EP3011249B1 - Kühlung von elektronischen und/oder elektrischen komponenten durch gepulste wärmerohre und wärmeleitungselemente - Google Patents

Kühlung von elektronischen und/oder elektrischen komponenten durch gepulste wärmerohre und wärmeleitungselemente Download PDF

Info

Publication number
EP3011249B1
EP3011249B1 EP14729900.2A EP14729900A EP3011249B1 EP 3011249 B1 EP3011249 B1 EP 3011249B1 EP 14729900 A EP14729900 A EP 14729900A EP 3011249 B1 EP3011249 B1 EP 3011249B1
Authority
EP
European Patent Office
Prior art keywords
heat
cooling system
tube
serpentine coil
conduction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14729900.2A
Other languages
English (en)
French (fr)
Other versions
EP3011249A1 (de
Inventor
Jean-Antoine Gruss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novaday
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Novaday
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaday, Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Novaday
Publication of EP3011249A1 publication Critical patent/EP3011249A1/de
Application granted granted Critical
Publication of EP3011249B1 publication Critical patent/EP3011249B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a cooling system for a device comprising electronic and / or electrical components to be cooled, the system comprising an oscillating heat pipe comprising a tube in which a coolant flows in a pulsed manner, the tube being wound so as to form a coil.
  • the invention also relates to a device comprising electronic and / or electrical components to be cooled and at least one such cooling system.
  • Cooling systems comprising heat pipes are also known from the documents US 2008/0117637 A1 , WO 2010/055542 A2 , EP 2444770 A1 , GB 2250087 A and US 6026890 A . All of these systems are complex and expensive to build and assemble. In addition, the use of two-phase thermosyphons leads to a very degraded or non-existent operation, when the heat source in heat exchange with the hot part of the heat pipes is located higher than the cold source.
  • the object of the present invention is to provide a cooling system that overcomes the disadvantages listed above.
  • an object of the invention is to provide such a cooling system that is inexpensive to produce and assemble, simple, having good performance, and regardless of the relative positions occupied by the hot and cold sources that are in exchange thermal with the cooling system.
  • a cooling system for a device comprising electronic and / or electrical components to be cooled
  • the system comprising an oscillating heat pipe having a tube in which a coolant circulates from pulsed way, the tube being wound to form a coil, and at least one thermal conduction member in contact with the components and in contact with a main surface of the coil, the thermal conduction member being in contact with a portion of said main surface so that the oscillating heat pipe has at least one hot evaporation portion of the coolant situated at the contact zone between the coil and the heat conduction element and serving to evacuate heat from the components and at least a cold part of condensation of the coolant located outside the contact zone between the coil and the heat conduction element and serving to dissipate the heat absorbed by the oscillatory heat pipe, each cold part of the oscillating heat pipe being in thermal contact by natural or forced convection with of the air and the oscillating heat pipe removes the calories previously captured from the components through this heat Thermal contact
  • a cooling system 10 for a device which itself comprises electronic and / or electrical components 100 to be cooled comprises an oscillating heat pipe 11 comprising a tube in which a coolant heat transfer fluid for example acetone at 50% of the internal volume total of the tube) flows in a pulsed manner.
  • the tube is wound so as to form a coil 12.
  • This oscillating heat-exchange type 11 is also known by the name of "pulsed heat pipe” or under the acronym "PHP" for "pulsating heat pipe” in English terminology.
  • the tube is partially filled with heat transfer fluid, in particular of heat transfer nature, which naturally takes the form of a succession of vapor bubbles and liquid plugs.
  • heat transfer fluid in particular of heat transfer nature, which naturally takes the form of a succession of vapor bubbles and liquid plugs.
  • This phase separation results mainly from surface tension forces.
  • the oscillating heat pipe 11 is heated in a hot part and cooled in a cold part, the resulting temperature differences generate both temporal and space, themselves associated with the generation and growth of vapor bubbles in the evaporator and their implosion in the condenser. These fluctuations act as a pumping system to transport liquid and vapor bubbles between hot and cold parts.
  • the components 100 are chosen in particular from at least one electronic circuit, a thyristor type electronic power component or a bipolar insulated gate transistor, a lighting device comprising light-emitting diodes, a photovoltaic device, a battery, a battery fuel or any other power system.
  • an orthonormal reference is associated with the oscillating heat pipe 11 with a longitudinal direction X, a lateral direction Y perpendicular to the direction X and a vertical direction Z perpendicular to the plane defined by the directions X and Y .
  • the cooling system 10 also comprises at least one heat conduction element 13 in contact with the components 100 and in contact with a main surface 12a of the coil 12.
  • the device as such comprises the electronic and / or electrical components 100 to be cooled and at least one such cooling system 10 for cooling these components 100 which are then in contact with the thermal conduction element 13, which last being in contact with the main surface 12a of the coil 12.
  • the components 100 comprise for example an electronic printed circuit 101 of the type "MPCB” (for "Metal Printed Circuit Board” in English terminology) equipped with light-emitting diodes 102, a collimator device 103 and a cover 104. On the figure 2 only circuit 101 and diodes 102 are shown.
  • MPCB Metal Printed Circuit Board
  • the heat conduction element 13 is preferably constituted by at least one plate or base fixed on the main surface 12a of the coil 12 and on which the components 100 are fixed.
  • the plate is fixed to the main surface 12a by brazing, welding, bonding, or any equivalent means and adapted to the desired function.
  • the circuit 101 is fixed to the plate for example by means of fixing screws.
  • a thermal interface material thermal grease, thermal conductive polymer or any equivalent solution
  • each plate is formed of a material having a thermal conductivity greater than 150 W ⁇ m -1 ⁇ K -1 .
  • the plate is advantageously metallic: it may preferably consist of aluminum or an alloy of aluminum or copper.
  • the first example according to Figures 1 to 3 , the second example according to the Figures 4 and 5 , the third example according to the Figures 9 and 10 , the fifth example according to the figure 13 and the sixth example according to the figure 14 correspond to a cooling system 10 in which a single metal plate is in contact with the main surface 12a of the coil 12, in a particular single zone thereof.
  • the fourth example according to figures 11 and 12 and the seventh example according to the figure 15 correspond to a cooling system 10 in which a plurality of platens are in contact with the main surface 12a of the coil 12, in different areas thereof.
  • the tube is wound in a main plane so as to form a planar coil 12.
  • the main plane is oriented along the longitudinal X and lateral Y directions so that any vector normal to this plane is parallel to the vertical direction Z.
  • the tube comprises two opposite main surfaces 12a and 12b, which are outer surfaces of the tube and forming the slice of the heat pipe.
  • Each of the two main surfaces 12a and 12b is advantageously flat and oriented in the main plane formed along the X and Y directions. These two surfaces are interconnected by a lateral surface defining the thickness of said tube.
  • a lower main surface 12a is defined, part of which is intended to be in contact with the heat conduction element 13 and an upper main surface 12b.
  • the thermal conduction element could be in contact with the upper main surface 12b.
  • the coil 12 thus comprises the upper main surface 12b, which is also flat and oriented in a plane (X, Y).
  • the thickness of the coil 12 corresponds to the shift in the Z direction between the main surfaces 12a and 12b.
  • the tube is wound so as to form a coil 12 of left shape.
  • the plate has significantly greater dimensions in the X and Y directions than in the Z direction. It is for example of parallelepipedal shape. It comprises two opposite faces in the direction Z respectively in mechanical contact with the main surface 12a of the coil 12 and with the components 100, here the circuit 101.
  • the area of the main surface 12a of the coil 12 in contact with the heat conduction element 13 is flat (preferably even in the case of a left-hand coil) and parallel to at least a plane in which the heat transfer fluid circulates inside the tube.
  • the tube is constituted by an extruded multiport tube delimiting channels 14 ( figure 3 ) parallel to each other, in each of which pulses circulates a fraction of the total amount of heat transfer fluid flowing in the tube.
  • the winding of the tube is carried out so that each channel 14 extends in a plane (X, Y) so that the fraction of heat transfer fluid circulating there flows in a plane (X, Y).
  • These flow planes are all parallel and offset in pairs, in particular along the direction Z.
  • the zone of the main surface 12a of the coil 12 in contact with the thermal conduction element 13 is parallel to these planes in which the heat transfer fluid circulate separately.
  • the extruded tube multiport is organized in particular so that the channels 14 are all shifted in pairs in the same direction, especially in the direction Z.
  • the tube then has the general shape a ribbon and the channels 14 are distributed along the width of this ribbon.
  • the width of this ribbon is directed in the direction Z.
  • the ribbon is wound in the aforementioned main plane to form the coil 12. All the channels 14 are parallel and stacked in the direction Z.
  • each channel 14 may be independent of each other and not communicate with each other fluidically about the heat transfer fluid.
  • the figure 16 corresponds to an embodiment in which each channel 14 has the form of an open loop.
  • each channel 14 constitutes an individual oscillatory heat pipe forming an open loop.
  • the embodiment according to the figure 17 provides that each channel 14 has the form of a closed loop.
  • each channel 14 constitutes an individual oscillatory heat pipe forming a closed loop.
  • FIG. 18 corresponds to an embodiment in which this conduit has the form of an open loop while the embodiment according to the figure 19 provides that this conduit has the form of a closed loop.
  • the embodiment of the figure 20 provides that at both ends of the multiport tube, all channels 14 are interconnected by a common collector 16 to all channels. It is possible to provide that only one end of the multiport tube is equipped with such a collector 16.
  • the common collector 16 is intended to allow a parallel connection of all the channels.
  • the coil 12 is of advantageously flat shape for reasons of ease of winding and bulk, it is preferably shaped so as to be among one of the following types: with parallel turns, with spirals in a square spiral, with turns circular spiral.
  • the first example according to Figures 1 to 3 , the second example according to the Figures 4 and 5 , the fifth example according to the figure 13 , the sixth example according to the figure 14 and the seventh example according to the figure 15 correspond to a cooling system 10 in which the coil 12 is shaped so as to have turns parallel to each other, for example in the longitudinal direction X.
  • the third example according to Figures 9 and 10 corresponds to a cooling system 10 in which the coil 12 is shaped so as to have spirals in a square spiral.
  • An advantage of this configuration is the fact of being able to provide a spacing between the turns having a lower value than in the configuration with parallel turns. This makes it possible to avoid too small radii of curvature on the multiport tube, which is detrimental to the performance of the oscillating heat pipe 11.
  • the spacing between the turns is smaller, it is possible to obtain a more compact assembly because more surface is developed for convection with air.
  • the spacing between the turns known to those skilled in the art, below which it is however necessary not to go down so as not to slow down the natural convection.
  • the volume in the center of the spiral can be used to house the control electronics of the diodes 102.
  • the fourth example according to figures 11 and 12 corresponds to a cooling system 10 in which the coil 12 is shaped so as to have circular spiral turns. It has the same advantages as the example with spiral spirals. Moreover, the radius of curvature of the multiport tube being further increased, the performance is improved compared to the example with spiral spirals square.
  • the oscillating heat pipe 11 comprises a hot part at each platen in contact with the main surface 12.
  • the hot part corresponds, at each platen, to the serpentine surface 12 delimited in the plane (X, Y) by the contour of the contact surface between said plate and the main surface 12a.
  • Each cold part is formed on the other hand outside the contact areas between the (the) plate (s) and the main surface 12a.
  • the oscillating heat pipe 11 may comprise one or more cold parts.
  • the first example according to Figures 1 to 3 , the second example according to the Figures 4 and 5 , the third example according to the Figures 9 and 10 and the sixth example according to the figure 14 each corresponds to a cooling system 10 in which the oscillating heat pipe 11 comprises a single hot portion (at the contact surface between the single plate and the main surface 12a) located in a central zone of the coil 12 in the direction X and two cold parts located in lateral zones of the coil 12 offset between them in the X direction and disposed on either side of the hot part in this direction X.
  • Each hot and cold part extends over the entire width of the heat pipe. oscillating 11 in the lateral direction Y.
  • the hot part is disposed only on part of the width of the heat pipe in the lateral direction Y.
  • the oscillating heat pipe It forms loops which are in natural convection in the air so as to constitute the two cold parts.
  • the fourth example according to figures 11 and 12 corresponds to a cooling system 10 in which the oscillating heat pipe 11 comprises four hot parts (at the level of the contact surface between the four plates and the main surface 12a) angularly distributed in the plane (X, Y) around the circular spiral and four cold parts delimited two by two by the hot parts. It goes without saying that the number of plates may be different from four.
  • the fifth example according to the figure 13 corresponds to a cooling system 10 in which the oscillating heat pipe 11 comprises a single hot part (at the contact surface between the single plate and the main surface 12a) located in a lateral zone of the coil 12 in the direction X and only one cold part located in the other lateral zone of the coil 12 in the X direction.
  • Each hot and cold part extends over the entire width of the oscillating heat pipe 11 in the lateral direction Y.
  • the hot part is arranged only on part of the width of the oscillating heat pipe 11 in the lateral direction Y.
  • the seventh example according to the figure 15 corresponds to a cooling system 10 in which the oscillatory heat pipe 11 comprises three hot parts (at the contact surface between the three plates constituting the heat conduction element 13 and the main surface 12a).
  • the three hot parts extend over the entire width of the oscillating heat pipe 11 in the lateral direction Y.
  • the three plates are spaced apart from each other in the direction X so as to delimit two cold parts.
  • the two plates are spaced from the lateral edges of the coil 12 so as to delimit two additional cold parts.
  • the oscillating heat pipe 11 comprises an alternation of four cold parts and three hot parts. It goes without saying that the number of plates may be different from three.
  • each cold part of the oscillating heat pipe 11 is in thermal contact by natural or forced convection with air. It is in this way that the oscillating heat pipe 11 evacuates the heat previously collected from the components 100.
  • the cooling system 10 may comprise a device for moving air, such as a fan not shown.
  • the system 10 may optionally comprise heat exchange fins 15 arranged between the turns of the coil 12 so as to connect them in pairs.
  • heat exchange fins 15 may be arranged at least at the level of said at least one cold part, or possibly at the level of said at least one hot part. They are for example formed of aluminum.
  • the figure 6 represents the case where such heat exchange fins 15 are absent between the turns of the coil 12.
  • the heat exchange fins 15 may be corrugated, perforated, offset, louvers .... More generally, they may have any other means for improving the heat exchange coefficient with the air to increase heat transfer in natural or forced convection.
  • fins 15 increases the compactness of the cooling system by increasing the exchange surface with air.
  • the solution described above has the advantage of being inexpensive to produce and assemble, to be simple while having good performance, and regardless of the relative positions occupied by the hot and cold sources that are in heat exchange with the 10.
  • the cooling system 10 described above has good performance irrespective of the spatial orientation of the oscillatory heat pipe 11 (to which the reference (X, Y, Z) is bound) in an absolute reference.
  • the cooling performance is very good even in the case illustrated on the figures 2 and 4 where the components 100 to be cooled, constituting the heat source in thermal coupling with the hot part of the pulsed heat pipe, is spatially disposed in an absolute reference above the cold parts of the pulsed heat pipe which are thermally coupled with the convection air natural or forced.
  • this solution has at least the advantage of reducing the thermal resistance in the hot and cold parts, not requiring complex assembly and being simple to implement and to achieve, to present very good thermal performance and to benefit from a high exchange surface between the channels of the coil and the air by natural or forced convection, to require little material and to be inexpensive.
  • Each component supplied with a current of 700 mA dissipates a heat power of 1.5 W for a luminous flux of about 220 lumens.
  • the thermal power to be dissipated is 37.5 W for a light output of 5500 lumens.
  • the plate has a dimension of 40 to 90 mm along the X and Y axes (width and length) and from 2 to 10 mm along the Z axis (thickness).
  • the length of each cold part of the tube is between 20 and 200 mm and the width of each cold part of the tube is between 40 and 200 mm.
  • the tube may comprise only one channel, preferably wound plane in the X, Y plane disposed on the side of the thermal conduction element.
  • the tube is optionally stiffened by a stiffening core, in particular a solid core directed along Z on the side opposite to the thermal conduction element with respect to the single channel.

Claims (18)

  1. Kühlsystem (10) für eine Vorrichtung, die zu kühlende elektronische und/oder elektrische Komponenten (100) aufweist, wobei das System (10) ein pulsierendes Wärmerohr (11), das ein Rohr aufweist, in welchem ein Wärmeübertragungsfluid pulsierend zirkuliert, wobei das Rohr so gewunden ist, dass es eine Rohrschlange (12) bildet, und wenigstens ein Wärmeleitungselement (13), das mit den Komponenten (100) in Kontakt steht und mit einer Hauptfläche (12a) der Rohrschlange (12) in Kontakt steht, umfasst, wobei das Wärmeleitungselement (13) auf einem Teil der Hauptfläche (12a) in Kontakt steht, und zwar derart, dass das pulsierende Wärmerohr (11) wenigstens einen heißen Teil der Verdampfung des Wärmeübertragungsfluids aufweist, der sich am Kontaktbereich zwischen der Rohrschlange (12) und dem Wärmeleitungselement (13) befindet und dazu dient, Wärme von den Komponenten (100) abzuführen, und wenigstens einen kalten Teil der Kondensation des Wärmeübertragungsfluids, der sich außerhalb des Kontaktbereichs zwischen der Rohrschlange (12) und dem Wärmeleitungselement (13) befindet und dazu dient, die von dem pulsierenden Wärmerohr (11) absorbierte Wärme abzuleiten, dadurch gekennzeichnet, dass jeder kalte Teil des pulsierenden Wärmerohres (11) durch natürliche oder erzwungene Konvektion mit Luft in thermischem Kontakt steht und das pulsierende Wärmerohr (11) die Wärme, die es zuvor von den Komponenten (100) aufgenommen hat, über diesen thermischen Kontakt abführt, und dadurch, dass das Rohr ein extrudiertes Rohr mit mehreren Öffnungen ist, die parallele Kanäle (14) begrenzen.
  2. Kühlsystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Bereich der Hauptfläche (12a) der Rohrschlange (12), der mit dem Wärmeleitungselement (13) in Kontakt steht, eben und parallel zu wenigstens einer Ebene ist, in welcher das Wärmeübertragungsfluid zirkuliert.
  3. Kühlsystem (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Rohr in einer Hauptebene (X, Y) gewunden ist, und zwar derart, dass es eine ebene Rohrschlange (12) bildet, und dadurch, dass die Hauptfläche (12a) der Rohrschlange (12) eben und parallel zu der Hauptebene ist.
  4. Kühlsystem (10) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Kanäle (14) in einer Richtung (Z) verteilt sind, die zu der Hauptebene (X, Y) senkrecht ist.
  5. Kühlsystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Rohr die allgemeine Form eines Bandes aufweist, das in einer Hauptebene (X, Y) gewunden ist, um eine Rohrschlange (12) zu bilden, wobei die Kanäle (14) auf der Seite des Wärmeleitungselements angeordnet sind und/oder entlang der Breite dieses Bandes in einer Richtung (Z) verteilt sind, die zu der Hauptebene (X, Y) senkrecht ist.
  6. Kühlsystem (10) nach Anspruch 3 oder 5, dadurch gekennzeichnet, dass die ebene Rohrschlange (12) so geformt ist, dass sie von einem der folgenden Typen ist: mit parallelen Windungen, mit eine viereckige Spirale bildenden Windungen, mit eine kreisförmige Spirale bildenden Windungen.
  7. Kühlsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmeleitungselement (13) aus wenigstens einer Platine besteht, die auf der Hauptfläche (12a) der Rohrschlange (12) befestigt ist und auf der die Komponenten (100) befestigt sind.
  8. Kühlsystem (10) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Platine aus einem Material ausgebildet ist, das eine Wärmeleitfähigkeit aufweist, die höher als 150 W·m-1·K-1 ist.
  9. Kühlsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das pulsierende Wärmerohr (11) einen heißen Teil, der sich in einem mittleren Bereich der Rohrschlange (12) befindet, und zwei kalte Teile, die sich in seitlichen Bereichen der Rohrschlange (12) befinden und beiderseits des heißen Teils angeordnet sind, umfasst.
  10. Kühlsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es wenigstens an dem wenigstens einen kalten Teil Wärmetauschrippen (15) zwischen den Windungen der Rohrschlange (12) umfasst.
  11. Kühlsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in jedem der Kanäle (14) ein Bruchteil der Gesamtmenge des in dem Rohr zirkulierenden Wärmeübertragungsfluids zirkuliert.
  12. Kühlsystem (10) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Gesamtmenge des in dem Rohr zirkulierenden Wärmeübertragungsfluids in wenigstens einem der Kanäle (14), der sich vorzugsweise auf der Seite des Wärmeleitungselements befindet, zirkuliert.
  13. Kühlsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kanäle (14) voneinander unabhängig sind und nicht miteinander in Fluidverbindung stehen.
  14. Kühlsystem (10) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass sich jeder Kanal (14) in einer Ebene erstreckt, die zu einer Hauptebene (X, Y) parallel ist.
  15. Kühlsystem (10) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass mehrere der Kanäle (14) miteinander verbunden sind, insbesondere an ihren Enden, derart, dass sie eine schlangenförmige Leitung bilden, die in einer zu der Hauptfläche (12a) senkrechten Richtung (Z) gewunden ist.
  16. Kühlsystem (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mehrere oder sogar sämtliche Kanäle (14), die von dem Rohr mit mehreren Öffnungen begrenzt werden, miteinander verbunden sind, insbesondere an ihren Enden, derart, dass sie eine Leitung bilden, die vorzugsweise eben gewunden ist, auf der Seite des Wärmeleitungselements angeordnet ist und eventuell durch einen Versteifungssteg versteift ist.
  17. Vorrichtung, welche zu kühlende elektronische und/oder elektrische Komponenten (100) und wenigstens ein Kühlsystem (10) nach einem der vorhergehenden Ansprüche umfasst, das die Komponenten (100) kühlt, die mit dem Wärmeleitungselement (13) in Kontakt stehen, das mit der Hauptfläche (12a) der Rohrschlange (12) in Kontakt steht.
  18. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Komponenten (100) aus wenigstens einer elektronischen Schaltung, einem elektronischen Leistungsbauelement von der Art eines Thyristors oder eines Bipolartransistors mit isolierter Gate-Elektrode, einer Beleuchtungsvorrichtung, die Leistungsleuchtdioden umfasst, einer photovoltaischen Vorrichtung, einer Batterie, einer Brennstoffzelle ausgewählt sind.
EP14729900.2A 2013-06-18 2014-06-13 Kühlung von elektronischen und/oder elektrischen komponenten durch gepulste wärmerohre und wärmeleitungselemente Active EP3011249B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1355744A FR3007122B1 (fr) 2013-06-18 2013-06-18 Refroidissement de composants electroniques et/ou electriques par caloduc pulse et element de conduction thermique
PCT/EP2014/062334 WO2014202474A1 (fr) 2013-06-18 2014-06-13 Refroidissement de composants electroniques et/ou electriques par caloduc pulse et element de conduction thermique

Publications (2)

Publication Number Publication Date
EP3011249A1 EP3011249A1 (de) 2016-04-27
EP3011249B1 true EP3011249B1 (de) 2018-09-05

Family

ID=49237342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14729900.2A Active EP3011249B1 (de) 2013-06-18 2014-06-13 Kühlung von elektronischen und/oder elektrischen komponenten durch gepulste wärmerohre und wärmeleitungselemente

Country Status (3)

Country Link
EP (1) EP3011249B1 (de)
FR (1) FR3007122B1 (de)
WO (1) WO2014202474A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112840B2 (en) 2019-08-22 2021-09-07 Abaco Systems, Inc. Electronics chassis with oscillating heat pipe (OHP)
US11849539B2 (en) 2020-08-13 2023-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Embedded cooling systems utilizing heat pipes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2988578B1 (de) 2014-08-19 2021-05-19 ABB Schweiz AG Kühlelement
EP3153808A1 (de) * 2015-10-07 2017-04-12 ABB Technology Oy Kühlvorrichtung und herstellungsverfahren
US10277096B2 (en) 2015-11-13 2019-04-30 General Electric Company System for thermal management in electrical machines
FR3051548B1 (fr) * 2016-05-17 2018-05-25 Novaday Dispositif de refroidissement a caloduc pulse
ES2657338B2 (es) * 2016-09-02 2019-01-29 Eidopia S L Sistema opto-térmico basado en pletinas térmicas bidimensionales

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250087A (en) * 1990-11-22 1992-05-27 Actronics Kk Heat pipe
US6026890A (en) * 1995-06-29 2000-02-22 Actronics Kabushiki Kaisha Heat transfer device having metal band formed with longitudinal holes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672373B2 (en) * 2001-08-27 2004-01-06 Idalex Technologies, Inc. Method of action of the pulsating heat pipe, its construction and the devices on its base
US7345877B2 (en) * 2005-01-06 2008-03-18 The Boeing Company Cooling apparatus, system, and associated method
CN100572908C (zh) * 2006-11-17 2009-12-23 富准精密工业(深圳)有限公司 发光二极管灯具
US8919426B2 (en) * 2007-10-22 2014-12-30 The Peregrine Falcon Corporation Micro-channel pulsating heat pipe
ITTV20080145A1 (it) * 2008-11-14 2010-05-15 Uniheat Srl Sistema a tubo di calore oscillante a circuito chiuso in materiale polimerico
EP2444770B1 (de) * 2010-10-20 2020-02-12 ABB Schweiz AG Wärmetauscher nach dem Prinzip des pulsierenden Wärmerohrs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250087A (en) * 1990-11-22 1992-05-27 Actronics Kk Heat pipe
US6026890A (en) * 1995-06-29 2000-02-22 Actronics Kabushiki Kaisha Heat transfer device having metal band formed with longitudinal holes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112840B2 (en) 2019-08-22 2021-09-07 Abaco Systems, Inc. Electronics chassis with oscillating heat pipe (OHP)
US11849539B2 (en) 2020-08-13 2023-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Embedded cooling systems utilizing heat pipes

Also Published As

Publication number Publication date
WO2014202474A1 (fr) 2014-12-24
FR3007122B1 (fr) 2017-09-08
FR3007122A1 (fr) 2014-12-19
EP3011249A1 (de) 2016-04-27

Similar Documents

Publication Publication Date Title
EP3011249B1 (de) Kühlung von elektronischen und/oder elektrischen komponenten durch gepulste wärmerohre und wärmeleitungselemente
EP3355019B1 (de) Vorrichtung zur kühlung
EP3207324B1 (de) Flaches wärmerohr mit reservoirfunktion
US20100186820A1 (en) Solar electricity generation with improved efficiency
FR2690040A1 (fr) Radiateur du type à tube à évacuation de chaleur pour un dispositif électronique.
FR2855673A1 (fr) Machine electrique tournante, telle qu'un alternateur ou demarreur, notamment pour vehicule automobile
EP2874191B1 (de) Hybridvorrichtung, die ein thermoelektrisches Modul umfasst, insbesondere zur Stromerzeugung in einem Kraftfahrzeug, und Wärmetauscher
EP3548828B1 (de) Vorrichtung zur verteilung eines kältemittels im innern von rohren eines einen kältemittelkreislauf bildenden wärmetauschers
EP3017486B1 (de) Thermoelektrische vorrichtung, insbesondere zur erzeugung von elektrischem strom in einem kraftfahrzeug
WO2013156554A1 (fr) Dispositif de regulation thermique pour module de batteries
EP2591513B1 (de) Vorrichtung zur erzeugung von strom und/oder spannung auf basis eines in einer fliessenden flüssigkeit platzierten thermoelektrischen moduls
FR3075333A1 (fr) Echangeur de chaleur pour vehicule
WO2014013035A1 (fr) Dispositif de contrôle thermique
EP3246648B1 (de) Kühlvorrichtung mit pulsierendem wärmeleitrohr
FR2996066A1 (fr) Dispositif de controle thermique pour module de batterie de vehicule automobile, procede de fabrication dudit dispositif de controle et module de batterie
EP2993436B1 (de) Vorrichtung für kraftfahrzeug zur thermischen steuerung mithilfe von phasenwechselmaterial
FR3073612A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
EP2318785B1 (de) Magnetokalorischer wärmegenerator
FR2751473A1 (fr) Structure d'antenne a modules actifs
FR3129716A1 (fr) Eléments de perturbation avancés pour l’amélioration de la performance des tubes
WO2018127548A1 (fr) Dispositif de diffusion thermique
WO2023001791A1 (fr) Elements de perturbation avances pour l'amelioration de la performance des tubes de radiateurs basse temperature
FR2997787A1 (fr) Generateur nucleaire a radioisotope
FR3075334A1 (fr) Echangeur de chaleur pour vehicule a dispositif de dissipation electriquement chauffant
FR2818789A1 (fr) Dispositif de refroidissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 15/02 20060101ALI20161101BHEP

Ipc: F21V 29/71 20150101ALI20161101BHEP

Ipc: F21V 29/00 20150101ALI20161101BHEP

Ipc: F21Y 101/00 20160101AFI20161101BHEP

17Q First examination report despatched

Effective date: 20161122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014031750

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0015020000

Ipc: F21Y0115100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/10 20160101AFI20180227BHEP

Ipc: F21V 29/71 20150101ALI20180227BHEP

Ipc: F21V 29/00 20150101ALI20180227BHEP

Ipc: F28D 15/02 20060101ALI20180227BHEP

INTG Intention to grant announced

Effective date: 20180319

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1038244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014031750

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS AND SAVOYE SARL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1038244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014031750

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140613

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 10

Ref country code: DE

Payment date: 20230613

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 10

Ref country code: CH

Payment date: 20230702

Year of fee payment: 10