EP3013918B1 - Hydrophobic polyurethane adhesive - Google Patents

Hydrophobic polyurethane adhesive Download PDF

Info

Publication number
EP3013918B1
EP3013918B1 EP14732534.4A EP14732534A EP3013918B1 EP 3013918 B1 EP3013918 B1 EP 3013918B1 EP 14732534 A EP14732534 A EP 14732534A EP 3013918 B1 EP3013918 B1 EP 3013918B1
Authority
EP
European Patent Office
Prior art keywords
compound
polyurethane adhesive
polyol
weight
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14732534.4A
Other languages
German (de)
French (fr)
Other versions
EP3013918A1 (en
Inventor
Berend Eling
Hans-Jürgen Reese
Christian König
Patrick Bolze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP14732534.4A priority Critical patent/EP3013918B1/en
Publication of EP3013918A1 publication Critical patent/EP3013918A1/en
Application granted granted Critical
Publication of EP3013918B1 publication Critical patent/EP3013918B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4891Polyethers modified with higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • C09J2463/006Presence of epoxy resin in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to a polyurethane adhesive containing an isocyanate component A and a polyol component B, wherein the isocyanate component A is at least one diisocyanate or polyisocyanate and the polyol component B is the alkoxylation product of a mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and one OH-functional compound with aliphatic OH groups and an OH functionality of 1 to 8 (iii) and optionally a compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) from the group consisting of cyclic mono- or diesters.
  • the present invention further relates to a method for bonding using the polyurethane adhesive according to the invention, an article bonded using the polyurethane adhesive and the use of this article in the construction of wind power plants.
  • Polyurethane adhesives based on an isocyanate component and a polyol component so-called two-component polyurethane adhesives, are known and are used, for example, in the bonding of plastics.
  • these polyurethane adhesives are used as structural adhesives, i.e. when load-bearing structures are to be glued, high demands are placed on the strength and adhesive strength. High strengths are obtained via high crosslinking densities, which are usually achieved by using more functional isocyanates and compounds that are reactive toward isocyanates.
  • Such supporting structures are e.g. the bonding of fiber-reinforced components for wings or other components of airplanes, of fiber-reinforced components of boats and in particular of fiber-reinforced components for the production of blades for wind turbines.
  • a two-component polyurethane composition in which a mixture of at least one alkoxylated aromatic diol and at least one aliphatic triol and a polyisocyanate component containing at least one polyisocyanate is used.
  • the adhesives can be processed for a long time after the polyol and isocyanate components have been mixed.
  • the adhesives are adjusted by the use of hydrophobic components so that no water from the air is absorbed by the adhesive composition and suppress such side reactions.
  • WO 2009080740 a two-component polyurethane adhesive which consists of an isocyanate component and a polyol component, the polyol component containing a high molecular weight polyester diol, a highly functional polyol and hydrophobic polyols, preferably selected from polycarbonate polyols, polybutadiene polyols or oleochemical polyols, such as in particular castor oil.
  • EP 2468789 discloses a two-component polyurethane adhesive, the polyol component comprising castor oil, at least one aromatic diol and at least one polyol having 5 to 8 hydroxyl groups.
  • Another object of the present invention was to provide a polyurethane adhesive which, in addition to the outstanding mechanical properties in the hardened state, has a glass transition temperature of more than 60 ° C.
  • a polyurethane adhesive comprising an isocyanate component A and a polyol component B, the isocyanate component A being at least one diisocyanate or polyisocyanate and the polyol component B being the alkoxylation product Mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 polyol (iii) and optionally a compound (iv) , selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) selected from the group consisting of cyclic mono- or diesters.
  • the polyisocyanate component A contains at least one diisocyanate or polyisocyanate. These include all aliphatic, cycloaliphatic and aromatic di- or polyvalent isocyanates known for the production of polyurethanes, as well as any mixtures thereof.
  • Examples are 4,4'-methane diphenyl diisocyanate, 2,4'-methane diphenyl diisocyanate, the mixtures of monomeric methane diphenyl diisocyanates and higher-core homologues of methane diphenyl diisocyanate (polymer-MDI), tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), the mixtures of hexamethylene diisocyanates and higher-core homologues -HDI), isophorone diisocyanate (IPDI), 2,4- or 2,6-tolylene diisocyanate (TDI) or mixtures of the isocyanates mentioned.
  • polymer-MDI tetramethylene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TDI 2,4- or 2,6-tolylene diisocyanate
  • Toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and in particular mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanates are preferably used.
  • the isocyanates can also be modified, for example by incorporating uretdione, carbamate, isocyanurate, carbodiimide, allophanate and in particular urethane groups.
  • Isocyanate prepolymers containing isocyanate groups can also be used as di- and polyisocyanates. These polyisocyanate prepolymers can be obtained by reacting the di- and polyisocyanates described above, for example at temperatures from 30 to 100 ° C., preferably at about 80 ° C., with polyols to form the prepolymer. 4,4'-MDI is preferably used together with uretonimine-modified MDI and commercially available polyols based on polyesters, for example starting from adipic acid, or polyethers, for example starting from ethylene oxide and / or propylene oxide, for the preparation of the prepolymers according to the invention.
  • Polyols which can be used to prepare isocyanate prepolymers are known to the person skilled in the art and are described, for example, in " Plastics Handbook, Volume 7, Polyurethane ", Carl Hanser Verlag, 3rd edition 1993, Chapter 3.1 , Polyols, which are also described under polyol component B, are preferably used as polyols for the production of isocyanate prepolymers. In particular, no polyisocyanate prepolymers are used in polyisocyanate component A.
  • Mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanates are particularly preferably used as the di and polyisocyanates.
  • the polyol component contains the alkoxylation product of a mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 (iii) and optionally a compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) selected from the group, consisting of cyclic mono- or diesters.
  • the alkoxylation is preferably carried out in that the mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 (iii) and optionally a compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) selected from the group consisting of cyclic mono- or diesters with the aid of a nucleophilic and / or basic catalyst and at least one alkylene.
  • the mixture of components (i) to (iii) and optionally (iv) and (v) is preferably initially introduced into a reaction vessel before the alkylene oxide is added.
  • 1,2-butylene oxide, propylene oxide or ethylene oxide can be used as the alkylene oxide.
  • the alkylene oxide preferably contains propylene oxide, particularly preferably the alkylene oxide consists of propylene oxide.
  • the basic and / or nucleophilic catalyst can be selected from the group consisting of alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal alkoxides, tertiary amines, N-heterocyclic carbenes or precursors of N-heterocyclic carbenes.
  • the basic and / or nucleophilic catalyst is preferably selected from the group comprising tertiary amines.
  • the basic and / or nucleophilic catalyst is particularly preferably selected from the group comprising imidazole and imidazole derivatives, very particularly preferably imidazole.
  • the basic and / or nucleophilic catalyst is selected from the group containing N-heterocyclic carbenes, particularly preferably from the group containing N-heterocyclic carbenes based on N-alkyl- and N-aryl-substituted imidazolylidenes.
  • the basic and / or nucleophilic catalyst is selected from the group comprising trimethylamine, triethylamine, tripropylamine, tributylamine, N, N'-dimethylethanolamine, N, N'-dimethylcyclohexylamine, dimethylethylamine, dimethylbutylamine, N, N'-dimethylaniline, 4-dimethylaminopyridine, N, N'-dimethylbenzylamine, pyridine, imidazole, N-methylimidazole, 2-methylimidazole, 1,2 dimethylimidazole, N- (3-aminopropyl) imidazole), 4-methylimidazole, 5-methylimidazole, 2-ethyl- 4-methylimidazole, 2,4-dimethylimidazole, 1-hydroxypropylimidazole, 2,4,5-trimethylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, N
  • the catalysts mentioned can be used alone or in any mixtures with one another.
  • the reaction with alkylene oxide usually takes place at temperatures in the range between 80 and 200 ° C., preferably between 100 ° C. and 160 ° C., particularly preferably between 110 ° C. and 150 ° C.
  • the catalyst concentration is based on the mass of the compounds (i) to (iii) and, if present (iv) and (v), between 50- 5000 ppm, preferably between 100 and 1000 ppm, and the catalyst does not have to be removed from the reaction product after the reaction.
  • Castor oil (i) is a renewable raw material and is obtained from the seeds of the castor bean.
  • Castor oil is essentially a triglyceride of a fatty acid mixture containing, based on the total weight of the fatty acid mixture> 75% by weight of ricinoleic acid, 3 to 10% by weight of oleic acid, 2 to 6% by weight of linoleic acid, 1 to 4% by weight Stearic acid, 0 to 2% by weight of palmitic acid and optionally small amounts of less than 1% by weight of further fatty acids such as linolenic acid, vaccenic acid, archic acid and eicosenoic acid.
  • part of castor oil can also be replaced by ricinoleic acid.
  • the proportion of ricinoleic acid is preferably not more than 40% by weight, particularly preferably 20% by weight, more preferably 10% by weight and in particular 5% by weight, in each case based on the total weight of component (i).
  • the proportion of component (i) in the total weight of the mixture to be alkoxylated is preferably 30 to 90% by weight, particularly preferably 40 to 85% by weight and in particular 45 to 80% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).
  • the mixture to be alkoxylated can contain further triglycerides of fatty acids, such as trans-oil, tallow, soybean oil, rapeseed oil, olive oil, sunflower oil, hydroxyl-modified soybean oil, palm oil, and derivatized castor oil, and fatty acids or mixtures of these substances derived from these triglycerides contain.
  • fatty acids such as trans-oil, tallow, soybean oil, rapeseed oil, olive oil, sunflower oil, hydroxyl-modified soybean oil, palm oil, and derivatized castor oil, and fatty acids or mixtures of these substances derived from these triglycerides contain.
  • Oils modified with hydroxyl groups can also be added to the mixture to be alkoxylated.
  • the oils that is to say the fatty acid triglycerides or the fatty acids, can be modified via the generally known methods, for example via hydroformylation / hydrogenation or epoxidation / ring opening, ozonolysis, direct oxidation or nitrous oxide oxidation / reduction.
  • the proportion of castor oil and ricinoleic acid (i) in the total weight of the triglycerides and fatty acids contained in the mixture to be alkoxylated is preferably at least 50% by weight, particularly preferably at least 70% by weight and in particular at least 80% by weight.
  • a compound which contains at least two aromatically bound hydroxyl groups is used as the aromatic diol or polyol (ii).
  • a di- or polyol obtained by alkoxylation of an aromatic di- or polyol can also be used as the aromatic di- or polyol, this being less preferred.
  • the hydroxyl number of the aromatic diol or polyol must be greater than 350 mg KOH / g, preferably greater than 400 mg KOH / g and particularly preferably greater than 450 mg KOH / g.
  • the aromatic diol preferably contains at least two phenol groups, particularly preferably the aromatic diol (ii) contains a bisphenol, more preferably the aromatic diol or polyol is a bisphenol.
  • Bisphenols are compounds with two hydroxyphenyl groups. These include bisphenol A (2,2-bis (4-hydroxyphenyl) propane); Bisphenol AF (1,1-bis (4-hydroxyphenyl) -1-phenylethane), bisphenol AP (1,1-bis (4-hydroxyphenyl) -1-phenylethane), bisphenol B (2,2-bis (4-hydroxyphenyl ) butane), bisphenol BP (bis- (4-hydroxyphenyl) diphenylmethane), bisphenol C (2,2-bis (3-methyl-4-hydroxyphenyl) propane), bisphenol E (1,1-bis (4-hydroxyphenyl) ethane), bisphenol F (bis (4-hydroxyphenyl) methane), bisphenol FL (9,9-bis (4-hydroxyphenyl) fluorene), bisphenol G (2,2-bis (4-hydroxy-3-isopropylphenyl)) propane), bisphenol M (1,3-bis (2- (4-hydroxyphenyl) -2-propyl) benzene), bisphenol P
  • the aromatic di- or polyol (ii) is bisphenol A or bisphenol S, in particular bisphenol A.
  • the proportion of component (ii) in the total weight of the mixture to be alkoxylated is preferably 4 to 30% by weight, particularly preferably 5 to 25% by weight, based in each case on the total weight of components (i) to (iii) and, if present, (iv) and (v).
  • Examples are water, propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, pentanediol, 3-methyl-1,5-pentanediol, 1,12- Dodecanediol, monofunctional alcohols, such as ethanol and propanol, glycerol, trimethylolpropane, pentaerythritol, 1,2,4- or 1,3,5-trihydroxycyclohexane, sorbitol and Sucrose and reaction products of such compounds with alkylene oxides such as propylene oxide or ethylene oxide and mixtures thereof.
  • alkylene oxides such as propylene oxide or ethylene oxide and mixtures thereof.
  • Component (iii) may also contain esters and / or polyesters containing OH groups.
  • Esters and polyesters are preferably obtained from organic dicarboxylic acids having 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having 4 to 6 carbon atoms and polyhydric alcohols, preferably diols, having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
  • suitable dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used both individually and in a mixture with one another.
  • the corresponding dicarboxylic acid derivatives such as, for example, dicarboxylic acid esters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides, can also be used.
  • Dicarboxylic acid mixtures of succinic, glutaric and adipic acid and in particular adipic acid are preferably used.
  • Examples of two and polyhydric alcohols, in particular diols, are ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10- Decanediol, glycerin and trimethylolpropane.
  • Ethanediol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol are preferably used.
  • Polyester polyols from lactones, for example ⁇ -caprolactone or hydroxycarboxylic acids, for example ⁇ -hydroxycaproic acid can also be used. The ester or polyester is prepared in a known manner.
  • Component (iii) preferably has an OH number of at least 50, particularly preferably at least 200 and in particular at least 600 mg KOH / g.
  • Compounds which are used as aliphatic polyol (iii) particularly preferably have 5 to 8 OH groups.
  • a particularly preferred example of a compound of component (iii) is a sugar, in particular sucrose or sorbitol, particularly preferably sucrose.
  • the proportion of component (iii) in the total weight of the mixture to be alkoxylated is preferably 2 to 40% by weight, particularly preferably 3 to 25% by weight and in particular 4 to 20% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).
  • a compound selected from the group consisting of cyclic anhydrides of dicarboxylic acids is used as the compound (iv), which can optionally be used.
  • the anhydrides of dicarboxylic acid are preferably selected from the group comprising a) alkenylsuccinic anhydrides, b) phthalic anhydride, c) maleic anhydride, d) succinic anhydride and e) tetrahydrophthalic anhydride and mixtures thereof.
  • the alkenylsuccinic anhydrides a) are preferably selected from the group of the C12-C20-alkyl chain-substituted succinic anhydrides and the poly (isobutylene) succinic anhydrides with a molecular weight between 500 and 2000 g / mol.
  • the at least one alkenyl succinic anhydride a) is in one embodiment of the process according to the invention preferably selected from the group containing C18 and / or C16 alkenyl succinic anhydrides, poly (isobutylene) succinic anhydride and mixtures thereof.
  • the proportion of component (iv) in the total weight of the mixture to be alkoxylated is preferably 0 to 30% by weight, particularly preferably 2 to 25% by weight and in particular 4 to 20% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).
  • a compound selected from the group consisting of selected from the group consisting of cyclic mono- or diesters is used as the compound (v), which can optionally be used.
  • Compound (v) is preferably selected from the group comprising ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, (R, R) lactide, (S, S) lactide, meso-lactide, and mixtures thereof; ⁇ -caprolactone is particularly preferred as compound (v).
  • the proportion of component (v) in the total weight of the mixture to be alkoxylated is preferably 0 to 30% by weight, particularly preferably 2 to 25% by weight and in particular 4 to 20% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).
  • the alkoxylation of the mixture of components (i) to (iii) and, if present (iv) and (v) with the corresponding amount of alkylene oxide, is usually carried out until an OH number of 80 to 800 mg KOH / g, preferably 150 to 600 mg KOH / g and particularly preferably 200 to 500 mg KOH / g is set.
  • the polyurethane adhesives according to the invention can also contain further additives customary in the production, such as solvents, plasticizers, fillers, such as carbon blacks, chalks and talc, adhesion promoters, in particular silicon compounds, such as trialkoxysilanes, thixothropierizing agents, such as amorphous silicas and drying agents, such as zeolites.
  • additives customary in the production, such as solvents, plasticizers, fillers, such as carbon blacks, chalks and talc, adhesion promoters, in particular silicon compounds, such as trialkoxysilanes, thixothropierizing agents, such as amorphous silicas and drying agents, such as zeolites.
  • the present invention furthermore relates to a method for bonding, in which the isocyanate component A and the polyol component B of a polyurethane adhesive according to the invention are mixed, the mixed polyurethane adhesive is applied to at least one substrate surface to be bonded, the substrate surfaces are joined within the open time and the polyurethane adhesive is allowed to harden.
  • the mixing is preferably carried out at an isocyanate index of 80 to 200, particularly preferably 90 to 150, more preferably 95 to 120 and in particular 98 to 110.
  • the isocyanate index is the stoichiometric ratio of isocyanate groups to isocyanate-reactive Groups multiplied by 100 understood.
  • An adhesive according to the invention preferably has a long open time of at least 30 minutes at room temperature.
  • the open time is the period from mixing the polyisocyanate component A and the polyol component B and subsequent application of the adhesive, the joining of the adhesive parts is still possible before the adhesive has hardened to such an extent that it is no longer able to form an adhesive connection.
  • the polyurethane adhesive according to the invention can be used as a structural adhesive, in particular for bonding plastic parts, preferably fiber-reinforced plastic parts.
  • Applications are, for example, in vehicle construction, in the construction of aircraft, in particular the wings of aircraft or wind turbines, in particular rotor blades for wind turbines, and are distinguished by excellent mechanical properties and a high glass transition temperature with a long open time.
  • an advantage of the process according to the invention is that the alkoxylation product of components (i) to (v) can be used to convert those compounds into a homogeneous reaction product which are distinguished by a very large difference in polarity and are therefore incompatible with one another in pure form.
  • the reaction with alkylene oxide makes the mutually incompatible molecules compatible and results in homogeneous reaction products which contain both polyether units and polyester units.
  • base-catalyzed alkoxylation this is probably also due to the fact that in the process, in addition to the ring-opening polymerization, transesterification reactions take place at the same time, which ensures the homogeneous distribution of the ester-carrying molecular chains with the ether-carrying molecular chains.
  • polyurethane adhesives with excellent properties are obtained, both during processing and after excellent mechanical properties of the adhesive itself.
  • the samples for determining the tensile shear strength were produced in accordance with DIN EN 1465 "Determination of the tensile shear strength of high-strength overlap bonds".
  • the starting materials according to Table 1 with an isocyanate index from 105 a speed mixer 90 seconds at 1600 rpm, then 30 seconds at 2100 rpm.
  • the adhesive was then applied to a glass fiber reinforced epoxy plate (Vetronit® EGS 619, 100x25x2mm, Rocholl GmbH).
  • the plate with the applied adhesive was then stored in a climatic cabinet at 25 ° C. and 70% atmospheric humidity for 60 min. A second plate was placed on the plate pretreated in this way.
  • the adhesive layer thickness is 0.5 mm.
  • the adhesive is loaded with a weight of 1 kg until the adhesive has hardened almost completely. The remaining adhesive is then removed and the bonded plates are cured again at 80 ° C. for 2 hours. The tension shear bodies are cut and tested in accordance with the DIN EN 1465 standard.
  • An open mold with the desired depth (2mm or 4mm) is heated in a drying cabinet heated to 80 ° C for approx. 45min.
  • the evacuated components are weighed into a speed mixer beaker and mixed in the speed mixer for 60s at 1600rpm, then 120s at 2100rpm.
  • the reaction mixture is poured into the mold and smoothed out using a doctor blade.
  • the plate is cured for 2 hours at 80 ° C.
  • the test specimens are then punched out of the plates produced in this way.
  • the mechanical parameters are determined in accordance with DIN EN ISO 527 on 2 mm thick test specimens, and the glass transition temperature is determined using dynamic differential thermal analysis (DSC) at a heating rate of 20 K / min in accordance with DIN EN ISO 11357.
  • DSC dynamic differential thermal analysis
  • the open time is determined via a reaction viscosity measurement in a plate-plate geometry rheometer with a diameter of 20 mm and a gap width of 1 mm.
  • the starting components according to Table 1 are stirred in a speed mixer at an isocyanate index of 105 5s at 1600 rpm.
  • enough adhesive is placed on the measuring plate so that the geometry is completely filled.
  • the measurement is carried out for 10 seconds with a maximum shear rate of 100 s -1 .
  • Pre-cut and in the subsequent pause of 120 seconds excess material is removed.
  • the time until a viscosity of 400 Pas is reached is determined as the open time at a shear rate of 1 s-1.
  • Table 1 shows that the use of polyols according to the invention gives adhesives with excellent properties, in particular a glass transition temperature of greater than 60 ° C., a shear strength of more than 10 N / mm 2 and a high tensile strength of more than 35 MPa.
  • the open time of adhesives according to the invention is greater than 60 minutes and therefore also allows the bonding of large-area structures, such as, for example, wind blades of wind power plants.
  • the use of finished polyols based on bisphenol A, a 5-functional starter and castor oil, such as in EP 2468789 described either to low glass transition temperatures (comparison 4) or to low shear strengths (comparison 3).
  • the omission of bisphenol A in the synthesis polyol (comparison 1) or the separate addition of bisphenol A polyol to a synthesis polyol without bisphenol A (comparison 2) also leads to adhesives with insufficient shear strengths.

Description

Die vorliegende Erfindung betrifft einen Polyurethanklebstoff enthaltend eine Isocyanatkomponente A und eine Polyolkomponente B wobei die Isocyanatkomponente A mindestens ein Diisocyanat oder Polyisocyanat und die Polyolkomponente B das Alkoxylierungsprodukt einer Mischung aus Ricinusöl oder Ricinolsäure (i), einem aromatischen Di- oder Polyol (ii) und einer OH-funktionellen Verbindung mit aliphatisch gebundenen OH-Gruppen und einer OH-Funktionalität von 1 bis 8 (iii) sowie gegebenenfalls einer Verbindung (iv), ausgewählt aus der Gruppe, bestehend aus cyclischen Anhydriden von Dicarbonsäuren und gegebenenfalls einer Verbindung (v), ausgewählt aus der Gruppe, bestehend aus cyclischen Mono- oder Diestern, enthält. Weiter betrifft die vorliegende Erfindung ein Verfahren zum Verkleben unter Einsatz des erfindungsgemäßen Polyurethanklebstoffs, einen unter Einsatz des Polyurethanklebstoffs verklebten Artikel und die Verwendung dieses Artikels beim Bau von Windkraftanlagen.The present invention relates to a polyurethane adhesive containing an isocyanate component A and a polyol component B, wherein the isocyanate component A is at least one diisocyanate or polyisocyanate and the polyol component B is the alkoxylation product of a mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and one OH-functional compound with aliphatic OH groups and an OH functionality of 1 to 8 (iii) and optionally a compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) from the group consisting of cyclic mono- or diesters. The present invention further relates to a method for bonding using the polyurethane adhesive according to the invention, an article bonded using the polyurethane adhesive and the use of this article in the construction of wind power plants.

Polyurethanklebstoffe auf Basis einer Isocyanatkomponente und einer Polyolkomponente, sogenannte zwei-Komponenten-Polyurethanklebstoffe sind bekannt und werden beispielsweise bei der Verklebung von Kunststoffen eingesetzt. Insbesondere wenn diese Polyurethanklebstoffe als strukturelle Klebstoffe eingesetzt werden, das heißt wenn tragende Konstruktionen zu verkleben sind, werden hohe Anforderungen an die Festigkeiten und Klebkräfte gestellt. Hohe Festigkeiten werden über hohe Vernetzungsdichten erhalten, welche üblicherweise durch Einsatz höherfunktioneller Isocyanate und gegenüber Isocyanaten reaktiven Verbindungen erreicht werden.Polyurethane adhesives based on an isocyanate component and a polyol component, so-called two-component polyurethane adhesives, are known and are used, for example, in the bonding of plastics. Particularly when these polyurethane adhesives are used as structural adhesives, i.e. when load-bearing structures are to be glued, high demands are placed on the strength and adhesive strength. High strengths are obtained via high crosslinking densities, which are usually achieved by using more functional isocyanates and compounds that are reactive toward isocyanates.

Solche tragenden Konstruktionen sind z.B. die Verklebung von faserverstärkten Bauteilen für Flügel oder andere Bauteile von Flugzeugen, von faserverstärkten Bauteilen von Booten und insbesondere von faserverstärkten Bauteilen zur Herstellung von Flügeln für Windkraftanlagen.Such supporting structures are e.g. the bonding of fiber-reinforced components for wings or other components of airplanes, of fiber-reinforced components of boats and in particular of fiber-reinforced components for the production of blades for wind turbines.

So ist nach WO 2006/084900 A2 eine zweikomponentige Polyurethanzusammensetzung bekannt, bei der ein Gemisches aus mindestens einem alkoxylierten aromatisches Diol sowie mindestens einem aliphatisches Triol und einer Polyisocyanatkomponente, die mindest ein Polyisocyanat enthält, eingesetzt wird.So after WO 2006/084900 A2 a two-component polyurethane composition is known in which a mixture of at least one alkoxylated aromatic diol and at least one aliphatic triol and a polyisocyanate component containing at least one polyisocyanate is used.

Insbesondere bei der Herstellung großflächiger Sandwichstrukturen, wie beispielsweise bei der Herstellung von Windflügeln für Windkraftanlagen, ist es erforderlich, dass die Klebstoffe nach dem Vermischen der Polyol- und der Isocyanatkomponente noch lange verarbeitbar sind. Um Nebenreaktionen des Isocyanats, beispielsweise mit Luftfeuchtigkeit zu vermeiden, die zu einer Verkürzung der offenen Zeit und Verschlechterung der mechanischen Eigenschaften des ausgehärteten Klebstoffs führt, werden die Klebstoffe durch den Einsatz hydrophober Komponenten so eingestellt, dass kein Wasser aus der Luft von der Klebstoffzusammensetzung aufgenommen wird und solche Nebenreaktionen dadurch unterdrückt werden.In particular in the production of large-area sandwich structures, such as, for example, in the production of wind blades for wind power plants, it is necessary that the adhesives can be processed for a long time after the polyol and isocyanate components have been mixed. In order to avoid side reactions of the isocyanate, for example with atmospheric moisture, which leads to a shortening of the open time and a deterioration in the mechanical properties of the cured adhesive, the adhesives are adjusted by the use of hydrophobic components so that no water from the air is absorbed by the adhesive composition and suppress such side reactions.

So offenbart WO 2009080740 einen Zweikomponenten-Polyurethanklebstoff, der aus einer Isocyanatkomponente und einer Polyolkomponente besteht, wobei die Polyolkomponente ein hochmolekulares Polyesterdiol, ein hochfunktionelles Polyol sowie hydrophobe Polyole, vorzugsweise ausgewählt aus Polycarbonatpolyolen, Polybutadienpolyolen oder oleochemischen Polyolen, wie insbesondere Ricinusöl, enthält.So revealed WO 2009080740 a two-component polyurethane adhesive which consists of an isocyanate component and a polyol component, the polyol component containing a high molecular weight polyester diol, a highly functional polyol and hydrophobic polyols, preferably selected from polycarbonate polyols, polybutadiene polyols or oleochemical polyols, such as in particular castor oil.

Nachteilig ist die trotz Hydrophobie noch unzureichende Haftfestigkeit sowie durch den Polyesterdioleinsatz verminderte Chemikalienbeständigkeit insbesondere im alkalischen Bereich. Des Weiteren ist an der Lösung nach WO 2009/080740 A1 nachteilig, dass aufgrund der vorgeschlagenen Zusammensetzung die für zahlreiche Verklebungen geforderten hohen Festigkeiten und hohen E-Module nicht erreicht werden können.Disadvantages are the inadequate adhesive strength despite the hydrophobicity and the reduced chemical resistance due to the use of polyester diol, particularly in the alkaline range. Furthermore, the solution is on WO 2009/080740 A1 disadvantageous that, due to the proposed composition, the high strengths and high moduli of elasticity required for numerous bonds cannot be achieved.

EP 2468789 offenbart einen zweikomponentigen Polyurethanklebstoff, wobei die Polyolkomponente Ricinusöl, mindestens ein aromatisches Diol und mindestens ein Polyol mit 5 bis 8 Hydroxygruppen umfasst. EP 2468789 discloses a two-component polyurethane adhesive, the polyol component comprising castor oil, at least one aromatic diol and at least one polyol having 5 to 8 hydroxyl groups.

Diese Klebstoffe sind bezüglich deren mechanischer Eigenschaften noch verbesserungswürdig. Insbesondere Zugfestigkeit, Bruchdehnung und E-Modul sowie die Zugscherfestigkeit sind wesentliche Eigenschaften bei der Herstellung struktureller Verklebungen. Darüber hinaus ist es insbesondere bei der strukturellen Verklebung von Flügeln für Windkraftanlagen erforderlich, dass der Klebstoff eine hohe Erweichungstemperatur aufweist, da die strukturellen Verklebungen, beispielsweise durch Sonneneinstrahlung, erhöhten Temperaturen ausgesetzt sind. Neben der Sonneneinstrahlung verursacht auch die mechanische Beanspruchung der Bauteile eine nicht unerhebliche Wärmeentwicklung. So fordert beispielsweise der Germanische Lloyd für strukturelle Klebstoffe im Bau von Windkraftanlagen eine Wärmeformbeständigkeit von mindestens 65 °C.These adhesives are in need of improvement with regard to their mechanical properties. In particular tensile strength, elongation at break and modulus of elasticity as well as tensile shear strength are essential properties in the production of structural bonds. In addition, in particular in the structural bonding of blades for wind turbines, it is necessary for the adhesive to have a high softening temperature, since the structural bonds are exposed to elevated temperatures, for example due to solar radiation. In addition to solar radiation, the mechanical stress on the components also causes a not inconsiderable amount of heat. For example, Germanischer Lloyd demands structural heat resistance of at least 65 ° C for structural adhesives in the construction of wind turbines.

Ein weiterer Nachteil der Klebstoffe aus dem Stand der Technik ist eine gewisse Streuung der mechanischen Eigenschaften in Abhängigkeit von der erhaltenen Charge. Ursache hierfür sind geringfügige Änderungen in der Zusammensetzung des Naturprodukts Ricinusöl.Another disadvantage of the adhesives from the prior art is a certain spread of the mechanical properties depending on the batch obtained. This is due to minor changes in the composition of the natural product castor oil.

Aufgabe der vorliegenden Erfindung war es daher einen Polyurethanklebstoff zu liefern, der im ausgehärteten Zustand sehr gute mechanische Eigenschaften, insbesondere Zugfestigkeit, Bruchdehnung, E-Modul und Zugscherfestigkeit aufweist und zu möglichst einheitlichen Verklebungen führt, unabhängig von der hergestellten Produktcharge. Weiter war es Aufgabe der vorliegenden Erfindung einen Polyurethanklebstoff zu liefern, der neben den hervorragenden mechanischen Eigenschaften im Ausgehärteten Zustand eine Glasübergangstemperatur von mehr als 60 °C aufweist.It was therefore an object of the present invention to provide a polyurethane adhesive which, when cured, has very good mechanical properties, in particular tensile strength, elongation at break, modulus of elasticity and tensile shear strength, and leads to bonds which are as uniform as possible, regardless of the product batch produced. Another object of the present invention was to provide a polyurethane adhesive which, in addition to the outstanding mechanical properties in the hardened state, has a glass transition temperature of more than 60 ° C.

Diese Aufgabe wird gelöst durch einen Polyurethanklebstoff enthaltend eine Isocyanatkomponente A und eine Polyolkomponente B wobei die Isocyanatkomponente A mindestens ein Diisocyanat oder Polyisocyanat und die Polyolkomponente B das Alkoxylierungsprodukt einer Mischung aus Ricinusöl oder Ricinolsäure (i), einem aromatischen Di- oder Polyol (ii) und einer OH-funktionellen Verbindung mit aliphatisch gebundenen OH-Gruppen und einer OH-Funktionalität von 1 bis 8 Polyol (iii) sowie gegebenenfalls einer Verbindung (iv), ausgewählt aus der Gruppe, bestehend aus cyclischen Anhydriden von Dicarbonsäuren und gegebenenfalls einer Verbindung (v), ausgewählt aus der Gruppe, bestehend aus cyclischen Mono- oder Diestern, enthält.This object is achieved by a polyurethane adhesive comprising an isocyanate component A and a polyol component B, the isocyanate component A being at least one diisocyanate or polyisocyanate and the polyol component B being the alkoxylation product Mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 polyol (iii) and optionally a compound (iv) , selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) selected from the group consisting of cyclic mono- or diesters.

Die Polyisocyanatkomponente A enthält mindestens ein Diisocyanat oder Polyisocyanat. Diese umfassen alle zur Herstellung von Polyurethanen bekannten aliphatischen, cycloaliphatischen und aromatischen zwei- oder mehrwertigen Isocyanate sowie beliebige Mischungen daraus. Beispiele sind 4,4'-Methandiphenyldiisocyanat, 2,4'-Methandiphenyldiisocyanat, die Mischungen aus monomeren Methandiphenyldiisocyanaten und höherkernigen Homologen des Methandiphenyldiisocyanats (Polymer-MDI), Tetramethylendiisocyanat, Hexamethylendiisocyanat (HDI), die Mischungen aus Hexamethylendiisocyanaten und höherkernigen Homologen des Hexamethylendiisocyanats (Mehrkern-HDI), Isophorondiisocyanat (IPDI), 2,4- oder 2,6-Toluylendiisocyanat (TDI) oder Mischungen der genannten Isocyanate. Bevorzugt verwendet werden Toluylendiisocyanat (TDI), Diphenylmethandiisocyanat (MDI) und insbesondere Gemische aus Diphenylmethandiisocyanat und Polyphenylenpolymethylenpolyisocyanaten. Die Isocyanate können auch modifiziert sein, beispielsweise durch Einbau von Uretdion-, Carbamat-, Isocyanurat-, Carbodiimid-, Allophanat- und insbesondere Urethangruppen.The polyisocyanate component A contains at least one diisocyanate or polyisocyanate. These include all aliphatic, cycloaliphatic and aromatic di- or polyvalent isocyanates known for the production of polyurethanes, as well as any mixtures thereof. Examples are 4,4'-methane diphenyl diisocyanate, 2,4'-methane diphenyl diisocyanate, the mixtures of monomeric methane diphenyl diisocyanates and higher-core homologues of methane diphenyl diisocyanate (polymer-MDI), tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), the mixtures of hexamethylene diisocyanates and higher-core homologues -HDI), isophorone diisocyanate (IPDI), 2,4- or 2,6-tolylene diisocyanate (TDI) or mixtures of the isocyanates mentioned. Toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and in particular mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanates are preferably used. The isocyanates can also be modified, for example by incorporating uretdione, carbamate, isocyanurate, carbodiimide, allophanate and in particular urethane groups.

Dabei können als Di- und Polyisocyanate auch isocyanatgruppenhaltige Isocyanatprepolymere eingesetzt werden. Diese Polyisocyanatprepolymere sind erhältlich, indem vorstehend beschriebene Di- und Polyisocyanate, beispielsweise bei Temperaturen von 30 bis 100 °C, bevorzugt bei etwa 80 °C, mit Polyolen zum Prepolymer umgesetzt werden. Vorzugsweise wird zur Herstellung der erfindungsgemäßen Prepolymere 4,4'-MDI zusammen mit uretoniminmodifiziertem MDI und handelsüblichen Polyolen auf Basis von Polyestern, beispielsweise ausgehend von Adipinsäure, oder Polyethern, beispielsweise ausgehend von Ethylenoxid und/oder Propylenoxid, verwendet.Isocyanate prepolymers containing isocyanate groups can also be used as di- and polyisocyanates. These polyisocyanate prepolymers can be obtained by reacting the di- and polyisocyanates described above, for example at temperatures from 30 to 100 ° C., preferably at about 80 ° C., with polyols to form the prepolymer. 4,4'-MDI is preferably used together with uretonimine-modified MDI and commercially available polyols based on polyesters, for example starting from adipic acid, or polyethers, for example starting from ethylene oxide and / or propylene oxide, for the preparation of the prepolymers according to the invention.

Polyole, die zur Herstellung von Isocyanatprepolymeren eingesetzt werden können, sind dem Fachmann bekannt und beispielsweise beschrieben im " Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 3.1 . Vorzugsweise werden dabei als Polyole zur Herstellung von Isocyanatprepolymeren Polyole eingesetzt, die auch unter der Polyolkomponente B beschrieben werden. Insbesondere werden in der Polyisocyanatkomponente A keine Polyisocyanatprepolymere eingesetzt.Polyols which can be used to prepare isocyanate prepolymers are known to the person skilled in the art and are described, for example, in " Plastics Handbook, Volume 7, Polyurethane ", Carl Hanser Verlag, 3rd edition 1993, Chapter 3.1 , Polyols, which are also described under polyol component B, are preferably used as polyols for the production of isocyanate prepolymers. In particular, no polyisocyanate prepolymers are used in polyisocyanate component A.

Besonders bevorzugt werden als Di und Polyisocyanate Mischungen aus Diphenylmethandiisocyanat und Polyphenylenpolymethylenpolyisocyanaten eingesetzt.Mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanates are particularly preferably used as the di and polyisocyanates.

Die Polyolkomponente enthält das Alkoxylierungsprodukt einer Mischung aus Ricinusöl oder Ricinolsäure (i), einem aromatischen Di- oder Polyol (ii) und einer OH-funktionellen Verbindung mit aliphatisch gebundenen OH-Gruppen und einer OH-Funktionalität von 1 bis 8 (iii) sowie gegebenenfalls einer Verbindung (iv), ausgewählt aus der Gruppe, bestehend aus cyclischen Anhydriden von Dicarbonsäuren und gegebenenfalls einer Verbindung (v), ausgewählt aus der Gruppe, bestehend aus cyclischen Mono- oder Diestern.The polyol component contains the alkoxylation product of a mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 (iii) and optionally a compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) selected from the group, consisting of cyclic mono- or diesters.

Die Alkoxylierung erfolgt dabei vorzugsweise indem die Mischung aus Ricinusöl oder Ricinolsäure (i), einem aromatischen Di- oder Polyol (ii) und einer OH-funktionellen Verbindung mit aliphatisch gebundenen OH-Gruppen und einer OH-Funktionalität von 1 bis 8 (iii) sowie gegebenenfalls einer Verbindung (iv), ausgewählt aus der Gruppe, bestehend aus cyclischen Anhydriden von Dicarbonsäuren und gegebenenfalls einer Verbindung (v), ausgewählt aus der Gruppe, bestehend aus cyclischen Mono- oder Diestern mit Hilfe eines nucleophilen und/oder basischen Katalysators und mindestens einem Alkylenoxid. Dabei wird vorzugsweise die Mischung der Komponenten (i) bis (iii) und gegebenenfalls (iv) und (v) vor Zugabe des Alkylenoxids in einem Reaktionsgefäß vorgelegt. Als Alkylenoxyd können beispielsweise 1,2-Butylenoxid, Propylenoxid oder Ethylenoxid eingesetzt werden. Dabei enthält das Alkylenoxid vorzugsweise Propylenoxid, besonders bevorzugt besteht das Alkylenoxyd aus Propylenoxid.The alkoxylation is preferably carried out in that the mixture of castor oil or ricinoleic acid (i), an aromatic di- or polyol (ii) and an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 (iii) and optionally a compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids and optionally a compound (v) selected from the group consisting of cyclic mono- or diesters with the aid of a nucleophilic and / or basic catalyst and at least one alkylene. The mixture of components (i) to (iii) and optionally (iv) and (v) is preferably initially introduced into a reaction vessel before the alkylene oxide is added. For example, 1,2-butylene oxide, propylene oxide or ethylene oxide can be used as the alkylene oxide. The alkylene oxide preferably contains propylene oxide, particularly preferably the alkylene oxide consists of propylene oxide.

Der basische und/oder nucleophile Katalysator kann ausgewählt sein aus der Gruppe, bestehend aus Alkalimetall- oder Erdalkalimetallhydroxide, Alkalimetall- oder Erdalkalimetallalkoxide, tertiäre Amine, N-heterocyclische Carbene oder Vorläufer N-heterocyclische Carbene.The basic and / or nucleophilic catalyst can be selected from the group consisting of alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal alkoxides, tertiary amines, N-heterocyclic carbenes or precursors of N-heterocyclic carbenes.

Bevorzugt ist der basische und/oder nucleophile Katalysator ausgewählt ist aus der Gruppe enthaltend tertiäre Amine.The basic and / or nucleophilic catalyst is preferably selected from the group comprising tertiary amines.

Besonders bevorzugt ist der basische und/oder nucleophile Katalysator ausgewählt aus der Gruppe enthaltend Imidazol und Imidazolderivate, ganz besonders bevorzugt Imidazol.The basic and / or nucleophilic catalyst is particularly preferably selected from the group comprising imidazole and imidazole derivatives, very particularly preferably imidazole.

In einer anderen bevorzugten Ausführungsform ist der basische und/oder nucleophile Katalysator ausgewählt aus der Gruppe enthaltend N-heterocyclische Carbene, besonders bevorzugt aus der Gruppe enthaltend N-heterozyklische Carbene auf Basis N-alkyl- und N-arylsubstituierter Imidazolylidene.In another preferred embodiment, the basic and / or nucleophilic catalyst is selected from the group containing N-heterocyclic carbenes, particularly preferably from the group containing N-heterocyclic carbenes based on N-alkyl- and N-aryl-substituted imidazolylidenes.

In einer bevorzugten Ausführungsform ist der basische und/oder nucleophile Katalysator ausgewählt aus der Gruppe umfassend Trimethylamin, Triethylamin, Tripropylamin, Tributylamin, N,N'-Dimethylethanolamin, N,N'-Dimethylcyclohexylamin, Dimethylethylamin, Dimethylbutylamin, N,N'-Dimethylanilin, 4-Dimethylaminopyridin, N,N'-Dimethylbenzylamin, Pyridin, Imidazol, N-Methylimidazol, 2-Methylimidazol, 1,2 Dimethylimidazol, N-(3-Aminopropyl)imidazol), 4-Methylimidazol, 5-Methylimidazol, 2-Ethyl-4-methylimidazol, 2,4-Dimethylimidazol, 1-Hydroxypropylimidazol, 2,4,5-Trimethylimidazol, 2-ethylimidazol, 2-Ethyl-4-methylimidazol, N-Phenylimidazol, 2-Phenylimidazol, 4-Phenylimidazol, Guanidin, alkylierte Guanidine, 1,1,3,3-Tetramethylguanidin, Piperazin, alkyliertem Piperazine, Piperidin, alkyliertem Pipiridin, 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-en, 1,5-Diazobicylco[4.3.0]-non-5-en, 1,5-Diazabicylo[5.4.0]undec-7-en, bevorzugt Imidazol und Dimethylethanolamin (DMEOA).In a preferred embodiment, the basic and / or nucleophilic catalyst is selected from the group comprising trimethylamine, triethylamine, tripropylamine, tributylamine, N, N'-dimethylethanolamine, N, N'-dimethylcyclohexylamine, dimethylethylamine, dimethylbutylamine, N, N'-dimethylaniline, 4-dimethylaminopyridine, N, N'-dimethylbenzylamine, pyridine, imidazole, N-methylimidazole, 2-methylimidazole, 1,2 dimethylimidazole, N- (3-aminopropyl) imidazole), 4-methylimidazole, 5-methylimidazole, 2-ethyl- 4-methylimidazole, 2,4-dimethylimidazole, 1-hydroxypropylimidazole, 2,4,5-trimethylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, N-phenylimidazole, 2-phenylimidazole, 4-phenylimidazole, guanidine, alkylated guanidines , 1,1,3,3-tetramethylguanidine, piperazine, alkylated piperazines, piperidine, alkylated pipiridine, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, 1,5-diazobicylco [4.3.0] -non-5-ene, 1,5-diazabicylo [5.4.0] undec-7-ene, preferably imidazole and dimethylethanolamine (DMEOA).

Die genannten Katalysatoren können allein oder in beliebigen Mischungen zueinander eingesetzt werden.The catalysts mentioned can be used alone or in any mixtures with one another.

Die Umsetzung mit Alkylenoxid erfolgt üblicherweise bei Temperaturen im Bereich zwischen 80 und 200°C, vorzugsweise zwischen 100°C und 160°C, besonders bevorzugt zwischen 110°C und 150°C.The reaction with alkylene oxide usually takes place at temperatures in the range between 80 and 200 ° C., preferably between 100 ° C. and 160 ° C., particularly preferably between 110 ° C. and 150 ° C.

Wenn tertiäre Amine und/oder N-heterozyklische Carbene als Katalysatoren für die Umsetzung mit Alkylenoxiden verwendet werden, liegt die Katalysatorkonzentration bezogen auf die Masse der Verbindungen (i) bis (iii) und, falls vorhanden (iv) und (v) zwischen 50 - 5000 ppm, bevorzugt zwischen 100 und 1000 ppm, und der Katalysator muss nach der Umsetzung nicht aus dem Reaktionsprodukt entfernt werden.If tertiary amines and / or N-heterocyclic carbenes are used as catalysts for the reaction with alkylene oxides, the catalyst concentration is based on the mass of the compounds (i) to (iii) and, if present (iv) and (v), between 50- 5000 ppm, preferably between 100 and 1000 ppm, and the catalyst does not have to be removed from the reaction product after the reaction.

Ricinusöl (i) ist ein nachwachsender Rohstoff und wird aus den Samen der Ricinusstaude gewonnen. Im Wesentlichen ist Ricinusöl ein Triglycerid einer Fettsäuremischung, enthaltend, bezogen auf das Gesamtgewicht der Fettsäuremischung > 75 Gew.-% Ricinolsäure, 3 bis 10 Gew.-% Ölsäure, 2 bis 6 Gew.-% Linolsäure, 1 bis 4 Gew.-% Stearinsäure, 0 bis 2 Gew.-% Palmitinsäure sowie gegebenenfalls geringe Mengen von jeweils weniger als 1 Gew.-% weiterer Fettsäuren, wie Linolensäure, Vaccensäure, Archinsäure, und Eicosensäure. Alternativ kann ein Teil von Ricinusöl auch durch Ricinolsäure ersetzt werden. Dabei beträgt der Anteil von Ricinolsäure vorzugsweise nicht mehr als 40 Gew.-%, besonders bevorzugt 20 Gew.-%, mehr bevorzugt 10 Gew.-% und insbesondere 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponente (i). Der Anteil der Komponente (i) an dem Gesamtgewicht der zu alkoxylierenden Mischung beträgt vorzugsweise 30 bis 90 Gew.-%, besonders bevorzugt 40 bis 85 Gew.-% und insbesondere 45 bis 80 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (i) bis (iii) und falls vorhanden (iv) und (v).Castor oil (i) is a renewable raw material and is obtained from the seeds of the castor bean. Castor oil is essentially a triglyceride of a fatty acid mixture containing, based on the total weight of the fatty acid mixture> 75% by weight of ricinoleic acid, 3 to 10% by weight of oleic acid, 2 to 6% by weight of linoleic acid, 1 to 4% by weight Stearic acid, 0 to 2% by weight of palmitic acid and optionally small amounts of less than 1% by weight of further fatty acids such as linolenic acid, vaccenic acid, archic acid and eicosenoic acid. Alternatively, part of castor oil can also be replaced by ricinoleic acid. The proportion of ricinoleic acid is preferably not more than 40% by weight, particularly preferably 20% by weight, more preferably 10% by weight and in particular 5% by weight, in each case based on the total weight of component (i). The proportion of component (i) in the total weight of the mixture to be alkoxylated is preferably 30 to 90% by weight, particularly preferably 40 to 85% by weight and in particular 45 to 80% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).

Weiter kann die zu alkoxylierende Mischung neben Ricinusöl und Ricinolsäure (i) weitere Triglyceride von Fettsäuren, wie Tran, Talg, Sojaöl, Rapsöl, Olivenöl, Sonnenblumenöl, hydroxylgruppenmodifiziertes Sojaöl, Palmöl, und derivatisiertes Rizinusöl, sowie von diesen Triglyceriden abgeleitete Fettsäuren oder Mischungen dieser Substanzen enthalten.In addition to castor oil and ricinoleic acid (i), the mixture to be alkoxylated can contain further triglycerides of fatty acids, such as trans-oil, tallow, soybean oil, rapeseed oil, olive oil, sunflower oil, hydroxyl-modified soybean oil, palm oil, and derivatized castor oil, and fatty acids or mixtures of these substances derived from these triglycerides contain.

Auch können der zu alkoxylierenden Mischung mit Hydroxylgruppen modifizierten Öle zugegeben werde. Die Modifizierung der Öle, das heißt der Fettsäuretriglyceride oder der Fettsäuren, kann über die allgemein bekannten Verfahren wie zum Beispiel über Hydroformylierung/Hydrierung oder Epoxidierung/Ringöffnung, Ozonolyse, Direktoxidation oder Lachgasoxidation/Reduktion erfolgen.Oils modified with hydroxyl groups can also be added to the mixture to be alkoxylated. The oils, that is to say the fatty acid triglycerides or the fatty acids, can be modified via the generally known methods, for example via hydroformylation / hydrogenation or epoxidation / ring opening, ozonolysis, direct oxidation or nitrous oxide oxidation / reduction.

Dabei beträgt der Anteil von Ricinusöl und Ricinolsäure (i) am Gesamtgewicht der in der zu alkoxylierenden Mischung enthaltenen Triglyceride und Fettsäuren vorzugsweise mindestens 50 Gew.-%, besonders bevorzugt mindestens 70 Gew.-% und insbesondere mindestens 80 Gew.-%.The proportion of castor oil and ricinoleic acid (i) in the total weight of the triglycerides and fatty acids contained in the mixture to be alkoxylated is preferably at least 50% by weight, particularly preferably at least 70% by weight and in particular at least 80% by weight.

Als aromatisches Di- oder Polyol (ii) wird eine Verbindung eingesetzt, die mindestens zwei aromatisch gebundene Hydroxylgruppen enthält. Alternativ kann als aromatisches Di- oder Polyol auch ein Di- oder Polyol eingesetzt werden, das durch Alkoxylierung eines aromatischen Di- oder Polyols erhalten wurde, wobei dies weniger bevorzugt ist. Wird ein Alkoxylierungsprodukt eines aromatischen Polyols als Komponente (ii) eingesetzt, muss die Hydroxylzahl des aromatischen Di- oder Polyols größer als 350 mg KOH/g, vorzugsweise größer als 400 mg KOH/g und besonders bevorzugt größer als 450 mg KOH/g sein. Vorzugsweise enthält das aromatische Diol mindestens zwei Phenolgruppen, besonders bevorzugt enthält das aromatische Diol (ii) ein Bisphenol, weiter bevorzugt ist das aromatische Di- oder Polyol ein Bisphenol.A compound which contains at least two aromatically bound hydroxyl groups is used as the aromatic diol or polyol (ii). Alternatively, a di- or polyol obtained by alkoxylation of an aromatic di- or polyol can also be used as the aromatic di- or polyol, this being less preferred. If an alkoxylation product of an aromatic polyol is used as component (ii), the hydroxyl number of the aromatic diol or polyol must be greater than 350 mg KOH / g, preferably greater than 400 mg KOH / g and particularly preferably greater than 450 mg KOH / g. The aromatic diol preferably contains at least two phenol groups, particularly preferably the aromatic diol (ii) contains a bisphenol, more preferably the aromatic diol or polyol is a bisphenol.

Bisphenole sind Verbindungen mit zwei Hydroxyphenylgruppen. Diese umfassen Bisphenol A (2,2-Bis(4-hydroxyphenyl)propan); Bisphenol AF (1,1-Bis(4-hydroxyphenyl)-1-phenylethan), Bisphenol AP (1,1-Bis(4-hydroxyphenyl)-1-phenylethan), Bisphenol B (2,2-Bis(4-hydroxyphenyl)butan), Bisphenol BP (Bis-(4-hydroxyphenyl)diphenylmethan), Bisphenol C (2,2-Bis(3-methyl-4-hydroxyphenyl)propan), Bisphenol E (1,1-Bis(4-hydroxyphenyl)ethan), Bisphenol F (Bis(4-hydroxyphenyl)methan), Bisphenol FL (9,9-Bis(4-hydroxyphenyl)fluoren), Bisphenol G (2,2-Bis(4-hydroxy-3-isopropyl-phenyl)propan), Bisphenol M (1,3-Bis(2-(4-hydroxyphenyl)-2-propyl)benzol), Bisphenol P (1,4-Bis(2-(4-hydroxyphenyl)-2-propyl)benzol), Bisphenol PH (2,2-[5,5'-Bis[1,1'-(biphenyl)-2-ol]]propan), Bisphenol S (Bis(4-hydroxyphenyl)sulfon), Bisphenol TMC (1,1-Bis(4-hydroyphenyl)-3,3,5-trimethyl-cyclohexan) oder Bisphenol Z (1,1-Bis(4-hydroxyphenyl)-cyclohexan), besonders bevorzugt sind Bisphenol A und Bisphenol S, insbesondere Bisphenol A.Bisphenols are compounds with two hydroxyphenyl groups. These include bisphenol A (2,2-bis (4-hydroxyphenyl) propane); Bisphenol AF (1,1-bis (4-hydroxyphenyl) -1-phenylethane), bisphenol AP (1,1-bis (4-hydroxyphenyl) -1-phenylethane), bisphenol B (2,2-bis (4-hydroxyphenyl ) butane), bisphenol BP (bis- (4-hydroxyphenyl) diphenylmethane), bisphenol C (2,2-bis (3-methyl-4-hydroxyphenyl) propane), bisphenol E (1,1-bis (4-hydroxyphenyl) ethane), bisphenol F (bis (4-hydroxyphenyl) methane), bisphenol FL (9,9-bis (4-hydroxyphenyl) fluorene), bisphenol G (2,2-bis (4-hydroxy-3-isopropylphenyl)) propane), bisphenol M (1,3-bis (2- (4-hydroxyphenyl) -2-propyl) benzene), bisphenol P (1,4-bis (2- (4-hydroxyphenyl) -2-propyl) benzene) , Bisphenol PH (2,2- [5,5'-bis [1,1 '- (biphenyl) -2-ol]] propane), bisphenol S (bis (4-hydroxyphenyl) sulfone), bisphenol TMC (1, 1-bis (4-hydroyphenyl) -3,3,5-trimethyl-cyclohexane) or bisphenol Z (1,1-bis (4-hydroxyphenyl) cyclohexane), bisphenol A and bisphenol S, in particular bisphenol A, are particularly preferred.

In einer besonders bevorzugten Ausführungsform ist das aromatische Di- oder Polyol (ii) Bisphenol A oder Bisphenol S, insbesondere Bisphenol A. Der Anteil der Komponente (ii) an dem Gesamtgewicht der zu alkoxylierenden Mischung beträgt vorzugsweise 4 bis 30 Gew.-%, besonders bevorzugt 5 bis 25 Gew.-% jeweils bezogen auf das Gesamtgewicht der Komponenten (i) bis (iii) und falls vorhanden (iv) und (v).In a particularly preferred embodiment, the aromatic di- or polyol (ii) is bisphenol A or bisphenol S, in particular bisphenol A. The proportion of component (ii) in the total weight of the mixture to be alkoxylated is preferably 4 to 30% by weight, particularly preferably 5 to 25% by weight, based in each case on the total weight of components (i) to (iii) and, if present, (iv) and (v).

Als aliphatische einer OH-funktionellen Verbindung mit aliphatisch gebundenen OH-Gruppen und einer OH-Funktionalität von 1 bis 8 (iii) kommen Verbindungen in Betracht, die eine bis 8 aliphatisch gebundene Hydroxygruppen aufweisen, wobei Verbindungen, die unter die Definition von Komponente (ii) fallen, nicht als Verbindungen der Komponente (iii) verstanden werden sollen. Beispiele sind Wasser, Propylenglykol, Ethylenglykol, Diethylenglykol, Dipropylenglykol, Neopentylglykol, 1,2-Butandiol, 1,3-Butandiol, 1,4-Butandiol, Hexandiol, Pentandiol, 3-Methyl-1,5-pentandiol, 1,12-Dodecandiol, monofunktionelle Alkohole, wie Ethanol und Propanol, Glycerin, Trimethylolpropan, Pentaerythritol, 1,2,4- oder 1,3,5-Trihydroxy-cyclohexan, Sorbitol und Saccharose sowie Umsetzungsprodukte solcher Verbindungen mit Alkylenoxiden wie Propylenoxid oder Ethylenoxid sowie Mischungen hieraus. Weiter kann die Komponente (iii) auch OH-Gruppen enthaltende Ester und/oder Polyester enthalten. Ester und Polyester werden vorzugsweise erhalten aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise aliphatischen Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen und mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen, hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch untereinander verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z.B. Dicarbonsäureester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride eingesetzt werden. Vorzugsweise verwendet werden Dicarbonsäuregemische aus Bernstein-, Glutar- und Adipinsäure und insbesondere Adipinsäure. Beispiele für zwei und mehrwertige Alkohole, insbesondere Diole sind Ethandiol, Diethylenglykol, 1,2- bzw. 1,3-Propandiol, Dipropylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,10-Decandiol, Glycerin und Trimethylolpropan. Vorzugsweise verwendet werden Ethandiol, Diethylenglykol, 1,4-Butandiol, 1,5-Pentandiol und 1,6-Hexandiol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z.B. ε-Caprolacton oder Hydroxycarbonsäuren, z.B. ω-Hydroxycapronsäure. Die Herstellung des Esters bzw. Polyesters erfolgt auf bekannte Art und Weise.As an aliphatic of an OH-functional compound with aliphatically bound OH groups and an OH functionality of 1 to 8 (iii), compounds are suitable which have one to 8 aliphatically bound hydroxyl groups, compounds which are defined as component (ii ) fall, should not be understood as compounds of component (iii). Examples are water, propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, pentanediol, 3-methyl-1,5-pentanediol, 1,12- Dodecanediol, monofunctional alcohols, such as ethanol and propanol, glycerol, trimethylolpropane, pentaerythritol, 1,2,4- or 1,3,5-trihydroxycyclohexane, sorbitol and Sucrose and reaction products of such compounds with alkylene oxides such as propylene oxide or ethylene oxide and mixtures thereof. Component (iii) may also contain esters and / or polyesters containing OH groups. Esters and polyesters are preferably obtained from organic dicarboxylic acids having 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having 4 to 6 carbon atoms and polyhydric alcohols, preferably diols, having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms. Examples of suitable dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid. The dicarboxylic acids can be used both individually and in a mixture with one another. Instead of the free dicarboxylic acids, the corresponding dicarboxylic acid derivatives, such as, for example, dicarboxylic acid esters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides, can also be used. Dicarboxylic acid mixtures of succinic, glutaric and adipic acid and in particular adipic acid are preferably used. Examples of two and polyhydric alcohols, in particular diols, are ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10- Decanediol, glycerin and trimethylolpropane. Ethanediol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol are preferably used. Polyester polyols from lactones, for example ε-caprolactone or hydroxycarboxylic acids, for example ω-hydroxycaproic acid, can also be used. The ester or polyester is prepared in a known manner.

Dabei weist die Komponente (iii) vorzugsweise eine OH-Zahl von mindestens 50, besonders bevorzugt mindestens 200 und insbesondere mindestens 600 mg KOH/g auf. Besonders bevorzugt weisen Verbindungen, die als aliphatisches Polyol (iii) eingesetzt werden 5 bis 8 OH-Gruppen auf. Ein besonders bevorzugtes Beispiel für eine Verbindung der Komponente (iii) ist ein Zucker, insbesondere Saccharose oder Sorbitol, besonders bevorzugt Saccharose.Component (iii) preferably has an OH number of at least 50, particularly preferably at least 200 and in particular at least 600 mg KOH / g. Compounds which are used as aliphatic polyol (iii) particularly preferably have 5 to 8 OH groups. A particularly preferred example of a compound of component (iii) is a sugar, in particular sucrose or sorbitol, particularly preferably sucrose.

Der Anteil der Komponente (iii) an dem Gesamtgewicht der zu alkoxylierenden Mischung beträgt vorzugsweise 2 bis 40 Gew.-%, besonders bevorzugt 3 bis 25 Gew.-% uns insbesondere 4 bis 20 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (i) bis (iii) und falls vorhanden (iv) und (v).The proportion of component (iii) in the total weight of the mixture to be alkoxylated is preferably 2 to 40% by weight, particularly preferably 3 to 25% by weight and in particular 4 to 20% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).

Als Verbindung (iv), die gegebenenfalls eingesetzt werden kann, wird eine Verbindung, ausgewählt aus der Gruppe, bestehend aus cyclischen Anhydriden von Dicarbonsäuren, eingesetzt. Vorzugsweise sind die Anhydride der Dicarbonsäure ausgewählt aus der Gruppe enthaltend a) Alkenylbernsteinsäureanhydride, b) Phthalsäureanhydrid, c) Maleinsäureanhydrid, d) Bernsteinsäureanhydrid sowie e) Tetrahydrophthalsäureanhydrid und Mischungen daraus.A compound selected from the group consisting of cyclic anhydrides of dicarboxylic acids is used as the compound (iv), which can optionally be used. The anhydrides of dicarboxylic acid are preferably selected from the group comprising a) alkenylsuccinic anhydrides, b) phthalic anhydride, c) maleic anhydride, d) succinic anhydride and e) tetrahydrophthalic anhydride and mixtures thereof.

Die Alkenylbernsteinsäureanhydride a) sind dabei bevorzugt ausgewählt aus der Gruppe der C12-C20-alkylkettensubstituierten Bernsteinsäureanhydride und der Poly(isobutylen)bernsteinsäureanhydride mit Molekulargewicht zwischen 500 und 2000 g/mol. Das mindestens eine Alkenylbernsteinsäureanhydrid a) ist in einer Ausführungsform des erfindungsgemäßen Verfahrens bevorzugt ausgewählt aus der Gruppe enthaltend C18- und/oder C16-Alkenylbernsteinsäureanhydride, Poly(isobutylen)bernsteinsäureanhydrid und Mischungen hieraus.The alkenylsuccinic anhydrides a) are preferably selected from the group of the C12-C20-alkyl chain-substituted succinic anhydrides and the poly (isobutylene) succinic anhydrides with a molecular weight between 500 and 2000 g / mol. The at least one alkenyl succinic anhydride a) is in one embodiment of the process according to the invention preferably selected from the group containing C18 and / or C16 alkenyl succinic anhydrides, poly (isobutylene) succinic anhydride and mixtures thereof.

Der Anteil der Komponente (iv) an dem Gesamtgewicht der zu alkoxylierenden Mischung beträgt vorzugsweise 0 bis 30 Gew.-%, besonders bevorzugt 2 bis 25 Gew.-% uns insbesondere 4 bis 20 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (i) bis (iii) und falls vorhanden (iv) und (v).The proportion of component (iv) in the total weight of the mixture to be alkoxylated is preferably 0 to 30% by weight, particularly preferably 2 to 25% by weight and in particular 4 to 20% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).

Als Verbindung (v), die gegebenenfalls eingesetzt werden kann, wird eine Verbindung, ausgewählt aus der Gruppe, bestehend ausgewählt aus der Gruppe, bestehend aus cyclischen Mono- oder Diestern eingesetzt. Dabei ist die Verbindung (v) bevorzugt ausgewählt aus der Gruppe enthaltend γ-Butyrolacton, δ-Valerolacton, ε-Caprolacton, (R,R)-Lactid, (S,S)-Lactid, meso-Lactid, sowie Mischungen daraus; besonders bevorzugt ist als Verbindung (v) ε-Caprolacton.A compound selected from the group consisting of selected from the group consisting of cyclic mono- or diesters is used as the compound (v), which can optionally be used. Compound (v) is preferably selected from the group comprising γ-butyrolactone, δ-valerolactone, ε-caprolactone, (R, R) lactide, (S, S) lactide, meso-lactide, and mixtures thereof; ε-caprolactone is particularly preferred as compound (v).

Der Anteil der Komponente (v) an dem Gesamtgewicht der zu alkoxylierenden Mischung beträgt vorzugsweise 0 bis 30 Gew.-%, besonders bevorzugt 2 bis 25 Gew.-% uns insbesondere 4 bis 20 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (i) bis (iii) und falls vorhanden (iv) und (v).The proportion of component (v) in the total weight of the mixture to be alkoxylated is preferably 0 to 30% by weight, particularly preferably 2 to 25% by weight and in particular 4 to 20% by weight, in each case based on the total weight of the components (i) to (iii) and (if present) (iv) and (v).

Üblicherweise wird die Alkoxylierung der Mischung der Komponenten (i) bis (iii) und, falls vorhanden (iv) und (v) mit der entsprechenden Menge Alkylenoxid durchgeführt, bis eine OH-Zahl von 80 bis 800 mg KOH/g, vorzugsweise 150 bis 600 mg KOH/g und besonders bevorzugt 200 bis 500 mg KOH/g eingestellt ist.The alkoxylation of the mixture of components (i) to (iii) and, if present (iv) and (v) with the corresponding amount of alkylene oxide, is usually carried out until an OH number of 80 to 800 mg KOH / g, preferably 150 to 600 mg KOH / g and particularly preferably 200 to 500 mg KOH / g is set.

Neben dem Alkoxylierungsprodukt der Komponente (i) bis (iii) und, falls vorhanden (iv) und (v) können noch weitere, in der Polyurethanchemie übliche, gegenüber Isocyanat reaktive Gruppen aufweisende Verbindungen, wie Polyole und Kettenverlängerer und Vernetzer eingesetzt werden. Solche sind beispielsweise beschrieben im " Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 3.1 und 3.4.3 , und speziell für Polyurethanklebeanwendungen in " The polyurethanes book", Wiley, 2002, Kapitel 23 und 25 . Diese enthalten vorzugsweise ausschließlich OH-Gruppen als gegenüber Isocyanat reaktive Gruppen und werden vorzugsweise eingesetzt in Mengen von kleiner 90 Gew.-%, besonders bevorzugt kleiner 50 Gew.-%, mehr bevorzugt kleiner 30 Gew.-% noch mehr bevorzugt kleiner 10 Gew.-% und insbesondere kleiner als 1 Gew.-%, bezogen auf das Gesamtgewicht aller Verbindungen mit gegenüber Isocyanaten reaktiven Gruppen in der Polyolkomponente B.In addition to the alkoxylation product of components (i) to (iii) and, if present (iv) and (v), it is also possible to use further compounds which are customary in polyurethane chemistry and have isocyanate-reactive groups, such as polyols and chain extenders and crosslinking agents. Such are described for example in " Plastics Handbook, Volume 7, Polyurethane ", Carl Hanser Verlag, 3rd edition 1993, chapters 3.1 and 3.4.3 , and especially for polyurethane adhesive applications in " The Polyurethanes Book ", Wiley, 2002, chapters 23 and 25 , These preferably contain exclusively OH groups as isocyanate-reactive groups and are preferably used in amounts of less than 90% by weight, particularly preferably less than 50% by weight, more preferably less than 30% by weight, more preferably less than 10% by weight. -% and in particular less than 1 wt .-%, based on the total weight of all compounds with isocyanate-reactive groups in the polyol component B.

Die erfindungsgemäßen Polyurethanklebstoffe können noch weitere, bei der Herstellung übliche Additive, wie Lösungsmittel, Weichmacher, Füllstoffe, wie Ruße, Kreiden und Talke, Haftvermittler, insbesondere Siliziumverbindungen, wie Trialkoxysilane, Thixothropiermittel, wie amorphe Kieselsäuren und Trockenmittel, wie Zeolithe zugesetzt werden. Üblicherweise werden diese Zusatzstoffe zur Polyolkomponente der Polyolkomponente B zugegeben.The polyurethane adhesives according to the invention can also contain further additives customary in the production, such as solvents, plasticizers, fillers, such as carbon blacks, chalks and talc, adhesion promoters, in particular silicon compounds, such as trialkoxysilanes, thixothropierizing agents, such as amorphous silicas and drying agents, such as zeolites. These additives are usually added to the polyol component of polyol component B.

Weiter ist Gegenstand der vorliegenden Erfindung ein Verfahren zum Verkleben, bei dem man die Isocyanatkomponente A und die Polyolkomponente B eines erfindungsgemäßen Polyurethanklebstoffs mischt, den gemischten Polyurethanklebstoffs auf mindestens eine zu verklebende Substratoberfläche aufbringt, die Substratoberflächen innerhalb der offenen Zeit fügt und den Polyurethanklebstoff aushärten lässt. Dabei erfolgt das Vermischen vorzugsweise bei einem Isocyanatindex von 80 bis 200, besonders bevorzugt 90 bis 150, mehr bevorzugt 95 bis 120 und insbesondere 98 bis 110. Dabei wird unter dem Isocyanatindex wird im Rahmen der vorliegenden Erfindung das stöchiometrische Verhältnis an Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen, multipliziert mit 100, verstanden.The present invention furthermore relates to a method for bonding, in which the isocyanate component A and the polyol component B of a polyurethane adhesive according to the invention are mixed, the mixed polyurethane adhesive is applied to at least one substrate surface to be bonded, the substrate surfaces are joined within the open time and the polyurethane adhesive is allowed to harden. The mixing is preferably carried out at an isocyanate index of 80 to 200, particularly preferably 90 to 150, more preferably 95 to 120 and in particular 98 to 110. In the context of the present invention, the isocyanate index is the stoichiometric ratio of isocyanate groups to isocyanate-reactive Groups multiplied by 100 understood.

Ein erfindungsgemäßer Klebstoff weist dabei vorzugsweise eine lange offene Zeit von mindestens 30 Minuten bei Raumtemperatur auf. Dabei ist die Offene Zeit der Zeitraum vom Mischen der Polyisocyanatkomponente A und der Polyolkomponente B und anschließender Applikation des Klebstoffs das Fügen der Klebeteile noch möglich ist, bevor der Klebstoff soweit ausgehärtet ist, dass er nicht mehr zum Aufbau einer Klebeverbindung in der Lage ist.An adhesive according to the invention preferably has a long open time of at least 30 minutes at room temperature. The open time is the period from mixing the polyisocyanate component A and the polyol component B and subsequent application of the adhesive, the joining of the adhesive parts is still possible before the adhesive has hardened to such an extent that it is no longer able to form an adhesive connection.

Der erfindungsgemäße Polyurethanklebstoff kann als Strukturklebstoff, insbesondere zum Verkleben von Kunststoffteilen, vorzugsweise faserverstärkten Kunststoffteilen, eingesetzt werden. Anwendungen sind beispielsweise im Fahrzeugbau, beim Bau von Flugzeugen, insbesondere Tragflächen von Flugzeugen oder Windkraftanlagen, insbesondere Rotorblätter für Windkraftanlagen, und zeichnet sich durch hervorragende mechanische Eigenschaften und eine hohe Glasübergangstemperatur bei langer offener Zeit aus.The polyurethane adhesive according to the invention can be used as a structural adhesive, in particular for bonding plastic parts, preferably fiber-reinforced plastic parts. Applications are, for example, in vehicle construction, in the construction of aircraft, in particular the wings of aircraft or wind turbines, in particular rotor blades for wind turbines, and are distinguished by excellent mechanical properties and a high glass transition temperature with a long open time.

Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass sich mit dem Alkoxylierungsprodukt der Komponenten (i) bis (v) solche Verbindungen zu einem homogenen Reaktionsprodukt umsetzen lassen, die sich durch einen sehr großen Polaritätsunterschied auszeichnen und somit in reiner Form miteinander unverträglich sind. Durch die Umsetzung mit Alkylenoxid werden die miteinander unverträglichen Moleküle kompatibilisiert und es resultieren homogene Reaktionsprodukte, die sowohl Polyethereinheiten als auch Polyestereinheiten beinhalten. Bei der basenkatalysierten Alkoxilierung ist dies vermutlich auch, darauf zurückzuführen, dass im Prozess neben der Ringöffnungspolymerisation zeitgleich Umesterungsreaktionen stattfinden, die die homogene Verteilung der estertragenden Molekülketten mit den ethertragenden Molekülketten gewährleistet. Somit werden Polyurethanklebstoffe mit hervorragenden Eigenschaften, sowohl bei der Verarbeitung als ach hervorragenden mechanischen Eigenschaften des Klebstoffs selbst, erhalten.An advantage of the process according to the invention is that the alkoxylation product of components (i) to (v) can be used to convert those compounds into a homogeneous reaction product which are distinguished by a very large difference in polarity and are therefore incompatible with one another in pure form. The reaction with alkylene oxide makes the mutually incompatible molecules compatible and results in homogeneous reaction products which contain both polyether units and polyester units. In the case of base-catalyzed alkoxylation, this is probably also due to the fact that in the process, in addition to the ring-opening polymerization, transesterification reactions take place at the same time, which ensures the homogeneous distribution of the ester-carrying molecular chains with the ether-carrying molecular chains. In this way, polyurethane adhesives with excellent properties are obtained, both during processing and after excellent mechanical properties of the adhesive itself.

Im Folgenden soll die Erfindung anhand von Beispielen verdeutlicht werden.The invention is illustrated below with the aid of examples.

Eingesetzte Rohstoffe:

  • Polyol1: Sovermol® 805, ein Gemisch aus Rizinusöl und einem Ketonharz in ein Mischverhältnis von etwa 80/20 Gewichtsteilen, mit einer OH Zahl von 173 mg KOH/g, kommerziell erhältlich von der BASF SE
  • Polyol 2: Ein Sucrose/Glyzerin haltiges Propoxylat mit einer OH Zahl von 490 mg KOH/g und eine mitteleren Funktionolität von 4,3
  • Polyol 3: Propoxylat, ausgehend von Bisphenol A als Starter mit einer OH Zahl von 280 mg KOH/g.
  • Iso 1: Polymer-MDI mit einer Funktionalität von ca. 2,7 und einem NCO-Gehalt von 31,5 Gew.-%, erhältlich unter dem HandelsnamenLupranat® M20 von der BASF SE.
  • Wasserfänger: Zeolitischer Wasserfänger, dispergiert in Ricinusöl (50 Gew.-%)
Raw materials used:
  • Polyol1: Sovermol® 805, a mixture of castor oil and a ketone resin in a mixing ratio of about 80/20 parts by weight, with an OH number of 173 mg KOH / g, commercially available from BASF SE
  • Polyol 2: A sucrose / glycerol-containing propoxylate with an OH number of 490 mg KOH / g and an average functionality of 4.3
  • Polyol 3: propoxylate, starting from bisphenol A as a starter with an OH number of 280 mg KOH / g.
  • Iso 1: polymer MDI with a functionality of approx. 2.7 and an NCO content of 31.5% by weight, available under the trade name Lupranat® M20 from BASF SE.
  • Water scavenger: Zeolitic water scavenger, dispersed in castor oil (50% by weight)

PolyolsynthesebeispielePolyolsynthesebeispiele Polyolsynthesebeispiel 1 (Synthese 1):Polyol Synthesis Example 1 (Synthesis 1):

175,2 g Glycerin, 0,5 g Imidazol, 275,45 g Sorbitol sowie 425,1 g Bisphenol A und 2751,7g Rizinusöl (FSG Qualität) wurden bei 25 °C in einen 5 L Reaktor vorgelegt. Anschließend wurde dieser mit Stickstoff inertisiert. Der Kessel wurde auf 150 °C erhitzt und 1372,1 g Propylenoxid zu dosiert. Nach einer Abreaktionszeit von 11 h wurde für 40 Minuten unter vollem Vakuum bei 100 °C evakuiert und anschließend auf 25 °C abgekühlt. Es wurden 4933 g Produkt erhalten.175.2 g glycerol, 0.5 g imidazole, 275.45 g sorbitol and 425.1 g bisphenol A and 2751.7 g castor oil (FSG quality) were placed in a 5 L reactor at 25 ° C. This was then rendered inert with nitrogen. The kettle was heated to 150 ° C. and 1372.1 g of propylene oxide were metered in. After a reaction time of 11 h, the mixture was evacuated at 100 ° C. under full vacuum for 40 minutes and then cooled to 25 ° C. 4933 g of product were obtained.

Der erhaltene Polyetherester besaß folgende Kennwerte:

  • OH-Zahl: 300,2 mg KOH/g
  • Viskosität (25 °C): 2021 mPas
  • Säurezahl: kleiner 0,01 mg KOH/g
  • Wassergehalt: 0,02 Gew.-%
  • Restgehalt Bisphenol A: kleiner 10 mg/kg per HPLC bestimmt
The polyether ester obtained had the following characteristics:
  • OH number: 300.2 mg KOH / g
  • Viscosity (25 ° C): 2021 mPas
  • Acid number: less than 0.01 mg KOH / g
  • Water content: 0.02% by weight
  • Residual bisphenol A: less than 10 mg / kg determined by HPLC

Polyolsynthesebeispiel 2 (Synthese 2):Polyol Synthesis Example 2 (Synthesis 2):

5,7 g Glycerin, 0,02 g Imidazol, 14,5 g Sorbitol sowie 30,2 g Bisphenol A und 122,4 g Rizinusöl (FSG Qualität) wurden bei 25 °C in einen 300 mL Reaktor vorgelegt. Anschließend wurde dieser mit Stickstoff inertisiert. Der Kessel wurde auf 150 °C erhitzt und 67,2 g Propylenoxid zu dosiert. Nach einer Abreaktionszeit von 19 h wurde für 40 Minuten unter vollem Vakuum bei 100 °C evakuiert und anschließend auf 25 °C abgekühlt. Es wurden 225,9 g Produkt erhalten.5.7 g glycerol, 0.02 g imidazole, 14.5 g sorbitol and 30.2 g bisphenol A and 122.4 g castor oil (FSG quality) were placed in a 300 mL reactor at 25 ° C. This was then rendered inert with nitrogen. The kettle was heated to 150 ° C. and 67.2 g of propylene oxide were metered in. After a reaction time of 19 h, the mixture was evacuated at 100 ° C. under full vacuum for 40 minutes and then cooled to 25 ° C. 225.9 g of product were obtained.

Der erhaltene Polyetherester besaß folgende Kennwerte:

  • OH-Zahl: 314,7 mg KOH/g
  • Mittlere OH-Funktionalität 3,2
  • Viskosität (25 °C): 3170 mPas
  • Säurezahl: kleiner 0,01 mg KOH/g
  • Wassergehalt: kleiner 0,04%
  • Restgehalt Bisphenol A: kleiner 10 mg/kg per HPLC bestimmt
The polyether ester obtained had the following characteristics:
  • OH number: 314.7 mg KOH / g
  • Average OH functionality 3.2
  • Viscosity (25 ° C): 3170 mPas
  • Acid number: less than 0.01 mg KOH / g
  • Water content: less than 0.04%
  • Residual bisphenol A: less than 10 mg / kg determined by HPLC

Polyolsynthesebeispiel 3 (Synthese 3):Polyol Synthesis Example 3 (Synthesis 3):

3,4 g Glycerin, 0,02 g Imidazol, 22,3 g Saccharose sowie 36,0 g Bisphenol A und 112,4 g Rizinusöl (FSG Qualität) wurden bei 25 °C in einen 300 mL Reaktor vorgelegt. Anschließend wurde dieser mit Stickstoff inertisiert. Der Kessel wurde auf 130 °C erhitzt und 65,9 g Propylenoxid zu dosiert. Nach einer Abreaktionszeit von 10 h wurde für 40 Minuten unter vollem Vakuum bei 100 °C evakuiert und anschließend auf 25 °C abgekühlt. Es wurden 229,0 g Produkt erhalten.3.4 g glycerol, 0.02 g imidazole, 22.3 g sucrose as well as 36.0 g bisphenol A and 112.4 g castor oil (FSG quality) were placed in a 300 mL reactor at 25 ° C. This was then rendered inert with nitrogen. The kettle was heated to 130 ° C. and 65.9 g of propylene oxide were metered in. After a reaction time of 10 h, the mixture was evacuated at 100 ° C. under full vacuum for 40 minutes and then cooled to 25 ° C. 229.0 g of product were obtained.

Der erhaltene Polyetherester besaß folgende Kennwerte:

  • OH-Zahl: 310,6 mg KOH/g
  • Mittlere OH-Funktionalität 3,4
  • Viskosität (25 °C): 7786 mPas
  • Säurezahl: kleiner 0,01 mg KOH/g
  • Wassergehalt: kleiner 0,04%
  • Restgehalt Bisphenol A: kleiner 10 mg/kg per HPLC bestimmt??
The polyether ester obtained had the following characteristics:
  • OH number: 310.6 mg KOH / g
  • Average OH functionality 3.4
  • Viscosity (25 ° C): 7786 mPas
  • Acid number: less than 0.01 mg KOH / g
  • Water content: less than 0.04%
  • Residual bisphenol A: less than 10 mg / kg determined by HPLC ??

Polyolsynthesebeispiel 4 (Synthese 4; Vergleichsbeispiel ohne Bisphenol-A):Polyol synthesis example 4 (synthesis 4; comparative example without bisphenol-A):

210,0 g Glycerin, 0,5 g Imidazol, 335,0 g Sorbitol sowie und 2749,7 g Rizinusöl (FSG Qualität) wurden bei 25 °C in einen 5000 mL Reaktor vorgelegt. Anschließend wurde dieser mit Stickstoff inertisiert. Der Kessel wurde auf 150 °C erhitzt und 1704,8 g Propylenoxid zu dosiert. Nach einer Abreaktionszeit von 4 h wurde für 60 Minuten unter vollem Vakuum bei 100 °C evakuiert und anschließend auf 25 °C abgekühlt. Es wurden 4982,5 g Produkt erhalten.210.0 g glycerol, 0.5 g imidazole, 335.0 g sorbitol and 2749.7 g castor oil (FSG quality) were placed in a 5000 mL reactor at 25 ° C. This was then rendered inert with nitrogen. The kettle was heated to 150 ° C. and 1704.8 g of propylene oxide were metered in. After a reaction time of 4 h, the mixture was evacuated at 100 ° C. under full vacuum for 60 minutes and then cooled to 25 ° C. 4982.5 g of product were obtained.

Der erhaltene Polyetherester besaß folgende Kennwerte:

  • OH-Zahl: 308,9 mg KOH/g
  • Viskosität (25 °C): 1287 mPas
  • Säurezahl: kleiner 0,01 mg KOH/g
  • Wassergehalt: kleiner 0,01%
The polyether ester obtained had the following characteristics:
  • OH number: 308.9 mg KOH / g
  • Viscosity (25 ° C): 1287 mPas
  • Acid number: less than 0.01 mg KOH / g
  • Water content: less than 0.01%

Verklebung und Herstellung einer Platte aus demselben Reaktionsgemisch:Gluing and making a plate from the same reaction mixture: Verklebung:bonding:

Die Proben zur Bestimmung der Zugscherfestigkeit (Scherfestigkeit 0,5 mm) wurden in Anlehnung an die DIN EN 1465 "Bestimmung der Zugscherfestigkeit hochfester Überlappungsklebungen" hergestellt. Dazu wurden die Einsatzstoffe gemäß Tabelle 1 bei einem Isocyanatindex von 105 einem Speedmixer 90 sec bei 1600 U/min, dann 30 sec bei 2100 U/min vermischt. Anschließend wurde der Kleber auf eine glasfaserverstärke Epoxyplatte (Vetronit® EGS 619, 100x25x2mm, Firma Rocholl GmbH) aufgetragen. Anschließend wurde die Platte mit aufgetragenem Klebstoff im Klimaschrank bei 25°C und 70% Luftfeuchtigkeit für 60 min gelagert. Auf die so vorbehandelte Platte wurde eine zweite Platte aufgelegt. Die Klebschichtdicke beträgt dabei 0,5 mm. Die Verklebung wird mit einem Gewicht von 1 kg so lange belastet, bis der Klebstoff fast vollständig ausgehärtet ist. Danach wird der restliche Klebstoff entfernt und die verklebten Platten nochmal 2 h bei 80°C ausgehärtet. Die Zugscherkörper werden entsprechend der Norm DIN EN 1465 zugeschnitten und geprüft.The samples for determining the tensile shear strength (shear strength 0.5 mm) were produced in accordance with DIN EN 1465 "Determination of the tensile shear strength of high-strength overlap bonds". For this purpose, the starting materials according to Table 1 with an isocyanate index from 105 a speed mixer 90 seconds at 1600 rpm, then 30 seconds at 2100 rpm. The adhesive was then applied to a glass fiber reinforced epoxy plate (Vetronit® EGS 619, 100x25x2mm, Rocholl GmbH). The plate with the applied adhesive was then stored in a climatic cabinet at 25 ° C. and 70% atmospheric humidity for 60 min. A second plate was placed on the plate pretreated in this way. The adhesive layer thickness is 0.5 mm. The adhesive is loaded with a weight of 1 kg until the adhesive has hardened almost completely. The remaining adhesive is then removed and the bonded plates are cured again at 80 ° C. for 2 hours. The tension shear bodies are cut and tested in accordance with the DIN EN 1465 standard.

Mechanik Platten 2 mm und 4 mmMechanics plates 2 mm and 4 mm

Eine offene Form mit der gewünschten Tiefe (2mm oder 4 mm) wird in einem auf 80°C beheizten Trockenschrank für ca. 45min angewärmt. Die evakuierten Komponenten werden in einen Speedmixerbecher eingewogen und im Speedmixer 60s bei 1600U/min, dann 120s bei 2100 U/min vermischt. Nach Beendigung des Rührvorganges wird das Reaktionsgemisch in die Form gegeben und mit einem Rakel glatt gezogen. Die Platte wird für 2 h bei 80°C ausgehärtet. Die Prüfkörper werden anschließend aus den so hergestellten Platten ausgestanzt. Die mechanischen Kennwerte werden nach DIN EN ISO 527 an 2 mm dicken Prüfkörpern, und die Glasübergangstemperatur über Dynamische Differenz-Thermoanalyse (DSC) bei einer Heizrate von 20 K/min nach DIN EN ISO 11357 bestimmt.An open mold with the desired depth (2mm or 4mm) is heated in a drying cabinet heated to 80 ° C for approx. 45min. The evacuated components are weighed into a speed mixer beaker and mixed in the speed mixer for 60s at 1600rpm, then 120s at 2100rpm. After the stirring process has ended, the reaction mixture is poured into the mold and smoothed out using a doctor blade. The plate is cured for 2 hours at 80 ° C. The test specimens are then punched out of the plates produced in this way. The mechanical parameters are determined in accordance with DIN EN ISO 527 on 2 mm thick test specimens, and the glass transition temperature is determined using dynamic differential thermal analysis (DSC) at a heating rate of 20 K / min in accordance with DIN EN ISO 11357.

Bestimmung der offenen Zeit:Determining the open time:

Die offene Zeit wird über eine Reaktionsviskositätsmessung wird in einem Rheometer mit Platte-Platte-Geometrie mit einem Durchmesser von 20mm und einer Spaltbreite von 1 mm bestimmt. Zur Herstellung der zu vermessenden Reaktionsmischung werden die Ausgangskomponenten gemäß Tabelle 1 bei einem Isocyanatindex von 105 5s bei 1600U/min im Speedmixer verrührt. Unmittelbar im Anschluss wird genügend Kleber auf die Messplatte gegeben, so dass die Geometrie vollständig gefüllt ist. Vor der Messung wird 10 Sekunden lang mit einer maximalen Scherrate von 100 s-1. Vorgescheert und in der anschließenden Pause von 120 Sekunden wird überschüssiges Material entfernt. In der eigentlichen Messung wird bei einer Scherrate von 1 s-1 die Zeit bis zum Erreichen einer Viskosität von 400 Pas als offene Zeit bestimmt.

Figure imgb0001
Figure imgb0002
The open time is determined via a reaction viscosity measurement in a plate-plate geometry rheometer with a diameter of 20 mm and a gap width of 1 mm. To produce the reaction mixture to be measured, the starting components according to Table 1 are stirred in a speed mixer at an isocyanate index of 105 5s at 1600 rpm. Immediately afterwards, enough adhesive is placed on the measuring plate so that the geometry is completely filled. Before the measurement is carried out for 10 seconds with a maximum shear rate of 100 s -1 . Pre-cut and in the subsequent pause of 120 seconds, excess material is removed. In the actual measurement, the time until a viscosity of 400 Pas is reached is determined as the open time at a shear rate of 1 s-1.
Figure imgb0001
Figure imgb0002

Tabelle 1 zeigt, dass durch den Einsatz erfindungsgemäßer Polyole Klebstoffe mit hervorragenden Eigenschaften, insbesondere einer Glastemperatur von größer 60 °C, einer Scherfestigkeit von mehr als 10 N/mm2 und eine hohe Zugfestigkeit von mehr als 35 MPa erhalten werden. Dabei ist die Offene Zeit erfindungsgemäßer Klebstoffe größer als 60 Minuten und erlaubt daher auch die Verklebung großflächiger Strukturen, wie beispielsweise Windflügel von Windkraftanlagen. Im Gegensatz dazu führt der Einsatz fertiger Polyole auf Basis von Bisphenol A, einem 5-funktionellen Starter und Ricinusöl, wie beispielsweise in EP 2468789 beschrieben, zu entweder zu geringen Glastemperaturen (Vergleich 4) oder zu zu geringen Scherfestigkeiten (Vergleich 3). Auch das Weglassen von Bisphenol A im Synthesepolyol (Vergleich 1) oder die getrennte Zugabe von Bisphenol-A-Polyol zu einem Synthesepolyol ohne Bisphenol A (Vergleich 2) führt zu Klebstoffen mit ungenügenden Scherfestigkeiten.Table 1 shows that the use of polyols according to the invention gives adhesives with excellent properties, in particular a glass transition temperature of greater than 60 ° C., a shear strength of more than 10 N / mm 2 and a high tensile strength of more than 35 MPa. The open time of adhesives according to the invention is greater than 60 minutes and therefore also allows the bonding of large-area structures, such as, for example, wind blades of wind power plants. In contrast, the use of finished polyols based on bisphenol A, a 5-functional starter and castor oil, such as in EP 2468789 described, either to low glass transition temperatures (comparison 4) or to low shear strengths (comparison 3). The omission of bisphenol A in the synthesis polyol (comparison 1) or the separate addition of bisphenol A polyol to a synthesis polyol without bisphenol A (comparison 2) also leads to adhesives with insufficient shear strengths.

Claims (13)

  1. A polyurethane adhesive comprising an isocyanate component A and a polyol component B where the isocyanate component A comprises at least one diisocyanate or polyisocyanate and the polyol component B comprises the alkoxylation product of a mixture of castor oil or ricinoleic acid (i), of an aromatic di- or polyol (ii), and of an OH-functional compound having aliphatically bonded OH groups and OH-functionality of from 1 to 8 (iii), and also optionally of a compound (iv), selected from the group consisting of cyclic anhydrides of dicarboxylic acids, and optionally of a compound (v) selected from the group consisting of cyclic mono- or diesters.
  2. The polyurethane adhesive according to claim 1, wherein the alkoxylation of the mixture of castor oil or ricinoleic acid (i), of an aromatic di- or polyol (ii), and of an OH-functional compound having aliphatically bonded OH groups and OH-functionality of from 1 to 8 (iii), and also optionally of a compound (iv), selected from the group consisting of cyclic anhydrides of dicarboxylic acids, and optionally of a compound (v) selected from the group consisting of cyclic mono- or diesters is achieved with the aid of a nucleophilic and/or basic catalyst and of at least one alkylene oxide.
  3. The polyurethane adhesive according to claim 1 or 2, wherein the alkylene oxide comprises propylene oxide.
  4. The polyurethane adhesive according to any of claims 1 to 3, wherein the aromatic diol comprises two phenol groups.
  5. The polyurethane adhesive according to claim 4, wherein the aromatic diol comprises at least one bisphenol.
  6. The polyurethane adhesive according to any of claims 1 to 5, wherein the OH-functional compound (iii) has from 5 to 8 OH groups.
  7. The polyurethane adhesive according to any of claims 1 to 6, wherein the isocyanate component A comprises a mixture of monomeric diphenylmethane diisocyanate and of diphenylmethane diisocyanate having a larger number of rings.
  8. The polyurethane adhesive according to any of claims 1 to 7, wherein the OH number of the alkoxylation product of a mixture of castor oil or ricinoleic acid (preferably castor oil) (i), of an aromatic di- or polyol (ii), and of an OH-functional compound having aliphatically bonded OH groups and OH-functionality of from 1 to 8 (iii), and also optionally of a compound (iv), selected from the group consisting of cyclic anhydrides of dicarboxylic acids, and optionally of a compound (v) selected from the group consisting of cyclic mono- or diesters is in the range from 80 to 800.
  9. The polyurethane adhesive according to any of claims 1 to 8, wherein the proportion of castor oil or ricinoleic acid (preferably castor oil) (i) is from 30 to 80% by weight, the proportion of an aromatic di- or polyol (ii) is from 4 to 25% by weight, and the proportion of an OH-functional compound having aliphatically bonded OH groups and OH-functionality of from 1 to 8 (iii) is from 10 to 40% by weight, and the proportion of an optional compound (iv) selected from the group consisting of cyclic anhydrides of dicarboxylic acids is from 0 to 30% by weight, and the proportion of an optional compound (v) selected from the group consisting of cyclic mono- or diesters is from 0 to 30% by weight, based in each case on the total weight of components (i) to (v).
  10. A process for adhesive bonding comprising the following steps:
    - mixing of the isocyanate component A and of the polyol component B of a polyurethane adhesive according to any of claims 1 to 9,
    - application of the mixed polyurethane adhesive to at least one substrate surface requiring adhesive bonding,
    - formation of a joint within the open time, and
    - hardening of the polyurethane adhesive.
  11. The process according to claim 10, wherein the at least one substrate surface requiring adhesive bonding is a plastic.
  12. An adhesive-bonded item obtainable by a process according to claim 10 or 11.
  13. The use of an adhesive-bonded item according to claim 12 for the construction of wind turbines.
EP14732534.4A 2013-06-25 2014-06-16 Hydrophobic polyurethane adhesive Active EP3013918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14732534.4A EP3013918B1 (en) 2013-06-25 2014-06-16 Hydrophobic polyurethane adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13173574.8A EP2818528A1 (en) 2013-06-25 2013-06-25 Hydrophobic polyurethane adhesive
PCT/EP2014/062493 WO2014206779A1 (en) 2013-06-25 2014-06-16 Hydrophobic polyurethane adhesive
EP14732534.4A EP3013918B1 (en) 2013-06-25 2014-06-16 Hydrophobic polyurethane adhesive

Publications (2)

Publication Number Publication Date
EP3013918A1 EP3013918A1 (en) 2016-05-04
EP3013918B1 true EP3013918B1 (en) 2019-12-25

Family

ID=48669822

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13173574.8A Ceased EP2818528A1 (en) 2013-06-25 2013-06-25 Hydrophobic polyurethane adhesive
EP14732534.4A Active EP3013918B1 (en) 2013-06-25 2014-06-16 Hydrophobic polyurethane adhesive

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13173574.8A Ceased EP2818528A1 (en) 2013-06-25 2013-06-25 Hydrophobic polyurethane adhesive

Country Status (10)

Country Link
US (1) US9567500B2 (en)
EP (2) EP2818528A1 (en)
CN (1) CN105473680B (en)
AU (1) AU2014301403B2 (en)
BR (1) BR112015032478B1 (en)
CA (1) CA2916563A1 (en)
DK (1) DK3013918T3 (en)
MX (1) MX2015017969A (en)
RU (1) RU2016102062A (en)
WO (1) WO2014206779A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2742165T3 (en) 2014-11-27 2020-02-13 Basf Se Synthesis of polymer polyols in unsaturated polyols, polymer polyols and their use
EP3635023B1 (en) * 2017-06-07 2021-03-31 Basf Se Method for producing fibre composite material using hybrid polyol
DE102017123675A1 (en) 2017-10-11 2019-04-11 Lisa Dräxlmaier GmbH Process for controlling the hydrophobic properties of polyurethanes
JP7228957B2 (en) * 2018-02-16 2023-02-27 日東電工株式会社 Optical film with adhesive layer, in-cell type liquid crystal panel and liquid crystal display device
KR20220002370A (en) * 2019-04-26 2022-01-06 쇼와덴코머티리얼즈가부시끼가이샤 Moisture Curable Hot Melt Adhesive Composition, Adhesive, and Clothing
US20230021128A1 (en) * 2019-12-10 2023-01-19 Basf Se Assembly of metal pipes with two-component polyurethane adhesive
CN113265045B (en) * 2021-04-15 2022-07-15 中国科学院福建物质结构研究所 Modified polyester polyol and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812174A1 (en) * 1998-03-19 1999-09-23 Basf Ag Polyester polyols prepared from fatty acid glycerides, H-functional substances and alkylene oxides
EP1690880A1 (en) 2005-02-11 2006-08-16 Sika Technology AG Two component polyurethane compositions, especially suitable for use in structural adhesives
ZA200709673B (en) * 2006-11-13 2009-09-30 Bayer Materialscience Ag Process for the preparation of polyether-ester polyols
US9284401B2 (en) * 2006-11-13 2016-03-15 Bayer Materialscience Llc Process for the preparation of polyether-ester polyols
EP1997616B1 (en) * 2007-06-01 2009-08-26 Sika Technology AG Honeycomb sandwich panels and the use of a two component polyurethane adhesive in the manufacture thereof
DE102007062529A1 (en) 2007-12-20 2009-06-25 Henkel Ag & Co. Kgaa 2K PU adhesive for bonding fiber molded parts
EP2468789A1 (en) 2010-12-24 2012-06-27 Sika Technology AG Adhesive for wind turbine rotor blades
US20130190418A1 (en) 2012-01-23 2013-07-25 Andreas Kunst Polyetherester polyols and preparation thereof
US9353234B2 (en) 2012-03-01 2016-05-31 Basf Se Rigid polyurethane foams
US20130231413A1 (en) 2012-03-01 2013-09-05 Andreas Kunst Polyetherester polyols and the use thereof for producing rigid polyurethane foams
US20140094531A1 (en) 2012-09-27 2014-04-03 Basf Se Rigid polyurethane and polyisocyanurate foams based on fatty acid modified polyetherpolyols
US9464158B2 (en) 2013-01-15 2016-10-11 Basf Se Polyols, preparation and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112015032478B1 (en) 2021-10-13
US9567500B2 (en) 2017-02-14
EP2818528A1 (en) 2014-12-31
AU2014301403A1 (en) 2016-01-21
WO2014206779A1 (en) 2014-12-31
CN105473680B (en) 2018-11-16
US20160137892A1 (en) 2016-05-19
DK3013918T3 (en) 2020-03-16
MX2015017969A (en) 2016-10-21
RU2016102062A (en) 2017-07-28
AU2014301403B2 (en) 2017-09-21
EP3013918A1 (en) 2016-05-04
CA2916563A1 (en) 2014-12-31
CN105473680A (en) 2016-04-06
BR112015032478A2 (en) 2017-07-25

Similar Documents

Publication Publication Date Title
EP3013918B1 (en) Hydrophobic polyurethane adhesive
EP2089450B1 (en) Polyurethane lamination adhesive
EP1671991B1 (en) Reactive polyurethane prepolymers with a low amount of monomeric diisocyanates
EP3402834B1 (en) Reactive polyurethane melt adhesives containing fillers
DE102007062529A1 (en) 2K PU adhesive for bonding fiber molded parts
DE102011089783A1 (en) Low viscosity reactive polyurethane compositions
DE102008060885A1 (en) PU adhesives for sterilizable composite films
US20200239752A1 (en) A two-component polyurethane adhesive
EP2920221A1 (en) Two-component adhesive for adhesively bonding molded pulp parts
EP2708565A1 (en) Dual component polyurethane compounds on the basis of renewable resources, particularly suitable for use as tough elastic adhesives with adjustable hydrolytic degradability
EP2820061B1 (en) 2k polyurethane systems with high glass transition temperature
EP2144945B1 (en) Method for the primerless bonding of metal or plastic substrates
DE10238005A1 (en) A reactive polyurethane hotmelt based on bifuctional polyisocyanate and a polyol mixture is useful as an assembly adhesive for structural parts, in bookbinding, and for composite films and laminates
EP2673310B1 (en) Tissue adhesive based on nitrogen-modified aspartates
EP4058495A1 (en) Moisture-curable polyurethane hotmelt adhesive having high initial strength
EP2062927B1 (en) 2K-PU adhesive for low temperature applications
WO2017080873A1 (en) Curing method for polyurethanes
EP3635023B1 (en) Method for producing fibre composite material using hybrid polyol
DE102008039679A1 (en) Method for laminating films
WO2009056375A1 (en) Modified polyurethane adhesives
EP0700407A1 (en) Use of adducts for preparing polyaddition or polycondensation products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1217109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013328

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200313

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1217109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20230621

Year of fee payment: 10

Ref country code: DE

Payment date: 20230627

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 10