EP3011074B1 - Multi-stage process for electrophoretic dip painting - Google Patents

Multi-stage process for electrophoretic dip painting Download PDF

Info

Publication number
EP3011074B1
EP3011074B1 EP14725124.3A EP14725124A EP3011074B1 EP 3011074 B1 EP3011074 B1 EP 3011074B1 EP 14725124 A EP14725124 A EP 14725124A EP 3011074 B1 EP3011074 B1 EP 3011074B1
Authority
EP
European Patent Office
Prior art keywords
ppm
rinse
aqueous composition
conversion treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14725124.3A
Other languages
German (de)
French (fr)
Other versions
EP3011074A1 (en
Inventor
Nils BONGARTZ
Kirsten Agnes LILL
Ralf POSNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to EP14725124.3A priority Critical patent/EP3011074B1/en
Publication of EP3011074A1 publication Critical patent/EP3011074A1/en
Application granted granted Critical
Publication of EP3011074B1 publication Critical patent/EP3011074B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment

Definitions

  • the present invention is a multi-stage process for corrosion-protective coating of metallic components, in which a conversion treatment is followed by a reaction rinse, before an electrodeposition coating of the component is carried out.
  • the conversion treatment initially involves the deposition of an inorganic thin layer containing the elements Zr and / or Ti.
  • the metallic component is then aftertreated with a reaction rinse according to claim 1 and subsequently electrocoated.
  • the corrosion-protective coating of metallic components using a multistage process consisting of conversion treatment and subsequent electrodeposition coating has been used for decades. From an economic point of view and due to ecological concerns, the automotive industry is endeavoring to replace the technically established conversion treatment by means of zinc phosphating by a resource-sparing and preferably equivalent pretreatment.
  • a rather lower electrical sheet resistance than the crystalline coatings of zinc phosphating are provided at the layer thickness of at least a few micrometers.
  • a high electrical sheet resistance is advantageous for the electrodeposition coating used in the established methods for corrosion-protective coating of automobile bodies, since a high electrical resistance substantially improves the "creeping in" of the dip coating in cavity structures of the metallic component to be coated.
  • This typical coating behavior of electrodeposition coating is referred to as "throw-over behavior", since it describes the encirclement of the electrodeposition coating into areas of the component with a low electric field density.
  • the EP 1 455 002 A1 discloses in a related context a conversion treatment by means of a chromium-free acidic aqueous composition containing fluorocomplexes of Zr and / or Ti, wherein after the conversion treatment and before the electrodeposition coating various post-treatment steps are proposed to reduce the proportion of water-soluble fluorides in the conversion layer and thus the corrosion protection to improve after the electrocoating.
  • an effective post-treatment step among others, an intermediate sink with an alkaline aqueous solution is proposed.
  • an intermediate sink it is also possible for an intermediate sink to be carried out before the electrodeposition coating and after the conversion treatment, in which case aqueous solutions containing water-soluble compounds of the elements Co, Ni, Sn, Cu, Ti and Zr or water-soluble or water-dispersible organic polymers can be used.
  • aqueous solutions containing water-soluble compounds of the elements Co, Ni, Sn, Cu, Ti and Zr or water-soluble or water-dispersible organic polymers can be used.
  • the DE102012219296 A1 discloses a multi-stage process for corrosion-protective coating of metallic surfaces, wherein before the electrodeposition coating and after the conversion treatment, a reaction rinse takes place, for which purpose aqueous solutions containing either fatty alcohol polyglycol ether or alkylamine can be used.
  • the object is to optimize the known process sequence of corrosion-protective pretreatment and subsequent electrodeposition, on the one hand realizes savings in the coating material in the electrodeposition coating and on the other hand, components with more complex geometries can be satisfactorily electrocoated.
  • This object is achieved by a multi-stage process for the corrosion-protective coating of the surfaces of a metallic component, in which the surface of the metallic component is subjected to a conversion treatment by contacting with an acidic aqueous composition containing water-soluble compounds of the elements zirconium and / or titanium, as a result of which a coating of zirconium and / or titanium of at least 10 mg / m 2 is produced directly on the surface of the metallic component, this conversion treatment with or without an intermediate rinsing and / or drying step following a reaction rinse, the reaction rinse being replaced by In -Contacting the conversion-treated surface of the metallic component with an aqueous composition according to claim 1 is carried out, and then the thus treated surface of the metallic component with or without intermediate rinsing and / or drying Schri tt is electrocoated.
  • Conversion treatment in the context of the present invention is any wet-chemical pretreatment of a metal surface, as a result of which metal elements of wet-chemical pretreatment dissolved in water become analytically measurable constituents of such a surface coating which does not represent a substantially natural oxide layer of the conversion-treated metal.
  • Surface-active substances in the context of the present invention are organic compounds composed of a hydrophilic and at least a lipophilic molecular constituent or of a lipophilic and at least one hydrophilic molecular constituent, wherein the molecular weight of the surfactant does not exceed 2000 g / mol.
  • Electroating in the context of the present invention is any deposition of an organic coating from an aqueous phase containing the paint by applying an external voltage source to the metallic component.
  • a "rinsing step" in the sense of the present invention denotes a process which is intended solely to remove as far as possible active components from an immediately preceding wet-chemical treatment step, which are dissolved in a wet film adhering to the component, by means of a rinsing solution from the surface of the component. without replacing the active components to be removed by others.
  • Active components in this context are constituents contained in a liquid phase which cause an analytically detectable coating of the metal surfaces of the component with elemental constituents of the active components.
  • a "drying step” in the context of the present invention refers to a process in which the surfaces of the metallic component having a wet film are to be dried with the aid of technical measures.
  • the film coating of zirconium and / or titanium can be determined ( ⁇ ⁇ 1 ⁇ Scm -1) and subsequent drying of the part immediately after the conversion treatment by X-ray fluorescence analysis method (RFA) after rinsing with deionized water.
  • RFA X-ray fluorescence analysis method
  • the metallic components which have been pretreated with corrosion protection and posttreated in the reaction rinse in the electrodeposition coating give a smaller layer thickness of the dipping varnish or, if the dipping varnish layer thickness remains the same, an improved throwing behavior. Accordingly, a comparatively resource-conserving mode of operation in the electrodeposition coating is ensured and the electrodeposition coating of complex metallic components with cavity-like structures is improved.
  • the “pH” in the present invention refers to the negative decadic logarithm of the activity of the hydronium ions at 25 ° C.
  • the aqueous composition of the reaction rinse therefore contains less than 1 g / kg, more preferably less than 0.1 g / kg, particularly preferably less than 0.01 g / kg of phosphates dissolved in water, calculated as PO 4 .
  • the layer-forming active components which cause worsening of the wraparound also include water-soluble compounds of certain metal elements, which usually cause a conversion of the metal surface. Accordingly, in a further preferred embodiment of the process according to the invention, it is preferred that the aqueous composition of the reaction rinse contains less than 20 ppm, particularly preferably less than 10 ppm, particularly preferably less than 1 ppm, of water-soluble compounds of subgroups IIIB, IVB, VIB and / or or of the element contains vanadium based on the respective element, wherein preferably less than 20 ppm of these water-soluble compounds are contained in total based on said elements.
  • silanes which are present in the reaction rinse of the process according to the invention preferably in an amount of less than 0.005 g / l, more preferably less than 0.002 g / l, particularly preferably less than 0.001 g / l are calculated based on the corresponding silanols.
  • silanes in the context of this invention include silanes, silanols, siloxanes, polysiloxanes and their reaction products or derivatives. The reaction products are in particular condensation and hydrolysis products in the aqueous medium to understand.
  • the aqueous composition of the reaction solution is less than 50 ppm, preferably less than 10 ppm, more preferably less than 5 ppm of water-soluble compounds of the elements Co, Ni, Cu and / or Sn contains on the respective element, wherein preferably less than 50 ppm in total of these water-soluble compounds are contained based on said elements.
  • the conversion treatment preceding the reaction rinse takes place in a method which is preferred according to the invention with such acidic aqueous compositions which contain fluoro acids of the elements zirconium and / or titanium and their salts and hydrolysis products.
  • Hydrolysis products are, for example, those compounds in which fluoride ions on the central atom are partially substituted by hydroxide ions.
  • the acidic conversion conversion composition in such processes according to the invention in which the conversion treatment is effected by spraying has a total of less than 50 ppm, more preferably less than 10 ppm, most preferably less than 1 ppm of copper dissolved in water. Contains ions.
  • the molar ratio of the total proportion of water-soluble compounds of zirconium and / or titanium based on the respective elements zirconium and titanium to the total content of water-soluble compounds of the elements Co, Ni, Cu and / or Sn based on the respective elements Co, Ni, Cu and / or Sn in the conversion bath is preferably not less than 0.6, more preferably not less than 1.0.
  • the presence in the reaction rinse can be disadvantageous for the process according to the invention. Accordingly, preference is given to those processes in which the introduction of silanes into the reaction rinse is largely prevented. This can be done, for example, by the acidic composition not being a silane-based composition in the conversion treatment.
  • the acidic composition in the conversion treatment contains a total of less than 0.005 g / l, more preferably less than 0.002 g / l, particularly preferably less than 0.001 g / l of silanes calculated on the basis of the corresponding silanols.
  • the type of application of both the acidic aqueous composition in the conversion treatment and the reaction rinse is freely selectable under conventional application methods.
  • the aqueous compositions of the method according to the invention can be brought into contact with the metallic component either by spraying or by immersion.
  • a rinsing and / or drying step can be intermediately interposed between the reaction rinse and the subsequent electrocoating.
  • the advantage of the method according to the invention is that the nonionic surfactants contained in the reaction rinse in a variant preferred according to the invention exert no adverse effect on the electrodeposition coating, so that an intermediate rinsing step for removing the surface-active substances in the wet film adhering to the component is dispensed with prior to electrocoating can.
  • the metallic component can therefore be electrocoated after the reaction rinse without intervening rinsing step.
  • drying of the component immediately after the reaction rinse or drying of the component immediately after a rinsing step subsequent to the reaction rinse is not required for an improved reattachment behavior in the subsequent dip coating, so that the present process is completely "complete" in its individual steps.
  • wet-on-wet "- ie without gewillkürten drying step - can be performed. Accordingly, it is preferred according to the invention if, after the reaction rinse and before the electrodeposition coating, no drying step takes place in which the drying takes place above a temperature of 40 ° C., and preferably no drying step takes place at all.
  • the corrosion-protected coated metallic component in the method according to the invention is preferably selected from aluminum, zinc, iron, steel and / or galvanized steel.
  • the method according to the invention is particularly suitable for improving the encircling of an immersion paint on surfaces of steel and / or galvanized steel.
  • the conversion bath contained 270 ppm H 2 ZrF 6 , 60 ppm ZrO (NO 3 ) 2 and 300 ppm HNO 3 .
  • the pH was adjusted to pH 4.5 by addition of aqueous ammoniacal solution.
  • the conversion treatment was carried out at 40 ° C bath temperature for 60 seconds by spraying at a pressure of 1 bar.
  • reaction rinse was carried out with a solution of 750 ppm 2,4,7,9-tetramethyl-5-decyne-4,7-diol in deionized water for 60 seconds at 20 ° C by immersion.
  • reaction rinse was carried out with 200 ppm of butyl end-capped 4- to 5-tuply ethoxylated octanol (C8, 4-5 EO, butyl, HLB value 14) in deionized water for 60 seconds at 20 ° C. by immersion.
  • reaction rinse was carried out with a solution of 20 ppm butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl, HLB value 13.3-15) in deionised water for 60 seconds at 20 ° C by spraying at an injection pressure of 1 bar.
  • the reaction rinse was carried out for 60 seconds at 20 ° C. by spraying at an injection pressure of 1 bar with a solution of 100 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl; HLB value 13, 3-15) and 5 wt .-% of a buffer system consisting of 0.2 mol / L Na 2 CO 3 and 0.2 mol / L NaHCO 3 in deionized water (pH 9.7).
  • reaction rinse was carried out for 60 seconds at 20 ° C. by spraying at an injection pressure of 1 bar with a solution of 100 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl, HLB value 13, 3-15) at a pH of 7.8.
  • the conversion bath contained 340 ppm H 2 ZrF 6 , 15 ppm Cu (NO 3 ) 2 and 4 ppm HF.
  • the pH was adjusted to pH 4.0 by addition of aqueous ammoniacal solution.
  • the conversion treatment was carried out at 20 ° C bath temperature for 120 seconds in the dipping process.
  • reaction rinse was carried out with a solution of 1000 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10EO, butyl, HLB value 13.3-15) in deionised water for 120 seconds at 20 ° C immersion.
  • reaction sink effected with a solution of 67 ppm butyl-terminally capped 10-tuply ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl; HLB value from 13.3 to 15) and 27 ppm H 2 ZrF 6 in demineralized water for 60 seconds at 20 ° C by spraying at an injection pressure of 1 bar.
  • reaction rinse was carried out with a solution of 1000 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl, HLB value 13.3-15) in demineralized water for 60 seconds at 20 ° C by immersion.
  • Table 1 summarizes the values for the electrodeposition paint thickness and the throw-over for the exemplary embodiments described above.
  • a comparison of Examples B2 and B4 illustrates that the longer-chain end-capped ethoxylated fatty alcohol (B4) gives the best results and in particular improves the entanglement behavior surprisingly.
  • the effect of the nonionic surfactants is also strictly selective for the previous conversion treatment as shown in Comparative Example VB1, in which the reaction rinse of an iron-phosphated sheet metal surface does not lead to any improvement in terms of whipping and dip coating thickness.
  • the composition of the reaction rinse beyond the nonionic surfactant as the active component is also decisive for the success of the process according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

Gegenstand der vorliegenden Erfindung ist ein mehrstufiges Verfahren zur korrosionsschützenden Beschichtung von metallischen Bauteilen, bei dem auf eine Konversionsbehandlung eine Reaktionsspüle folgt, bevor eine Elektrotauchlackierung des Bauteils durchgeführt wird. Die Konversionsbehandlung beinhaltet dabei zunächst die Abscheidung einer anorganischen Dünnschicht enthaltend die Elemente Zr und/oder Ti. Das metallische Bauteil wird sodann mit einer Reaktionsspüle gemäß Anspruch 1 nachbehandelt und anschließend elektrotauchlackiert.
Die korrosionsschützende Beschichtung metallischer Bauteile über ein mehrstufiges Verfahren bestehend aus Konversionsbehandlung und nachfolgender Elektrotauchlackierung ist ein mittlerweile über Jahrzehnte praktiziertes Verfahren. Unter ökonomischen Gesichtspunkten und aufgrund ökologischer Bedenken ist die Automobilindustrie bestrebt, die technisch etablierte Konversionsbehandlung mittels der Zinkphosphatierung durch eine ressourcenschonende und möglichst äquivalent wirkende Vorbehandlung zu ersetzen. Im Gegensatz zur Zinkphosphatierung liefern alternative Konzepte zur Konversionsbehandlung häufig amorphe Beschichtungen mit Schichtdicken im Nanometerbereich, um den Wunsch nach einem stofflich weniger extensiven Vorbehandlungsverfahren gerecht zu werden.
Aus der WO 07/065645 ist ein derartiges ressourcenschonendes Verfahren zur korrosionsschützenden Beschichtung von metallischen Substraten wie Stahl und verzinktem Stahl umfassend die Verfahrensschritte der Konversionsbehandlung und nachträglichen Tauchlackierung bekannt, wobei zwischen der Konversionsbehandlung und der Elektrotauchlackierung optional ein Spül- und/oder Trocknungsschritt erfolgt. Gemäß dieser Lehre ist ein "Nass-in-Nass" Verfahren bevorzugt, bei dem ein Trocknungsschritt unterbleibt und damit die mit einem Nassfilm versehenen metallischen Substrate unmittelbar elektrotauchlackiert werden. Die Konversionsbehandlung erfolgt dabei im Wesentlichen durch Verwendung von chromfreien sauren wässrigen Zusammensetzungen auf Basis von Fluorokomplexen der Elemente Zr und/oder Ti.
The present invention is a multi-stage process for corrosion-protective coating of metallic components, in which a conversion treatment is followed by a reaction rinse, before an electrodeposition coating of the component is carried out. In this case, the conversion treatment initially involves the deposition of an inorganic thin layer containing the elements Zr and / or Ti. The metallic component is then aftertreated with a reaction rinse according to claim 1 and subsequently electrocoated.
The corrosion-protective coating of metallic components using a multistage process consisting of conversion treatment and subsequent electrodeposition coating has been used for decades. From an economic point of view and due to ecological concerns, the automotive industry is endeavoring to replace the technically established conversion treatment by means of zinc phosphating by a resource-sparing and preferably equivalent pretreatment. In contrast to zinc phosphating, alternative concepts for conversion treatment often provide amorphous coatings with layer thicknesses in the nanometer range, in order to meet the desire for a less extensive pretreatment process.
From the WO 07/065645 is such a resource-saving method for corrosion-protective coating of metallic substrates such as steel and galvanized steel comprising the steps of conversion treatment and subsequent dip coating known, between the conversion treatment and the electrodeposition coating optionally a rinsing and / or drying step takes place. According to this teaching, a "wet-on-wet" process is preferred in which a drying step is omitted and thus the wet-coated metallic substrates are immediately electrocoated. The conversion treatment is carried out essentially by using chromium-free acidic aqueous compositions based on fluorocomplexes of the elements Zr and / or Ti.

Naturgemäß besitzen dünne Konversionsschichten, wie sie beispielsweise in der WO 07/065645 erzielt werden, einen eher geringeren elektrischen Schichtwiderstand als die kristalllinen Beschichtungen der Zinkphosphatierung, bei der Schichtdicken von immerhin wenigen Mikrometern bereitgestellt werden. Ein hoher elektrischer Schichtwiderstand ist jedoch vorteilhaft für die in den etablierten Verfahren zur korrosionsschützenden Beschichtung von Automobilkarosserien eingesetzte Elektrotauchlackierung, da ein hoher elektrischer Widerstand das "Hineinkriechen" der Tauchlackbeschichtung in Hohlraumstrukturen des zu beschichteten metallischen Bauteils wesentlich verbessert. Dieses typische Beschichtungsverhalten der Elektrotauchlackierung bezeichnet man als "Umgriffsverhalten", da es den Umgriff des Elektrotauchlackes in Bereiche des Bauteils mit einer geringen elektrischen Feldliniendichte beschreibt. Die Automobilindustrie ist dabei bestrebt, das Umgriffsverhalten zu optimieren, so dass entweder bei gleicher Tauchlackdicke im Außenbereich einer Karosserie ein tieferes Eindringen des Tauchlackes in elektrisch abgeschirmte Bereiche der Automobilkarosserie ermöglicht oder bei gleichem Umgriff eine geringere Tauchlackdicke im Außenbereich der Karosserie erforderlich wird.
Es besteht demnach ein Bedarf, das zuvor beschriebene Verfahren zur korrosionsschützenden Beschichtung dahingehend zu optimieren, dass ein nahezu äquivalentes Umgriffsverhalten in der Elektrotauchlackierung resultiert, ohne auf Konversionsbehandlungen nach der Art der Phosphatierung zurückgreifen zu müssen.
Naturally, have thin conversion layers, as for example in the WO 07/065645 be achieved, a rather lower electrical sheet resistance than the crystalline coatings of zinc phosphating, are provided at the layer thickness of at least a few micrometers. However, a high electrical sheet resistance is advantageous for the electrodeposition coating used in the established methods for corrosion-protective coating of automobile bodies, since a high electrical resistance substantially improves the "creeping in" of the dip coating in cavity structures of the metallic component to be coated. This typical coating behavior of electrodeposition coating is referred to as "throw-over behavior", since it describes the encirclement of the electrodeposition coating into areas of the component with a low electric field density. The automotive industry strives to optimize the Umgriffsverhalten, so that either with the same dip paint thickness in the exterior of a body deeper penetration of the dip in electrically shielded areas of the car body allows or with the same Umgriff a lower dip paint thickness in the outer region of the body is required.
Accordingly, there is a need to optimize the anticorrosive coating process described above to provide near equivalent wetting performance in electrodeposition painting without resorting to phosphating type conversion treatments.

Die EP 1 455 002 A1 offenbart in einem verwandten Zusammenhang eine Konversionsbehandlung mittels einer chromfreien sauren wässrigen Zusammensetzung enthaltend Fluorokomplexe von Zr und/oder Ti, wobei nach der Konversionsbehandlung und vor der Elektrotauchlackierung verschiedenen Nachbehandlungsschritte vorgeschlagen werden, um den Anteil der wasserlöslichen Fluoride in der Konversionsschicht zu reduzieren und damit den Korrosionsschutz nach erfolgter Elektrotauchlackierung zu verbessern. Als wirksamer Nachbehandlungsschritt wird unter anderen eine Zwischenspüle mit einer alkalischen wässrigen Lösung vorgeschlagen. Allerdings liegt der Fokus dieses Standes der Technik darin, die korrosive Unterwanderung des beschichteten metallischen Bauteils zu verbessern, und weniger darauf, die Konversionsbehandlung mittels einer chromfreien sauren wässrigen Zusammensetzung enthaltend Fluorokomplexe der Elemente Zr und/oder Ti mit den Erfordernissen einer ebenfalls ressourcenschonenden oder optimierten Eletrotauchlackierung in Balance zu bringen.The EP 1 455 002 A1 discloses in a related context a conversion treatment by means of a chromium-free acidic aqueous composition containing fluorocomplexes of Zr and / or Ti, wherein after the conversion treatment and before the electrodeposition coating various post-treatment steps are proposed to reduce the proportion of water-soluble fluorides in the conversion layer and thus the corrosion protection to improve after the electrocoating. As an effective post-treatment step, among others, an intermediate sink with an alkaline aqueous solution is proposed. However, the focus of this prior art is to improve the corrosive infiltration of the coated metallic component, and less so, the conversion treatment by means of a chromium-free acidic aqueous composition containing fluorocomplexes of the elements Zr and / or Ti with the requirements of a resource-saving or optimized Eletrotauchlackierung to bring in balance.

Gemäß der WO 07/065645 kann vor der Elektrotauchlackierung und nach der Konversionsbehandlung ebenfalls eine Zwischenspüle erfolgen, wobei hierfür wässrige Lösungen enthaltend wasserlösliche Verbindungen der Elemente Co, Ni, Sn, Cu, Ti und Zr oder wasserlösliche bzw. wasserdispergierbare organische Polymere eingesetzt werden können. Die DE102012219296 A1 offenbart ein mehrstufiges Verfahren zur korrosionsschützenden Beschichtung von metallischen Oberflächen, wobei vor der Elektrotauchlackierung und nach der Konversionsbehandlung eine Reaktionspüle erfolgt, wobei hierfür wässrige Lösungen enthaltend entweder Fettalkoholpolyglykolether oder Alkylamin eingesetzt werden können. Vorliegend besteht im Lichte dieses Standes der Technik die Aufgabe darin, die bekannte Verfahrensabfolge aus korrosionsschützender Vorbehandlung und anschließender Elektrotauchlackierung dahingehend zu optimieren, dass einerseits Ersparnisse hinsichtlich des Beschichtungsmaterials in der Elektrotauchlackierung realisiert und andererseits Bauteile mit komplexeren Geometrien zufrieden stellend elektrotauchlackiert werden können.
Diese Aufgabe wird gelöst durch ein mehrstufiges Verfahren zur korrosionsschützenden Beschichtung der Oberflächen eines metallischen Bauteils, bei dem die Oberfläche des metallischen Bauteils einer Konversionsbehandlung durch In-Kontakt-Bringen mit einer sauren wässrigen Zusammensetzung enthaltend wasserlösliche Verbindungen der Elemente Zirkon und/oder Titan unterzogen wird, in deren Folge eine Schichtauflage an Zirkon und/oder Titan von zumindest 10 mg/m2 unmittelbar auf der Oberfläche des metallischen Bauteils erzeugt wird, wobei dieser Konversionsbehandlung mit oder ohne dazwischenliegendem Spül- und/oder Trocknungsschritt eine Reaktionsspüle nachfolgt, wobei die Reaktionsspüle durch In-Kontakt-Bringen der konversionsbehandelten Oberfläche des metallischen Bauteils mit einer wässrigen Zusammensetzung gemäß Anspruch 1 erfolgt, und anschließend die derart behandelte Oberfläche des metallischen Bauteils mit oder ohne dazwischenliegendem Spül- und/oder Trocknungsschritt elektrotauchlackiert wird.
"Konversionsbehandlung" im Sinne der vorliegenden Erfindung ist jede nasschemische Vorbehandlung einer Metalloberfläche, in deren Folge in Wasser gelöste Metallelemente der nasschemischen Vorbehandlung analytisch messbare Bestandteile einer solchen Oberflächenbeschichtung werden, die keine im Wesentlichen natürliche Oxidschicht des konversionsbehandelten Metalls darstellt. "Oberflächenaktive Substanzen" im Sinne der vorliegenden Erfindung sind organische Verbindungen zusammengesetzt aus einem hydrophilen und mindestens einem lipophilen Molekülbestandteil oder aus einem lipophilen und mindestens einem hydrophilen Molekülbestandteil, wobei das Molekulargewicht der oberflächenaktiven Substanz 2000 g/mol nicht überschreitet.
According to the WO 07/065645 It is also possible for an intermediate sink to be carried out before the electrodeposition coating and after the conversion treatment, in which case aqueous solutions containing water-soluble compounds of the elements Co, Ni, Sn, Cu, Ti and Zr or water-soluble or water-dispersible organic polymers can be used. The DE102012219296 A1 discloses a multi-stage process for corrosion-protective coating of metallic surfaces, wherein before the electrodeposition coating and after the conversion treatment, a reaction rinse takes place, for which purpose aqueous solutions containing either fatty alcohol polyglycol ether or alkylamine can be used. In the present case, in the light of this state of the art, the object is to optimize the known process sequence of corrosion-protective pretreatment and subsequent electrodeposition, on the one hand realizes savings in the coating material in the electrodeposition coating and on the other hand, components with more complex geometries can be satisfactorily electrocoated.
This object is achieved by a multi-stage process for the corrosion-protective coating of the surfaces of a metallic component, in which the surface of the metallic component is subjected to a conversion treatment by contacting with an acidic aqueous composition containing water-soluble compounds of the elements zirconium and / or titanium, as a result of which a coating of zirconium and / or titanium of at least 10 mg / m 2 is produced directly on the surface of the metallic component, this conversion treatment with or without an intermediate rinsing and / or drying step following a reaction rinse, the reaction rinse being replaced by In -Contacting the conversion-treated surface of the metallic component with an aqueous composition according to claim 1 is carried out, and then the thus treated surface of the metallic component with or without intermediate rinsing and / or drying Schri tt is electrocoated.
"Conversion treatment" in the context of the present invention is any wet-chemical pretreatment of a metal surface, as a result of which metal elements of wet-chemical pretreatment dissolved in water become analytically measurable constituents of such a surface coating which does not represent a substantially natural oxide layer of the conversion-treated metal. "Surface-active substances" in the context of the present invention are organic compounds composed of a hydrophilic and at least a lipophilic molecular constituent or of a lipophilic and at least one hydrophilic molecular constituent, wherein the molecular weight of the surfactant does not exceed 2000 g / mol.

"Elektrotauchlackierung" im Sinne der vorliegenden Erfindung ist jede durch Anlegen einer äußeren Spannungsquelle an das metallische Bauteil herbeigeführte Abscheidung einer organischen Beschichtung aus einer wässrigen, den Lack enthaltenden Phase."Electrocoating" in the context of the present invention is any deposition of an organic coating from an aqueous phase containing the paint by applying an external voltage source to the metallic component.

Ein "Spülschritt" im Sinne der vorliegenden Erfindung bezeichnet einen Vorgang, der allein dazu bestimmt ist, Aktivkomponenten aus einem unmittelbar vorausgegangenem nasschemischen Behandlungsschritt, die in einem dem Bauteil anhaftenden Nassfilm gelöst vorliegen, mittels einer Spüllösung von der Oberfläche des Bauteils möglichst weitgehend zu entfernen, ohne dass die zu entfernenden Aktivkomponenten durch andere ersetzt werden. Aktivkomponenten in diesem Zusammenhang sind einer Flüssigphase enthaltene Bestandteile, die eine analytisch nachweisbare Belegung der Metalloberflächen des Bauteils mit elementaren Bestandteilen der Aktivkomponenten bewirken.A "rinsing step" in the sense of the present invention denotes a process which is intended solely to remove as far as possible active components from an immediately preceding wet-chemical treatment step, which are dissolved in a wet film adhering to the component, by means of a rinsing solution from the surface of the component. without replacing the active components to be removed by others. Active components in this context are constituents contained in a liquid phase which cause an analytically detectable coating of the metal surfaces of the component with elemental constituents of the active components.

Ein "Trocknungsschritt" im Sinne der vorliegenden Erfindung bezeichnet einen Vorgang, bei dem die einen Nassfilm aufweisenden Oberflächen des metallischen Bauteils unter Zuhilfenahme technischer Maßnahmen getrocknet werden sollen.A "drying step" in the context of the present invention refers to a process in which the surfaces of the metallic component having a wet film are to be dried with the aid of technical measures.

Die Schichtauflage an Zirkon und/oder Titan kann unmittelbar im Anschluss an die Konversionsbehandlung mittels Röntgenfluoreszenzanalysenmethode (RFA) nach Spülen mit entionisiertem Wasser (κ < 1µScm-1) und anschließender Trocknung des Bauteils bestimmt werden.The film coating of zirconium and / or titanium can be determined (κ <1μScm -1) and subsequent drying of the part immediately after the conversion treatment by X-ray fluorescence analysis method (RFA) after rinsing with deionized water.

Im erfindungsgemäßen Verfahren bewirken die korrosionsschützend vorbehandelten und in der Reaktionsspüle nachbehandelten metallischen Bauteile in der Elektrotauchlackierung bei gleich bleibendem Umgriff eine geringere Schichtdicke des Tauchlacks bzw. bei gleich bleibender Tauchlackschichtdicke ein verbessertes Umgriffsverhalten. Demnach wird eine vergleichsweise ressourcenschonende Betriebsweise in der Elektrotauchlackierung gewährleistet und die Elektrotauchlackierung komplexer metallischer Bauteile mit hohlraumartigen Strukturen verbessert.In the process according to the invention, the metallic components which have been pretreated with corrosion protection and posttreated in the reaction rinse in the electrodeposition coating give a smaller layer thickness of the dipping varnish or, if the dipping varnish layer thickness remains the same, an improved throwing behavior. Accordingly, a comparatively resource-conserving mode of operation in the electrodeposition coating is ensured and the electrodeposition coating of complex metallic components with cavity-like structures is improved.

Der Anteil an oberflächenaktiven Substanzen gemäß Anspruch 1 beträgt in der Reaktionsspüle vorzugsweise zumindest 20 ppm, besonders bevorzugt zumindest 50 ppm. Werden diese bevorzugten Mindestmengen an oberflächenaktiven Substanzen unterschritten tritt eine signifikante Abnahme des Umgriffs bei ansonsten identischen Parametern in der Elektrotauchlackierung auf, die für bestimmte Anwendungen und Bauteile mit komplexer Geometrie nicht mehr akzeptabel ist. Oberhalb von 1 Gew.-% an oberflächenaktiven Substanzen kann eine weitere Verbesserung des Umgriffs regelmäßig nicht beobachtet werden, so dass aus Gründen der Wirtschaftlichkeit vorzugsweise nicht mehr als 1 Gew.-% an oberflächenaktiven Substanzen in der Reaktionsspüle des erfindungsgemäßen Verfahrens enthalten sind.
Der Terminus "ppm" steht für "parts per million" und bezieht sich im Rahmen der vorliegenden Erfindung auf die Masse der jeweiligen Zusammensetzung, so dass 1 ppm einem Anteil von 1 mg der jeweiligen Substanz pro Kilogramm der jeweiligen Zusammensetzung entspricht. Die Verträglichkeit der oberflächenaktiven Substanzen gemäß Anspruch 1 mit Badbestandteilen der Elektrotauchlackierung ist zu berücksichtigen, da das Überschleppen von Bestandteilen aus der Reaktionsspüle in die Elektrotauchlackierung insbesondere bei der korrosionsschützenden Beschichtung stark schöpfender Bauteile nicht gänzlich verhindert werden kann.
Weiterhin hat sich herausgestellt, dass Niotenside als Bestandteile der Reaktionsspüle das Umgriffsverhalten des Tauchlackes vergleichsweise stärker positiv beeinflussen. In diesem Zusammenhang sind allgemein solche Niotenside bevorzugt, deren HLB-Wert (Hydrophilic-Lipophilic-Balance) zumindest 8, besonders bevorzugt zumindest 10, insbesondere bevorzugt zumindest 12 ist, jedoch besonders bevorzugt nicht mehr als 18, insbesondere bevorzugt nicht mehr als 16 beträgt.
Der HLB-Wert dient zur quantitativen Klassifizierung von Niotensiden entsprechend ihrer inneren molekularen Struktur, wobei eine Aufgliederung des Niotensids in eine lipophile und eine hydrophile Gruppe vorgenommen wird. Der HLB-Wert gemäß vorliegender Erfindung berechnet sich nach folgender Formel und kann auf der willkürlichen Skala Werte von Null bis 20 annehmen: HLB = 20 1 M l / M

Figure imgb0001
mit

Ml:
Molmasse der lypophilen Gruppe des Niotensids
M:
Molmasse des Niotensids
The proportion of surface-active substances according to claim 1 in the reaction rinse is preferably at least 20 ppm, more preferably at least 50 ppm. If these preferred minimum levels of surfactants are undercut, there will be a significant decrease in wrap-around with otherwise identical electrocoating parameters that is no longer acceptable for certain complex geometry applications and components. Above 1 wt .-% of surface-active substances, a further improvement of Umgriffs regularly not observed, so that for reasons of economy preferably not more than 1 wt .-% of surface-active substances in the reaction rinse of the inventive method are included.
The term "ppm" stands for "parts per million" and in the context of the present invention refers to the mass of the respective composition so that 1 ppm corresponds to a proportion of 1 mg of the respective substance per kilogram of the respective composition. The compatibility of the surface-active substances according to claim 1 with bath constituents of the electrocoating is to be considered because the towing of components from the reaction rinse in the electrocoating can not be completely prevented, especially in the anti-corrosive coating strong-scooping components.
Furthermore, it has been found that nonionic surfactants, as constituents of the reaction rinse, have a comparatively greater positive influence on the wetting behavior of the dip paint. In this context, preference is generally given to those nonionic surfactants whose HLB value (hydrophilic-lipophilic balance) is at least 8, more preferably at least 10, particularly preferably at least 12, but is particularly preferably not more than 18, particularly preferably not more than 16.
The HLB value is used for the quantitative classification of nonionic surfactants according to their internal molecular structure, with a breakdown of the nonionic surfactant into a lipophilic and a hydrophilic group. The HLB value according to The present invention is calculated according to the following formula and can assume values of zero to 20 on the arbitrary scale: HLB = 20 1 - M l / M
Figure imgb0001
With
M l :
Molar mass of the hypophilic group of nonionic surfactant
M:
Molar mass of the nonionic surfactant

Stofflich sind solche Niotenside in der Reaktionsspüle des Verfahrens gemäß Anspruch 1 ausgewählt aus alkoxylierten Alkylalkoholen, besonders bevorzugt aus alkoxylierten Alkylalkoholen und alkoxylierten Fettaminen. Die alkoxylierten Alkylalkohole und/oder alkoxylierten Fettamine sind dabei vorzugsweise endgruppenverschlossen, besonders bevorzugt mit einer Alkyl-Gruppe, die wiederum vorzugsweise nicht mehr als 8 Kohlenstoffatome, besonders bevorzugt nicht mehr als 4 Kohlenstoffatome aufweist.
Besonders bevorzugt sind solche alkoxylierten Alkylalkohole und/oder alkoxylierten Fettamine als Niotenside in der Reaktionsspüle des erfindungsgemäßen Verfahrens, die ethoxyliert und/oder propoxyliert vorliegen, wobei die Anzahl der Alkylenoxid-Einheiten vorzugsweise insgesamt nicht größer als 20, besonders bevorzugt nicht größer als 16 ist, aber besonders bevorzugt zumindest 4, insbesondere bevorzugt zumindest 8 beträgt.
Hinsichtlich des lipophilen Bestandteils der zuvor genannten Niotenside sind solche alkoxylierten Alkylalkohole und/oder alkoxylierten Fettamine als Niotenside in der Reaktionsspüle des erfindungsgemäßen Verfahrens bevorzugt, deren Alkyl-Gruppe gesättigt und vorzugsweise unverzweigt ist, wobei die Anzahl der Kohlenstoffatome in der Alkyl-Gruppe vorzugsweise nicht kleiner als 6, besonders bevorzugt nicht kleiner als 10, aber vorzugsweise nicht größer als 24, besonders bevorzugt nicht größer als 20 ist.
Insgesamt zeigt sich, dass längerkettige Niotenside für eine Verbesserung des Umgriffsverhaltens mittels der Reaktionsspüle zu bevorzugen sind, so dass in einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens solche alkoxylierten Alkylalkohole und/oder alkoxylierten Fettamine, insbesondere die alkoxylierten Alkylalkohole, bevorzugt sind, deren lipophile Alkyl-Gruppe zumindest 10 Kohlenstoffatome, besonders bevorzugt zumindest 12 Kohlenstoffatome umfasst, wobei die längste Kohlenstoffkette in der Alkyl-Gruppe aus zumindest 8 Kohlenstoffatomen besteht und ein HLB-Wert im Bereich von 12 bis 16 realisiert vorliegt.
Bevorzugte Vertreter der alkoxylierten Alkylalkole sind in erfindungsgemäßen Verfahren beispielsweise ausgewählt aus

  • vier- bis achtfach ethoxylierten oder propoxylierten C6-C12 Fettalkoholen,
  • acht- bis sechzehnfach ethoxylierten C12-C18 Fettalkoholen,
  • sechs- bis vierzehnfach propoxylierten C12-C18 Fettalkoholen,
  • vier- bis achtfach ethoxy- und propoxylierten C12-C18 Fettalkoholen,
die wiederum methyl-, butyl- oder benzyl-endgruppenverschlossen vorliegen können. Für die Reaktionsspülen des erfindungsgemäßen Verfahrens liegt der pH-Wert nicht unterhalb von 8, um den Beizangriff auf die in der Konversionsbehandlung erzeugte Beschichtung durch eine saure Reaktionsspüle möglichst gering zu halten. Umgekehrt sollten die Reaktionsspülen keinen pH-Wert oberhalb von 10 aufweisen. Die Einstellung des alkalischen pH-Wertes bewirkt in Gegenwart der Niotenside eine deutliche Verbesserung des Umgriffs bei nachfolgender Elektrotauchlackierung, insbesondere dann, wenn zwischen Konversionsbehandlung und Reaktionsspüle kein Spülschritt, besonders bevorzugt weder ein Spülschritt noch ein Trocknungsschritt erfolgt. Die Einstellung des pH-Wertes der Reaktionsspüle erfolgt vorzugsweise über ein Puffersystem, so dass der Eintrag von Bestandteilen der sauren wässrigen Zusammensetzung aus der Konversionsbehandlung in die Nachspüle nicht zu einer Verschiebung des pH-Wertes außerhalb des optimalen Bereiches führt. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens kann daher nach der Konversionsbehandlung und vor der Reaktionsspüle auf einen zusätzlichen Spülschritt verzichtet werden. Die Verwendung eines Puffersystems erleichtert zudem die Badkontrolle, da eine Nachdosierung von den pH-Wert stabilisierender Substanzen nur moderat und gelegentlich zu erfolgen hat. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahren enthält die Reaktionsspüle das Puffersystem zumindest in einer solchen Menge, dass bei einem Eintrag von einem Val Säure der pH-Wert sich um nicht mehr als 0,5, vorzugsweise um nicht mehr als 1,0 Einheiten ändert, jedoch werden vorzugsweise solche Mengen an Puffer nicht überschritten, für die die Reaktionsspüle eine elektrische Leitfähigkeit von mehr als 1,0 mScm-1, vorzugsweise von mehr als 0,5 mScm-1 annimmt. Ein bevorzugtes Puffersystem ist dabei ein Carbonat-Bicarbonat Puffersystem (bspw. Na2CO3/NaHCO3).Substantially, such nonionic surfactants in the reaction rinse of the process according to claim 1 are selected from alkoxylated alkyl alcohols, more preferably from alkoxylated alkyl alcohols and alkoxylated fatty amines. The alkoxylated alkyl alcohols and / or alkoxylated fatty amines are preferably end-capped, particularly preferably having an alkyl group which in turn preferably has not more than 8 carbon atoms, more preferably not more than 4 carbon atoms.
Particular preference is given to those alkoxylated alkyl alcohols and / or alkoxylated fatty amines as nonionic surfactants in the reaction rinse of the process according to the invention which are ethoxylated and / or propoxylated, the number of alkylene oxide units preferably not being greater than 20, particularly preferably not greater than 16, but more preferably at least 4, more preferably at least 8.
With regard to the lipophilic constituent of the aforementioned nonionic surfactants, those alkoxylated alkyl alcohols and / or alkoxylated fatty amines are preferred as nonionic surfactants in the reaction rinse of the process according to the invention whose alkyl group is saturated and preferably unbranched, the number of carbon atoms in the alkyl group preferably not being smaller than 6, more preferably not less than 10, but preferably not greater than 24, more preferably not greater than 20.
Overall, it is shown that longer-chain nonionic surfactants are preferable for improving the Umgriffsverhaltens means of the reaction rinse, so that in a Another preferred embodiment of the process according to the invention are those alkoxylated alkyl alcohols and / or alkoxylated fatty amines, in particular the alkoxylated alkyl alcohols, whose lipophilic alkyl group comprises at least 10 carbon atoms, more preferably at least 12 carbon atoms, wherein the longest carbon chain in the alkyl group of at least 8 carbon atoms and an HLB value in the range of 12 to 16 is realized.
Preferred representatives of the alkoxylated alkyl alcohols are selected, for example, in processes according to the invention
  • four to eight times ethoxylated or propoxylated C6-C12 fatty alcohols,
  • Eight to sixteen times ethoxylated C12-C18 fatty alcohols,
  • six to fourteen times propoxylated C12-C18 fatty alcohols,
  • four to eight times ethoxy and propoxylated C12-C18 fatty alcohols,
which in turn may be methyl, butyl or benzyl end-capped. For the reaction rinses of the process according to the invention, the pH is not below 8 in order to minimize the pickling attack on the coating produced in the conversion treatment by an acidic reaction rinse. Conversely, the reaction rinses should not have a pH above 10. The adjustment of the alkaline pH causes in the presence of nonionic surfactants a significant improvement of the Umgriffs in subsequent electrocoating, especially if between the conversion treatment and reaction rinse no rinsing step, more preferably neither a rinsing step nor a drying step. The adjustment of the pH value of the reaction rinse preferably takes place via a buffer system, so that the introduction of components of the acidic aqueous composition from the conversion treatment into the rinse does not lead to a shift in the pH outside the optimum range. In a particularly preferred embodiment of the method according to the invention, therefore, after the conversion treatment and before the reaction rinse on a be dispensed with additional rinsing step. The use of a buffer system also facilitates the bath control, since a re-dosing of the pH-stabilizing substances has to be done only moderately and occasionally. In a preferred embodiment of the process according to the invention, the reaction rinse contains the buffer system at least in such an amount that, in the case of an entry of one Val acid, the pH value does not change by more than 0.5, preferably by not more than 1.0, units. however, preferably those amounts of buffer are not exceeded for which the reaction rinse assumes an electrical conductivity of more than 1.0 mScm -1 , preferably of more than 0.5 mScm -1 . A preferred buffer system is a carbonate-bicarbonate buffer system (for example Na 2 CO 3 / NaHCO 3 ).

Der "pH-Wert" im Rahmen der vorliegenden Erfindung bezeichnet den negativen dekadischen Logarithmus aus der Aktivität der Hydronium-Ionen bei 25°C.The "pH" in the present invention refers to the negative decadic logarithm of the activity of the hydronium ions at 25 ° C.

Es hat sich herausgestellt, dass der positive Einfluss der Reaktionsspüle auf den Umgriff des Tauchlackes durch die zusätzliche Anwesenheit schichtbildender Aktivkomponenten abgeschwächt wird und bisweilen gänzlich ausbleibt. Dies gilt insbesondere für solche Aktivkomponenten, die in der Lage sind dünne amorphe Phosphatschichten auszubilden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält die wässrige Zusammensetzung der Reaktionsspüle daher weniger als 1 g/kg, besonders bevorzugt weniger als 0,1 g/kg, insbesondere bevorzugt weniger als 0,01 g/kg an in Wasser gelösten Phosphaten berechnet als PO4.It has been found that the positive influence of the reaction rinse on the immersion of the dipping paint is weakened by the additional presence of layer-forming active components and sometimes fails completely. This applies in particular to those active components which are capable of forming thin amorphous phosphate layers. In a preferred embodiment of the process according to the invention, the aqueous composition of the reaction rinse therefore contains less than 1 g / kg, more preferably less than 0.1 g / kg, particularly preferably less than 0.01 g / kg of phosphates dissolved in water, calculated as PO 4 .

Zu den schichtbildenden Aktivkomponenten, die eine Verschlechterung des Umgriffs herbeiführen, zählen auch wasserlösliche Verbindungen bestimmter Metallelemente, die üblicherweise eine Konversion der Metalloberfläche herbeiführen. Dementsprechend ist in einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bevorzugt, dass die wässrige Zusammensetzung der Reaktionsspüle weniger als 20 ppm, besonders bevorzugt weniger als 10 ppm, insbesondere bevorzugt weniger als 1 ppm an wasserlöslichen Verbindungen von Elementen der Nebengruppen IIIB, IVB, VIB und/oder des Elements Vanadium bezogen auf das jeweilige Element enthält, wobei vorzugsweise insgesamt weniger als 20 ppm an diesen wasserlöslichen Verbindungen bezogen auf die genannten Elemente enthalten sind. Ähnliches gilt für die Anwesenheit von Silanen, die in der Reaktionsspüle des erfindungsgemäßen Verfahrens vorzugsweise in einer Menge von weniger als 0,005 g/l, besonders bevorzugt weniger als 0,002 g/l, insbesondere bevorzugt weniger als 0,001 g/l berechnet auf Basis der entsprechenden Silanole enthalten sind.
"Silane" im Kontext dieser Erfindung umfassen Silane, Silanole, Siloxane, Polysiloxane und deren Reaktionsprodukte bzw. -derivate. Als Reaktionsprodukte sind insbesondere Kondensations- und Hydrolyseprodukte im wässrigen Medium zu verstehen.
Weiterhin nachteilig für das Umgriffsverhalten des Tauchlackes im erfindungsgemäßen Verfahren kann die Anwesenheit solcher schichtbildender Aktivkomponenten in der Reaktionsspüle sein, die bei Kontakt mit dem metallischen Bauteil die Abscheidung einer metallischen Phase bewirken. Dementsprechend ist in einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bevorzugt, dass die wässrige Zusammensetzung der Reaktionsspüle weniger als 50 ppm, vorzugsweise weniger als 10 ppm, besonders bevorzugt weniger als 5 ppm an wasserlöslichen Verbindungen der Elemente Co, Ni, Cu und/oder Sn bezogen auf das jeweilige Element enthält, wobei vorzugsweise insgesamt weniger als 50 ppm an diesen wasserlöslichen Verbindungen bezogen auf die genannten Elemente enthalten sind.
Die der Reaktionsspüle vorausgehende Konversionsbehandlung erfolgt in einem erfindungsgemäß bevorzugten Verfahren mit solchen sauren wässrigen Zusammensetzungen, die Fluorosäuren der Elemente Zirkon und/oder Titan sowie deren Salze und Hydrolyseprodukte enthalten. Hydrolyseprodukte sind beispielsweise solche Verbindungen, in denen Fluorid-Ionen am Zentralatom durch Hydroxid-Ionen teilweise substituiert sind.
The layer-forming active components which cause worsening of the wraparound also include water-soluble compounds of certain metal elements, which usually cause a conversion of the metal surface. Accordingly, in a further preferred embodiment of the process according to the invention, it is preferred that the aqueous composition of the reaction rinse contains less than 20 ppm, particularly preferably less than 10 ppm, particularly preferably less than 1 ppm, of water-soluble compounds of subgroups IIIB, IVB, VIB and / or or of the element contains vanadium based on the respective element, wherein preferably less than 20 ppm of these water-soluble compounds are contained in total based on said elements. The same applies to the presence of silanes which are present in the reaction rinse of the process according to the invention preferably in an amount of less than 0.005 g / l, more preferably less than 0.002 g / l, particularly preferably less than 0.001 g / l are calculated based on the corresponding silanols.
"Silanes" in the context of this invention include silanes, silanols, siloxanes, polysiloxanes and their reaction products or derivatives. The reaction products are in particular condensation and hydrolysis products in the aqueous medium to understand.
Another disadvantage for the Umgriffsverhalten the dip paint in the process according to the invention may be the presence of such layer-forming active components in the reaction rinse, which cause the deposition of a metallic phase in contact with the metallic component. Accordingly, in a further preferred embodiment of the process according to the invention, it is preferred that the aqueous composition of the reaction solution is less than 50 ppm, preferably less than 10 ppm, more preferably less than 5 ppm of water-soluble compounds of the elements Co, Ni, Cu and / or Sn contains on the respective element, wherein preferably less than 50 ppm in total of these water-soluble compounds are contained based on said elements.
The conversion treatment preceding the reaction rinse takes place in a method which is preferred according to the invention with such acidic aqueous compositions which contain fluoro acids of the elements zirconium and / or titanium and their salts and hydrolysis products. Hydrolysis products are, for example, those compounds in which fluoride ions on the central atom are partially substituted by hydroxide ions.

Ebenso wurde festgestellt, dass die Anwesenheit von Kupfer-Ionen in der sauren wässrigen Zusammensetzung der Konversionsbehandlung, die üblicherweise in geringen Mengen dem Konversionsbad zur Beschleunigung der Konversionsschichtbildung auf Basis der Elemente Zirkon und/oder Titan hinzugegeben wird, sich bei Applikation im Sprühverfahren nachteilig auf die Effektivität des erfindungsgemäßen Verfahrens auswirken kann. Es ist daher bevorzugt, dass die saure wässrige Zusammensetzung zur Konversionsbehandlung in solchen erfindungsgemäßen Verfahren, bei denen die Konversionsbehandlung durch Aufsprühen erfolgt, insgesamt weniger als 50 ppm, besonders bevorzugt weniger als 10 ppm, insbesondere bevorzugt weniger als 1 ppm an in Wasser gelösten Kupfer-Ionen enthält. Insgesamt gilt für erfindungsgemäße Verfahren, dass das molare Verhältnis des Gesamtanteils der wasserlöslichen Verbindungen von Zirkon und/oder Titan bezogen auf die jeweiligen Elemente Zirkon und Titan zum Gesamtanteil an wasserlöslichen Verbindungen der Elemente Co, Ni, Cu und/oder Sn bezogen auf die jeweiligen Elemente Co, Ni, Cu und/oder Sn im Konversionsbad vorzugsweise nicht kleiner als 0,6, besonders bevorzugt nicht kleiner als 1,0 ist. Weiterhin wurde bereits festgestellt, dass die Anwesenheit in der Reaktionsspüle nachteilig für das erfindungsgemäße Verfahren sein kann. Dementsprechend sind solche Verfahren bevorzugt, in denen der Eintrag von Silanen in die Reaktionsspüle weitgehend unterbunden wird. Dies kann beispielsweise dadurch geschehen, dass die saure Zusammensetzung in der Konversionsbehandlung keine Silan-basierte Zusammensetzung darstellt. In erfindungsgemäß bevorzugten Verfahren, enthält die saure Zusammensetzung in der Konversionsbehandlung insgesamt weniger als 0,005 g/l, besonders bevorzugt weniger als 0,002 g/l, insbesondere bevorzugt weniger als 0,001 g/l an Silanen berechnet auf Basis der entsprechenden Silanole. Die Art der Applikation sowohl der sauren wässrigen Zusammensetzung in der Konversionsbehandlung als auch der Reaktionsspüle ist unter den herkömmlichen Applikationsverfahren frei wählbar. So können die wässrigen Zusammensetzungen des erfindungsgemäßen Verfahrens sowohl im Sprüh-, als auch im Tauchverfahren mit dem metallischen Bauteil in Kontakt gebracht werden.It has also been found that the presence of copper ions in the acidic aqueous composition of the conversion treatment, which is usually added in small amounts to the conversion bath to accelerate the conversion layer formation based on the elements zirconium and / or titanium, when applied by spraying disadvantageous to the Effectiveness of the method according to the invention can affect. It is therefore preferred that the acidic conversion conversion composition in such processes according to the invention in which the conversion treatment is effected by spraying has a total of less than 50 ppm, more preferably less than 10 ppm, most preferably less than 1 ppm of copper dissolved in water. Contains ions. Overall, for inventive method that the molar ratio of the total proportion of water-soluble compounds of zirconium and / or titanium based on the respective elements zirconium and titanium to the total content of water-soluble compounds of the elements Co, Ni, Cu and / or Sn based on the respective elements Co, Ni, Cu and / or Sn in the conversion bath is preferably not less than 0.6, more preferably not less than 1.0. Furthermore, it has already been found that the presence in the reaction rinse can be disadvantageous for the process according to the invention. Accordingly, preference is given to those processes in which the introduction of silanes into the reaction rinse is largely prevented. This can be done, for example, by the acidic composition not being a silane-based composition in the conversion treatment. In preferred method according to the invention, the acidic composition in the conversion treatment contains a total of less than 0.005 g / l, more preferably less than 0.002 g / l, particularly preferably less than 0.001 g / l of silanes calculated on the basis of the corresponding silanols. The type of application of both the acidic aqueous composition in the conversion treatment and the reaction rinse is freely selectable under conventional application methods. Thus, the aqueous compositions of the method according to the invention can be brought into contact with the metallic component either by spraying or by immersion.

Zwischen der Reaktionsspüle und der nachfolgenden Elektrotauchlackierung kann verfahrenstechnisch ein Spül- und/oder Trocknungsschritt zwischengeschaltet sein. Der Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die in der Reaktionsspüle in einer erfindungsgemäß bevorzugten Variante enthaltenen Niotenside keinen nachteiligen Einfluss auf die Elektrotauchlackierung ausüben, so dass auf einen intermediären Spülschritt zur Entfernung der oberflächenaktiven Substanzen im auf dem Bauteil anhaftenden Nassfilm vor der Elektrotauchlackierung verzichtet werden kann. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens kann das metallische Bauteil daher nach der Reaktionsspüle ohne dazwischenliegendem Spülschritt elektrotauchlackiert.A rinsing and / or drying step can be intermediately interposed between the reaction rinse and the subsequent electrocoating. The advantage of the method according to the invention is that the nonionic surfactants contained in the reaction rinse in a variant preferred according to the invention exert no adverse effect on the electrodeposition coating, so that an intermediate rinsing step for removing the surface-active substances in the wet film adhering to the component is dispensed with prior to electrocoating can. In a preferred embodiment of the method according to the invention, the metallic component can therefore be electrocoated after the reaction rinse without intervening rinsing step.

Ferner wurde in erfindungsgemäßen Verfahren festgestellt, dass eine Trocknung des Bauteils unmittelbar nach der Reaktionsspüle oder eine Trocknung des Bauteils unmittelbar nach einem der Reaktionsspüle nachfolgendem Spülschritt nicht erforderlich für ein verbessertes Umgrifffsverhalten in der nachfolgenden Tauchlackierung ist, so dass das vorliegende Verfahren hinsichtlich seiner Einzelschritte vollständig "nass-in-nass" - also ohne gewillkürten Trocknungsschritt - geführt werden kann.
Entsprechend ist erfindungsgemäß bevorzugt, wenn nach der Reaktionsspüle und vor der Elektrotauchlackierung kein Trocknungsschritt, bei dem die Trocknung oberhalb einer Temperatur von 40 °C erfolgt, und vorzugsweise überhaupt kein Trocknungsschritt erfolgt.
Furthermore, it has been found in the process according to the invention that drying of the component immediately after the reaction rinse or drying of the component immediately after a rinsing step subsequent to the reaction rinse is not required for an improved reattachment behavior in the subsequent dip coating, so that the present process is completely "complete" in its individual steps. wet-on-wet "- ie without gewillkürten drying step - can be performed.
Accordingly, it is preferred according to the invention if, after the reaction rinse and before the electrodeposition coating, no drying step takes place in which the drying takes place above a temperature of 40 ° C., and preferably no drying step takes place at all.

Das im erfindungsgemäßen Verfahren korrosionsschützend beschichtete metallische Bauteil ist vorzugsweise ausgewählt aus Aluminium, Zink, Eisen, Stahl und/oder verzinktem Stahl. Besonders geeignet ist das erfindungsgemäße Verfahren zur Verbesserung des Umgriffs eines Tauchlackes auf Oberflächen von Stahl und/oder verzinktem Stahl.The corrosion-protected coated metallic component in the method according to the invention is preferably selected from aluminum, zinc, iron, steel and / or galvanized steel. The method according to the invention is particularly suitable for improving the encircling of an immersion paint on surfaces of steel and / or galvanized steel.

Ausführungsbeispiele:EXAMPLES

Alle Experimente wurden mit kaltgewalzten Stahlblechen (CRS) durchgeführt. Dabei wurde folgender grundsätzlicher Prozess bei allen nachfolgend aufgeführten Beispielen angewandt:

  1. 1) Alkalische Reinigung:
    • Zum Ansatz des alkalischen Reinigers wird das Bad mit Brauchwasser gefüllt, 3 % Ridoline® 1574 und 0,3 % Ridosol® 1270 (jeweils Henkel AG&Co.KGaA) zugesetzt und der pH-Wert durch langsame Zugabe einer phosphorsauren Lösung auf pH 11 eingestellt.
    • Spritzdruck: 1 bar
    • Temperatur: 50 - 60 °C
    • Behandlungszeit: 120 Sekunden
  2. 2) VE-Wasser-Spüle (κ<1µScm-1):
    • Spritzdruck: 1 bar
    • Temperatur: Raumtemperatur °C
    • Behandlungszeit: 30-60 Sekunden
  3. 3) Konversionsbehandlung
  4. 4) Reaktionsspüle
  5. 5) VE-Wasser Spüle (κ<1µScm-1)
    • Spritzdruck: 1 bar
    • Temperatur: Raumtemperatur °C
    • Behandlungszeit: 30-60 Sekunden
  6. 6) Kathodische Tauchlackierung (CathoPrime®, BASF Coatings AG):
    • Es wurde zu 2573 g VE-Wasser, 690 g Pigmentpaste GV81-0001 und 1760 g Bindemittel GY80-0640 (jeweils BASF Coatings AG) unter Rühren angesetzt. Die Abscheidung erfolgte bei 30 °C Badtemperatur potentiostatisch für insgesamt 105 Sekunden bei einer Spannung von 160 V. Diese Abscheidespannung wurde dabei innerhalb von 15 Sekunden mittels einer entsprechenden Potentialrampe eingestellt. Die Bestimmung der Lackschichtdicken erfolgte nach Aushärten des Tauchlackes für 25 min bei 180 °C mittels eines Schichtdickenmessgerätes (DUALSCOPE® FMP40, Helmut Fischer GmbH).
All experiments were carried out with cold rolled steel sheets (CRS). The following basic process was used in all the examples listed below:
  1. 1) Alkaline cleaning:
    • To prepare the alkaline cleaner, the bath is filled with service water, 3% Ridoline® 1574 and 0.3% Ridosol® 1270 (each Henkel AG & Co. KGaA) added and the pH adjusted to pH 11 by the slow addition of a phosphate solution.
    • Injection pressure: 1 bar
    • Temperature: 50 - 60 ° C
    • Treatment time: 120 seconds
  2. 2) DI water rinse (κ <1 μScm -1 ):
    • Injection pressure: 1 bar
    • Temperature: room temperature ° C
    • Treatment time: 30-60 seconds
  3. 3) conversion treatment
  4. 4) reaction rinse
  5. 5) deionized water rinse (κ <1μScm -1)
    • Injection pressure: 1 bar
    • Temperature: room temperature ° C
    • Treatment time: 30-60 seconds
  6. 6) Cathodic dip coating (CathoPrime®, BASF Coatings AG):
    • It was added to 2573 g of deionized water, 690 g of pigment paste GV81-0001 and 1760 g of binder GY80-0640 (each BASF Coatings AG) with stirring. The deposition was carried out at 30 ° C bath temperature potentiostatic for a total of 105 seconds at a voltage of 160 V. This deposition voltage was set within 15 seconds by means of a corresponding potential ramp. The paint layer thicknesses were determined after curing of the dip coating for 25 min at 180 ° C by means of a coating thickness gauge (DUALSCOPE® FMP40, Helmut Fischer GmbH).

Um den Effekt der Reaktionsspüle auf die Tauchlackdicke und den Umgriff darzulegen, wurden jeweils zwei Blechpaare präpariert, wobei jeweils ein Referenzblechpaar lediglich die Behandlungsschritte 1-3, 5 und 6 durchläuft. Die Veränderungen hinsichtlich Tauchlackdicke und Umgriff beziehen sich auf die entsprechenden Werte des Referenzblechpaares.In order to explain the effect of the reaction rinse on the dipping paint thickness and the throw, two pairs of plates were prepared in each case, wherein in each case a reference plate pair only passes through the treatment steps 1-3, 5 and 6. The changes in dip paint thickness and wrap around refer to the corresponding values of the reference plate pair.

Um den Umgriff des Elektrotauchlackes zu bestimmen, wurden zwei Bleche mit Hilfe eines Kunststoffrahmens und Klebeband zu einer Vorrichtung zusammengesetzt, wobei der Abstand der inneren Blechoberflächen 4 mm betrug. Der Elektrotauchlack konnte nur durch eine untere Öffnung zwischen den beiden Blechinnenflächen in das von den Blechen und dem Kunststoffabstandshalter umschlossene innere Volumen eindringen. Diese Vorrichtung wurde in das oben genannte gerührte Elektrotauchlackbad gebracht und als Kathode geschaltet. Gegenüber den äußeren Blechoberflächen wurde im Abstand von 10 cm je eine Edelstahlanode parallel angeordnet, wobei das Flächenverhältnis Kathode zu Anode 5 : 1 betrug.In order to determine the throw-over of the electrodeposition paint, two sheets were assembled by means of a plastic frame and tape into a device, wherein the distance of the inner sheet surfaces was 4 mm. The electrodeposition paint could penetrate only through a lower opening between the two inner surfaces of the sheet metal in the enclosed by the sheets and the plastic spacer inner volume. This device was placed in the above stirred electrocoating bath and switched as a cathode. Compared to the outer metal surfaces, a stainless steel anode was arranged in parallel at a distance of 10 cm, the cathode to anode area ratio being 5: 1.

Beispiel B1:Example B1:

Das Konversionsbad enthielt 270 ppm H2ZrF6, 60 ppm ZrO(NO3)2 und 300 ppm HNO3. Der pH-Wert wurde durch Zugabe von wässriger ammoniakalischer Lösung auf pH 4,5 eingestellt. Die Konversionsbehandlung erfolgte bei 40 °C Badtemperatur für 60 Sekunden im Spritzverfahren bei einem Druck von 1 bar.The conversion bath contained 270 ppm H 2 ZrF 6 , 60 ppm ZrO (NO 3 ) 2 and 300 ppm HNO 3 . The pH was adjusted to pH 4.5 by addition of aqueous ammoniacal solution. The conversion treatment was carried out at 40 ° C bath temperature for 60 seconds by spraying at a pressure of 1 bar.

Die Reaktionsspüle erfolgte mit einer Lösung von 750 ppm 2,4,7,9-Tetramethyl-5-decin-4,7-diol in VE-Wasser für 60 Sekunden bei 20 °C durch Eintauchen.The reaction rinse was carried out with a solution of 750 ppm 2,4,7,9-tetramethyl-5-decyne-4,7-diol in deionized water for 60 seconds at 20 ° C by immersion.

Beispiel B2:Example B2:

Konversionsbehandlung wie im Beispiel 1.Conversion treatment as in Example 1.

Die Reaktionsspüle erfolgte mit 200 ppm von butyl-endgruppenverschlossenen 4- bis 5-fach ethoxyliertem Octanol (C8, 4-5 EO, Butyl; HLB-Wert 14) in VE-Wasser für 60 Sekunden bei 20 °C durch Eintauchen.The reaction rinse was carried out with 200 ppm of butyl end-capped 4- to 5-tuply ethoxylated octanol (C8, 4-5 EO, butyl, HLB value 14) in deionized water for 60 seconds at 20 ° C. by immersion.

Beispiel B3:Example B3:

Konversionsbehandlung wie im Beispiel 1, allerdings bei einer Badtemperatur von 20 °C.Conversion treatment as in Example 1, but at a bath temperature of 20 ° C.

Die Reaktionsspüle erfolgte mit einer Lösung von 20 ppm butyl-endgruppenverschlossenen 10-fach ethoxylierten C12-C18 Fettalkoholen (C12-C18, 10 EO, Butyl; HLB-Wert 13,3-15) in VE-Wasser für 60 Sekunden bei 20°C im Sprühverfahren bei einem Spritzdruck von 1 bar.The reaction rinse was carried out with a solution of 20 ppm butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl, HLB value 13.3-15) in deionised water for 60 seconds at 20 ° C by spraying at an injection pressure of 1 bar.

Beispiel B4:Example B4:

Konversionsbehandlung wie im Beispiel 1, allerdings bei einer Badtemperatur von 20 °C.Conversion treatment as in Example 1, but at a bath temperature of 20 ° C.

Die Reaktionsspüle erfolgte für 60 Sekunden bei 20 °C im Sprühverfahren bei einem Spritzdruck von 1 bar mit einer Lösung von 100 ppm butyl-endgruppenverschlossenen 10-fach ethoxylierten C12-C18 Fettalkoholen (C12-C18, 10 EO, Butyl; HLB-Wert 13,3-15) und 5 Gew.-% eines Puffersystem bestehend aus 0,2 mol/L Na2CO3 und 0,2 mol/L NaHCO3 in VE-Wasser (pH-Wert 9,7).The reaction rinse was carried out for 60 seconds at 20 ° C. by spraying at an injection pressure of 1 bar with a solution of 100 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl; HLB value 13, 3-15) and 5 wt .-% of a buffer system consisting of 0.2 mol / L Na 2 CO 3 and 0.2 mol / L NaHCO 3 in deionized water (pH 9.7).

Beispiel B5:Example B5:

Konversionsbehandlung wie im Beispiel 1, allerdings bei einer Badtemperatur von 20 °C.Conversion treatment as in Example 1, but at a bath temperature of 20 ° C.

Die Reaktionsspüle erfolgte für 60 Sekunden bei 20 °C im Sprühverfahren bei einem Spritzdruck von 1 bar mit einer Lösung von 100 ppm butyl-endgruppenverschlossenen 10-fach ethoxylierten C12-C18 Fettalkoholen (C12-C18, 10 EO, Butyl; HLB-Wert 13,3-15) bei einem pH-Wert von 7,8.The reaction rinse was carried out for 60 seconds at 20 ° C. by spraying at an injection pressure of 1 bar with a solution of 100 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl, HLB value 13, 3-15) at a pH of 7.8.

Beispiel B6:Example B6:

Das Konversionsbad enthielt 340 ppm H2ZrF6, 15 ppm Cu(NO3)2 und 4 ppm HF. Der pH-Wert wurde durch Zugabe von wässriger ammoniakalischer Lösung auf pH 4,0 eingestellt. Die Konversionsbehandlung erfolgte bei 20 °C Badtemperatur für 120 Sekunden im Tauchverfahren.The conversion bath contained 340 ppm H 2 ZrF 6 , 15 ppm Cu (NO 3 ) 2 and 4 ppm HF. The pH was adjusted to pH 4.0 by addition of aqueous ammoniacal solution. The conversion treatment was carried out at 20 ° C bath temperature for 120 seconds in the dipping process.

Die Reaktionsspüle erfolgte mit einer Lösung von 1000 ppm butyl-endgruppenverschlossenen 10-fach ethoxylierten C12-C18 Fettalkoholen (C12-C18, 10EO, Butyl; HLB-Wert 13,3-15) in VE-Wasser für 120 Sekunden bei 20 °C durch Eintauchen.The reaction rinse was carried out with a solution of 1000 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10EO, butyl, HLB value 13.3-15) in deionised water for 120 seconds at 20 ° C immersion.

Beispiel B7:Example B7:

Konversionsbehandlung wie im Beispiel 1, allerdings bei einer Badtemperatur von 20 °C.Conversion treatment as in Example 1, but at a bath temperature of 20 ° C.

Die Reaktionsspüle erfolgte mit einer Lösung von 67 ppm butyl-endgruppenverschlossenen 10-fach ethoxylierten C12-C18 Fettalkoholen (C12-C18, 10 EO, Butyl; HLB-Wert 13,3-15) und 27 ppm H2ZrF6 in VE-Wasser für 60 Sekunden bei 20 °C im Spritzverfahren bei einem Spritzdruck von 1 bar.The reaction sink effected with a solution of 67 ppm butyl-terminally capped 10-tuply ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl; HLB value from 13.3 to 15) and 27 ppm H 2 ZrF 6 in demineralized water for 60 seconds at 20 ° C by spraying at an injection pressure of 1 bar.

Vergleichsbeispiel VB1:Comparative Example CB1:

Zum Ansatz einer Eisenphosphatierlösung wurde ein Bad mit VE-Wasser gefüllt, 2 Gew.-% Duridine 7760 (Henkel AG&Co.KGaA) zugesetzt, der pH-Wert durch langsame Zugabe von Natronlauge auf pH 4,5 eingestellt. Das Blech wurde sodann bei einer Temperatur von 50 °C für 110 Sekunden bei einem Spritzdruck von 1 bar mit der Eisenphosphatierlösung aus dem Bad besprüht. Das Schichtgewicht an Eisenphosphat betrug 0,5 g/m2 bestimmt als PO4.
Die Reaktionsspüle erfolgte mit einer Lösung von 1000 ppm butyl-endgruppenverschlossenen 10-fach ethoxylierten C12-C18 Fettalkoholen (C12-C18, 10 EO, Butyl; HLB-Wert 13,3-15) in VE-Wasser für 60 Sekunden bei 20 °C durch Eintauchen.
To prepare a Eisenphosphatierlösung a bath was filled with deionized water, 2 wt .-% Duridine 7760 (Henkel AG & Co. KGaA) was added, the pH adjusted by slow addition of sodium hydroxide solution to pH 4.5. The sheet was then sprayed from the bath at a temperature of 50 ° C for 110 seconds at an injection pressure of 1 bar with the iron phosphating solution. The coating weight of iron phosphate was 0.5 g / m 2 determined as PO 4 .
The reaction rinse was carried out with a solution of 1000 ppm of butyl end-capped 10-times ethoxylated C12-C18 fatty alcohols (C12-C18, 10 EO, butyl, HLB value 13.3-15) in demineralized water for 60 seconds at 20 ° C by immersion.

In der Tabelle 1 sind die Werte für die Elektrotauchlackdicke und den Umgriff für die zuvor beschriebenen Ausführungsbeispiele zusammengefasst.Table 1 summarizes the values for the electrodeposition paint thickness and the throw-over for the exemplary embodiments described above.

Es zeigt sich für jedes der erfindungsgemäßen Beispiele B1-B6, dass stets die Tauchlackdicke signifikant reduziert und gleichzeitig ein verbesserter Umgriff realisiert werden konnte (Tab. 1). Damit wird die Aufgabe der vorliegenden Erfindung, die darin besteht, einerseits Ersparnisse hinsichtlich des Beschichtungsmaterials in der Elektrotauchlackierung zu realisieren und andererseits Bauteile mit komplexeren Geometrien zufrieden stellend elektrotauchlackieren zu können, vollumfänglich gelöst. Ferner wird ersichtlich, dass das geminale Niotensid nach Beispiel B1 im Vergleich mit den linearen Amphiphilen der Beispiele B2-B6 hinsichtlich Umgriffsverbesserung und der angestrebten Reduzierung der Tauchlackdicke etwas zurückfällt. Ein Vergleich der Beispiele B2 und B4 verdeutlicht, dass der längerkettige endgruppenverschlossene ethoxylierte Fettalkohol (B4) die besten Ergebnisse liefert und insbesondere das Umgriffsverhalten überraschend stark verbessert. Die Wirkung der Niotenside ist zudem streng selektiv für die vorausgegangene Konversionsbehandlung wie aus dem Vergleichsbeispiel VB1 hervorgeht, bei dem die Reaktionsspüle einer eisenphosphatierten Blechoberfläche zu keiner Verbesserung hinsichtlich Umgriff und Tauchlackdicke führt. Auch die über das Niotensid als Aktivkomponente hinausgehende Zusammensetzung der Reaktionsspüle ist bestimmend für den Erfolg des erfindungsgemäßen Verfahrens. So geht aus dem Beispiel B7 hervor, dass die zusätzliche Anwesenheit von Aktivkomponenten aus der Stufe der Konversionsbehandlung nachteilig ist und bei höheren Konzentrationen dieser Aktivkomponenten (hier: H2ZrF6) sogar einer deutliche Verschlechterung im Umgriffsverhalten und hinsichtlich der Tauchlackdicke eintritt. Auch in diesem Zusammenhang ist es daher vorteilhaft, dass die Reaktionsspüle wie im Beispiel B4 alkalisch gepuffert wird, so dass in einer laufenden Beschichtungsanlage ein Übertrag von Konversionsbadbestandteilen in die Reaktionsspüle durch schöpfende Bauteile dort lediglich zu einer Ausfällung der Verbindungen der Elemente Zr und/oder Ti führt und nicht zu einer Verschlechterung der Performance. Zusätzlich kann in alkalischen gepufferten Reaktionsspülen im Vergleich zu neutral bis leicht alkalischen Reaktionsspülen eine Verbesserung des Lackumgriffs beobachtet werden, wie aus dem Vergleich der Beispiele B4 und B5 hervorgeht. Tab. 1 Tensid Menge / ppm Δ Lackdicke1 / µm Δ Umgriff2 / cm Vergl. B1 2,4,7,9-Tetramethyl-5-decin-4,7-diol 750 -2,6 +0,5 Vergl. B2 C8, 4-5 EO, Butyl 200 -3,4 +0,7 Vergl. B3 C12-18, 10 EO, Butyl 20 -2,0 +1,0 B4 C12-18, 10 EO, Butyl 100 -5,0 +2,5 Vergl. B5 C12-18, 10 EO, Butyl 100 -3,0 +0,5 Vergl. B6 C12-18, 10 EO, Butyl 1000 -4,0 +2,5 Vergl. B7 C12-18, 10 EO, Butyl 67 +2,0 -0,4 VB1 C12-18, 10 EO, Butyl 1000 0,0 0,0 1 Die Absolutwerte wurden an den der Anode zugewandten Außenseiten der Blechpaare gemessen (jeweils gemittelt über 5 Schichtdickenmessungen)
2 Der jeweilige Absolutwert entspricht der längsten sichtbaren Erstreckung des Tauchlackes auf den Innenseiten des Blechpaares
It can be seen for each of the examples B1-B6 according to the invention that the dipping paint thickness could always be significantly reduced and improved wraparound realized at the same time (Table 1). Thus, the object of the present invention, which consists on the one hand to realize savings in terms of the coating material in the electrodeposition coating and on the other hand be able to satisfactorily electrocoating components with more complex geometries, solved in full. Furthermore, it can be seen that the geminal nonionic surfactant according to Example B1 falls somewhat in comparison with the linear amphiphiles of Examples B2-B6 with regard to encapsulation improvement and the intended reduction of the dipping paint thickness. A comparison of Examples B2 and B4 illustrates that the longer-chain end-capped ethoxylated fatty alcohol (B4) gives the best results and in particular improves the entanglement behavior surprisingly. The effect of the nonionic surfactants is also strictly selective for the previous conversion treatment as shown in Comparative Example VB1, in which the reaction rinse of an iron-phosphated sheet metal surface does not lead to any improvement in terms of whipping and dip coating thickness. The composition of the reaction rinse beyond the nonionic surfactant as the active component is also decisive for the success of the process according to the invention. Thus, it is clear from example B7 that the additional presence of active components from the conversion treatment stage is disadvantageous and even higher concentrations of these active components (here: H 2 ZrF 6 ) even lead to a significant deterioration in the throwing behavior and in the dip coating thickness. Also in this context, it is therefore advantageous that the Reaction rinse is buffered alkaline as in Example B4, so that in a running coating system a transfer of Konversionsbadbestandteilen in the reaction rinse by scooping components there only leads to precipitation of the compounds of the elements Zr and / or Ti and not to a deterioration in performance. In addition, in alkaline buffered reaction rinses, as compared to neutral to slightly alkaline reaction rinses, improvement in varnish coverage can be observed, as can be seen by comparing Examples B4 and B5. Tab. 1 surfactant Quantity / ppm Δ paint thickness 1 / μm Δ wrap 2 / cm Comp. B1 2,4,7,9-tetramethyl-5-decyne-4,7-diol 750 -2.6 +0.5 Comp. B2 C8, 4-5 EO, butyl 200 -3.4 +0.7 Comp. B3 C12-18, 10 EO, butyl 20 -2.0 +1.0 B4 C12-18, 10 EO, butyl 100 -5.0 +2.5 Comp. B5 C12-18, 10 EO, butyl 100 -3.0 +0.5 Comp. B6 C12-18, 10 EO, butyl 1000 -4.0 +2.5 Comp. B7 C12-18, 10 EO, butyl 67 +2.0 -0.4 VB1 C12-18, 10 EO, butyl 1000 0.0 0.0 1 The absolute values were measured at the outer sides of the sheet pairs facing the anode (in each case averaged over 5 layer thickness measurements)
2 The respective absolute value corresponds to the longest visible extension of the dip coating on the insides of the plate pair

Claims (16)

  1. A method for the anti-corrosion coating of the surfaces of a metal component, in which method the surface of the metal component is subjected to a conversion treatment by being brought into contact with an acidic aqueous composition containing water-soluble compounds of the elements zirconium and/or titanium, as a consequence of which a coating layer of zirconium and/or titanium of at least 10 mg/m2 is produced directly on the surface of the metal component, characterized in that, with or without an intermediate rinse and/or drying step, a reaction rinse follows this conversion treatment, the reaction rinse taking place by bringing the conversion-treated surface of the metal component into contact with an aqueous composition containing a surface-active substance, which aqueous composition has a pH no lower than 8 and no greater than 10 and contains at least one nonionic surfactant selected from alkoxylated alkyl alcohols as the surface-active substance, and subsequently the surface of the metal component treated in this way is electrocoated with or without an intermediate rinse and/or drying step.
  2. The method according to claim 1, characterized in that the nonionic surfactants have an HLB value of at least 8, preferably at least 10, more preferably at least 12, but preferably no greater than 18, more preferably no greater than 16.
  3. The method according to one or both of the preceding claims, characterized in that the alkoxylated alkyl alcohols are end-capped, more preferably are end-capped with an alkyl group which preferably has no more than 8 carbon atoms, more preferably no more than 4 carbon atoms.
  4. The method according to one or more of the preceding claims, characterized in that the non-ionic surfactant is additionally selected from alkoxylated fatty amines which are preferably end-capped, more preferably end-capped with an alkyl group that preferably has no more than 8 carbon atoms, more preferably no more than 4 carbon atoms.
  5. The method according to one or more of the preceding claims, characterized in that the alkoxylated alkyl alcohols, or the alkoxylated alkyl alcohols and fatty amines, are present in ethoxylated and/or propoxylated forms, the number of alkylene oxide units in total being no greater than 20, preferably no greater than 16, but preferably at least 4, more preferably at least 8.
  6. The method according to one or more of the preceding claims, characterized in that the alkyl group of the alkoxylated alkyl alcohol, or of the alkoxylated alkyl alcohol and the alkoxylated fatty amine, is saturated and preferably unbranched, the number of carbon atoms in the alkyl group being no smaller than 6, preferably no smaller than 10, but no greater than 24, preferably no greater than 20.
  7. The method according to one or more of the preceding claims, characterized in that the amount of surface-active substances in the reaction rinse is greater than 20 ppm, preferably greater than 50 ppm, but preferably no greater than 1 wt.%.
  8. The method according to one or more of the preceding claims, characterized in that the aqueous composition of the reaction rinse contains less than 1 g/kg, preferably less than 0.1 g/kg, more preferably less than 0.01 g/kg of phosphates dissolved in water, calculated as PO4.
  9. The method according to one or more of the preceding claims, characterized in that the aqueous composition of the reaction rinse contains less than 20 ppm, preferably less than 10 ppm, more preferably less than 1 ppm of water-soluble compounds of elements of the auxiliary groups IIIB, IVB, VIB and/or of the element vanadium, based on the element in question, preferably in total less than 20 ppm of these water-soluble compounds being contained, based on the aforementioned elements.
  10. The method according to one or more of the preceding claims, characterized in that the aqueous composition of the reaction rinse contains less than 50 ppm, preferably less than 10 ppm, more preferably less than 5 ppm of water-soluble compounds of the elements Co, Ni, Cu and/or Sn, based on the element in question, preferably in total less than 50 ppm of these water-soluble compounds being contained, based on the aforementioned elements.
  11. The method according to one or more of the preceding claims, characterized in that no rinse step, preferably neither a rinse step nor a drying step, is performed between the conversion treatment and the reaction rinse.
  12. The method according to one or more of the preceding claims, characterized in that the water-soluble compounds of the elements zirconium and/or titanium in the acidic aqueous composition for the conversion treatment are selected from fluoroacids of the elements zirconium and/or titanium and the salts thereof.
  13. The method according to one or more of the preceding claims, characterized in that the acidic aqueous composition for the conversion treatment does not produce a phosphate layer having a coating layer of at least 0.2 g/m2, based on PO4.
  14. The method according to one or more of the preceding claims, characterized in that the acidic aqueous composition for the conversion treatment contains less than 0.005 g/L, preferably less than 0.002 g/L, more preferably less than 0.001 g/L of silanes, calculated on the basis of the respective silanols.
  15. The method according to one or more of the preceding claims, characterized in that no drying step is performed after the reaction rinse and before the electrocoating.
  16. The method according to one or more of the preceding claims, characterized in that the metal component comprises, at least in part, surfaces made of steel and/or galvanized steel.
EP14725124.3A 2013-06-20 2014-05-16 Multi-stage process for electrophoretic dip painting Active EP3011074B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14725124.3A EP3011074B1 (en) 2013-06-20 2014-05-16 Multi-stage process for electrophoretic dip painting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13173055 2013-06-20
EP14725124.3A EP3011074B1 (en) 2013-06-20 2014-05-16 Multi-stage process for electrophoretic dip painting
PCT/EP2014/060063 WO2014202294A1 (en) 2013-06-20 2014-05-16 Multi-step method for electrodeposition

Publications (2)

Publication Number Publication Date
EP3011074A1 EP3011074A1 (en) 2016-04-27
EP3011074B1 true EP3011074B1 (en) 2017-07-05

Family

ID=48698906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14725124.3A Active EP3011074B1 (en) 2013-06-20 2014-05-16 Multi-stage process for electrophoretic dip painting

Country Status (8)

Country Link
US (1) US9382628B2 (en)
EP (1) EP3011074B1 (en)
JP (1) JP6465871B2 (en)
KR (1) KR102278974B1 (en)
CN (1) CN105324517B (en)
BR (1) BR112015031240A2 (en)
ES (1) ES2642271T3 (en)
WO (1) WO2014202294A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502311A1 (en) * 2017-12-20 2019-06-26 Henkel AG & Co. KGaA Method for the corrosion protection and cleaning pretreatment of metallic components

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133102A1 (en) * 1991-10-05 1993-04-08 Metallgesellschaft Ag Treating phosphated metal surface - using nonionic surfactant soln. before electro-dipping lacquering using e.g. alkyl poly-alkyl-ethylene glycol ether
JP3343843B2 (en) * 1996-07-26 2002-11-11 日本ペイント株式会社 Pre-electrodeposition treatment method for car bodies
US6211132B1 (en) * 1996-12-13 2001-04-03 Henkel Corporation Composition and method for deburring/degreasing/cleaning metal surfaces
JP2003027253A (en) * 2001-07-23 2003-01-29 Nippon Paint Co Ltd Coating method for aluminum base material and aluminum alloy base material and coated material
JP4526807B2 (en) 2002-12-24 2010-08-18 日本ペイント株式会社 Pre-painting method
DE102005015576C5 (en) * 2005-04-04 2018-09-13 Chemetall Gmbh A method of coating metallic surfaces with an aqueous composition and using the substrates coated by the methods
BRPI0517301B1 (en) * 2004-11-10 2018-05-29 Chemetall Gmbh PROCESS FOR COATING METAL SURFACES WITH A WATER COMPOSITION FROM VARIOUS COMPONENTS.
DE102005059314B4 (en) 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces
JP2008088553A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
ES2415979T3 (en) * 2007-09-27 2013-07-29 Chemetall Gmbh Method for producing a superficially treated metallic material, and method for producing a coated metallic article
CN102089459B (en) * 2008-07-11 2013-03-27 日本帕卡濑精株式会社 Chemical treatment liquid for steel material coating primer and method of treatment
CN102575357B (en) * 2009-07-02 2015-08-12 日本帕卡濑精株式会社 Do not contain the metallic surface chemical conversion treatment solution of chromium and fluorine, metal surface treating method and metal surface coating method
US20120183806A1 (en) * 2011-01-17 2012-07-19 Ppg Industries, Inc. Pretreatment Compositions and Methods For Coating A Metal Substrate
WO2013060662A2 (en) * 2011-10-24 2013-05-02 Chemetall Gmbh Method for coating metallic surfaces with a multi-component aqueous composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2016527391A (en) 2016-09-08
KR102278974B1 (en) 2021-07-16
CN105324517A (en) 2016-02-10
BR112015031240A2 (en) 2017-07-25
CN105324517B (en) 2017-10-27
KR20160022309A (en) 2016-02-29
US20160102405A1 (en) 2016-04-14
US9382628B2 (en) 2016-07-05
EP3011074A1 (en) 2016-04-27
ES2642271T3 (en) 2017-11-16
WO2014202294A1 (en) 2014-12-24
JP6465871B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
EP2507408B1 (en) Multi-stage pre-treatment method for metal components having zinc and iron surfaces
EP2534279B1 (en) Composition for the alkaline passivation of zinc surfaces
EP3280830B1 (en) Method for specifically adjusting the electrical conductivity of conversion coatings
DE2905535A1 (en) METHOD FOR SURFACE TREATMENT OF METALS
EP1254279A2 (en) Anti-corrosive agents and method for protecting metal surfaces against corrosion
DE102019134298A1 (en) Method for producing a flat steel product with a metallic protective layer based on zinc and a phosphate layer produced on a surface of the metallic protective layer and such a flat steel product
EP2215285B1 (en) Zirconium phosphating of metal components, in particular iron
EP3676419B1 (en) Improved method for nickel-free phosphating of metallic surfaces
WO2019158508A1 (en) Process for selective phosphating of a composite metal construction
EP0793738B1 (en) Anticorrosive and friction-reducing treatment of metallic surfaces
EP3011074B1 (en) Multi-stage process for electrophoretic dip painting
EP3856947B1 (en) Method for improving the phosphatability of metal surfaces which are provided with a temporary pre- or post-treatment
EP3126542B1 (en) Two-stage pre-treatment of aluminum comprising pickling and passivation
DE102009047523A1 (en) Multi-stage method for corrosion-inhibiting pretreatment of metallic components having the surfaces of zinc, comprises subjecting the metallic components with an aqueous treatment solution, and cleaning and degreasing the metal surface
EP3918108B1 (en) Alternative composition and alternative method for effectively phosphating metal surfaces
DE102012215679A1 (en) Process for the corrosion-protective surface treatment of metallic components in series
EP3456864B1 (en) Two stage pre-treatment of aluminium, in particular aluminium casting alloys, comprising a pickle and a conversion treatment
EP3794167B1 (en) Rack cleaning in a process of electrophoretic coating
WO2024208739A1 (en) Composition for the anticorrosive pretreatment and cleaning of metal surfaces in one process step
DE102005036426B4 (en) Process for coating steel products
EP3303652B1 (en) Pre-rinse containing a quaternary amine for conditioning prior to a conversion treatment
DE102023110138A1 (en) steel sheet with double-layer temporary corrosion protection
EP4283012A1 (en) Method for alkaline cleaning of zinc-magnesium alloyed steel strip
EP3103897A1 (en) Method for the electrochemical deposition of thin inorganic layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 906672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004492

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2642271

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004492

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190426

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140516

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 906672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240627

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 11