metal concentration is maximum.
- the hydrodesulfurization step ends where the hydrotreating step ends, where sulfur removal is the most difficult.
- the skilled person sometimes defines a transition zone in which all types of hydrotreatment reaction occur.
- the hydrotreating step a) according to the invention is carried out under hydrotreatment conditions. It may advantageously be carried out at a temperature of between 300 ° C. and 500 ° C., preferably between 350 ° C. and 420 ° C. and under a hydrogen partial pressure of between 5 MPa and 35 MPa, preferably between MPa and 20 MPa. The temperature is usually adjusted according to the desired level of hydrotreatment and the duration of the targeted treatment.
- the space velocity of the hydrocarbon feedstock can be in a range from 0.1 h -1 to 5 h -1 , preferably from 0.1 h -1 to 2 h -1 , and more preferably from 0.1 h -1 to 0.45 h -1 .
- the amount of hydrogen mixed with the feedstock may be between 100 and 5000 normal cubic meters (Nm3) per cubic meter (m3) of liquid feed, preferably between 200 Nm3 / m3 and 2000 Nm3 / m3, and more preferably between 300 Nm3 / m3 and 1500 Nm3 / m3.
- Step a) of hydrotreatment can be carried out industrially in one or more liquid downflow reactors.
- the hydrotreatment catalysts used are preferably known catalysts. These may be granular catalysts comprising, on a support, at least one metal or metal compound having a hydrodehydrogenating function. These catalysts may advantageously be catalysts comprising at least one Group VIII metal, generally selected from the group consisting of nickel and cobalt, and / or at least one Group VIB metal, preferably molybdenum and / or tungsten. For example, it is possible to use a catalyst comprising from 0.5% to 10% by weight of nickel, preferably from 1% to 5% by weight of nickel (expressed as nickel oxide NiO), and from 1% to 30% by weight of nickel.
- nickel oxide NiO nickel oxide
- molybdenum preferably from 5% to 20% by weight of molybdenum (expressed as molybdenum oxide MoO3) on a mineral support.
- This support may for example be chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
- this support may contain other doping compounds, in particular oxides selected from the group consisting of boron oxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. Most often an alumina support is used and very often a support of alumina doped with phosphorus and possibly boron.
- the alumina used may be a gamma ( ⁇ ) or ⁇ (eta) alumina. This catalyst is most often in the form of extrudates.
- the total content of metal oxides of groups VIB and VIII may be from 5% to 40% by weight and in general from 7% to 30% by weight and the weight ratio expressed as metal oxide between metal (or metals) of group VIB on metal (or metals) of group VIII is generally between 20 and 1, and most often between 10 and 2.
- Catalysts that can be used in the hydrodemetallation step are, for example, indicated in the patent documents EP 0113297 , EP 0113284 , US 5221656 , US 5827421 , US 7119045 , US 5622616 and US 5089463 .
- HDM catalysts are preferably used in the reactive reactors.
- Catalysts that can be used in the hydrodesulfurization step are, for example, indicated in the patent documents EP 0113297 , EP 0113284 , US 6589908 , US 4818743 or US 6332976 .
- the catalysts used in the process according to the present invention are preferably subjected to an in-situ or ex-situ sulphurization treatment.
- step separating the effluent from step a) of hydrotreatment is optional.
- step separating the effluent from step a) of hydrotreatment is not implemented, at least part of the effluent from step a) of hydrotreatment is introduced in the section allowing the implementation of step c) bubbling bed hydrocracking without changing chemical composition and without significant pressure loss.
- "Significant loss of pressure” means a loss of pressure caused by a valve or expansion turbine, which could be estimated at a pressure loss of more than 10% of the total pressure. Those skilled in the art generally use these pressure losses or relaxations during the separation steps.
- step a) of hydrotreatment When the separation step is carried out on the effluent from step a) of hydrotreatment, this is optionally supplemented by further additional separation steps, making it possible to separate at least one light fraction and at least one less a heavy fraction.
- light fraction is meant a fraction in which at least 90% of the compounds have a boiling point below 350 ° C.
- the light fraction obtained during the separation step b) comprises a gaseous phase and at least a light fraction of hydrocarbons of the naphtha, kerosene and / or diesel type.
- the heavy fraction preferably comprises a vacuum distillate fraction and a vacuum residue fraction and / or an atmospheric residue fraction.
- the separation step b) can be implemented by any method known to those skilled in the art. This method can be selected from high or low pressure separation, high or low pressure distillation, high or low pressure stripping, and combinations of these different methods that can operate at different pressures and temperatures.
- the effluent from step a) hydrotreatment undergoes a step b) separation with decompression.
- the separation is preferably carried out in a fractionation section which may firstly comprise a high temperature high pressure separator (HPHT), and possibly a low temperature high pressure separator (HPBT), followed optionally afterwards.
- HPHT high temperature high pressure separator
- HPBT low temperature high pressure separator
- the effluent of step a) can be sent to a fractionation section, generally in an HPHT separator making it possible to obtain a light fraction and a heavy fraction containing predominantly boiling compounds at at least 350 ° C.
- the separation is preferably not made according to a precise cutting point, it is rather like a separation of instantaneous type (or flash according to the Anglo-Saxon terminology).
- the cutting point of the separation is advantageously between 200 and 400 ° C.
- said heavy fraction can then be fractionated by atmospheric distillation into at least one atmospheric distillate fraction, preferably containing at least a light fraction of naphtha, kerosene and / or diesel type hydrocarbons, and an atmospheric residue fraction.
- At least a portion of the atmospheric residue fraction can also be fractionated by vacuum distillation into a vacuum distillate fraction, preferably containing vacuum gas oil, and a vacuum residue fraction.
- At least a portion of the vacuum residue fraction and / or the atmospheric residue fraction are advantageously sent to the hydrocracking step c).
- Part of the vacuum residue may also be recycled in the hydrotreating step a).
- the effluent from step a) hydrotreatment undergoes a step b) separation without decompression.
- the effluent of the hydrotreatment step a) is sent to a fractionation section, generally in an HPHT separator, having a cutting point between 200 and 400 ° C. making it possible to obtain at least one light fraction and at least one heavy fraction.
- the separation is preferably not made according to a precise cutting point, it is rather like a separation of the instantaneous type (or flash according to the English terminology).
- the heavy fraction can then be directly sent to the hydrocracking step c).
- the light fraction may undergo other separation steps.
- it may be subjected to atmospheric distillation to obtain a gaseous fraction, at least a light fraction of liquid hydrocarbons of the naphtha, kerosene and / or diesel type and a vacuum distillate fraction, the last fraction possibly being at least part sent in step c) hydrocracking.
- Another part of the vacuum distillate can be used as a fluxing agent for a fuel oil.
- Another part of the vacuum distillate can be upgraded by being subjected to a hydrocracking step and / or catalytic cracking in a fluidized bed.
- No-decompression separation provides better thermal integration and saves energy and equipment.
- this embodiment has technical and economic advantages since it is not necessary to increase the flow pressure after separation before the subsequent hydrocracking step. Intermediate fractionation without decompression being simpler than fractionation with decompression, the investment cost is therefore advantageously reduced.
- the gaseous fractions resulting from the separation step preferably undergo a purification treatment to recover the hydrogen and recycle it to the hydrotreatment and / or hydrocracking reactors.
- the presence of the separation step between the hydrotreatment step a) and the hydrocracking step c) advantageously makes it possible to have two independent hydrogen circuits, one connected to the hydrotreatment, the hydrocracking, and which, if necessary, can be connected to each other.
- the addition of hydrogen can be done at the hydrotreatment section or at the level of the hydrocracking section or at both.
- the recycle hydrogen can supply the hydrotreatment section or the hydrocracking section or both.
- a compressor may possibly be common to both hydrogen circuits.
- the light fraction obtained at the end of the separation step b), which comprises hydrocarbons of the naphtha, kerosene and / or diesel or other type, in particular LPG and vacuum gas oil, can be recovered according to the methods which are well known in the art. the skilled person.
- the products obtained can be incorporated into fuel formulations (also called “pools" fuels according to the English terminology) or undergo additional refining steps.
- the fraction (s) naphtha, kerosene, gas oil and vacuum gas oil may be subjected to one or more treatments, for example hydrotreatment, hydrocracking, alkylation, isomerization, reforming. catalytic, catalytic cracking or thermal, to bring them separately or in mixture with the required specifications which may relate to the sulfur content, the smoke point, the octane number, cetane, and others.
- At least a portion of the effluent from step a) of hydrotreatment or at least a portion of the heavy fraction from step b) is sent according to the process of the present invention in a step c) of hydrocracking which is carried out in at least one reactor, advantageously two reactors, containing at least one catalyst supported in a bubbling bed.
- Said reactor can operate at an upward flow of liquid and gas.
- the main objective of hydrocracking is to convert the heavy hydrocarbon feedstock into lighter cuts while partially refining it.
- part of the initial hydrocarbon feedstock can be injected directly into the bubbling bed hydrocracking section c), mixed with the effluent of the hydrotreatment section a) in fixed bed or the heavy fraction from step b), without this portion of the hydrocarbon feedstock being treated in the hydrotreatment section a) in a fixed bed.
- This embodiment can be likened to a partial short circuit of the hydrotreatment section a) in a fixed bed.
- a co-charge may be introduced at the inlet of the hydrocracking section c) in a bubbling bed with the effluent of the hydrotreatment section a) in fixed bed or the heavy fraction resulting from step b) .
- This co-charge can be chosen from atmospheric residues, vacuum residues from direct distillation, deasphalted oils, aromatic extracts from lubricant base production lines, hydrocarbon fractions or a mixture of hydrocarbon fractions that can be chosen.
- this co-charge may be partially or totally injected into one of the reactors downstream of the first reactor.
- the hydrogen necessary for the hydrocracking reaction may already be present in sufficient quantity in the effluent resulting from the hydrotreatment stage a) injected at the inlet of the hydrocracking section c) in a bubbling bed. However, it is preferable to provide an additional supply of hydrogen at the inlet of the hydrocracking section c). In the case where the hydrocracking section has several bubbling bed reactors, hydrogen can be injected at the inlet of each reactor.
- the injected hydrogen may be a make-up stream and / or a recycle stream.
- Bubbling bed technology is well known to those skilled in the art. Only the main operating conditions will be described here. Bubbling bed technologies conventionally use supported catalysts in the form of extrudates whose diameter is generally of the order of 1 millimeter or less.
- the catalysts remain inside the reactors and are not evacuated with the products, except during the makeup and catalyst withdrawal phases necessary to maintain the catalytic activity.
- the temperature levels can be high in order to obtain high conversions while minimizing the amounts of catalysts used.
- the catalytic activity can be kept constant by replacing the catalyst in line. It is therefore not necessary to stop the unit to change the spent catalyst, nor to increase the reaction temperatures along the cycle to compensate for the deactivation.
- working at constant operating conditions advantageously provides consistent yields and product qualities along the cycle.
- the catalyst is kept agitated by a large recycling of liquid, the pressure drop on the reactor remains low and constant. Because of the attrition of the catalysts in the reactors, the products leaving the reactors may contain fine particles of catalyst.
- the conditions of the bubbling bed hydrocracking step c) can be conventional bubbling bed hydrocracking conditions of a feedstock. hydrocarbon. It can be operated under an absolute pressure of between 2.5 MPa and 35 MPa, preferably between 5 MPa and 25 MPa, more preferably between 6 MPa and 20 MPa, and even more preferably between 11 MPa and 20 MPa at a temperature between 330 ° C and 550 ° C, preferably between 350 ° C and 500 ° C.
- the space velocity (WH) and the hydrogen partial pressure are parameters that are set according to the characteristics of the product to be treated and the desired conversion.
- the WH is generally in a range from 0.1 h -1 to 10 h -1 , preferably from 0.2 h -1 to 5 h -1 and more preferably from 0.2 h -1 to 1 h -1 .
- the amount of hydrogen mixed with the feedstock is usually from 50 to 5000 normal cubic meters (Nm3) per cubic meter (m3) of liquid feed, most often from 100 Nm3 / m3 to 1500 Nm3 / m3 and preferably 200 Nm3 / m3 at 1200 Nm3 / m3.
- a conventional granular hydrocracking catalyst comprising, on an amorphous support, at least one metal or metal compound having a hydrodehydrogenating function.
- This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
- a catalyst comprising from 0.5% to 10% by weight of nickel and preferably from 1% to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1% to 30% by weight may be used.
- molybdenum preferably from 5% to 20% by weight of molybdenum (expressed as molybdenum oxide MoO3) on an amorphous mineral support.
- This support may for example be chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
- This support may also contain other compounds and for example oxides selected from the group consisting of boron oxide, zirconia, titanium oxide, phosphoric anhydride. Most often an alumina support is used and very often a support of alumina doped with phosphorus and possibly boron.
- phosphorus pentoxide P2O5 When phosphorus pentoxide P2O5 is present, its concentration is usually less than 20% by weight and most often less than 10% by weight.
- B2O3 boron trioxide When B2O3 boron trioxide is present, its concentration is usually less than 10% by weight.
- the alumina used is usually an ⁇ (gamma) or ⁇ (eta) alumina.
- This catalyst may be in the form of extrudates.
- the total content of metal oxides of groups VI and VIII may be between 5% and 40% by weight, preferably between 7% and 30% by weight, and the weight ratio expressed as metal oxide between metal (or metals) of group VI on metal (or metals) of group VIII is between 20 and 1, preferably between 10 and 2.
- the spent catalyst may be partly replaced by fresh catalyst, generally by withdrawing from the bottom of the reactor and introducing the fresh or new catalyst at the top of the reactor at a regular time interval, that is to say, for example by puff or continuously or almost continuously.
- the catalyst can also be introduced from below and withdrawn from the top of the reactor. For example, fresh catalyst can be introduced every day.
- the replacement rate of spent catalyst with fresh catalyst may be, for example, from about 0.05 kilograms to about 10 kilograms per cubic meter of charge. This withdrawal and this replacement are performed using devices allowing the continuous operation of this hydrocracking step.
- the hydrocracking reactor usually comprises a recirculation pump for maintaining the catalyst in a bubbling bed by continuous recycling of at least a portion of the liquid withdrawn at the top of the reactor and reinjected at the bottom of the reactor. It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and the sulfur contained therein are eliminated before it is reinjected in the hydrocracking step (b).
- the hydrocracking step c) according to the process of the invention can be carried out under the conditions of the H-OIL® process as described, for example, in the patent US 6270654 .
- the bubbling bed hydrocracking can be carried out in a single reactor or in several reactors, preferably two, arranged in series.
- the fact of using at least two bubbling bed reactors in series makes it possible to obtain products of better quality and with better performance.
- the hydrocracking into two reactors makes it possible to have an improved operability with regard to the flexibility of the conditions operating and catalytic system.
- the temperature of the second bubbling bed reactor is at least 5 ° C higher than that of the first bubbling bed reactor.
- the pressure of the second reactor may be 0.1 MPa to 1 MPa lower than for the first reactor to allow the flow of at least a portion of the effluent from the first step without pumping is necessary.
- the different operating conditions in terms of temperature in the two hydrocracking reactors are selected to be able to control the hydrogenation and the conversion of the feedstock into the desired products in each reactor.
- the effluent obtained at the end of the first substep c1) can optionally be subjected to a separation step of the light fraction and the heavy fraction, and at least a portion, preferably all, of said heavy fraction can be treated in the second hydrocracking sub-step c2).
- This separation is advantageously made in an inter-floor separator, as described for example in the patent US 6270654 , and in particular makes it possible to avoid over cracking of the light fraction in the second hydrocracking reactor.
- the hydrocracking stage can also be done with several reactors in parallel (generally two) in the case of large capacity.
- the hydrocracking step may thus comprise several stages in series, possibly separated from an inter-stage separator, each stage being constituted by one or more reactors in parallel.
- the process according to the invention may furthermore comprise a step d) of separation which makes it possible to obtain at least one gaseous fraction and at least one heavy liquid fraction.
- the effluent obtained at the end of the hydrocracking step c) comprises a liquid fraction and a gaseous fraction containing the gases, in particular H 2, H 2 S, NH 3, and C 1 -C 4 hydrocarbons.
- This gaseous fraction can be separated from the effluent by means of separation devices well known to those skilled in the art, in particular with the aid of one or more separator tanks that can operate at different pressures and temperatures, possibly associated with steam or hydrogen stripping means and one or more distillation columns.
- the effluent obtained at the end of the hydrocracking step c) is advantageously separated in at least one separator flask into at least one gaseous fraction and at least one heavy liquid fraction.
- These separators may for example be high temperature high pressure separators (HPHT) and / or high temperature low pressure separators (HPBT).
- this gaseous fraction is preferably treated in a hydrogen purification means so as to recover the hydrogen that is not consumed during the hydrotreatment and hydrocracking reactions.
- the hydrogen purification means may be an amine wash, a membrane, a PSA type system, or a plurality of such means arranged in series.
- the purified hydrogen can then advantageously be recycled in the process according to the invention, after possible recompression.
- the hydrogen may be introduced at the inlet of the hydrotreatment step a) and / or at different locations during the hydrotreatment step a) and / or at the inlet of the hydrocracking step c) and / or at different locations during step c) hydrocracking.
- the separation step d) may also comprise atmospheric distillation and / or vacuum distillation.
- the separation step d) further comprises at least one atmospheric distillation, in which the fraction (s) liquid hydrocarbon (s) obtained after separation is (are) fractionated by atmospheric distillation into at least one atmospheric distillate fraction and at least one atmospheric residue fraction.
- the atmospheric distillate fraction may contain commercially recoverable fuels bases (naphtha, kerosene and / or diesel), for example in the refinery for the production of motor and aviation fuels.
- the separation step d) of the process according to the invention may advantageously also comprise at least one vacuum distillation in which the liquid hydrocarbon fraction (s) obtained (s) after separation. and / or the atmospheric residue fraction obtained after atmospheric distillation is (are) fractionated by vacuum distillation into at least one vacuum distillate fraction and at least one vacuum residue fraction.
- the separation step d) comprises, first of all, an atmospheric distillation, in which the liquid hydrocarbon fraction (s) obtained after separation is (are) fractionated (s). ) by atmospheric distillation into at least one atmospheric distillate fraction and at least one atmospheric residue fraction, followed by vacuum distillation in which the atmospheric residue fraction obtained after atmospheric distillation is fractionated by vacuum distillation into at least one vacuum distillate fraction and at minus a fraction residue under vacuum.
- the vacuum distillate fraction typically contains vacuum gas oil fractions.
- At least a portion of the vacuum residue fraction can be recycled to the hydrocracking step c).
- the heavy liquid fraction obtained at the end of the separation step d) contains organic sediments which result from hydrotreatment and hydrocracking conditions and catalyst residues.
- Part of the sediments consist of asphaltenes precipitated under hydrotreatment and hydrocracking conditions and are analyzed as existing sediments (IP375).
- IP375 existing sediments
- IP390 sediments after aging
- the process according to the invention comprises a maturation stage making it possible to improve the sediment separation efficiency and thus to obtain stable oil or fuel bases, that is to say a sediment content after aging less than or equal to 0.1% by weight.
- the maturation step according to the invention makes it possible to form all the existing and potential sediments (by converting the potential sediments into existing sediments) so as to separate them more efficiently and thus respect the sediment content after aging (IP390) of 0.1% maximum weight.
- the curing stage according to the invention is advantageously carried out for a residence time of between 1 and 1500 minutes, preferably between 25 and 300 minutes, more preferably between 60 and 240 minutes, at a temperature between 50 and 350 ° C, preferably between 75 and 300 ° C and more preferably between 100 and 250 ° C, a pressure of less than 20 MPa, preferably less than 10 MPa, more preferably less than 3 MPa and even more preferably less than 1.5 MPa.
- the ripening step may be carried out using an exchanger or a heating furnace followed by one or more capacity (s) in series or in parallel such (s) as a horizontal or vertical balloon, optionally with a settling function to remove some of the heavier solids, and / or a piston reactor.
- capacity s
- a stirred and heated tank may also be used, and may be provided with a bottom draw to remove some of the heavier solids.
- step e) of maturation of the heavy liquid fraction resulting from step d) is carried out in the presence of an inert gas and / or an oxidizing gas.
- the aging step e) can be carried out in the presence of an inert gas such as nitrogen, or in the presence of an oxidizing gas such as oxygen, or in the presence of a mixture containing an inert gas and a oxidizing gas such as air or air depleted by nitrogen.
- an oxidizing gas accelerates the maturation process.
- the maturation stage is carried out in the presence of an inert and / or oxidizing gas
- said gas is mixed with the heavy liquid fraction resulting from stage d) before the stage of maturation then separation of this gas after maturation so as to obtain a liquid fraction at the end of the stage e) of maturation.
- a gas / liquid implementation can for example be carried out in a bubble column.
- the inert and / or oxidizing gas may also be introduced during the maturation step e), for example by means of bubbling (injection of gas from below) into a stirred tank which allows to promote gas / liquid contact.
- the method according to the invention further comprises a step f) of separating sediments and catalyst residues to obtain a liquid hydrocarbon fraction having a sediment content after aging less than or equal to 0.1% by weight.
- the heavy liquid fraction obtained at the end of the maturation step e) contains precipitated asphaltene-type organic sediments which result from the hydrocracking and maturation conditions. This heavy fraction may also contain fines catalysts resulting from the attrition of extruded type catalysts in the implementation of hydrocracking reactor.
- At least a part of the heavy liquid fraction resulting from the maturation stage e) is subjected to a separation of the sediments and the catalyst residues, by means of at least one physical separation means chosen from a filter, a separation membrane, a bed of organic or inorganic type filtering solids, electrostatic precipitation, a centrifugation system, decantation, auger withdrawal.
- a combination, in series and / or in parallel, of several separation means of the same type or different type can be used during this step f) separation of sediments and catalyst residues.
- One of these solid-liquid separation techniques may require the periodic use of a light rinsing fraction, resulting from the process or not, allowing for example the cleaning of a filter and the evacuation of sediments.
- the heavy liquid fraction resulting from stage f) with a reduced sediment content may advantageously be used as a base for fuel oil or as fuel oil, in particular as a bunker oil or bunker oil base, having a sediment content after aging of less than 0. , 1% weight.
- said heavy liquid fraction is mixed with one or more fluxing bases selected from the group consisting of catalytically cracked light cutting oils, catalytic cracked heavy cutting oils, catalytic cracking residue, a kerosene, a gas oil, a vacuum distillate and / or a decanted oil.
- the liquid hydrocarbon fractions may, at least in part, advantageously be used as fuel oil bases or as fuel oil, especially as a bunker oil base or as a bunker oil with a sediment content after aging less than or equal to 0.1% by weight .
- fuel oil is meant in the invention a hydrocarbon fraction that can be used as a fuel.
- oil base is meant in the invention a hydrocarbon fraction which, mixed with other bases, is a fuel oil.
- the liquid hydrocarbon fractions from step f) may be mixed with one or more fluxing bases selected from the group consisting of light-cutting oils of a catalytic cracking, heavy cutting oils of a catalytic cracking, the residue of a catalytic cracking, a kerosene, a gas oil, a vacuum distillate and / or a decanted oil.
- one or more fluxing bases selected from the group consisting of light-cutting oils of a catalytic cracking, heavy cutting oils of a catalytic cracking, the residue of a catalytic cracking, a kerosene, a gas oil, a vacuum distillate and / or a decanted oil.
- kerosene, gas oil and / or vacuum distillate produced in the process of the invention will be used.
- the figure 1 represents a process according to the invention with separation of the effluent from the hydrotreating zone with decompression.
- the introduction of the feedstock (10) to the outlet of the effluent (42) represents the hydrotreatment zone and this zone is described briefly because it can know many variants known to those skilled in the art.
- the effluent leaving the at least one guard reactor (Ra, Rb) is optionally re-mixed with hydrogen arriving via line (65) in an HDM reactor (32) containing a fixed bed of catalyst.
- an HDM reactor (32) containing a fixed bed of catalyst For readability reasons, a single HDM reactor (32) and a single HDS reactor (38) are shown in the figure, but the HDM and HDS section may include multiple HDM and HDM reactors. 'HDS in series.
- the effluent from the HDM reactor is withdrawn through line (34) and sent to the first HDS reactor (38) where it passes through a fixed bed of catalyst.
- the effluent from the hydrotreatment stage can be sent via line (42) into a high temperature high pressure separator (HPHT) (44) from which a gaseous fraction (46) and a liquid fraction (48) are recovered. ).
- HPHT high temperature high pressure separator
- the gaseous fraction (46) is sent, generally via an exchanger (not shown) or an air cooler (50) for cooling to a low temperature high pressure separator (HPBT) (52) from which a gaseous fraction (54) containing gases (H2, H2S, NH3, C1-C4 hydrocarbons, ...) and a liquid fraction (56).
- the gaseous fraction (54) from the low temperature high pressure separator (HPBT) (52) can be treated in a hydrogen purification unit (58) from which hydrogen (60) is recovered for recycling via the compressor (62) and the line (65) to the reactors (32) and / or (38) or via the line (14) to the permutable reactors (Ra, Rb).
- the liquid fraction (56) from the low temperature high pressure separator (HPBT) (52) is expanded in the device (68) and sent to the fractionation system (70).
- the liquid fraction (48) from the high temperature high pressure separator (HPHT) (44) is advantageously expanded in the device (72) and then sent to the fractionation system (70). Fractions (56) and (48) can be sent together, after expansion, to the fractionation (70).
- the fractionation system (70) advantageously comprises an atmospheric distillation system for producing a gaseous effluent (74), at least one so-called light fraction (76) and containing in particular naphtha, kerosene and diesel and an atmospheric residue fraction (78). ).
- Part of the atmospheric residue fraction can be sent via the line (80) into the hydrocracking reactors (98, 102). All or part of the atmospheric residue fraction (78) is sent to a vacuum distillation column (82) to recover a fraction (84) containing the vacuum residue and a vacuum distillate fraction (86) containing vacuum gas oil.
- the vacuum residue fraction (84), optionally mixed with a portion of the atmospheric residue fraction (80) and / or with a portion of the vacuum distillate fraction (86), is mixed with optionally recycled hydrogen (88). supplemented with makeup hydrogen (90) preheated in the furnace (91). It optionally passes through an oven (92).
- a co-charge (94) may be introduced.
- the heavy fraction is then introduced via the line (96) in the hydrocracking step at the bottom of the first bubbling bed reactor operating at an upflow of liquid and gas and containing a supported hydrocracking catalyst.
- the converted effluent (104) from the reactor (98) may be separated from the light fraction (106) in an inter-stage separator (108).
- All or part of the effluent (110) from the inter-stage separator (108) is advantageously mixed with additional hydrogen (157), if necessary preheated (not shown).
- This mixture is then injected by the pipe (112) into a second hydrocracking reactor (102) also in a bubbling bed operating with an upward flow of liquid and gas containing a hydrocracking catalyst of the supported type.
- the operating conditions, in particular the temperature, in this reactor are chosen to reach the desired conversion level, as previously described.
- the hydrocracking reactor effluent is fed through line (134) into a high temperature high pressure (HPHT) separator (136) from which a gaseous fraction (138) and a heavy liquid fraction (140) are recovered.
- HPHT high temperature high pressure
- the gaseous fraction (138) is sent generally via an exchanger (not shown) or a dry cooler (142) for cooling to a low temperature high pressure separator (HPBT) (144) from which a gaseous fraction (146) containing the gaseous fraction (146) is recovered.
- gas H2, H2S, NH3, C1-C4 hydrocarbons Certainly and a liquid fraction (148).
- the gaseous fraction (146) of the low temperature high pressure separator (HPBT) (144) is advantageously treated in the hydrogen purification unit (150) from which hydrogen (152) is recovered for recycling via the compressor (154) and line (156) and / or line (157) to the hydrocracking section.
- the liquid fraction (148) of the low temperature high pressure separator (HPBT) (144) is expanded in the device (160) and sent to the fractionation system (172).
- a medium pressure separator after the expander (160) can be installed to recover a vapor phase that is sent to the purification unit (150) and / or a dedicated medium pressure purification unit (not shown). ), and a liquid phase which is fed to the fractionation section (172).
- the heavy liquid fraction (140) from the high temperature high pressure separation (HPHT) (136) is expanded in the device (174) and sent to the fractionation system (172).
- a medium pressure separator (not shown) after the expander (174) can be installed to recover a vapor phase that is sent to the purification unit (150) and / or a dedicated medium pressure purification unit (not shown ), and a liquid phase which is fed to the fractionation section (172).
- Fractions (148) and (140) may be sent together, after expansion, to the system (172).
- the fractionation system (172) comprises an atmospheric distillation system for producing a gaseous effluent (176), at least a so-called light fraction (178), containing in particular naphtha, kerosene and diesel, and an atmospheric residue fraction (180). ).
- All or part of the atmospheric residue fraction (180) can be sent to a vacuum distillation column (184) to recover a fraction containing the vacuum residue (186) and a vacuum distillate fraction (188) containing vacuum gas oil .
- the atmospheric residue fraction (182) and / or the vacuum residue fraction (186) are subjected to a stage of maturation and separation of sediments and catalyst residues in order to constitute desired oil bases.
- An atmospheric residue (182) fraction is optionally preheated in an oven or exchanger (205) to achieve the temperature necessary for maturation (conversion of potential sediments into existing sediments) that occurs in the capacity (207).
- the purpose of the capacity (207) is to provide a residence time necessary for maturation, it can therefore be a horizontal or vertical flask, a buffer tank, a stirred tank or a reactor piston.
- the heating function can be integrated with the capacity in the case of a stirred stirred tank according to an embodiment not shown.
- the capacity (207) may also allow settling so as to evacuate a portion of the solids (208).
- the maturing stream (209) is then subjected to solid-liquid separation (191) to obtain a sediment-reduced fraction (212) and a sediment-rich fraction (211).
- a vacuum residue type fraction (186) is optionally preheated in an oven or exchanger (213) so as to reach the temperature necessary for the maturation that takes place in the capacity (215).
- the purpose of the capacity (215) is to provide a residence time necessary for maturation, it can therefore be a horizontal or vertical flask, a buffer tank, a stirred tank or a reactor piston.
- the heating function can be integrated into the capacity in the case of a tank agitated heated according to an embodiment not shown.
- the capacity (215) may also allow settling so as to evacuate a portion of the solids (216).
- the maturation stream (217) is then subjected to a solid-liquid separation (192) to obtain a sediment-reduced fraction (219) and a sediment-rich fraction (218).
- the curing devices (207) and (215) can operate in the presence of a gas, in particular an inert or oxidizing gas, or a mixture of inert gas and oxidizing gas.
- a gas in particular an inert or oxidizing gas, or a mixture of inert gas and oxidizing gas.
- a device not shown will separate the gas from the liquid.
- An advantageous mode not shown may consist in operating the stage of maturation and separation of the sediments on the stream recovered at the bottom of a stripping column. When the stage of maturation and separation of sediments and catalyst residues is operated upstream of a distillation column, this column is less prone to fouling.
- At least a portion of the streams (188) and / or (212) and / or (219) constitutes one or more desired oil bases, in particular bases for low-sulfur and low-sediment bunker fuels.
- Part of the streams (188) and / or (212) and / or (219), before or after the sediment ripening and separation step, can be recycled via line (190) to the hydrocracking step or upstream of the hydrotreating step (line not shown).
- the recycling of a vacuum-type gas oil section (188) upstream of the hydrotreatment can make it possible to lower the viscosity of the charge and thus facilitate pumping. Recycling an atmospheric residue type (212) or vacuum residue type (219) cutoff upstream of the hydrotreatment or hydrocracking may make it possible to increase the overall conversion.
- the figure 2 represents another process according to the invention with separation of the effluent from the zone of hydrotreatment without decompression. It will be described below essentially only the differences between the process according to the figure 2 and the method according to figure 1 the hydrotreating, hydrocracking and separation stages after hydrocracking (and their reference signs) being moreover strictly identical.
- the effluent treated in the hydrotreatment reactors is sent via line (42) into a high temperature high pressure separator (HPHT) (44) from which a lighter fraction (46) and a residual fraction (48) are recovered. .
- HPHT high temperature high pressure separator
- the residual fraction (48) is sent directly after a possible passage through an oven (92) in the hydrocracking section.
- the lighter fraction (46) is sent, generally via an exchanger (not shown) or an air cooler (50) for cooling to a low temperature high pressure separator (HPBT) (52) from which a gaseous fraction is recovered (54). containing the gases (H2, H2S, NH3, C1-C4 hydrocarbons ...) and a liquid fraction (56).
- HPBT high pressure separator
- the gaseous fraction (54) of the low temperature high pressure separator (HPBT) (52) is treated in the hydrogen purification unit (58) from which hydrogen (60) is recovered for recycling via the compressor. (154) and lines (64) and (156) to the hydrotreatment section and / or the hydrocracking section.
- Gases containing undesirable nitrogen, sulfur and oxygen compounds are advantageously removed from the plant (stream (66)).
- a single compressor (154) is used to supply all the reactors requiring hydrogen.
- the liquid fraction (56) from the low temperature high pressure separator (HPBT) (52) is expanded in the device (68) and sent to the fractionation system (70).
- the fractionation system (70) comprises an atmospheric distillation system for producing a gaseous effluent (74), at least a so-called light fraction (76) and containing in particular naphtha, kerosene and diesel and an atmospheric residue fraction (195). .
- Part of the atmospheric residue fraction can be sent, by means of a pump, not represented, via the line (195) in the hydrocracking reactors (98, 102), whereas another part of the atmospheric residue fraction ( 194) can be sent to another process (hydrocracking or FCC or hydrotreatment).
- a variant not shown but close to the diagram of the figure 2 may consist of not using a fractionation system (70) nor to relax the liquid fraction (56) from the cold separator (52).
- the liquid fraction (56) is then sent to the hydrocracking section optionally by means of a pump mixed with the heavy fraction (48) issuing from the separator (44).
- the figure 3 represents another process according to the invention without a step of separation of the hydrotreatment effluent. It will be described below essentially only the differences between the process according to the figure 3 and the processes according to figures 1 and 2 the hydrotreatment, hydrocracking and separation stages after hydrocracking (and their reference signs) being moreover strictly identical.
- the effluent (42) of the fixed bed hydrotreatment reactor (38) is injected without separation and without decompression into the hydrocracking reactor (98). , via optional thermal equipment (43), (92) for adjusting the inlet temperature of the hydrocracking reactor.
- a hydrogen-rich gas is recovered and recycled to the hydrotreating section and the hydrocracking section.
- the feedstock was subjected to a hydrotreatment step including two permutable reactors.
- the operating conditions are given in Table 1.
- Table 1 Operating conditions fixed bed step of hydrotreatment ⁇ / u> HDM and HDS catalysts NiMo on alumina Temperature (° C) 370 H2 partial pressure (MPa) 15 VVH (h-1, Sm3 / h fresh load / m3 fixed bed catalyst) 0.18 H2 / HC inlet section fixed bed excluding H2 consumption (Nm3 / m3 fresh load) 1000
- the effluent from the hydrotreatment is then subjected to a separation step making it possible to recover a light fraction (gas) and a heavy fraction containing a majority of compounds boiling at more than 350 ° C (350 ° C + fraction).
- the heavy fraction (350 ° C + fraction) is then treated in a hydrocracking step comprising two successive bubbling bed reactors with two sets of temperatures.
- the operating conditions of the hydrocracking step coupled with the different treatment variants (separation of sediments with or without a maturation stage) of the heavy liquid fraction resulting from atmospheric distillation have an impact on the stability of the effluents obtained. This is illustrated by the levels in post-aging sediment measured in atmospheric residues (350 ° C + cut) after the sediment separation step.
- the stage of maturation prior to the separation of the sediments makes it possible to form all the potential sediments and thus allow their effective separation. Without maturation, beyond a certain conversion level that leads to many potential sediments, the sediment separation step is not efficient enough for the sediment content after aging (IP390) to be lower than 0.1% by weight, the maximum level required for bunker fuels.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
L'invention concerne un procédé de traitement d'une charge hydrocarbonée comprenant les étapes suivantes :a) une étape d'hydrotraitement en lit fixe, b) une étape optionnelle de séparation de l'effluent issu de l'étape a) d'hydrotraitement, c) une étape d'hydrocraquage d'au moins une partie de l'effluent issu de l'étape a) ou d'au moins un partie de la fraction lourde issue de l'étape b), d) une étape de séparation de l'effluent issu de l'étape c), e) une étape de maturation de la fraction liquide lourde issue de l'étape d) de séparation, f) une étape de séparation des sédiments de la fraction liquide lourde issue de l'étape e) de maturation.The invention relates to a method for treating a hydrocarbon feedstock comprising the following steps: a) a step of hydrotreatment in a fixed bed, b) an optional step of separation of the effluent from step a) of hydrotreatment c) a step of hydrocracking at least part of the effluent from step a) or at least a portion of the heavy fraction resulting from step b), d) a separation step effluent from step c), e) a step of maturation of the heavy liquid fraction resulting from step d) of separation, f) a step of separating the sediments from the heavy liquid fraction resulting from the step e) ripening.
Description
La présente invention concerne le raffinage et la conversion des fractions lourdes d'hydrocarbures contenant entre autre des impuretés soufrées. Elle concerne plus particulièrement un procédé de conversion de charges lourdes pétrolières de type résidu atmosphérique et/ou résidu sous vide pour la production de fractions lourdes utilisables comme bases de fiouls, notamment de bases de fiouls de soute, à basse teneur en sédiments. Le procédé selon l'invention permet également de produire des distillats atmosphériques (naphta, kérosène et diesel), des distillats sous vide et des gaz légers (C1 à C4).The present invention relates to the refining and the conversion of heavy hydrocarbon fractions containing, inter alia, sulfur-containing impurities. It relates more particularly to a process for converting heavy petroleum feeds of the atmospheric residue type and / or vacuum residue for the production of heavy fractions that can be used as fuel bases, in particular bunker oil bases, with a low sediment content. The process according to the invention also makes it possible to produce atmospheric distillates (naphtha, kerosene and diesel), vacuum distillates and light gases (C1 to C4).
Les exigences de qualité des combustibles marins sont décrites dans la norme ISO 8217. La spécification concernant le soufre s'attache désormais aux émissions de SOx (Annexe VI de la convention MARPOL de l'Organisation Maritime Internationale) et se traduit par une recommandation en teneur en soufre inférieure ou égale à 0,5% poids en dehors des Zones de Contrôle des Emissions de Soufre (ZCES ou Emissions Control Areas / ECA en anglais) à l'horizon 2020-2025, et inférieure ou égale à 0,1% poids dans les ZCES. Une autre recommandation très contraignante est la teneur en sédiments après vieillissement selon ISO 10307-2 (également connue sous le nom d'IP390) qui doit être inférieure ou égale à 0,1%.The quality requirements for marine fuels are described in ISO 8217. The sulfur specification now focuses on SO x emissions (Annex VI of the MARPOL Convention of the International Maritime Organization) and results in a recommendation for sulfur content not exceeding 0.5% by weight outside the Sulfur Emission Control Areas (ZCES or Emissions Control Areas / ECA) by 2020-2025 and less than or equal to 0,1% in ZCES. Another very restrictive recommendation is the sediment content after aging according to ISO 10307-2 (also known as IP390) which must be less than or equal to 0.1%.
La teneur en sédiments selon ISO 10307-1 (également connue sous le nom d'IP375) est différente de la teneur en sédiments après vieillissement selon ISO 10307-2 (également connue sous le nom d'IP390). La teneur en sédiments après vieillissement selon ISO 10307-2 est une spécification beaucoup plus contraignante et correspond à la spécification s'appliquant aux fiouls de soute.The sediment content according to ISO 10307-1 (also known as IP375) is different from the sediment content after aging according to ISO 10307-2 (also known as IP390). The sediment content after aging according to ISO 10307-2 is a much more stringent specification and corresponds to the specification for bunker fuels.
Selon l'Annexe VI de la convention MARPOL, un navire pourra donc utiliser un fioul soufré dès lors que le navire est équipé d'un système de traitement des fumées permettant de réduire des émissions d'oxydes de soufre.According to Annex VI of the MARPOL Convention, a ship may therefore use a sulfur-containing fuel oil if the ship is equipped with a flue gas treatment system that reduces emissions of sulfur oxides.
Des procédés de raffinage et de conversion de charges lourdes pétrolières comprenant une première étape d'hydrotraitement en lit fixe puis une étape d'hydrocraquage en lit bouillonnant ont été décrits dans les documents de brevets
Les fiouls utilisés dans le transport maritime comprennent généralement des distillats atmosphériques, des distillats sous vide, des résidus atmosphériques et des résidus sous vide issus de distillation directe ou issus de procédé de raffinage, notamment des procédés d'hydrotraitement et de conversion, ces coupes pouvant être utilisées seules où en mélange. Ces procédés bien que connus pour être adaptée à des charges lourdes chargées en impuretés produisent cependant des fractions hydrocarbonées comprenant des fines de catalyseurs et des sédiments qui doivent être enlevés pour satisfaire une qualité de produit tel que le fioul de soute.Fuel oils used in maritime transport generally include atmospheric distillates, vacuum distillates, atmospheric residues and vacuum residues from direct distillation or from refining processes, including hydrotreatment and conversion processes, which may be be used alone or mixed. These processes, although known to be suitable for heavy loads loaded with impurities, however, produce hydrocarbon fractions comprising catalyst fines and sediments which must be removed to satisfy a product quality such as bunker fuel oil.
Les sédiments peuvent être des asphaltènes précipités. Initialement dans la charge, les conditions de conversion et notamment la température font qu'ils subissent des réactions (déalkylation, polymérisation...) conduisant à leur précipitation. Indépendamment de la nature de la charge, ces phénomènes interviennent généralement lors de mise en oeuvre de conditions sévères donnant lieu à des taux de conversion (pour les composés bouillant à plus de 540°C : 540+°C) élevés, c'est-à-dire supérieurs à 30, 40 ou 50%.The sediments may be precipitated asphaltenes. Initially in the feed, the conversion conditions and in particular the temperature cause them to undergo reactions (dealkylation, polymerization, etc.) leading to their precipitation. Regardless of the nature of the charge, these phenomena generally occur during the implementation of severe conditions giving rise to conversion rates (for compounds boiling above 540 ° C: 540 + ° C), ie ie greater than 30, 40 or 50%.
La demanderesse dans ses recherches a mis au point un nouveau procédé intégrant une étape de maturation et de séparation des sédiments en aval d'une étape d'hydrotraitement en lit fixe et une étape d'hydrocraquage. De manière surprenante, il a été trouvé qu'un tel procédé permettait d'obtenir des fractions hydrocarbonées liquides présentant une basse teneur en sédiments après vieillissement, lesdites fractions pouvant avantageusement être utilisées totalement ou en partie comme fioul ou comme base de fioul répondant aux futures spécifications, à savoir et une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poidsThe applicant in his research has developed a new process incorporating a step of maturation and sediment separation downstream of a fixed bed hydrotreating step and a hydrocracking step. Surprisingly, it has been found that such a method makes it possible to obtain liquid hydrocarbon fractions having a low sediment content after aging, said fractions being advantageously wholly or partly used as fuel oil or as fuel oil base for the future. specifications, namely and a sediment content after aging less than or equal to 0.1% by weight
Un des objectifs de la présente invention est de proposer un procédé de conversion de charges lourdes pétrolières pour la production de fiouls et de bases de fiouls, notamment fiouls de soute et de bases de fiouls de soute, à basse teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids.One of the objectives of the present invention is to propose a process for converting heavy petroleum feedstocks for the production of fuel oils and fuel bases. in particular bunker oil and bunker oil bases with a low sediment content after aging less than or equal to 0.1% by weight.
Un autre objectif de la présente invention est de produire conjointement, au moyen du même procédé, des distillats atmosphériques (naphta, kérosène, diesel), des distillats sous vide et/ou des gaz légers (en C1 à C4). Les bases de type naphta et diesel peuvent être valorisées en raffinerie pour la production de carburants pour l'automobile et l'aviation, tels que par exemple des supercarburants, des carburants Jet et des gazoles.Another object of the present invention is to jointly produce, by the same method, atmospheric distillates (naphtha, kerosene, diesel), vacuum distillates and / or light gases (C1 to C4). The bases of the naphtha and diesel type can be upgraded to refineries for the production of automotive and aviation fuels, such as, for example, super-fuels, Jet fuels and gas oils.
-
La
figure 1 représente une vue schématique du procédé selon l'invention, faisant apparaitre une zone d'hydrotraitement, une zone de séparation de l'effluent de la zone d'hydrotraitement, une zone d'hydrocraquage et une zone de séparation de l'effluent de la zone d'hydrocraquage et une zone de maturation et de séparation des sédiments.Thefigure 1 represents a schematic view of the process according to the invention, showing a hydrotreatment zone, a zone for separating the effluent from the hydrotreatment zone, a hydrocracking zone and a zone for separating the effluent from the hydrotreatment zone. hydrocracking zone and a zone of ripening and separation of sediments. -
La
figure 2 représente une vue schématique du procédé selon l'invention dans une variante dans laquelle la zone de séparation de l'effluent de la zone d'hydrotraitement est simplifiée.Thefigure 2 is a schematic view of the process according to the invention in a variant in which the separation zone of the effluent of the hydrotreatment zone is simplified. -
La
figure 3 représente une vue schématique du procédé sans zone de séparation de l'effluent de la zone d'hydrotraitement.Thefigure 3 is a schematic view of the process without a zone of separation of the effluent from the hydrotreatment zone.
La charge traitée dans le procédé selon l'invention est avantageusment une charge hydrocarbonée présentant une température initiale d'ébullition d'au moins 340°C et une température finale d'ébullition d'au moins 440°C. De préférence, sa température initiale d'ébullition est d'au moins 350°C, préférentiellement d'au moins 375°C, et sa température finale d'ébullition est d'au moins 450°C, préférentiellement d'au moins 460°C, plus préférentiellement d'au moins 540°C, et encore plus préférentiellement d'au moins 600°C.The feedstock treated in the process according to the invention is preferably a hydrocarbon feed having an initial boiling point of at least 340 ° C and a final boiling point of at least 440 ° C. Preferably, its initial boiling point is at least 350 ° C., preferably at least 375 ° C., and its final boiling point is at least 450 ° C., preferably at least 450 ° C. at least 460 ° C, more preferably at least 540 ° C, and even more preferably at least 600 ° C.
La charge hydrocarbonée selon l'invention peut être choisie parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, des pétroles bruts, des pétroles bruts étêtés, des résines de désasphaltage, les asphaltes ou brais de désasphaltage, les résidus issus des procédés de conversion, des extraits aromatiques issus des chaînes de production de bases pour lubrifiants, des sables bitumineux ou leurs dérivés, des schistes bitumineux ou leurs dérivés, des huiles de roche mère ou leurs dérivés, pris seuls ou en mélange. Dans la présente invention, les charges que l'on traite sont de préférence des résidus atmosphériques ou des résidus sous vide, ou des mélanges de ces résidus.The hydrocarbon feedstock according to the invention may be chosen from atmospheric residues, vacuum residues resulting from direct distillation, crude oils, crude head oils, deasphalting resins, asphalts or deasphalting pitches, process residues. conversion products, aromatic extracts from lubricant base production lines, oil sands or derivatives thereof, oil shales or their derivatives, source rock oils or their derivatives, whether alone or in combination. In the present invention, the fillers being treated are preferably atmospheric residues or vacuum residues, or mixtures of these residues.
La charge hydrocarbonée traitée dans le procédé peut contenir entre autre des impuretés soufrées. La teneur en soufre peut être d'au moins 0,1% en poids, d'au moins 0,5% en poids, préférentiellement d'au moins 1% en poids, plus préférentiellement d'au moins 4% en poids, encore plus préférentiellement d'au moins 5% en poids. Avantageusment, la charge peut contenir au moins 1% d'asphaltènes C7 et au moins 5 ppm de métaux, de préférence au moins 2% d'asphaltènes C7 et au moins 25 ppm de métaux.The hydrocarbon feedstock treated in the process may contain, among other things, sulfur-containing impurities. The sulfur content may be at least 0.1% by weight, at least 0.5% by weight, preferably at least 1% by weight, more preferably at least 4% by weight, still more preferably at least 5% by weight. Advantageously, the feedstock may contain at least 1% C7 asphaltenes and at least 5 ppm metals, preferably at least 2% C7 asphaltenes and at least 25 ppm metals.
Ces charges peuvent avantageusement être utilisées telles quelles. Alternativement, elles peuvent être diluées par une co-charge. Cette co-charge peut être une fraction hydrocarbonée ou un mélange de fractions hydrocarbonées plus légères, pouvant être de préférence choisies parmi les produits issus d'un procédé de craquage catalytique en lit fluide (FCC ou « Fluid Catalytic Cracking » selon la terminologie anglo-saxonne), une huile de coupe légère (LCO ou « light cycle oil » selon la terminologie anglo-saxonne), une huile de coupe lourde (HCO ou « heavy cycle oil » selon la terminologie anglo-saxonne), une huile décantée, un résidu de FCC, une fraction gazole, notamment une fraction obtenue par distillation atmosphérique ou sous vide, comme par exemple le gazole sous vide, ou encore pouvant venir d'un autre procédé de raffinage. La co-charge peut aussi avantageusement être un ou plusieurs coupes issues du procédé de liquéfaction du charbon ou de la biomasse, des extraits aromatiques, ou toutes autres coupes hydrocarbonées ou encore des charges non pétrolières comme de l'huile de pyrolyse. La charge hydrocarbonée lourde selon l'invention peut représenter au moins 50%, préférentiellement 70%, plus préférentiellement au moins 80%, et encore plus préférentiellement au moins 90% en poids de la charge hydrocarbonée totale traitée par le procédé selon l'inventionThese charges can advantageously be used as they are. Alternatively, they can be diluted by co-charging. This co-charge may be a hydrocarbon fraction or a lighter hydrocarbon fraction mixture, which may preferably be chosen from the products resulting from a fluid catalytic cracking (FCC) process according to the English terminology. Saxon), a light cutting oil (LCO or "light cycle oil" according to the English terminology), a heavy cutting oil (HCO or "heavy cycle oil" according to the English terminology), a decanted oil, a FCC residue, a gas oil fraction, especially a fraction obtained by atmospheric distillation or under vacuum, such as vacuum gas oil, or may come from another refining process. The co-charge may also advantageously be one or more cuts resulting from the liquefaction process of the coal or the biomass, aromatic extracts, or any other hydrocarbon cuts or non-petroleum fillers such as pyrolysis oil. The heavy hydrocarbon feedstock according to the invention may represent at least 50%, preferably 70%, more preferably at least 80%, and even more preferably at least 90% by weight of the total hydrocarbon feedstock treated by the process according to the invention.
Le procédé selon l'invention comprend donc une première étape a) d'hydrotraitement en lit fixe, éventuellement une étape b) de séparation de l'effluent issu de l'étape a) d'hydrotraitement en une fraction légère et une fraction lourde, suivie d'une étape c) d'hydrocraquage en lit bouillonnant d'au moins une partie de l'effluent issu de l'étape a) ou d'au moins un partie de la fraction lourde issue de l'étape b), une étape d) de séparation de l'effluent issu de l'étape c) pour obtenir au moins une fraction gazeuse et au moins une fraction liquide lourde et enfin une étape e) de maturation et une étape f) de séparation mise en oeuvre sur la fraction liquide lourde permettant d'obtenir une fraction hydrocarbonée liquide ayant une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids.The process according to the invention therefore comprises a first step a) of fixed bed hydrotreatment, optionally a step b) of separating the effluent from step a) of hydrotreatment into a light fraction and a heavy fraction, followed by a step c) bubbling bed hydrocracking of at least a portion of the effluent from step a) or at least a portion of the heavy fraction from step b), a step d) of separating the effluent from step c) to obtain at least one gaseous fraction and at least one heavy liquid fraction and finally a curing step e) and a separation step f) carried out on the heavy liquid fraction making it possible to obtain a liquid hydrocarbon fraction having a sediment content after aging less than or equal to 0.1% by weight.
L'objectif de l'hydrotraitement est à la fois de raffiner, c'est-à-dire de réduire sensiblement la teneur en métaux, soufre et autres impuretés, tout en améliorant le rapport hydrogène sur carbone (H/C) et tout en transformant la charge hydrocarbonée plus ou moins partiellement en coupes plus légères. L'effluent obtenu dans l'étape a) d'hydrotraitement en lit fixe peut ensuite être envoyé à l'étape c) d'hydrocraquage en lit bouillonnant soit directement, soit après avoir été soumise à une étape de séparation des fractions légères. L'étape c) permet une conversion partielle de la charge afin de produire un effluent comprenant notamment des fines de catalyseurs et des sédiments qui doivent être enlevés pour satisfaire une qualité de produit tel que le fioul de soute. Le procédé selon l'invention se caractérise par le fait qu'il comprend une étape de maturation e) et une étape de séparation f) réalisées dans des conditions permettant d'améliorer l'efficacité de séparation des sédiments et ainsi d'obtenir des fiouls ou des bases de fiouls présentant une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids.The objective of hydrotreating is both to refine, that is to say to significantly reduce the content of metals, sulfur and other impurities, while improving the hydrogen to carbon ratio (H / C) and while transforming the hydrocarbon feed more or less partially into lighter cuts. The effluent obtained in the fixed bed hydrotreating step a) can then be sent to the bubbling bed hydrocracking step c) either directly or after being subjected to a light fraction separation step. Step c) allows a partial conversion of the feedstock to produce an effluent comprising in particular catalyst fines and sediments which must be removed to satisfy a product quality such as bunker oil. The process according to the invention is characterized by the fact that it comprises a maturation step e) and a separation step f) carried out under conditions making it possible to improve the sediment separation efficiency and thus to obtain fuel oils. or oil bases having a sediment content after aging less than or equal to 0.1% by weight.
Un des intérêts de l'enchainement d'un hydrotraitement en lit fixe, puis d'un hydrocraquage en lit bouillonnant réside dans le fait que la charge du réacteur d'hydrocraquage en lit bouillonnant est déjà au moins partiellement hydrotraitée. De cette façon, il est possible d'obtenir à conversion équivalente des effluents hydrocarbonés de meilleure qualité, en particulier avec des teneurs en soufre plus faibles. De plus, la consommation en catalyseur dans le réacteur d'hydrocraquage en lit bouillonnant est fortement réduite par rapport à un procédé sans hydrotraitement en lit fixe préalable.One of the interests of the sequence of a hydrotreatment in a fixed bed and then a bubbling bed hydrocracking resides in the fact that the charge of the bubbling bed hydrocracking reactor is already at least partially hydrotreated. In this way, it is possible to obtain equivalent conversion of hydrocarbon effluents of better quality, in particular with lower sulfur contents. In addition, the catalyst consumption in the bubbling bed hydrocracking reactor is greatly reduced compared to a process without prior fixed bed hydrotreatment.
La charge selon l'invention est soumise selon le procédé de la présente invention à une étape a) d'hydrotraitement en lit fixe dans laquelle la charge et de l'hydrogène sont mis en contact sur un catalyseur d'hydrotraitement.The filler according to the invention is subjected according to the process of the present invention to a fixed bed hydrotreating step a) in which the filler and hydrogen are contacted on a hydrotreatment catalyst.
On entend par hydrotraitement, couramment appelé HDT, les traitements catalytiques avec apport d'hydrogène permettant de raffiner, c'est-à-dire de réduire sensiblement la teneur en métaux, soufre et autres impuretés, les charges hydrocarbonées, tout en améliorant le rapport hydrogène sur carbone de la charge et en transformant la charge plus ou moins partiellement en coupes plus légères. L'hydrotraitement comprend notamment des réactions d'hydrodésulfuration (couramment appelé HDS), des réactions d'hydrodésazotation (couramment appelé HDN) et des réactions d'hydrodémétallation (couramment appelé HDM), accompagnées de réactions d'hydrogénation, d'hydrodéoxygénation, d'hydrodéaromatisation, d'hydroisomérisation, d'hydrodéalkylation, d'hydrocraquage, d'hydrodéasphaltage et de la réduction du carbone Conradson.Hydrotreatment, commonly known as HDT, is understood to mean the catalytic treatments with hydrogen supply making it possible to refine, that is to say, to reduce substantially the content of metals, sulfur and other impurities, hydrocarbon feedstocks, while improving the ratio hydrogen on the load and transforming the load more or less partially into lighter cuts. Hydrotreatment includes, in particular, hydrodesulfurization reactions (commonly referred to as HDS), hydrodenitrogenation reactions (commonly referred to as HDN), and hydrodemetallation reactions (commonly referred to as HDM), accompanied by hydrogenation, hydrodeoxygenation, hydrogenation, and hydrogenation reactions. hydrodearomatization, hydroisomerization, hydrodealkylation, hydrocracking, hydro-deasphalting and Conradson carbon reduction.
Selon une variante préférée, l'étape a) d'hydrotraitement comprend une première étape a1) d'hydrodémétallation (HDM) réalisée dans une ou plusieurs zones d'hydrodémétallation en lits fixes et une deuxième étape a2) subséquente d'hydrodésulfuration (HDS) réalisée dans une ou plusieurs zones d'hydrodésulfuration en lits fixes. Au cours de ladite première étape a1) d'hydrodémétallation, la charge et de l'hydrogène sont mis en contact sur un catalyseur d'hydrodémétallation, dans des conditions d'hydrodémétallation, puis au cours de ladite deuxième étape a2) d'hydrodésulfuration, l'effluent de la première étape a1) d'hydrodémétallation est mis en contact avec un catalyseur d'hydrodésulfuration, dans des conditions d'hydrodésulfuration. Ce procédé, connu sous le nom de HYVAHL-FTM, est par exemple décrit dans le brevet
L'homme du métier comprend aisément que, dans l'étape d'hydrodémétallation, on effectue des réactions d'hydrodémétallation mais parallèlement aussi une partie des autres réactions d'hydrotraitement et notamment d'hydrodésulfuration. De même, dans l'étape d'hydrodésulfuration, on effectue des réactions d'hydrodésulfuration mais parallèlement aussi une partie des autres réactions d'hydrotraitement et notamment d'hydrodémétallation. L'homme du métier comprend que l'étape d'hydrodémétallation commence là où commence l'étape d'hydrotraitement, soit là où la concentration en métaux est maximale. L'homme du métier comprend que l'étape d'hydrodésulfuration se termine là où se termine l'étape d'hydrotraitement, soit là l'élimination du soufre est la plus difficile. Entre l'étape d'hydrodémétallation et l'étape d'hydrodésulfuration, l'homme du métier définit parfois une zone de transition dans laquelle se produisent tous les types de réaction d'hydrotraitement.The person skilled in the art easily understands that, in the hydrodemetallization step, hydrodemetallation reactions are carried out but also a part of the other hydrotreatment reactions and in particular hydrodesulfurization reactions. Similarly, in the hydrodesulphurization step, hydrodesulphurization reactions are carried out, but also part of the other hydrotreatment reactions and in particular hydrodemetallation reactions. One skilled in the art understands that the hydrodemetallization step begins where the hydrotreatment step begins, where the metal concentration is maximum. Those skilled in the art understand that the hydrodesulfurization step ends where the hydrotreating step ends, where sulfur removal is the most difficult. Between the hydrodemetallation step and the hydrodesulfurization step, the skilled person sometimes defines a transition zone in which all types of hydrotreatment reaction occur.
L'étape a) d'hydrotraitement selon l'invention est mise en oeuvre dans des conditions d'hydrotraitement. Elle peut avantageusement être mise en oeuvre à une température comprise entre 300°C et 500°C, de préférence entre 350°C et 420°C et sous une pression partielle d'hydrogène comprise entre 5 MPa et 35 MPa, de préférence entre 11 MPa et 20 MPa. La température est habituellement ajustée en fonction du niveau souhaité d'hydrotraitement et de la durée du traitement visée. Le plus souvent, la vitesse spatiale de la charge hydrocarbonée, couramment appelée VVH, qui se définit comme étant le débit volumétrique de la charge divisé par le volume total du réacteur, peut être comprise dans une gamme allant de 0,1 h-1 à 5 h-1, préférentiellement de 0,1 h-1 à 2 h-1, et plus préférentiellement de 0,1 h-1 à 0,45 h-1. La quantité d'hydrogène mélangée à la charge peut être comprise entre 100 et 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide, préférentiellement entre 200 Nm3/m3 et 2000 Nm3/m3, et plus préférentiellement entre 300 Nm3/m3 et 1500 Nm3/m3. L'étape a) d'hydrotraitement peut être effectuée industriellement dans un ou plusieurs réacteurs à courant descendant de liquide.The hydrotreating step a) according to the invention is carried out under hydrotreatment conditions. It may advantageously be carried out at a temperature of between 300 ° C. and 500 ° C., preferably between 350 ° C. and 420 ° C. and under a hydrogen partial pressure of between 5 MPa and 35 MPa, preferably between MPa and 20 MPa. The temperature is usually adjusted according to the desired level of hydrotreatment and the duration of the targeted treatment. Most often, the space velocity of the hydrocarbon feedstock, commonly referred to as VVH, which is defined as the volumetric flow rate of the feedstock divided by the total volume of the reactor, can be in a range from 0.1 h -1 to 5 h -1 , preferably from 0.1 h -1 to 2 h -1 , and more preferably from 0.1 h -1 to 0.45 h -1 . The amount of hydrogen mixed with the feedstock may be between 100 and 5000 normal cubic meters (Nm3) per cubic meter (m3) of liquid feed, preferably between 200 Nm3 / m3 and 2000 Nm3 / m3, and more preferably between 300 Nm3 / m3 and 1500 Nm3 / m3. Step a) of hydrotreatment can be carried out industrially in one or more liquid downflow reactors.
Les catalyseurs d'hydrotraitement utilisés sont de préférence des catalyseurs connus. Il peut s'agir de catalyseurs granulaires comprenant, sur un support, au moins un métal ou composé de métal ayant une fonction hydrodéshydrogénante. Ces catalyseurs peuvent avantageusement être des catalyseurs comprenant au moins un métal du groupe VIII, choisi généralement dans le groupe constitué par le nickel et le cobalt, et/ou au moins un métal du groupe VIB, de préférence du molybdène et/ou du tungstène. On peut employer par exemple un catalyseur comprenant de 0,5% à 10% en poids de nickel, de préférence de 1% à 5% en poids de nickel (exprimé en oxyde de nickel NiO), et de 1% à 30% en poids de molybdène, de préférence de 5% à 20% en poids de molybdène (exprimé en oxyde de molybdène MoO3) sur un support minéral. Ce support peut par exemple être choisi dans le groupe constitué par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Avantageusement, ce support peut renfermer d'autres composés dopants, notamment des oxydes choisis dans le groupe constitué par l'oxyde de bore, la zircone, la cérine, l'oxyde de titane, l'anhydride phosphorique et un mélange de ces oxydes. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. Lorsque l'anhydride phosphorique P2O5 est présent, sa concentration est inférieure à 10% en poids. Lorsque le trioxyde de bore B2O5 est présent, sa concentration est inférieure à 10% en poids. L'alumine utilisée peut être une alumine γ (gamma) ou η (êta). Ce catalyseur est le plus souvent sous forme d'extrudés. La teneur totale en oxydes de métaux des groupes VIB et VIII peut être de 5% à 40% en poids et en général de 7% à 30% en poids et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VIB sur métal (ou métaux) du groupe VIII est en général compris entre 20 et 1, et le plus souvent entre 10 et 2.The hydrotreatment catalysts used are preferably known catalysts. These may be granular catalysts comprising, on a support, at least one metal or metal compound having a hydrodehydrogenating function. These catalysts may advantageously be catalysts comprising at least one Group VIII metal, generally selected from the group consisting of nickel and cobalt, and / or at least one Group VIB metal, preferably molybdenum and / or tungsten. For example, it is possible to use a catalyst comprising from 0.5% to 10% by weight of nickel, preferably from 1% to 5% by weight of nickel (expressed as nickel oxide NiO), and from 1% to 30% by weight of nickel. weight of molybdenum, preferably from 5% to 20% by weight of molybdenum (expressed as molybdenum oxide MoO3) on a mineral support. This support may for example be chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals. Advantageously, this support may contain other doping compounds, in particular oxides selected from the group consisting of boron oxide, zirconia, ceria, titanium oxide, phosphoric anhydride and a mixture of these oxides. Most often an alumina support is used and very often a support of alumina doped with phosphorus and possibly boron. When phosphorus pentoxide P2O5 is present, its concentration is less than 10% by weight. When B2O5 boron trioxide is present, its concentration is less than 10% by weight. The alumina used may be a gamma (γ) or η (eta) alumina. This catalyst is most often in the form of extrudates. The total content of metal oxides of groups VIB and VIII may be from 5% to 40% by weight and in general from 7% to 30% by weight and the weight ratio expressed as metal oxide between metal (or metals) of group VIB on metal (or metals) of group VIII is generally between 20 and 1, and most often between 10 and 2.
Dans le cas d'une étape d'hydrotraitement incluant une étape d'hydrodémétallation (HDM) puis une étape d'hydrodésulfuration (HDS), on utilise de préférence des catalyseurs spécifiques adaptés à chaque étape.In the case of a hydrotreating step including a hydrodemetallation (HDM) step and then a hydrodesulphurization step (HDS), specific catalysts adapted to each step are preferably used.
Des catalyseurs utilisables dans l'étape d'hydrodémétallation sont par exemple indiqués dans les documents de brevets
Des catalyseurs utilisables dans l'étape d'hydrodésulfuration sont par exemple indiqués dans les documents de brevets
On peut également utiliser un catalyseur mixte, actif en hydrodémétallation et en hydrodésulfuration, à la fois pour la section d'hydrodémétallation et pour la section d'hydrodésulfuration tel que décrit dans le document de brevet
Préalablement à l'injection de la charge, les catalyseurs utilisés dans le procédé selon la présente invention sont de préférence soumis à un traitement de sulfuration in-situ ou ex-situ.Prior to the injection of the feed, the catalysts used in the process according to the present invention are preferably subjected to an in-situ or ex-situ sulphurization treatment.
L'étape de séparation de l'effluent issu de l'étape a) d'hydrotraitement est optionnelle.The step of separating the effluent from step a) of hydrotreatment is optional.
Dans le cas où l'étape de séparation de l'effluent issu de l'étape a) d'hydrotraitement n'est pas mise en oeuvre, au moins une partie de l'effluent issu de l'étape a) d'hydrotraitement est introduit dans la section permettant la mise en oeuvre de l'étape c) d'hydrocraquage en lit bouillonnant sans changer de composition chimique et sans perte de pression significative. Par « perte de pression significative », on entend une perte de pression provoquée par une vanne ou une turbine de détente, qu'on pourrait estimer à une perte de pression de plus de 10% de la pression totale. L'homme du métier utilise généralement ces pertes de pression ou détentes lors des étapes de séparation.In the case where the step of separating the effluent from step a) of hydrotreatment is not implemented, at least part of the effluent from step a) of hydrotreatment is introduced in the section allowing the implementation of step c) bubbling bed hydrocracking without changing chemical composition and without significant pressure loss. "Significant loss of pressure" means a loss of pressure caused by a valve or expansion turbine, which could be estimated at a pressure loss of more than 10% of the total pressure. Those skilled in the art generally use these pressure losses or relaxations during the separation steps.
Lorsque l'étape de séparation est mise en oeuvre sur l'effluent issu de l'étape a) d'hydrotraitement, celle-ci est éventuellement complétée par d'autres étapes de séparation supplémentaires, permettant de séparer au moins une fraction légère et au moins une fraction lourde.When the separation step is carried out on the effluent from step a) of hydrotreatment, this is optionally supplemented by further additional separation steps, making it possible to separate at least one light fraction and at least one less a heavy fraction.
Par « fraction légère », on entend une fraction dans laquelle au moins 90% des composés ont un point d'ébullition inférieur à 350°C.By "light fraction" is meant a fraction in which at least 90% of the compounds have a boiling point below 350 ° C.
Par « fraction lourde », on entend une fraction dans laquelle au moins 90% des composés ont point d'ébullition supérieur ou égal à 350°C. De préférence, la fraction légère obtenue lors de l'étape b) de séparation comprend une phase gazeuse et au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel. La fraction lourde comprend de préférence une fraction distillat sous vide et une fraction résidu sous vide et/ou une fraction résidu atmosphérique.By "heavy fraction" is meant a fraction in which at least 90% of the compounds have a boiling point greater than or equal to 350 ° C. Preferably, the light fraction obtained during the separation step b) comprises a gaseous phase and at least a light fraction of hydrocarbons of the naphtha, kerosene and / or diesel type. The heavy fraction preferably comprises a vacuum distillate fraction and a vacuum residue fraction and / or an atmospheric residue fraction.
L'étape b) de séparation peut être mise en oeuvre par toute méthode connue de l'homme du métier. Cette méthode peut être choisie parmi une séparation haute ou basse pression, une distillation haute ou basse pression, un stripage haute ou basse pression, et les combinaisons de ces différentes méthodes pouvant opérer à différentes pressions et températures.The separation step b) can be implemented by any method known to those skilled in the art. This method can be selected from high or low pressure separation, high or low pressure distillation, high or low pressure stripping, and combinations of these different methods that can operate at different pressures and temperatures.
Selon un premier mode de réalisation de la présente invention, l'effluent issu de l'étape a) d'hydrotraitement subit une étape b) de séparation avec décompression. Selon ce mode de réalisation, la séparation est de préférence effectuée dans une section de fractionnement qui peut d'abord comprendre un séparateur haute pression haute température (HPHT), et éventuellement un séparateur haute pression basse température (HPBT), suivi ensuite éventuellement d'une section de distillation atmosphérique et/ou d'une section de distillation sous vide. L'effluent de l'étape a) peut être envoyé dans une section de fractionnement, généralement dans un séparateur HPHT permettant d'obtenir une fraction légère et une fraction lourde contenant majoritairement des composés bouillants à au moins 350°C. De manière générale, la séparation n'est de préférence pas faite selon un point de coupe précis, elle s'apparente plutôt à une séparation de type instantané (ou flash selon la terminologie anglo-saxonne). Le point de coupe de la séparation se situe avantageusement entre 200 et 400°C.According to a first embodiment of the present invention, the effluent from step a) hydrotreatment undergoes a step b) separation with decompression. According to this embodiment, the separation is preferably carried out in a fractionation section which may firstly comprise a high temperature high pressure separator (HPHT), and possibly a low temperature high pressure separator (HPBT), followed optionally afterwards. an atmospheric distillation section and / or a vacuum distillation section. The effluent of step a) can be sent to a fractionation section, generally in an HPHT separator making it possible to obtain a light fraction and a heavy fraction containing predominantly boiling compounds at at least 350 ° C. In general, the separation is preferably not made according to a precise cutting point, it is rather like a separation of instantaneous type (or flash according to the Anglo-Saxon terminology). The cutting point of the separation is advantageously between 200 and 400 ° C.
De préférence, ladite fraction lourde peut ensuite être fractionnée par distillation atmosphérique en au moins une fraction distillat atmosphérique, contenant de préférence au moins une fraction légère d'hydrocarbures de type naphta, kérosène et/ou diesel, et une fraction résidu atmosphérique. Au moins une partie de la fraction résidu atmosphérique peut également être fractionnée par distillation sous vide en une fraction distillat sous vide, contenant de préférence du gazole sous vide, et une fraction résidu sous vide. Au moins une partie de la fraction résidu sous vide et/ou de la fraction résidu atmosphérique sont avantageusement envoyées dans l'étape c) d'hydrocraquage. Une partie du résidu sous vide peut également être recyclée dans l'étape a) d'hydrotraitement.Preferably, said heavy fraction can then be fractionated by atmospheric distillation into at least one atmospheric distillate fraction, preferably containing at least a light fraction of naphtha, kerosene and / or diesel type hydrocarbons, and an atmospheric residue fraction. At least a portion of the atmospheric residue fraction can also be fractionated by vacuum distillation into a vacuum distillate fraction, preferably containing vacuum gas oil, and a vacuum residue fraction. At least a portion of the vacuum residue fraction and / or the atmospheric residue fraction are advantageously sent to the hydrocracking step c). Part of the vacuum residue may also be recycled in the hydrotreating step a).
Selon un deuxième mode de réalisation, l'effluent issu de l'étape a) d'hydrotraitement subit une étape b) de séparation sans décompression. Selon ce mode de réalisation, l'effluent de l'étape a) d'hydrotraitement est envoyé dans une section de fractionnement, généralement dans un séparateur HPHT, ayant un point de coupe entre 200 et 400°C permettant d'obtenir au moins une fraction légère et au moins une fraction lourde. De manière générale, la séparation n'est de préférence pas faite selon un point de coupe précis, elle s'apparente plutôt à une séparation de type instantané (ou flash selon la terminologie anglo-saxonne). La fraction lourde peut ensuite être directement envoyée dans l'étape c) d'hydrocraquage.According to a second embodiment, the effluent from step a) hydrotreatment undergoes a step b) separation without decompression. According to this embodiment, the effluent of the hydrotreatment step a) is sent to a fractionation section, generally in an HPHT separator, having a cutting point between 200 and 400 ° C. making it possible to obtain at least one light fraction and at least one heavy fraction. In general, the separation is preferably not made according to a precise cutting point, it is rather like a separation of the instantaneous type (or flash according to the English terminology). The heavy fraction can then be directly sent to the hydrocracking step c).
La fraction légère peut subir d'autres étapes de séparation. Avantageusement, elle peut être soumise à une distillation atmosphérique permettant d'obtenir une fraction gazeuse, au moins une fraction légère d'hydrocarbures liquides de type naphta, kérosène et/ou diesel et une fraction distillat sous vide, la dernière pouvant être au moins en partie envoyée dans l'étape c) d'hydrocraquage. Une autre partie du distillat sous vide peut être utilisée comme fluxant d'un fioul. Une autre partie du distillat sous vide peut être valorisée en étant soumis à une étape d'hydrocraquage et/ou de craquage catalytique en lit fluidisé.The light fraction may undergo other separation steps. Advantageously, it may be subjected to atmospheric distillation to obtain a gaseous fraction, at least a light fraction of liquid hydrocarbons of the naphtha, kerosene and / or diesel type and a vacuum distillate fraction, the last fraction possibly being at least part sent in step c) hydrocracking. Another part of the vacuum distillate can be used as a fluxing agent for a fuel oil. Another part of the vacuum distillate can be upgraded by being subjected to a hydrocracking step and / or catalytic cracking in a fluidized bed.
La séparation sans décompression permet une meilleure intégration thermique et se traduit par une économie d'énergie et d'équipement. En outre, ce mode de réalisation présente des avantages technico-économiques étant donné qu'il n'est pas nécessaire d'augmenter la pression des flux après séparation avant l'étape d'hydrocraquage ultérieure. Le fractionnement intermédiaire sans décompression étant plus simple que le fractionnement avec décompression, le coût d'investissements est donc avantageusement réduit.No-decompression separation provides better thermal integration and saves energy and equipment. In addition, this embodiment has technical and economic advantages since it is not necessary to increase the flow pressure after separation before the subsequent hydrocracking step. Intermediate fractionation without decompression being simpler than fractionation with decompression, the investment cost is therefore advantageously reduced.
Les fractions gazeuses issues de l'étape de séparation subissent de préférence un traitement de purification pour récupérer l'hydrogène et le recycler vers les réacteurs d'hydrotraitement et/ou d'hydrocraquage. La présence de l'étape de séparation entre l'étape a) d'hydrotraitement et l'étape c) d'hydrocraquage, permet de façon avantageuse de disposer de deux circuits d'hydrogène indépendants, un relié à l'hydrotraitement, l'autre à l'hydrocraquage, et qui, selon le besoin, peuvent être reliés l'un à l'autre. L'appoint d'hydrogène peut se faire au niveau de la section d'hydrotraitement ou au niveau de la section d'hydrocraquage ou au niveau des deux. L'hydrogène de recyclage peut alimenter la section d'hydrotraitement ou la section d'hydrocraquage ou les deux. Un compresseur peut éventuellement être en commun aux deux circuits d'hydrogène. Le fait de pouvoir relier les deux circuits d'hydrogène permet une optimisation de la gestion d'hydrogène et de limiter les investissements en terme de compresseurs et/ou unités de purification des effluents gazeux. Les différents modes de réalisation de la gestion d'hydrogène utilisable dans la présente invention sont décrits dans la demande de brevet
La fraction légère obtenue à l'issue de l'étape b) de séparation, qui comprend des hydrocarbures de type naphta, kérosène et/ou diesel ou autres, notamment GPL et gazole sous vide, peut être valorisée selon les méthodes sont bien connues de l'homme du métier. Les produits obtenus peuvent être intégrés à des formulations carburants (aussi appelé « pools » carburants selon la terminologie anglo-saxonne) ou subir des étapes de raffinage supplémentaires. Le(s) fraction(s) naphta, kérosène, gazole et le gazole sous vide peuvent être soumises à un ou plusieurs traitements, par exemple hydrotraitement, hydrocraquage, alkylation, isomérisation, reformage catalytique, craquage catalytique ou thermique, pour les amener de façon séparée ou en mélange aux spécifications requises qui peuvent porter sur la teneur en soufre, sur le point de fumée, sur l'indice d'octane, de cétane, et autres.The light fraction obtained at the end of the separation step b), which comprises hydrocarbons of the naphtha, kerosene and / or diesel or other type, in particular LPG and vacuum gas oil, can be recovered according to the methods which are well known in the art. the skilled person. The products obtained can be incorporated into fuel formulations (also called "pools" fuels according to the English terminology) or undergo additional refining steps. The fraction (s) naphtha, kerosene, gas oil and vacuum gas oil may be subjected to one or more treatments, for example hydrotreatment, hydrocracking, alkylation, isomerization, reforming. catalytic, catalytic cracking or thermal, to bring them separately or in mixture with the required specifications which may relate to the sulfur content, the smoke point, the octane number, cetane, and others.
Au moins une partie de l'effluent issu de l'étape a) d'hydrotraitement ou au moins un partie de la fraction lourde issue de l'étape b) est envoyée selon le procédé de la présente invention à une étape c) d'hydrocraquage qui est réalisée dans au moins un réacteur, avantageusement deux réacteurs, contenant au moins un catalyseur supporté en lit bouillonnant. Ledit réacteur peut fonctionner à courant ascendant de liquide et de gaz. L'objectif principal de l'hydrocraquage est de convertir la charge hydrocarbonée lourde en coupes plus légères tout en la raffinant partiellement.At least a portion of the effluent from step a) of hydrotreatment or at least a portion of the heavy fraction from step b) is sent according to the process of the present invention in a step c) of hydrocracking which is carried out in at least one reactor, advantageously two reactors, containing at least one catalyst supported in a bubbling bed. Said reactor can operate at an upward flow of liquid and gas. The main objective of hydrocracking is to convert the heavy hydrocarbon feedstock into lighter cuts while partially refining it.
Selon un mode de réalisation de la présente invention, une partie de la charge hydrocarbonée initiale peut être injectée directement en entrée de la section d'hydrocraquage c) en lit bouillonnant, en mélange avec l'effluent de la section d'hydrotraitement a) en lit fixe ou la fraction lourde issue de l'étape b), sans que cette partie de la charge hydrocarbonée n'ait été traitée dans la section d'hydrotraitement a) en lit fixe. Ce mode de réalisation peut s'apparenter à un court-circuit partiel de la section d'hydrotraitement a) en lit fixe.According to one embodiment of the present invention, part of the initial hydrocarbon feedstock can be injected directly into the bubbling bed hydrocracking section c), mixed with the effluent of the hydrotreatment section a) in fixed bed or the heavy fraction from step b), without this portion of the hydrocarbon feedstock being treated in the hydrotreatment section a) in a fixed bed. This embodiment can be likened to a partial short circuit of the hydrotreatment section a) in a fixed bed.
Selon une variante, une co-charge peut être introduite en entrée de la section d'hydrocraquage c) en lit bouillonnant avec l'effluent de la section d'hydrotraitement a) en lit fixe ou la fraction lourde issue de l'étape b). Cette co-charge peut être choisie parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, les huiles désasphaltées, des extraits aromatiques issus des chaînes de production de bases pour lubrifiants, des fractions hydrocarbonées ou un mélange de fractions hydrocarbonées pouvant être choisies parmi les produits issus d'un procédé de craquage catalytique en lit fluide, notamment une huile de coupe légère (LCO), une huile de coupe lourde (HCO), une huile décantée, ou pouvant venir de la distillation, les fractions gazoles notamment celles obtenues par distillation atmosphérique ou sous vide, comme par exemple le gazole sous vide. Selon une autre variante et dans le cas où la section d'hydrocraquage dispose de plusieurs réacteurs en lit bouillonnant, cette co-charge peut être injectée en partie ou totalement dans un des réacteurs en aval du premier réacteur.According to one variant, a co-charge may be introduced at the inlet of the hydrocracking section c) in a bubbling bed with the effluent of the hydrotreatment section a) in fixed bed or the heavy fraction resulting from step b) . This co-charge can be chosen from atmospheric residues, vacuum residues from direct distillation, deasphalted oils, aromatic extracts from lubricant base production lines, hydrocarbon fractions or a mixture of hydrocarbon fractions that can be chosen. among the products resulting from a fluid-bed catalytic cracking process, in particular a light cutting oil (LCO), a heavy cutting oil (HCO), a decanted oil, or possibly derived from distillation, the gas oil fractions including those obtained by atmospheric or vacuum distillation, such as, for example, vacuum gas oil. According to another variant and in the case where the hydrocracking section has several bubbling bed reactors, this co-charge may be partially or totally injected into one of the reactors downstream of the first reactor.
L'hydrogène nécessaire à la réaction d'hydrocraquage peut être déjà présent en quantité suffisante dans l'effluent issu de l'étape a) d'hydrotraitement injecté en entrée de la section d'hydrocraquage c) en lit bouillonnant. Il est toutefois préférable de prévoir un apport d'hydrogène supplémentaire en entrée de la section d'hydrocraquage c). Dans le cas où la section d'hydrocraquage dispose de plusieurs réacteurs en lit bouillonnant, de l'hydrogène peut être injecté en entrée de chaque réacteur. L'hydrogène injecté peut être un flux d'appoint et/ou un flux de recyclage.The hydrogen necessary for the hydrocracking reaction may already be present in sufficient quantity in the effluent resulting from the hydrotreatment stage a) injected at the inlet of the hydrocracking section c) in a bubbling bed. However, it is preferable to provide an additional supply of hydrogen at the inlet of the hydrocracking section c). In the case where the hydrocracking section has several bubbling bed reactors, hydrogen can be injected at the inlet of each reactor. The injected hydrogen may be a make-up stream and / or a recycle stream.
La technologie en lit bouillonnant est bien connue de l'homme du métier. Seules les principales conditions opératoires seront décrites ici. Les technologies à lits bouillonnants utilisent classiquement des catalyseurs supportés sous forme d'extrudés dont le diamètre est généralement de l'ordre de 1 millimètre ou moins. Les catalyseurs restent à l'intérieur des réacteurs et ne sont pas évacués avec les produits, sauf lors des phases d'appoint et de soutirage de catalyseurs nécessaire pour maintenir l'activité catalytique. Les niveaux de température peuvent être élevés afin d'obtenir des conversions élevées tout en minimisant les quantités de catalyseurs mis en oeuvre. L'activité catalytique peut être maintenue constante grâce au remplacement en ligne du catalyseur. Il n'est donc pas nécessaire d'arrêter l'unité pour changer le catalyseur usagé, ni d'augmenter les températures de réaction le long du cycle pour compenser la désactivation. De plus, le fait de travailler à des conditions opératoires constantes permet avantageusement d'obtenir des rendements et des qualités de produits constants le long du cycle. Aussi, du fait que le catalyseur est maintenu en agitation par un recyclage important de liquide, la perte de charge sur le réacteur reste faible et constante. En raison de l'attrition des catalyseurs dans les réacteurs, les produits sortant des réacteurs peuvent contenir des particules fines de catalyseur.Bubbling bed technology is well known to those skilled in the art. Only the main operating conditions will be described here. Bubbling bed technologies conventionally use supported catalysts in the form of extrudates whose diameter is generally of the order of 1 millimeter or less. The catalysts remain inside the reactors and are not evacuated with the products, except during the makeup and catalyst withdrawal phases necessary to maintain the catalytic activity. The temperature levels can be high in order to obtain high conversions while minimizing the amounts of catalysts used. The catalytic activity can be kept constant by replacing the catalyst in line. It is therefore not necessary to stop the unit to change the spent catalyst, nor to increase the reaction temperatures along the cycle to compensate for the deactivation. In addition, working at constant operating conditions advantageously provides consistent yields and product qualities along the cycle. Also, because the catalyst is kept agitated by a large recycling of liquid, the pressure drop on the reactor remains low and constant. Because of the attrition of the catalysts in the reactors, the products leaving the reactors may contain fine particles of catalyst.
Les conditions de l'étape c) d'hydrocraquage en lit bouillonnant peuvent être des conditions classiques d'hydrocraquage en lit bouillonnant d'une charge hydrocarbonée. On peut opérer sous une pression absolue comprise entre 2,5 MPa et 35 MPa, préférentiellement entre 5 MPa et 25 MPa, plus préférentiellement entre 6 MPa et 20 MPa, et encore plus préférentiellement entre 11 MPa et 20 MPa à une température comprise entre 330°C et 550°C, préférentiellement entre 350°C et 500°C. La vitesse spatiale (WH) et la pression partielle d'hydrogène sont des paramètres que l'on fixe en fonction des caractéristiques du produit à traiter et de la conversion souhaitée. La WH se situe généralement dans une gamme allant de 0,1 h-1 à 10 h-1, préférentiellement de 0,2 h-1 à 5 h-1 et plus préférentiellement de 0,2 h-1 à 1 h-1. La quantité d'hydrogène mélangée à la charge est habituellement de 50 à 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide, le plus souvent de 100 Nm3/m3 à 1500 Nm3/m3 et de préférence de 200 Nm3/m3 à 1200 Nm3/m3.The conditions of the bubbling bed hydrocracking step c) can be conventional bubbling bed hydrocracking conditions of a feedstock. hydrocarbon. It can be operated under an absolute pressure of between 2.5 MPa and 35 MPa, preferably between 5 MPa and 25 MPa, more preferably between 6 MPa and 20 MPa, and even more preferably between 11 MPa and 20 MPa at a temperature between 330 ° C and 550 ° C, preferably between 350 ° C and 500 ° C. The space velocity (WH) and the hydrogen partial pressure are parameters that are set according to the characteristics of the product to be treated and the desired conversion. The WH is generally in a range from 0.1 h -1 to 10 h -1 , preferably from 0.2 h -1 to 5 h -1 and more preferably from 0.2 h -1 to 1 h -1 . The amount of hydrogen mixed with the feedstock is usually from 50 to 5000 normal cubic meters (Nm3) per cubic meter (m3) of liquid feed, most often from 100 Nm3 / m3 to 1500 Nm3 / m3 and preferably 200 Nm3 / m3 at 1200 Nm3 / m3.
On peut utiliser un catalyseur granulaire classique d'hydrocraquage comprenant, sur un support amorphe, au moins un métal ou composé de métal ayant une fonction hydrodéshydrogénante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII, par exemple du nickel et/ou du cobalt, le plus souvent en association avec au moins un métal du groupe VIB, par exemple du molybdène et/ou du tungstène. On peut par exemple employer un catalyseur comprenant de 0,5% à 10% en poids de nickel et de préférence de 1% à 5% en poids de nickel (exprimé en oxyde de nickel NiO) et de 1% à 30% en poids de molybdène, de préférence de 5% à 20% en poids de molybdène (exprimé en oxyde de molybdène MoO3) sur un support minéral amorphe. Ce support peut par exemple être choisi dans le groupe constitué par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Ce support peut également renfermer d'autres composés et par exemple des oxydes choisis dans le groupe constitué par l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique. On utilise le plus souvent un support d'alumine et très souvent un support d'alumine dopée avec du phosphore et éventuellement du bore. Lorsque l'anhydride phosphorique P2O5 est présent, sa concentration est habituellement inférieure à 20% en poids et le plus souvent inférieure à 10% en poids. Lorsque le trioxyde de bore B2O3 est présent, sa concentration est habituellement inférieure à 10% en poids. L'alumine utilisée est habituellement une alumine γ (gamma) ou η (êta). Ce catalyseur peut être sous forme d'extrudés. La teneur totale en oxydes de métaux des groupes VI et VIII peut être comprise entre 5% et 40% en poids, de préférence entre 7% et 30% en poids, et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est compris entre 20 et 1, de préférence entre 10 et 2.It is possible to use a conventional granular hydrocracking catalyst comprising, on an amorphous support, at least one metal or metal compound having a hydrodehydrogenating function. This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten. For example, a catalyst comprising from 0.5% to 10% by weight of nickel and preferably from 1% to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1% to 30% by weight may be used. molybdenum, preferably from 5% to 20% by weight of molybdenum (expressed as molybdenum oxide MoO3) on an amorphous mineral support. This support may for example be chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals. This support may also contain other compounds and for example oxides selected from the group consisting of boron oxide, zirconia, titanium oxide, phosphoric anhydride. Most often an alumina support is used and very often a support of alumina doped with phosphorus and possibly boron. When phosphorus pentoxide P2O5 is present, its concentration is usually less than 20% by weight and most often less than 10% by weight. When B2O3 boron trioxide is present, its concentration is usually less than 10% by weight. The alumina used is usually an γ (gamma) or η (eta) alumina. This catalyst may be in the form of extrudates. The total content of metal oxides of groups VI and VIII may be between 5% and 40% by weight, preferably between 7% and 30% by weight, and the weight ratio expressed as metal oxide between metal (or metals) of group VI on metal (or metals) of group VIII is between 20 and 1, preferably between 10 and 2.
Le catalyseur usagé peut être en partie remplacé par du catalyseur frais, généralement par soutirage en bas du réacteur et introduction en haut du réacteur de catalyseur frais ou neuf à intervalle de temps régulier, c'est-à-dire par exemple par bouffée ou de façon continue ou quasi continue. On peut également introduire le catalyseur par le bas et le soutirer par le haut du réacteur. On peut par exemple introduire du catalyseur frais tous les jours. Le taux de remplacement du catalyseur usé par du catalyseur frais peut être par exemple d'environ 0,05 kilogramme à environ 10 kilogrammes par mètre cube de charge. Ce soutirage et ce remplacement sont effectués à l'aide de dispositifs permettant le fonctionnement continu de cette étape d'hydrocraquage. Le réacteur d'hydrocraquage comporte habituellement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie du liquide soutiré en tête du réacteur et réinjecté en bas du réacteur. Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme avant sa réinjection dans l'étape (b) d'hydrocraquage.The spent catalyst may be partly replaced by fresh catalyst, generally by withdrawing from the bottom of the reactor and introducing the fresh or new catalyst at the top of the reactor at a regular time interval, that is to say, for example by puff or continuously or almost continuously. The catalyst can also be introduced from below and withdrawn from the top of the reactor. For example, fresh catalyst can be introduced every day. The replacement rate of spent catalyst with fresh catalyst may be, for example, from about 0.05 kilograms to about 10 kilograms per cubic meter of charge. This withdrawal and this replacement are performed using devices allowing the continuous operation of this hydrocracking step. The hydrocracking reactor usually comprises a recirculation pump for maintaining the catalyst in a bubbling bed by continuous recycling of at least a portion of the liquid withdrawn at the top of the reactor and reinjected at the bottom of the reactor. It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and the sulfur contained therein are eliminated before it is reinjected in the hydrocracking step (b).
L'étape c) d'hydrocraquage selon le procédé de l'invention peut être mise en oeuvre dans les conditions du procédé H-OIL® tel que décrit par exemple dans le brevet
L'hydrocraquage en lit bouillonnant peut se faire dans un seul réacteur ou dans plusieurs réacteurs, de préférence deux, disposés en série. Le fait d'utiliser au moins deux réacteurs en lit bouillonnant en série permet d'obtenir des produits de meilleure qualité et avec un meilleur rendement. De plus, l'hydrocraquage en deux réacteurs permet d'avoir une opérabilité améliorée au niveau de la flexibilité des conditions opératoires et du système catalytique. De préférence, la température du deuxième réacteur en lit bouillonnant est au moins 5°C plus élevée que celle du premier réacteur en lit bouillonnant. La pression du deuxième réacteur peut être de 0,1 MPa à 1 MPa plus faible que pour le premier réacteur pour permettre l'écoulement d'au moins une partie de l'effluent issue de la première étape sans qu'un pompage soit nécessaire. Les différentes conditions opératoires en termes de température dans les deux réacteurs d'hydrocraquage sont sélectionnées pour pouvoir contrôler l'hydrogénation et la conversion de la charge en produits souhaités dans chaque réacteur.The bubbling bed hydrocracking can be carried out in a single reactor or in several reactors, preferably two, arranged in series. The fact of using at least two bubbling bed reactors in series makes it possible to obtain products of better quality and with better performance. In addition, the hydrocracking into two reactors makes it possible to have an improved operability with regard to the flexibility of the conditions operating and catalytic system. Preferably, the temperature of the second bubbling bed reactor is at least 5 ° C higher than that of the first bubbling bed reactor. The pressure of the second reactor may be 0.1 MPa to 1 MPa lower than for the first reactor to allow the flow of at least a portion of the effluent from the first step without pumping is necessary. The different operating conditions in terms of temperature in the two hydrocracking reactors are selected to be able to control the hydrogenation and the conversion of the feedstock into the desired products in each reactor.
Dans le cas où l'étape c) d'hydrocraquage est réalisée en deux sous-étapes c1) et c2) dans deux réacteurs disposés en série, l'effluent obtenu à l'issue de la première sous-étape c1) peut éventuellement être soumis à une étape de séparation de la fraction légère et de la fraction lourde, et au moins une partie, de préférence la totalité, de ladite fraction lourde peut être traitée dans la seconde sous-étape c2) d'hydrocraquage. Cette séparation est avantageusement faite dans un séparateur inter-étage, tel que décrit par exemple dans le brevet
L'étape d'hydrocraquage peut aussi se faire avec plusieurs réacteurs en parallèle (généralement deux) dans le cas de grosse capacité. L'étape d'hydrocraquage peut ainsi comporter plusieurs étages en série, éventuellement séparés d'un séparateur inter-étage, chaque étage étant constitué de un ou plusieurs réacteurs en parallèle.The hydrocracking stage can also be done with several reactors in parallel (generally two) in the case of large capacity. The hydrocracking step may thus comprise several stages in series, possibly separated from an inter-stage separator, each stage being constituted by one or more reactors in parallel.
Le procédé selon l'invention peut comprendre en outre une étape d) de séparation permettent l'obtention d'au moins une fraction gazeuse et au moins une fraction liquide lourde.The process according to the invention may furthermore comprise a step d) of separation which makes it possible to obtain at least one gaseous fraction and at least one heavy liquid fraction.
L'effluent obtenu à l'issue de l'étape c) d'hydrocraquage comprend une fraction liquide et une fraction gazeuse contenant les gaz, notamment H2, H2S, NH3, et des hydrocarbures en C1-C4. Cette fraction gazeuse peut être séparée de l'effluent à l'aide des dispositifs de séparations bien connus de l'homme du métier, notamment à l'aide d'un ou plusieurs ballons séparateurs pouvant opérer à différentes pressions et températures, éventuellement associés à un moyen de strippage à la vapeur ou à l'hydrogène et à une ou plusieurs colonnes de distillation. L'effluent obtenu à l'issue de l'étape c) d'hydrocraquage est avantageusement séparé dans au moins un ballon séparateur en au moins une fraction gazeuse et au moins une fraction liquide lourde. Ces séparateurs peuvent par exemple être des séparateurs haute pression haute température (HPHT) et/ou des séparateurs haute pression basse température (HPBT).The effluent obtained at the end of the hydrocracking step c) comprises a liquid fraction and a gaseous fraction containing the gases, in
Après un éventuel refroidissement, cette fraction gazeuse est de préférence traitée dans un moyen de purification d'hydrogène de façon à récupérer l'hydrogène non consommé lors des réactions d'hydrotraitement et d'hydrocraquage. Le moyen de purification d'hydrogène peut être un lavage aux amines, une membrane, un système de type PSA, ou plusieurs de ces moyens disposés en série. L'hydrogène purifié peut alors avantageusement être recyclé dans le procédé selon l'invention, après une éventuelle recompression. L'hydrogène peut être introduit en entrée de l'étape a) d'hydrotraitement et/ou à différents endroits au cours de l'étape a) d'hydrotraitement et/ou en entrée de l'étape c) d'hydrocraquage et/ou à différents endroits au cours de l'étape c) d'hydrocraquage.After a possible cooling, this gaseous fraction is preferably treated in a hydrogen purification means so as to recover the hydrogen that is not consumed during the hydrotreatment and hydrocracking reactions. The hydrogen purification means may be an amine wash, a membrane, a PSA type system, or a plurality of such means arranged in series. The purified hydrogen can then advantageously be recycled in the process according to the invention, after possible recompression. The hydrogen may be introduced at the inlet of the hydrotreatment step a) and / or at different locations during the hydrotreatment step a) and / or at the inlet of the hydrocracking step c) and / or at different locations during step c) hydrocracking.
L'étape d) de séparation peut comprendre également une distillation atmosphérique et/ou une distillation sous vide. Avantageusement, l'étape de séparation d) comprend en outre au moins une distillation atmosphérique, dans laquelle la ou les fraction(s) hydrocarbonée(s) liquide(s) obtenue(s) après séparation est (sont) fractionnée(s) par distillation atmosphérique en au moins une fraction distillat atmosphérique et au moins une fraction résidu atmosphérique. La fraction distillat atmosphérique peut contenir des bases carburants (naphta, kérosène et/ou diesel) valorisables commercialement, par exemple en raffinerie pour la production de carburants automobile et d'aviation.The separation step d) may also comprise atmospheric distillation and / or vacuum distillation. Advantageously, the separation step d) further comprises at least one atmospheric distillation, in which the fraction (s) liquid hydrocarbon (s) obtained after separation is (are) fractionated by atmospheric distillation into at least one atmospheric distillate fraction and at least one atmospheric residue fraction. The atmospheric distillate fraction may contain commercially recoverable fuels bases (naphtha, kerosene and / or diesel), for example in the refinery for the production of motor and aviation fuels.
En outre, l'étape de séparation d) du procédé selon l'invention peut avantageusement comprendre en outre au moins une distillation sous vide dans laquelle la ou les fraction(s) hydrocarbonée(s) liquide(s) obtenue(s) après séparation et/ou la fraction résidu atmosphérique obtenue après distillation atmosphérique est (sont) fractionnée(s) par distillation sous vide en au moins une fraction distillat sous vide et au moins une fraction résidu sous vide. De manière préférée, l'étape d) de séparation comprend tout d'abord une distillation atmosphérique, dans laquelle la ou les fraction(s) hydrocarbonée(s) liquide(s) obtenue(s) après séparation est (sont) fractionnée(s) par distillation atmosphérique en au moins une fraction distillat atmosphérique et au moins une fraction résidu atmosphérique, puis une distillation sous vide dans laquelle la fraction résidu atmosphérique obtenue après distillation atmosphérique est fractionnée par distillation sous vide en au moins une fraction distillat sous vide et au moins une fraction résidu sous vide. La fraction distillat sous vide contient typiquement des fractions de type gazole sous vide.In addition, the separation step d) of the process according to the invention may advantageously also comprise at least one vacuum distillation in which the liquid hydrocarbon fraction (s) obtained (s) after separation. and / or the atmospheric residue fraction obtained after atmospheric distillation is (are) fractionated by vacuum distillation into at least one vacuum distillate fraction and at least one vacuum residue fraction. Preferably, the separation step d) comprises, first of all, an atmospheric distillation, in which the liquid hydrocarbon fraction (s) obtained after separation is (are) fractionated (s). ) by atmospheric distillation into at least one atmospheric distillate fraction and at least one atmospheric residue fraction, followed by vacuum distillation in which the atmospheric residue fraction obtained after atmospheric distillation is fractionated by vacuum distillation into at least one vacuum distillate fraction and at minus a fraction residue under vacuum. The vacuum distillate fraction typically contains vacuum gas oil fractions.
Au moins une partie de la fraction résidu sous vide peut être recyclée dans l'étape c) d'hydrocraquage.At least a portion of the vacuum residue fraction can be recycled to the hydrocracking step c).
La fraction liquide lourde obtenue à l'issue de l'étape d) de séparation contient des sédiments organiques qui résultent des conditions d'hydrotraitement et d'hydrocraquage et des résidus de catalyseurs. Une partie des sédiments est constituée d'asphaltènes précipités dans les conditions d'hydrotraitement et d'hydrocraquage et sont analysés comme des sédiments existants (IP375).The heavy liquid fraction obtained at the end of the separation step d) contains organic sediments which result from hydrotreatment and hydrocracking conditions and catalyst residues. Part of the sediments consist of asphaltenes precipitated under hydrotreatment and hydrocracking conditions and are analyzed as existing sediments (IP375).
En fonction des conditions d'hydrocraquage, la teneur en sédiments dans la fraction liquide lourde varie. D'un point de vue analytique, on distingue les sédiments existants (IP375) et les sédiments après vieillissement (IP390) qui incluent les sédiments potentiels. Or, des conditions d'hydrocraquage poussées, c'est-à-dire lorsque le taux de conversion est par exemple supérieure à 40 ou 50%, provoquent la formation de sédiments existants et de sédiments potentiels.Depending on the hydrocracking conditions, the sediment content in the heavy liquid fraction varies. From an analytical point of view, existing sediments (IP375) and sediments after aging (IP390) are distinguished from potential sediments. However, high hydrocracking conditions, that is to say when the conversion rate is for example greater than 40 or 50%, cause the formation of existing sediments and potential sediments.
Afin d'obtenir un fioul ou une base de fioul répondant aux recommandations d'une teneur en sédiments après vieillissement (IP390) inférieure ou égale à 0,1%, le procédé selon l'invention comprend une étape de maturation permettant d'améliorer l'efficacité de séparation des sédiments et ainsi d'obtenir des fiouls ou des bases de fiouls stables, c'est à dire une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids.In order to obtain a fuel oil or a fuel base that meets the recommendations for a sediment content after aging (IP390) of less than or equal to 0.1%, the process according to the invention comprises a maturation stage making it possible to improve the sediment separation efficiency and thus to obtain stable oil or fuel bases, that is to say a sediment content after aging less than or equal to 0.1% by weight.
L'étape de maturation selon l'invention permet de former l'ensemble des sédiments existants et potentiels (en convertissant les sédiments potentiels en sédiments existants) de manière à les séparer plus efficacement et ainsi respecter la teneur en sédiments après vieillissement (IP390) de 0,1% poids maximum.The maturation step according to the invention makes it possible to form all the existing and potential sediments (by converting the potential sediments into existing sediments) so as to separate them more efficiently and thus respect the sediment content after aging (IP390) of 0.1% maximum weight.
L'étape de maturation selon l'invention est avantageusement mise en oeuvre pendant un temps de séjour compris entre 1 et 1500 minutes, de préférence entre 25 et 300 minutes, de manière plus préférée entre 60 et 240 minutes, à une température entre 50 et 350°C, de préférence entre 75 et 300°C et de manière plus préférée entre 100 et 250°C, une pression inférieure à 20 MPa, de préférence inférieure à 10 MPa, plus préférentiellement inférieure à 3 MPa et encore plus préférentiellement inférieure à 1,5 MPa.The curing stage according to the invention is advantageously carried out for a residence time of between 1 and 1500 minutes, preferably between 25 and 300 minutes, more preferably between 60 and 240 minutes, at a temperature between 50 and 350 ° C, preferably between 75 and 300 ° C and more preferably between 100 and 250 ° C, a pressure of less than 20 MPa, preferably less than 10 MPa, more preferably less than 3 MPa and even more preferably less than 1.5 MPa.
L'étape de maturation peut être réalisée à l'aide d'un échangeur ou d'un four de chauffe suivi d'une ou plusieurs capacité(s) en série ou en parallèle telle(s) qu'un ballon horizontal ou vertical, éventuellement avec une fonction de décantation pour éliminer une partie des solides les plus lourds, et/ou un réacteur piston. Une cuve agitée et chauffée peut également être utilisée, et peut être munie d'un soutirage en fond pour éliminer une partie des solides les plus lourds.The ripening step may be carried out using an exchanger or a heating furnace followed by one or more capacity (s) in series or in parallel such (s) as a horizontal or vertical balloon, optionally with a settling function to remove some of the heavier solids, and / or a piston reactor. A stirred and heated tank may also be used, and may be provided with a bottom draw to remove some of the heavier solids.
Avantageusment, l'étape e) de maturation de la fraction liquide lourde issue de l'étape d) est réalisée en présence d'un gaz inerte et/ou d'un gaz oxydant.Advantageously, step e) of maturation of the heavy liquid fraction resulting from step d) is carried out in the presence of an inert gas and / or an oxidizing gas.
L'étape e) de maturation peut être réalisée en présence d'un gaz inerte tel que l'azote, ou en présence d'un gaz oxydant tel que l'oxygène, ou en présence d'un mélange contenant un gaz inerte et un gaz oxydant tel que l'air ou l'air appauvri par de l'azote. La mise en oeuvre d'un gaz oxydant permet d'accélérer le processus de maturation.The aging step e) can be carried out in the presence of an inert gas such as nitrogen, or in the presence of an oxidizing gas such as oxygen, or in the presence of a mixture containing an inert gas and a oxidizing gas such as air or air depleted by nitrogen. The use of an oxidizing gas accelerates the maturation process.
Dans le cas où l'étape de maturation est réalisée en présence d'un gaz inerte et/ou oxydant, ledit gaz est mis en mélange avec la fraction liquide lourde issue de l'étape d) avant l'étape de maturation puis séparation de ce gaz après la maturation de manière à obtenir une fraction liquide en sortie de l'étape e) de maturation. Une telle mise en oeuvre gaz/liquide peut par exemple être réalisée dans une colonne à bulles. Selon une autre mise en oeuvre, le gaz inerte et/ou oxydant peut aussi être introduit pendant l'étape e) de maturation, par exemple au moyen d'un barbotage (injection de gaz par le bas) dans une cuve agitée ce qui permet de favoriser le contact gaz/liquide.In the case where the maturation stage is carried out in the presence of an inert and / or oxidizing gas, said gas is mixed with the heavy liquid fraction resulting from stage d) before the stage of maturation then separation of this gas after maturation so as to obtain a liquid fraction at the end of the stage e) of maturation. Such a gas / liquid implementation can for example be carried out in a bubble column. According to another embodiment, the inert and / or oxidizing gas may also be introduced during the maturation step e), for example by means of bubbling (injection of gas from below) into a stirred tank which allows to promote gas / liquid contact.
A l'issue de l'étape e) de maturation, on obtient au moins une fraction hydrocarbonée à teneur enrichie en sédiments existants qui est envoyée dans l'étape f) de séparation des sédiments.At the end of the maturation step e), at least one hydrocarbon fraction with an enriched content of existing sediments is obtained which is sent to the sediment separation step f).
Le procédé selon l'invention comprend en outre une étape f) de séparation des sédiments et des résidus de catalyseurs pour obtenir une fraction hydrocarbonée liquide ayant une teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids.The method according to the invention further comprises a step f) of separating sediments and catalyst residues to obtain a liquid hydrocarbon fraction having a sediment content after aging less than or equal to 0.1% by weight.
La fraction liquide lourde obtenue à l'issue de l'étape e) de maturation contient des sédiments organiques de type asphaltènes précipités qui résultent des conditions d'hydrocraquage et de maturation. Cette fraction lourde peut aussi contenir des fines de catalyseurs issues de l'attrition de catalyseurs de type extrudés dans la mise en oeuvre de réacteur d'hydrocraquage.The heavy liquid fraction obtained at the end of the maturation step e) contains precipitated asphaltene-type organic sediments which result from the hydrocracking and maturation conditions. This heavy fraction may also contain fines catalysts resulting from the attrition of extruded type catalysts in the implementation of hydrocracking reactor.
Ainsi, au moins une partie de la fraction liquide lourde issue de l'étape e) de maturation est soumise à une séparation des sédiments et des résidus de catalyseurs, au moyen d' au moins un moyen de séparation physique choisi parmi un filtre, une membrane de séparation, un lit de solides filtrant de type organique ou inorganique, une précipitation électrostatique, un système de centrifugation, une décantation, un soutirage par vis sans fin. Une combinaison, en série et/ou en parallèle, de plusieurs moyens de séparation du même type ou de type différent peut être utilisée lors de cette étape f) de séparation des sédiments et résidus de catalyseurs. Une de ces techniques de séparation solide-liquide peut nécessiter l'utilisation périodique d'une fraction légère de rinçage, issue du procédé ou non, permettant par exemple le nettoyage d'un filtre et l'évacuation des sédiments.Thus, at least a part of the heavy liquid fraction resulting from the maturation stage e) is subjected to a separation of the sediments and the catalyst residues, by means of at least one physical separation means chosen from a filter, a separation membrane, a bed of organic or inorganic type filtering solids, electrostatic precipitation, a centrifugation system, decantation, auger withdrawal. A combination, in series and / or in parallel, of several separation means of the same type or different type can be used during this step f) separation of sediments and catalyst residues. One of these solid-liquid separation techniques may require the periodic use of a light rinsing fraction, resulting from the process or not, allowing for example the cleaning of a filter and the evacuation of sediments.
La fraction liquide lourde issue de l'étape f) à teneur réduite en sédiments peut avantageusement servir comme base de fioul ou comme fioul, notamment comme base de fioul de soute ou comme fioul de soute, ayant une teneur en sédiments après vieillissement inférieure à 0,1% poids. Avantageusment, ladite fraction liquide lourde est mélangée avec une ou plusieurs bases fluxantes choisies dans le groupe constitué par les huiles de coupe légère d'un craquage catalytique, les huiles de coupe lourde d'un craquage catalytique, le résidu d'un craquage catalytique, un kérosène, un gazole, un distillat sous vide et/ou une huile décantée.The heavy liquid fraction resulting from stage f) with a reduced sediment content may advantageously be used as a base for fuel oil or as fuel oil, in particular as a bunker oil or bunker oil base, having a sediment content after aging of less than 0. , 1% weight. Advantageously, said heavy liquid fraction is mixed with one or more fluxing bases selected from the group consisting of catalytically cracked light cutting oils, catalytic cracked heavy cutting oils, catalytic cracking residue, a kerosene, a gas oil, a vacuum distillate and / or a decanted oil.
Les fractions hydrocarbonées liquides peuvent, au moins en partie, avantageusement être utilisées comme bases de fioul ou comme fioul, notamment comme base de fioul de soute ou comme fioul de soute à teneur en sédiments après vieillissement inférieure ou égale à 0,1% en poids.The liquid hydrocarbon fractions may, at least in part, advantageously be used as fuel oil bases or as fuel oil, especially as a bunker oil base or as a bunker oil with a sediment content after aging less than or equal to 0.1% by weight .
Par « fioul », on entend dans l'invention une fraction hydrocarbonée utilisable comme combustible. Par « base de fioul », on entend dans l'invention une fraction hydrocarbonée qui, mélangée à d'autres bases, constitue un fioul.By "fuel oil" is meant in the invention a hydrocarbon fraction that can be used as a fuel. By "oil base" is meant in the invention a hydrocarbon fraction which, mixed with other bases, is a fuel oil.
Pour obtenir un fioul, les fractions hydrocarbonées liquides issues de l'étape f) peuvent être mélangées avec une ou plusieurs bases fluxantes choisies dans le groupe constitué par les huiles de coupe légère d'un craquage catalytique, les huiles de coupe lourde d'un craquage catalytique, le résidu d'un craquage catalytique, un kérosène, un gazole, un distillat sous vide et/ou une huile décantée. De préférence, on utilisera du kérosène, du gazole et/ou du distillat sous vide produit dans le procédé de l'invention.To obtain a fuel oil, the liquid hydrocarbon fractions from step f) may be mixed with one or more fluxing bases selected from the group consisting of light-cutting oils of a catalytic cracking, heavy cutting oils of a catalytic cracking, the residue of a catalytic cracking, a kerosene, a gas oil, a vacuum distillate and / or a decanted oil. Preferably, kerosene, gas oil and / or vacuum distillate produced in the process of the invention will be used.
Les figures suivantes décrives des exemples de mise en oeuvre de l'invention sans en limiter la portée.The following figures describe examples of implementation of the invention without limiting the scope thereof.
La
Dans la
- une première étape (étape i) au cours de laquelle la charge traverse successivement le réacteur Ra, puis le réacteur Rb,
- une deuxième étape (étape ii) au cours de laquelle la charge traverse uniquement le réacteur Rb, le réacteur Ra étant court-circuité pour régénération et/ou remplacement du catalyseur,
- une troisième étape (étape iii) au cours de laquelle la charge traverse successivement le réacteur Rb, puis le réacteur Ra,
- une quatrième étape (étape iv) au cours de laquelle la charge traverse uniquement le réacteur Ra, le réacteur Rb étant court-circuité pour régénération et/ou remplacement du catalyseur. Le cycle peut ensuite recommencer.
- a first step (step i) during which the charge passes successively through the reactor Ra and then the reactor Rb,
- a second step (step ii) during which the feed passes only through the reactor Rb, the reactor Ra being short-circuited for regeneration and / or replacement of the catalyst,
- a third step (step iii) during which the charge passes successively through the reactor Rb and then the reactor Ra,
- a fourth step (step iv) in which the feed passes only through the reactor Ra, the reactor Rb being short-circuited for regeneration and / or replacement of the catalyst. The cycle can then start again.
L'effluent sortant du ou des réacteurs de garde (Ra, Rb) est optionnellement mélangé de nouveau avec de l'hydrogène arrivant par la conduite (65) dans un réacteur d'HDM (32) qui renferme un lit fixe de catalyseur. Pour des raisons de lisibilité, un seul réacteur d'HDM (32) et un seul réacteur d'HDS (38) sont représentés sur la figure, mais la section d'HDM et d'HDS peut comporter plusieurs réacteurs d'HDM et d'HDS en série.The effluent leaving the at least one guard reactor (Ra, Rb) is optionally re-mixed with hydrogen arriving via line (65) in an HDM reactor (32) containing a fixed bed of catalyst. For readability reasons, a single HDM reactor (32) and a single HDS reactor (38) are shown in the figure, but the HDM and HDS section may include multiple HDM and HDM reactors. 'HDS in series.
L'effluent du réacteur d'HDM est soutiré par la conduite (34), puis envoyé dans le premier réacteur d'HDS (38) où il traverse un lit fixe de catalyseur.The effluent from the HDM reactor is withdrawn through line (34) and sent to the first HDS reactor (38) where it passes through a fixed bed of catalyst.
L'effluent issu de l'étape d'hydrotraitement peut être envoyé par la ligne (42) dans un séparateur haute pression haute température (HPHT) (44) à partir duquel on récupère une fraction gazeuse (46) et une fraction liquide (48). La fraction gazeuse (46) est envoyée, généralement via un échangeur (non représenté) ou un aéroréfrigérant (50) pour refroidissement à un séparateur haute pression basse température (HPBT) (52) à partir duquel on récupère une fraction gazeuse (54) contenant les gaz (H2, H2S, NH3, hydrocarbures C1-C4, ...) et une fraction liquide (56). La fraction gazeuse (54) issue du séparateur haute pression basse température (HPBT) (52) peut être traitée dans une unité de purification d'hydrogène (58) à partir de laquelle on récupère de l'hydrogène (60) pour le recycler via le compresseur (62) et la ligne (65) aux réacteurs (32) et/ou (38) ou via la ligne (14) aux réacteurs permutables (Ra, Rb). La fraction liquide (56) issue du séparateur haute pression basse température (HPBT) (52) est détendue dans le dispositif (68) puis envoyée vers le système de fractionnement (70). La fraction liquide (48) issue du séparateur haute pression haute température (HPHT) (44) est avantageusment détendue dans le dispositif (72) puis envoyée vers le système de fractionnement (70). Les fractions (56) et (48) peuvent être envoyées ensemble, après détente, au fractionnement (70).The effluent from the hydrotreatment stage can be sent via line (42) into a high temperature high pressure separator (HPHT) (44) from which a gaseous fraction (46) and a liquid fraction (48) are recovered. ). The gaseous fraction (46) is sent, generally via an exchanger (not shown) or an air cooler (50) for cooling to a low temperature high pressure separator (HPBT) (52) from which a gaseous fraction (54) containing gases (H2, H2S, NH3, C1-C4 hydrocarbons, ...) and a liquid fraction (56). The gaseous fraction (54) from the low temperature high pressure separator (HPBT) (52) can be treated in a hydrogen purification unit (58) from which hydrogen (60) is recovered for recycling via the compressor (62) and the line (65) to the reactors (32) and / or (38) or via the line (14) to the permutable reactors (Ra, Rb). The liquid fraction (56) from the low temperature high pressure separator (HPBT) (52) is expanded in the device (68) and sent to the fractionation system (70). The liquid fraction (48) from the high temperature high pressure separator (HPHT) (44) is advantageously expanded in the device (72) and then sent to the fractionation system (70). Fractions (56) and (48) can be sent together, after expansion, to the fractionation (70).
Le système de fractionnement (70) comprend avantageusement un système de distillation atmosphérique pour produire un effluent gazeux (74), au moins une fraction dite légère (76) et contenant notamment du naphta, du kérosène et du diesel et une fraction résidu atmosphérique (78).The fractionation system (70) advantageously comprises an atmospheric distillation system for producing a gaseous effluent (74), at least one so-called light fraction (76) and containing in particular naphtha, kerosene and diesel and an atmospheric residue fraction (78). ).
Une partie de la fraction résidu atmosphérique peut être envoyée par la ligne (80) dans les réacteurs d'hydrocraquage (98, 102). Tout ou partie de la fraction résidu atmosphérique (78) est envoyée à une colonne de distillation sous vide (82) pour récupérer une fraction (84) contenant le résidu sous vide et une fraction distillat sous vide (86) contenant du gazole sous vide.Part of the atmospheric residue fraction can be sent via the line (80) into the hydrocracking reactors (98, 102). All or part of the atmospheric residue fraction (78) is sent to a vacuum distillation column (82) to recover a fraction (84) containing the vacuum residue and a vacuum distillate fraction (86) containing vacuum gas oil.
La fraction résidu sous vide (84), éventuellement mélangée avec une partie de la fraction résidu atmosphérique (80) et/ou avec une partie de la fraction distillat sous vide (86), est mélangée avec de l'hydrogène recyclé (88) éventuellement complété par de l'hydrogène d'appoint (90) préchauffée dans le four (91). Elle traverse optionnellement un four (92). Optionnellement, une co-charge (94) peut être introduite.The vacuum residue fraction (84), optionally mixed with a portion of the atmospheric residue fraction (80) and / or with a portion of the vacuum distillate fraction (86), is mixed with optionally recycled hydrogen (88). supplemented with makeup hydrogen (90) preheated in the furnace (91). It optionally passes through an oven (92). Optionally, a co-charge (94) may be introduced.
La fraction lourde est ensuite introduite via la ligne (96) dans l'étape d'hydrocraquage en bas du premier réacteur (98) en lit bouillonnant fonctionnant à courant ascendant de liquide et de gaz et contenant un catalyseur d'hydrocraquage de type supporté. Éventuellement, l'effluent converti (104) issu du réacteur (98) peut être soumis à une séparation de la fraction légère (106) dans un séparateur inter-étage (108).The heavy fraction is then introduced via the line (96) in the hydrocracking step at the bottom of the first bubbling bed reactor operating at an upflow of liquid and gas and containing a supported hydrocracking catalyst. Optionally, the converted effluent (104) from the reactor (98) may be separated from the light fraction (106) in an inter-stage separator (108).
Tout ou partie de l'effluent issu (110) du séparateur inter-étage (108) est avantageusement mélangé avec de l'hydrogène supplémentaire (157), si besoin préalablement préchauffé (non représenté). Ce mélange est ensuite injecté par la conduite (112) dans un deuxième réacteur d'hydrocraquage (102) également en lit bouillonnant fonctionnant à courant ascendant de liquide et de gaz contenant un catalyseur d'hydrocraquage de type supporté.All or part of the effluent (110) from the inter-stage separator (108) is advantageously mixed with additional hydrogen (157), if necessary preheated (not shown). This mixture is then injected by the pipe (112) into a second hydrocracking reactor (102) also in a bubbling bed operating with an upward flow of liquid and gas containing a hydrocracking catalyst of the supported type.
Les conditions opératoires, notamment la température, dans ce réacteur sont choisies pour atteindre le niveau de conversion recherché, tel que cela a été préalablement décrit.The operating conditions, in particular the temperature, in this reactor are chosen to reach the desired conversion level, as previously described.
L'effluent des réacteurs d'hydrocraquage est envoyé par la ligne (134) dans un séparateur haute pression haute température (HPHT) (136) à partir duquel on récupère une fraction gazeuse (138) et une fraction liquide lourde (140).The hydrocracking reactor effluent is fed through line (134) into a high temperature high pressure (HPHT) separator (136) from which a gaseous fraction (138) and a heavy liquid fraction (140) are recovered.
La fraction gazeuse (138) est envoyé généralement via un échangeur (non représenté) ou un aéroréfrigérant (142) pour refroidissement à un séparateur haute pression basse température (HPBT) (144) à partir duquel on récupère une fraction gazeuse (146) contenant les gaz (H2, H2S, NH3,hydrocarbures en C1-C4...) et une fraction liquide (148).The gaseous fraction (138) is sent generally via an exchanger (not shown) or a dry cooler (142) for cooling to a low temperature high pressure separator (HPBT) (144) from which a gaseous fraction (146) containing the gaseous fraction (146) is recovered. gas (H2, H2S, NH3, C1-C4 hydrocarbons ...) and a liquid fraction (148).
La fraction gazeuse (146) du séparateur haute pression basse température (HPBT) (144) est avantageusment traitée dans l'unité de purification d'hydrogène (150) à partir de laquelle on récupère l'hydrogène (152) pour le recycler via le compresseur (154) et la ligne (156) et/ou la ligne (157) à la section d'hydrocraquage.The gaseous fraction (146) of the low temperature high pressure separator (HPBT) (144) is advantageously treated in the hydrogen purification unit (150) from which hydrogen (152) is recovered for recycling via the compressor (154) and line (156) and / or line (157) to the hydrocracking section.
La fraction liquide (148) du séparateur haute pression basse température (HPBT) (144) est détendue dans le dispositif (160) puis envoyée vers le système de fractionnement (172).The liquid fraction (148) of the low temperature high pressure separator (HPBT) (144) is expanded in the device (160) and sent to the fractionation system (172).
Optionnellement, un séparateur moyenne pression (non représenté) après le détendeur (160) peut être installé pour récupérer une phase vapeur qui est envoyé à l'unité de purification (150) et/ou à une unité de purification moyenne pression dédiée (non représenté), et une phase liquide qui est amenée à la section de fractionnement (172).Optionally, a medium pressure separator (not shown) after the expander (160) can be installed to recover a vapor phase that is sent to the purification unit (150) and / or a dedicated medium pressure purification unit (not shown). ), and a liquid phase which is fed to the fractionation section (172).
La fraction liquide lourde (140) issue de la séparation haute pression haute température (HPHT) (136) est détendue dans le dispositif (174) puis envoyée vers le système de fractionnement (172). Optionnellement, un séparateur moyenne pression (non représenté) après le détendeur (174) peut être installé pour récupérer une phase vapeur qui est envoyé à l'unité de purification (150) et/ou à une unité de purification moyenne pression dédiée (non représentée), et une phase liquide qui est amenée à la section de fractionnement (172).The heavy liquid fraction (140) from the high temperature high pressure separation (HPHT) (136) is expanded in the device (174) and sent to the fractionation system (172). Optionally, a medium pressure separator (not shown) after the expander (174) can be installed to recover a vapor phase that is sent to the purification unit (150) and / or a dedicated medium pressure purification unit (not shown ), and a liquid phase which is fed to the fractionation section (172).
Les fractions (148) et (140) peuvent être envoyées ensemble, après détente, au système (172). Le système de fractionnement (172) comprend un système de distillation atmosphérique pour produire un effluent gazeux (176), au moins une fraction dite légère (178), contenant notamment du naphta, du kérosène et du diesel, et une fraction résidu atmosphérique (180).Fractions (148) and (140) may be sent together, after expansion, to the system (172). The fractionation system (172) comprises an atmospheric distillation system for producing a gaseous effluent (176), at least a so-called light fraction (178), containing in particular naphtha, kerosene and diesel, and an atmospheric residue fraction (180). ).
Tout ou partie de la fraction résidu atmosphérique (180) peut être envoyée à une colonne de distillation sous vide (184) pour récupérer une fraction contenant le résidu sous vide (186) et une fraction distillat sous vide (188) contenant du gazole sous vide.All or part of the atmospheric residue fraction (180) can be sent to a vacuum distillation column (184) to recover a fraction containing the vacuum residue (186) and a vacuum distillate fraction (188) containing vacuum gas oil .
La fraction résidu atmosphérique (182) et/ou la fraction résidu sous vide (186) sont soumises à une étape de maturation et de séparation des sédiments et des résidus de catalyseurs en vue de constituer des bases de fioul recherchées.The atmospheric residue fraction (182) and / or the vacuum residue fraction (186) are subjected to a stage of maturation and separation of sediments and catalyst residues in order to constitute desired oil bases.
Une fraction de type résidu atmosphérique (182) est éventuellement préchauffée dans un four ou un échangeur (205) de manière à atteindre la température nécessaire à la maturation (conversion des sédiments potentiels en sédiments existants) qui a lieu dans la capacité (207). La capacité (207) a pour fonction d'assurer un temps de séjour nécessaire à la maturation, il peut donc s'agir d'un ballon horizontal ou vertical, d'un bac tampon, d'une cuve agitée ou d'un réacteur piston. La fonction chauffe peut être intégrée à la capacité dans le cas d'une cuve agitée chauffée selon un mode de réalisation non représentée. La capacité (207) peut également permettre une décantation de manière à évacuer une partie des solides (208). Le flux (209) issue de la maturation est ensuite soumis à une séparation solide-liquide (191) de manière à obtenir une fraction (212) à teneur réduite en sédiments et une fraction (211) riche en sédiments. De manière similaire, une fraction de type résidu sous vide (186) est éventuellement préchauffée dans un four ou un échangeur (213) de manière à atteindre la température nécessaire à la maturation qui a lieu dans la capacité (215). La capacité (215) a pour fonction d'assurer un temps de séjour nécessaire à la maturation, il peut donc s'agir d'un ballon horizontal ou vertical, d'un bac tampon, d'une cuve agitée ou d'un réacteur piston. La fonction chauffe peut être intégrée à la capacité dans le cas d'une cuve agitée chauffée selon un mode de réalisation non représentée. La capacité (215) peut également permettre une décantation de manière à évacuer une partie des solides (216). Le flux (217) issue de la maturation est ensuite soumis à une séparation solide-liquide (192) de manière à obtenir une fraction (219) à teneur réduite en sédiments et une fraction (218) riche en sédiments.An atmospheric residue (182) fraction is optionally preheated in an oven or exchanger (205) to achieve the temperature necessary for maturation (conversion of potential sediments into existing sediments) that occurs in the capacity (207). The purpose of the capacity (207) is to provide a residence time necessary for maturation, it can therefore be a horizontal or vertical flask, a buffer tank, a stirred tank or a reactor piston. The heating function can be integrated with the capacity in the case of a stirred stirred tank according to an embodiment not shown. The capacity (207) may also allow settling so as to evacuate a portion of the solids (208). The maturing stream (209) is then subjected to solid-liquid separation (191) to obtain a sediment-reduced fraction (212) and a sediment-rich fraction (211). Similarly, a vacuum residue type fraction (186) is optionally preheated in an oven or exchanger (213) so as to reach the temperature necessary for the maturation that takes place in the capacity (215). The purpose of the capacity (215) is to provide a residence time necessary for maturation, it can therefore be a horizontal or vertical flask, a buffer tank, a stirred tank or a reactor piston. The heating function can be integrated into the capacity in the case of a tank agitated heated according to an embodiment not shown. The capacity (215) may also allow settling so as to evacuate a portion of the solids (216). The maturation stream (217) is then subjected to a solid-liquid separation (192) to obtain a sediment-reduced fraction (219) and a sediment-rich fraction (218).
Selon un mode non représenté, les dispositifs de maturation (207) et (215) peuvent opérer en présence d'un gaz, notamment un gaz inerte ou oxydant, ou un mélange de gaz inerte et de gaz oxydant. En cas de mis en oeuvre de gaz lors de la maturation, un dispositif non représenté permettra de séparer le gaz du liquide.According to a mode not shown, the curing devices (207) and (215) can operate in the presence of a gas, in particular an inert or oxidizing gas, or a mixture of inert gas and oxidizing gas. In case of use of gas during maturation, a device not shown will separate the gas from the liquid.
Selon un mode non représenté, il est également possible d'effectuer une étape de maturation et de séparation des sédiments et des résidus de catalyseurs sur une fraction issue de l'étape de séparation de l'effluent d'hydrocraquage, par exemple sur une coupe lourde issue d'un séparateur, par exemple sur le flux (140) avant ou après la détente (174). Un mode avantageux non représenté peut consister à opérer l'étape de maturation et de séparation des sédiments sur le flux récupéré en fond d'une colonne de stripage. Lorsque l'étape de maturation et de séparation des sédiments et des résidus de catalyseurs est opéré en amont d'une colonne de distillation, cette colonne est moins sujette à l'encrassement.According to a mode not shown, it is also possible to carry out a stage of maturation and separation of the sediments and catalyst residues on a fraction resulting from the step of separating the hydrocracking effluent, for example on a section heavy output of a separator, for example on the flow (140) before or after the expansion (174). An advantageous mode not shown may consist in operating the stage of maturation and separation of the sediments on the stream recovered at the bottom of a stripping column. When the stage of maturation and separation of sediments and catalyst residues is operated upstream of a distillation column, this column is less prone to fouling.
Au moins une partie des flux (188) et/ou (212) et/ou (219) constitue une ou des bases de fiouls recherchées, notamment des bases pour fiouls de soutes à basse teneur en soufre et basse teneur en sédiments. Une partie des flux (188) et/ou (212) et/ou (219), avant ou après l'étape de maturation et de séparation des sédiments, peut être recyclée via la ligne (190) à l'étape d'hydrocraquage, ou en amont de l'étape d'hydrotraitement (ligne non représentée).At least a portion of the streams (188) and / or (212) and / or (219) constitutes one or more desired oil bases, in particular bases for low-sulfur and low-sediment bunker fuels. Part of the streams (188) and / or (212) and / or (219), before or after the sediment ripening and separation step, can be recycled via line (190) to the hydrocracking step or upstream of the hydrotreating step (line not shown).
Le recyclage d'une coupe de type gazole sous vide (188) en amont de l'hydrotraitement peut permettre d'abaisser la viscosité de la charge et ainsi facilité le pompage. Le recyclage d'une coupe de type résidu atmosphérique (212) ou de type résidu sous vide (219) en amont de l'hydrotraitement ou de l'hydrocraquage peut permettre d'augmenter la conversion globale.The recycling of a vacuum-type gas oil section (188) upstream of the hydrotreatment can make it possible to lower the viscosity of the charge and thus facilitate pumping. Recycling an atmospheric residue type (212) or vacuum residue type (219) cutoff upstream of the hydrotreatment or hydrocracking may make it possible to increase the overall conversion.
La
L'effluent traité dans les réacteurs d'hydrotraitement est envoyé par la ligne (42) dans un séparateur haute pression haute température (HPHT) (44) à partir duquel on récupère une fraction plus légère (46) et une fraction résiduelle (48).The effluent treated in the hydrotreatment reactors is sent via line (42) into a high temperature high pressure separator (HPHT) (44) from which a lighter fraction (46) and a residual fraction (48) are recovered. .
La fraction résiduelle (48) est envoyée directement après un éventuel passage dans un four (92) dans la section d'hydrocraquage.The residual fraction (48) is sent directly after a possible passage through an oven (92) in the hydrocracking section.
La fraction plus légère (46) est envoyée, généralement via un échangeur (non représenté) ou un aéroréfrigérant (50) pour refroidissement à un séparateur haute pression basse température (HPBT) (52) à partir duquel on récupère une fraction gazeuse (54) contenant les gaz (H2, H2S, NH3, hydrocarbures C1-C4...) et une fraction liquide (56).The lighter fraction (46) is sent, generally via an exchanger (not shown) or an air cooler (50) for cooling to a low temperature high pressure separator (HPBT) (52) from which a gaseous fraction is recovered (54). containing the gases (H2, H2S, NH3, C1-C4 hydrocarbons ...) and a liquid fraction (56).
La fraction gazeuse (54) du séparateur haute pression basse température (HPBT) (52) est traitée dans l'unité de purification d'hydrogène (58) à partir de laquelle on récupère l'hydrogène (60) pour le recycler via le compresseur (154) et les lignes (64) et (156) à la section d'hydrotraitement et/ou à la section d'hydrocraquage.The gaseous fraction (54) of the low temperature high pressure separator (HPBT) (52) is treated in the hydrogen purification unit (58) from which hydrogen (60) is recovered for recycling via the compressor. (154) and lines (64) and (156) to the hydrotreatment section and / or the hydrocracking section.
Les gaz contenant des composés azotés, soufrés et oxygénés indésirables sont avantageusment évacués de l'installation (flux (66)). Dans cette configuration, un seul compresseur (154) est utilisé pour alimenter l'intégralité des réacteurs nécessitant de l'hydrogène.Gases containing undesirable nitrogen, sulfur and oxygen compounds are advantageously removed from the plant (stream (66)). In this configuration, a single compressor (154) is used to supply all the reactors requiring hydrogen.
La fraction liquide (56) issue du séparateur haute pression basse température (HPBT) (52) est détendue dans le dispositif (68) puis envoyée vers le système de fractionnement (70).The liquid fraction (56) from the low temperature high pressure separator (HPBT) (52) is expanded in the device (68) and sent to the fractionation system (70).
Le système de fractionnement (70) comprend un système de distillation atmosphérique pour produire un effluent gazeux (74), au moins une fraction dite légère (76) et contenant notamment du naphta, du kérosène et du diesel et une fraction résidu atmosphérique (195).The fractionation system (70) comprises an atmospheric distillation system for producing a gaseous effluent (74), at least a so-called light fraction (76) and containing in particular naphtha, kerosene and diesel and an atmospheric residue fraction (195). .
Une partie de la fraction résidu atmosphérique peut être envoyée, au moyen d'une pompe non représentée, par la ligne (195) dans les réacteurs d'hydrocraquage (98, 102), alors qu'une autre partie de la fraction résidu atmosphérique (194) peut être envoyé vers un autre procédé (hydrocraquage ou FCC ou hydrotraitement).Part of the atmospheric residue fraction can be sent, by means of a pump, not represented, via the line (195) in the hydrocracking reactors (98, 102), whereas another part of the atmospheric residue fraction ( 194) can be sent to another process (hydrocracking or FCC or hydrotreatment).
Une variante non représentée mais proche du schéma de la
La
L'exemple suivant illustre l'invention sans toutefois en limiter la portée. On a traité un résidu sous vide (RSV Oural) contenant 87,0% en poids de composés bouillant à une température supérieure à 520°C, ayant une densité de 9,5°API et une teneur en soufre de 2,72% en poids.The following example illustrates the invention without limiting its scope. A vacuum residue (RSV Ural) containing 87.0% by weight of compounds boiling at a temperature above 520 ° C, having a density of 9.5 ° API and a sulfur content of 2.72% by weight was treated. weight.
La charge a été soumise à une étape d'hydrotraitement incluant deux réacteurs permutables. Les conditions opératoires sont données dans le tableau 1.
L'effluent de l'hydrotraitement est ensuite soumis à une étape de séparation permettant de récupérer une fraction légère (gaz) et une fraction lourde contenant une majorité de composés bouillant à plus de 350°C (fraction 350°C+).The effluent from the hydrotreatment is then subjected to a separation step making it possible to recover a light fraction (gas) and a heavy fraction containing a majority of compounds boiling at more than 350 ° C (350 ° C + fraction).
La fraction lourde (fraction 350°C+) est ensuite traitée dans une étape d'hydrocraquage comprenant deux réacteurs successifs en lit bouillonnants avec deux jeux de températureThe heavy fraction (350 ° C + fraction) is then treated in a hydrocracking step comprising two successive bubbling bed reactors with two sets of temperatures.
Les conditions opératoires de l'étape d'hydrocraquage sont données dans le tableau 2.
Les effluents de l'étape d'hydrocraquage ont ensuite été soumis à une étape de séparation permettant de séparer une fraction gazeuse et une fraction liquide lourde au moyen de séparateurs et de colonnes de distillation atmosphérique et sous-vide. De plus, préalablement à l'étape de distillation sous vide, la fraction liquide lourde subit un traitement selon 2 variantes:
- une étape de séparation des sédiments et résidus de catalyseurs comportant un filtre poreux métallique de marque Pall® (non-conforme, selon l'art antérieur),
- une étape de maturation réalisée pendant 4h à 150°C et de séparation des sédiments et résidus de catalyseurs comportant un filtre (conforme à l'invention).
- a step of separation of sediments and catalyst residues comprising a Pall® brand porous metal filter (non-compliant, according to the prior art),
- a maturation step carried out for 4 hours at 150 ° C. and separation of the sediments and catalyst residues comprising a filter (according to the invention).
Les rendements et les teneurs en soufre de chaque fraction obtenue dans les effluents sortant des enchaînements globaux sont donnés dans le tableau 3 ci-dessous:
Les conditions opératoires de l'étape d'hydrocraquage couplées aux différentes variantes de traitement (séparation des sédiments avec ou sans étape de maturation) de la fraction liquide lourde issue de la distillation atmosphérique ont un impact sur la stabilité des effluents obtenus. Ceci est illustré par les teneurs en sédiments après vieillissement mesurées dans les résidus atmosphériques (coupe 350°C+) après l'étape de séparation des sédiments.The operating conditions of the hydrocracking step coupled with the different treatment variants (separation of sediments with or without a maturation stage) of the heavy liquid fraction resulting from atmospheric distillation have an impact on the stability of the effluents obtained. This is illustrated by the levels in post-aging sediment measured in atmospheric residues (350 ° C + cut) after the sediment separation step.
Les performances des trois schémas de traitement sont résumées dans le tableau 4 ci-dessous:
L'étape de maturation préalablement à la séparation des sédiments permet de former l'ensemble des sédiments potentiels et permettre ainsi leur séparation efficace. Sans la maturation, au-delà d'un certain niveau de conversion qui conduit à obtenir beaucoup de sédiments potentiels, l'étape de séparation des sédiments n'est pas suffisamment efficace pour que la teneur en sédiments après vieillissement (IP390) soit inférieure à 0.1% poids soit la teneur maximale exigée pour les fiouls de soute.The stage of maturation prior to the separation of the sediments makes it possible to form all the potential sediments and thus allow their effective separation. Without maturation, beyond a certain conversion level that leads to many potential sediments, the sediment separation step is not efficient enough for the sediment content after aging (IP390) to be lower than 0.1% by weight, the maximum level required for bunker fuels.
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1460627A FR3027910B1 (en) | 2014-11-04 | 2014-11-04 | (EN) METHOD FOR CONVERTING PETROLEUM LOADS COMPRISING A FIXED BED HYDROTREATMENT STEP, A BOILING BED HYDROCRACKING STEP, A MATURATION STEP AND A SEDIMENT SEPARATION STEP FOR PRODUCING LOW SEDIMENT FOLDS. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3018188A1 true EP3018188A1 (en) | 2016-05-11 |
EP3018188B1 EP3018188B1 (en) | 2017-10-25 |
Family
ID=52589501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15306717.8A Active EP3018188B1 (en) | 2014-11-04 | 2015-10-27 | Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content |
Country Status (6)
Country | Link |
---|---|
US (1) | US9834731B2 (en) |
EP (1) | EP3018188B1 (en) |
KR (1) | KR102447843B1 (en) |
CN (1) | CN105567314B (en) |
ES (1) | ES2656417T3 (en) |
FR (1) | FR3027910B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024084136A1 (en) * | 2022-10-20 | 2024-04-25 | Totalenergies Onetech | Low-sulfur marine fuel composition |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3027912B1 (en) * | 2014-11-04 | 2018-04-27 | IFP Energies Nouvelles | PROCESS FOR PRODUCING HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBON LOAD USING A SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP |
FR3050735B1 (en) * | 2016-04-27 | 2020-11-06 | Ifp Energies Now | CONVERSION PROCESS INCLUDING PERMUTABLE HYDRODEMETALLATION GUARD BEDS, A FIXED BED HYDRO-TREATMENT STAGE AND A PERMUTABLE REACTOR HYDRO-CRACKING STAGE |
CN114774163B (en) * | 2016-10-18 | 2024-01-19 | 马威特尔有限责任公司 | Formulated composition for use as fuel |
US10604709B2 (en) * | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US10696906B2 (en) | 2017-09-29 | 2020-06-30 | Marathon Petroleum Company Lp | Tower bottoms coke catching device |
US10865350B2 (en) * | 2017-09-30 | 2020-12-15 | Uop Llc | Process for hydroprocessing a hydrocarbon stream |
US12000720B2 (en) | 2018-09-10 | 2024-06-04 | Marathon Petroleum Company Lp | Product inventory monitoring |
US12031676B2 (en) | 2019-03-25 | 2024-07-09 | Marathon Petroleum Company Lp | Insulation securement system and associated methods |
US11975316B2 (en) | 2019-05-09 | 2024-05-07 | Marathon Petroleum Company Lp | Methods and reforming systems for re-dispersing platinum on reforming catalyst |
US11124714B2 (en) | 2020-02-19 | 2021-09-21 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for stability enhancement and associated methods |
US11702600B2 (en) | 2021-02-25 | 2023-07-18 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers |
US11898109B2 (en) | 2021-02-25 | 2024-02-13 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US20220268694A1 (en) | 2021-02-25 | 2022-08-25 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11905468B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US11692141B2 (en) | 2021-10-10 | 2023-07-04 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US11802257B2 (en) | 2022-01-31 | 2023-10-31 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2988501A (en) * | 1958-08-18 | 1961-06-13 | Union Oil Co | Hydrorefining of crude oils |
EP0113284A1 (en) | 1982-12-30 | 1984-07-11 | Institut Français du Pétrole | Treatment of a heavy hydrocarbon oil or a heavy hydrocarbon oil fraction for their conversion into lighter fractions |
EP0113297A1 (en) | 1982-12-31 | 1984-07-11 | Institut Français du Pétrole | Hydrotreatment process for the conversion in at least two steps of a heavy hydrocarbon fraction containing sulfuric and metallic impurities |
US4816841A (en) | 1986-07-11 | 1989-03-28 | Kuraray Co., Ltd. | Optical recording medium |
US4818743A (en) | 1983-04-07 | 1989-04-04 | Union Oil Company Of California | Desulfurization catalyst and the catalyst prepared by a method |
US5089463A (en) | 1988-10-04 | 1992-02-18 | Chevron Research And Technology Company | Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity |
US5221656A (en) | 1992-03-25 | 1993-06-22 | Amoco Corporation | Hydroprocessing catalyst |
US5417846A (en) | 1990-03-29 | 1995-05-23 | Institut Francais Du Petrole | Hydrotreatment method for a petroleum residue or heavy oil with a view to refining them and converting them to lighter fractions |
EP0665282A1 (en) | 1993-08-18 | 1995-08-02 | Catalysts & Chemicals Industries Co., Ltd. | Method and apparatus for hydrogenating heavy oil |
US5622616A (en) | 1991-05-02 | 1997-04-22 | Texaco Development Corporation | Hydroconversion process and catalyst |
US5827421A (en) | 1992-04-20 | 1998-10-27 | Texaco Inc | Hydroconversion process employing catalyst with specified pore size distribution and no added silica |
FR2764300A1 (en) | 1997-06-10 | 1998-12-11 | Inst Francais Du Petrole | New process for the conversion of heavy petroleum fractions containing sulphur |
US6270654B1 (en) | 1993-08-18 | 2001-08-07 | Ifp North America, Inc. | Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors |
US6332976B1 (en) | 1996-11-13 | 2001-12-25 | Institut Francais Du Petrole | Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst |
US6589908B1 (en) | 2000-11-28 | 2003-07-08 | Shell Oil Company | Method of making alumina having bimodal pore structure, and catalysts made therefrom |
US7119045B2 (en) | 2002-05-24 | 2006-10-10 | Institut Francais Du Petrole | Catalyst for hydrorefining and/or hydroconversion and its use in hydrotreatment processes for batches containing hydrocarbons |
FR2940143A1 (en) | 2008-12-18 | 2010-06-25 | Inst Francais Du Petrole | HYDRODEMETALLATION AND HYDRODESULFURIZATION CATALYSTS AND IMPLEMENTATION IN A SINGLE FORMULATION CHAINING PROCESS |
FR2957607A1 (en) | 2010-03-18 | 2011-09-23 | Inst Francais Du Petrole | PROCESS AND CONVERSION PRODUCTS OF CHARCOAL COMPRISING TWO STEPS OF DIRECT LIQUEFACTION IN BOILING BED AND A FIXED BED HYDROCRACKING STEP |
US20130026074A1 (en) * | 2011-07-29 | 2013-01-31 | Omer Refa Koseoglu | Process for stabilization of heavy hydrocarbons |
WO2014096704A1 (en) * | 2012-12-20 | 2014-06-26 | IFP Energies Nouvelles | Process with separation for treating petroleum feedstocks for the production of fuel oils with a low sulphur content |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732664A (en) * | 1984-11-26 | 1988-03-22 | Intevep, S.A. | Process for solid separation from hydroprocessing liquid product |
US5968346A (en) * | 1998-09-16 | 1999-10-19 | Exxon Research And Engineering Co. | Two stage hydroprocessing with vapor-liquid interstage contacting for vapor heteroatom removal |
FR2791354B1 (en) * | 1999-03-25 | 2003-06-13 | Inst Francais Du Petrole | PROCESS FOR THE CONVERSION OF HEAVY PETROLEUM FRACTIONS COMPRISING A STAGE OF HYDROCONVERSION IN BUBBLING BEDS AND A STAGE OF HYDROTREATMENT |
US7531082B2 (en) * | 2005-03-03 | 2009-05-12 | Chevron U.S.A. Inc. | High conversion hydroprocessing using multiple pressure and reaction zones |
FR2981659B1 (en) * | 2011-10-20 | 2013-11-01 | Ifp Energies Now | PROCESS FOR CONVERTING PETROLEUM LOADS COMPRISING A BOILING BED HYDROCONVERSION STEP AND A FIXED BED HYDROTREATMENT STEP FOR THE PRODUCTION OF LOW SULFUR CONTENT |
FR2983866B1 (en) * | 2011-12-07 | 2015-01-16 | Ifp Energies Now | PROCESS FOR HYDROCONVERSION OF PETROLEUM LOADS IN BEDS FOR THE PRODUCTION OF LOW SULFUR CONTENT FIELDS |
-
2014
- 2014-11-04 FR FR1460627A patent/FR3027910B1/en not_active Expired - Fee Related
-
2015
- 2015-10-27 ES ES15306717.8T patent/ES2656417T3/en active Active
- 2015-10-27 EP EP15306717.8A patent/EP3018188B1/en active Active
- 2015-11-03 US US14/930,766 patent/US9834731B2/en active Active
- 2015-11-03 KR KR1020150153990A patent/KR102447843B1/en active IP Right Grant
- 2015-11-04 CN CN201510739010.1A patent/CN105567314B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2988501A (en) * | 1958-08-18 | 1961-06-13 | Union Oil Co | Hydrorefining of crude oils |
EP0113284A1 (en) | 1982-12-30 | 1984-07-11 | Institut Français du Pétrole | Treatment of a heavy hydrocarbon oil or a heavy hydrocarbon oil fraction for their conversion into lighter fractions |
EP0113297A1 (en) | 1982-12-31 | 1984-07-11 | Institut Français du Pétrole | Hydrotreatment process for the conversion in at least two steps of a heavy hydrocarbon fraction containing sulfuric and metallic impurities |
US4818743A (en) | 1983-04-07 | 1989-04-04 | Union Oil Company Of California | Desulfurization catalyst and the catalyst prepared by a method |
US4816841A (en) | 1986-07-11 | 1989-03-28 | Kuraray Co., Ltd. | Optical recording medium |
US5089463A (en) | 1988-10-04 | 1992-02-18 | Chevron Research And Technology Company | Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity |
US5417846A (en) | 1990-03-29 | 1995-05-23 | Institut Francais Du Petrole | Hydrotreatment method for a petroleum residue or heavy oil with a view to refining them and converting them to lighter fractions |
US5622616A (en) | 1991-05-02 | 1997-04-22 | Texaco Development Corporation | Hydroconversion process and catalyst |
US5221656A (en) | 1992-03-25 | 1993-06-22 | Amoco Corporation | Hydroprocessing catalyst |
US5827421A (en) | 1992-04-20 | 1998-10-27 | Texaco Inc | Hydroconversion process employing catalyst with specified pore size distribution and no added silica |
EP0665282A1 (en) | 1993-08-18 | 1995-08-02 | Catalysts & Chemicals Industries Co., Ltd. | Method and apparatus for hydrogenating heavy oil |
US6270654B1 (en) | 1993-08-18 | 2001-08-07 | Ifp North America, Inc. | Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors |
US6332976B1 (en) | 1996-11-13 | 2001-12-25 | Institut Francais Du Petrole | Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst |
FR2764300A1 (en) | 1997-06-10 | 1998-12-11 | Inst Francais Du Petrole | New process for the conversion of heavy petroleum fractions containing sulphur |
US6589908B1 (en) | 2000-11-28 | 2003-07-08 | Shell Oil Company | Method of making alumina having bimodal pore structure, and catalysts made therefrom |
US7119045B2 (en) | 2002-05-24 | 2006-10-10 | Institut Francais Du Petrole | Catalyst for hydrorefining and/or hydroconversion and its use in hydrotreatment processes for batches containing hydrocarbons |
FR2940143A1 (en) | 2008-12-18 | 2010-06-25 | Inst Francais Du Petrole | HYDRODEMETALLATION AND HYDRODESULFURIZATION CATALYSTS AND IMPLEMENTATION IN A SINGLE FORMULATION CHAINING PROCESS |
FR2957607A1 (en) | 2010-03-18 | 2011-09-23 | Inst Francais Du Petrole | PROCESS AND CONVERSION PRODUCTS OF CHARCOAL COMPRISING TWO STEPS OF DIRECT LIQUEFACTION IN BOILING BED AND A FIXED BED HYDROCRACKING STEP |
US20130026074A1 (en) * | 2011-07-29 | 2013-01-31 | Omer Refa Koseoglu | Process for stabilization of heavy hydrocarbons |
WO2014096704A1 (en) * | 2012-12-20 | 2014-06-26 | IFP Energies Nouvelles | Process with separation for treating petroleum feedstocks for the production of fuel oils with a low sulphur content |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024084136A1 (en) * | 2022-10-20 | 2024-04-25 | Totalenergies Onetech | Low-sulfur marine fuel composition |
FR3141186A1 (en) * | 2022-10-20 | 2024-04-26 | Totalenergies Onetech | Composition of low sulfur marine fuel |
Also Published As
Publication number | Publication date |
---|---|
KR102447843B1 (en) | 2022-09-26 |
KR20160052444A (en) | 2016-05-12 |
CN105567314A (en) | 2016-05-11 |
CN105567314B (en) | 2019-08-06 |
FR3027910A1 (en) | 2016-05-06 |
US9834731B2 (en) | 2017-12-05 |
FR3027910B1 (en) | 2016-12-09 |
EP3018188B1 (en) | 2017-10-25 |
ES2656417T3 (en) | 2018-02-27 |
US20160122665A1 (en) | 2016-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3018188B1 (en) | Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content | |
EP3026097B1 (en) | Method for producing fuels such as heavy fuel oil from a heavy hydrocarbon feedstock using a separation between the hydrotreating step and the hydrocracking step | |
EP3303523B1 (en) | Method for converting feedstocks comprising a hydrotreatment step, a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils | |
EP3018187B1 (en) | Process for converting petroleum feedstocks comprising an ebullating-bed hydrocracking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content | |
EP2788458B1 (en) | Method for the hydroconversion of petroleum feedstocks in fixed beds for the production of fuel oils having a low sulphur content | |
EP3303522B1 (en) | Method for converting feedstocks comprising a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils | |
EP3018189B1 (en) | Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content | |
WO2014096704A1 (en) | Process with separation for treating petroleum feedstocks for the production of fuel oils with a low sulphur content | |
WO2015091033A1 (en) | Novel integrated process for treating petroleum feedstocks for the production of fuel oils having a low content of sulphur and of sediments | |
WO2014096703A1 (en) | Integrated process for treating petroleum feedstocks for the production of fuel oils with a low sulphur content | |
WO2013057389A1 (en) | Method of converting petroleum feedstocks comprising a step of ebullated-bed hydroconversion and a step of fixed-bed hydroprocessing for producing fuels with a low sulphur content | |
EP3448967A1 (en) | Conversion process comprising permutable hydrodemetallization guard beds, a fixed-bed hydrotreatment step and a hydrocracking step in permutable reactors | |
FR3027909A1 (en) | INTEGRATED PROCESS FOR THE PRODUCTION OF HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBONNE LOAD WITHOUT INTERMEDIATE SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP | |
WO2012085407A1 (en) | Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking | |
WO2012085408A1 (en) | Method for converting hydrocarbon feedstock comprising a shale oil by decontamination, hydroconversion in an ebullating bed, and fractionation by atmospheric distillation | |
FR3084372A1 (en) | PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, TWO DEASPHALTAGES AND A HYDROCRACKING IN A BOTTLE OF ASPHALT | |
FR3084371A1 (en) | PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, A DEASPHALTING AND A HYDROCRACKING IN A BOILING ASPHALT BED | |
FR2970478A1 (en) | Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent | |
WO2016192893A1 (en) | Method for converting feedstocks comprising a visbreaking step, a precipitation step and a sediment separation step, in order to produce fuel oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20161111 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
R17P | Request for examination filed (corrected) |
Effective date: 20161111 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170526 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 939933 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015005599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2656417 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180227 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 939933 Country of ref document: AT Kind code of ref document: T Effective date: 20171025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180125 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015005599 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180125 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180225 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20180400242 Country of ref document: GR Effective date: 20180518 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171027 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180501 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
26N | No opposition filed |
Effective date: 20180726 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191027 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231026 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20231018 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231110 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231024 Year of fee payment: 9 Ref country code: FR Payment date: 20231026 Year of fee payment: 9 |