EP3007759A1 - Method and apparatus for stimulative electrotherapy - Google Patents

Method and apparatus for stimulative electrotherapy

Info

Publication number
EP3007759A1
EP3007759A1 EP13886840.1A EP13886840A EP3007759A1 EP 3007759 A1 EP3007759 A1 EP 3007759A1 EP 13886840 A EP13886840 A EP 13886840A EP 3007759 A1 EP3007759 A1 EP 3007759A1
Authority
EP
European Patent Office
Prior art keywords
electrically conductive
periodic signal
conductive electrode
electrotherapy
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13886840.1A
Other languages
German (de)
French (fr)
Other versions
EP3007759A4 (en
Inventor
Srini Nageshwar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyansys Inc
Original Assignee
Dyansys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyansys Inc filed Critical Dyansys Inc
Publication of EP3007759A1 publication Critical patent/EP3007759A1/en
Publication of EP3007759A4 publication Critical patent/EP3007759A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin

Definitions

  • the present invention relates generally to a method and apparatus for applying an electrical signal to a patient, and in particular, for applying a time varying signal to a nervous system of a patient.
  • the autonomic nervous system is not directly accessible to voluntary control.
  • the autonomic nervous system plays an important role in pain modulation and perception and chronic pain is likely due to a malfunction in the body's central nerv ous system. While there are many medications and physical therapies that are used to treat pain, they do not cure it and only mask the pain response, sometimes with undesired side effects such as with narcotic medications.
  • a point stimulation dev ice is a non-narcotic combination of permanent acupuncture- like needles and electrical stimulation used to treat chronic pain over time.
  • a point stimulation device uses auricular acupuncture as a treatment based on normalizing the body's dysfunction through stimulation of points on the ear. The resulting amelioration of pain and illness is believed to be through the reticular formation and the sympathetic and
  • an electrical apparatus includes a battery, a circuit adapted to generate a periodic signal, and a wireless radio transceiver.
  • the electrical apparatus further includes a control circuit adapted to set a characteristic of the periodic signal. The characteristic is received by an input of the wireless radio transceiver.
  • the electrical apparatus further includes a first electrically conductive electrode adapted to electrically contact and puncture a first portion of a surface when the periodic signal is injected below the firs t portion of the surface. The periodic signal is coupled to the first electrically conductive electrode.
  • the electrical apparatus further includes a second electrically conductive electrode adapted to electrically contact but not puncture a second portion of the surface.
  • the second electrically conductive electrode provides a direct electrical contact between the second electrically conductive electrode and the second portion of the surface, which provides a return signal path for the periodic signal when the periodic signal is injected below the first portion of the surface.
  • the electrical apparatus further includes a housing having an insulating surface and at least a first orifice in the insulating surface.
  • the first electrically conductive electrode is adapted to be located outside the housing and coupled through the first orifice to the circuit.
  • the housing encloses the battery and the circuit.
  • the housing is adapted to have a shape being adapted to conform to a third portion of the surface when the periodic signal is injected below the first portion of the surface.
  • the housing is adapted to hermetically seal the electrical apparatus.
  • the wireless radio transceiver operates on a transmission standard selected from one of Bluetooth®, 6L0WPAN®, ZigBee®, DASH7®, Z-Wave ⁇ , MiWi®, or OSION®.
  • the characteristic is selected from one of a frequency , an amplitude, a pulse shape, or a duty cycle.
  • the periodic signal is an electrotherapy signal.
  • the characteristic of the periodic signal is adapted to stimulate a response in a parasympathetic nervous system of a. patient.
  • the surface is a. skin of the patient when the periodic signal is injected below the first portion of the surface.
  • the frequency of the periodic signal is set to a predetermined frequency associated with a treatment of a patient.
  • a method for signal injection includes providing a battery, providing a wireless radio transceiver, and providing a first electrically conductive electrode.
  • the method further includes generating a periodic signal in time from a circuit, receiving a characteristic of the periodic signal by an input of the wireless transceiver, and setting the characteristic via a control circuit.
  • the method further includes coupling the periodic signal to the first electrically conductive electrode, and electrically contacting and puncturing a first portion of a surface when the periodic signal is injected below the first portion of the surface.
  • the method further includes contacting but not puncturing a second portion of the surface by a second electrically conductive electrode.
  • the second electrically conductive electrode provides a direct electrical contact between the second electrically conductive electrode and the second portion of the surface, thereby providing a return signal path for the periodic signal when the periodic signal is injected below the first portion of the surface.
  • the method further includes providing a housing having an insulating surface and at least a first orifice in the insulating surface, and locating the first electrically conductive electrode outside the housing.
  • the method further includes coupling the first electrically conductive electrode through the first orifice to the circuit, and enclosing the battery and the circuit with the housing.
  • the method further includes shaping the housing to conform to a third portion of the surface when the periodic signal is injected below the first portion of the surface.
  • the method further includes hermetically sealing the electrical apparatus with the housing.
  • the method further includes selecting the characteristic from one of a frequency, an amplitude, a pulse shape, or a duty cycle.
  • the method further includes setting the frequency of the periodic signal to a predetermined frequency associated with, a treatment of a patient.
  • Figure 1 depicts a simplified block diagram of a patient testing theatre, in accordance with one embodiment of the present invention.
  • Figure 2 depicts a simplified block diagram of the autonomic nervous system sensitivity-point tester and the portion of the patient's skin represented irs Figure 1 , in accordance with one embodiment of the present invention,
  • Figure 3 depicts a simplified block diagram of the autonomic nervous system stimulator represented in Figure 2, in accordance with one embodiment of the present invention.
  • Figure 4A depicts a simplified flowchart of a method for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with one embodiment of the present invention.
  • Figure 4B depicts a simplified flowchart of a method for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with another embodiment of the present invention.
  • Figure 5 depicts an exemplar ⁇ ? response of a sympathovagal balance used in the method represented in Figure 4B.
  • Figure 6 depicts a simplified block diagram of a patient treatment theatre, in accordance with one embodiment of the present invention.
  • Figure 7 depicts a simplified block diagram of the electrotherapy stimulator and the portion of the patient's skin represented in Figure 6, in accordance with one embodiment of the present invention.
  • Figure 8 depicts a simplified flowchart of a method for electrotherapy signal injection into a skin of a patient, in accordance with another embodiment of the present invention.
  • Figure 9 depicts a chart showing patient responses to electrotherapy signal injection versus electrotherapy signal frequency from peer-reviewed literature.
  • the present invention relates generally to a method and apparatus for testing a patient's skin, and in particular, to testing a patient's skin to find autonomic nervous system sensitivity-points.
  • Auricular acupuncture electrotherapy treatments involve inserting an electrotherapy needle into the skin of a patient at certain sensitivity-points on the ear associated with a particular therapy regimen and applying an electrotherapy signal to the electrotherapy needle. Finding a location to place the needle may be determined by foreknowledge of general locations and testing or measuring local skin resistance.
  • electrotherapy treatment acts through the autonomic nervous system so skin resistivity alone may not be the best test indicator for electrotherapy needle placement.
  • measurement for electrotherapy needle placement may generate and apply an electrical signal similar or identical to the electrotherapy signal that would be used during treatment to a portion of the patient's skin surface without puncturing the skin.
  • the skin surface is then probed with the electrotherapy signal via an electrically conductive tip, to identify a location that stimulates a vagal response of the patient's autonomic nervous system by monitoring the sympathovagal balance.
  • the identified location may then be pricked by an electrotherapy needle which is then connected to the electrotherapy signal for a long duration treatment period. Locating the needle sites initially may not constitute therapy but may improve the outcome of planned acupuncture electrotherapy.
  • FIG. 1 depicts a simplified block diagram of a patient testing theatre 100, in accordance with one embodiment of the present invention.
  • Patient testing theatre 100 includes an autonomic nervous system sensitivity-point tester 110 coupled to an electrically conductive tip 1 15 and an electrode 120, which in -turn are connected to an ear 125, hereinafter also referred to as "portion of skin", of a patient 130.
  • an autonomic nervous system monitor 135 is coupled to electrodes 140, 145, 150, 155 respectively on the patient's left arm, right arm, left leg, right leg to receive quasi-periodical electro cardiogram signals from the cardiac system that are in -turn governed by the patient's autonomic nervous system.
  • the patient is preferably in a supine position on an examination table in a clinical environment for autonomic nervous system testing and monitoring.
  • the patient is represented as a human. It is understood, however, that the patient may be any living creature possessing an autonomic nervous system and cardiac system.
  • autonomic nervous system sensitivity-point tester 110 is shown as connecting to an ear. It is understood, however, that autonomic nervous system sensitivity-point tester 1 10 may instead be connected to any portion of skin demonstrated to have nerve connections sensitive enough to affect the autonomic nervous system of the patient.
  • the patient testing theatre 100 may include a graphical user interface 160 coupled to a computer 165, which may be coupled via cable (not shown) or via wireless radio transmission 170 to autonomic nervous system sensitivity-point tester 1 10.
  • the autonomic nervous system sensitivity-point tester is a wireless hand held device, which may be programmed or have certain characteristics set by a medical practitioner or technician (not shown) via graphical user interface 160 and computer 165.
  • computer 165 may be a desktop, laptop, pad, mini -pad, or smart phone that may have a wireless transceiver 175.
  • the autonomic nervous system monitor 135 is adapted to convert the patient's electro cardiogram signals to, among other information, a sympathovagal balance between the parasympathetic and the sympathetic components of the autonomic nervous system.
  • FIG. 2 depicts a simplified block diagram of autonomic nervous system sensitivity-point tester 1 10 and portion of the patient's skin 125 represented in Figure 1 , in accordance with one embodiment of the present invention.
  • Figure 2 depicts autonomic nervous system sensitivity-point tester 1 10, hereinafter also referred to as "circuit”, which includes a resistivity measurement unit 210, an indicator 215, an autonomic nervous system stimulator 220, a switch 230, an electrically conductive tip 1 15, a batter ⁇ ' 217, a housing 223, and an electrode 120.
  • Resistivity measurement 210 couples to indicator 215.
  • Battery 217 provides portable power to the circuit and enables hand-held operation.
  • Resistivity measurement 210 is adapted to generate an electrical resistance measuring signal to measure a skin resistivity 225 coupled between electrically conductive tip 1 15 and electrode 120 when the patient is tested.
  • Indicator 215 is responsive to a value of electrical resistance measured by the circuit and may provide a visual indicator, a sonic indicator, and/or a vibrational indicator.
  • indicator 215 may be a buzzer that changes sound pitch in relation to the measured value of skin resistivity 225, which may change as electrically conductive tip 115 is moved around by the medical practitioner to contact different portions of the patient's skin surface.
  • Autonomic nervous system stimulator 220 is adapted to generate an electrotherapy signal, hereinafter also referred to as “periodic signal” or “periodic signal in time,” coupled to electrically conductive tip 1 15 that stimulates a vagal response of the patient's autonomic nervous system when the patient is tested. Electrically conductive tip 1 15 provides electrical contact to b ut does not puncture a portion of the skin surface of the patient when the patient is tested.
  • Electrode 120 is applied to a different portion of skin than that portion of skin surface being tested to optimize electrotherapy needle placement. Electrode 120 is adapted to be a return signal path, i.e. ground, for either the electrical resistance-measuring signal or the electrotherapy signal thereby enabling a gloved medical practitioner, hereinafter also referred to as "tester" to facilitate applying the electrical resistance measuring signal or the electrotherapy signal to the patient. Electrode 120 may be a portion of metal foil taped temporarily on the patient's skin or an electrotherapy needle temporarily placed in the patient's skin.
  • Housing 223 may have an insulating surface and at least one orifice in the insulating surface through which electrically conductive tip 115 protrudes or extends outside the housing.
  • Housing 223 may enclose batter)' 217 and the circuit.
  • the housing may have a shape that may be adapted to be hand held when the skin surface is tested. In other words, the housing is shaped to fit the hand grasp of a person using autonomic nervous system sensitivity -point tester 110.
  • the insulating surface of the housing may have other orifices for example to allow a tester to operate switch 230 and for electrode 120.
  • Housing 223 may hermetically seal the circuit and seal the orifices, for example by using a flexible gasket around the electrically conductive tip to facilitate cleaning and disinfecting autonomic nervous system sensitivity-point tester 1 10 between testing uses, [0042] Since electrotherapy needle placement punctures the skin, the medical practitioner may be required to wear gloves during needle placement.
  • Prior sensitivity-point tester designs provide the return signal path via the bare hand of the medical practitioner, which must be placed over a metal contact on the housing of the sensitivity-point tester.
  • providing electrode 120 is advantageous over prior sensitivity-point tester designs because the medical practitioner's gloves need not be removed in patient testing theatre 100.
  • Resistivity measurement 210 and autonomic nervous system stimulator 220 are coupled to switch 230, which may be a double-pole, double-throw switch with positions B, A thai selectively couple the electrotherapy signal or the electrical resistance measuring signal respectively to electrically conductive tip 1 15, while simultaneously coupling the
  • circuit 1 10 is in a resistance- measuring mode when switch 230 is in position A and in an autonomic nerv ous system mode when switch 230 is in position B.
  • FIG. 3 depicts a simplified block diagram of autonomic nervous system stimulator 220 represented in Figure 2, in accordance with one embodiment of the present invention.
  • Figure 3 depicts autonomic nervous system stimulator 220, which includes a pulse generator 310, a control unit 320, and a wireless transceiver 330.
  • Pulse generator 310 provides the electrotherapy signal, which includes characteristic such as frequency, amplitude, pulse shape, and duty cycle, which are set by control unit 320.
  • the electrotherapy signal may be similar or identical to the signal used during long-term electrotherapy treatment.
  • Control unit 320 couples to wireless transceiver 330, which may receive characteristic settings from computer 165 and set the characteristics in pulse generator 310.
  • Control unit 320 may also perform power saving functions such as turning off either resistivity measurement 210 or autonomic nervous system stimulator 220 responsive to switch 230 position.
  • Wireless transceiver 330 need not have high bandwidth or long transmission range capability but because autonomic nervous system sensitivity-point tester 1 10 may be a handheld portable device, power savings may be desirable to extend battery life. Therefore, wireless transceiver may operate on low bandwidth, power saving radio transmission standards such as Bluetooth®, 6L0WPAN®, ZigBee®, DASIT7®, Z-Wave®, MiWi®, or OSION®.
  • FIG. 4A depicts a simplified flowchart of a method 400 for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with one embodiment of the present invention.
  • the method starts 465 by the medical practitioner generating 470 the electrotherapy signal that stimulates a vagal response of an autonomic nerv ous system of the patient when the patient is tested by using autonomic nervous system sensitivity-point tester 1 10 in autonomic nervous system mode, i.e. setting switch 230 in position B.
  • the electrically conductive tip 1 15 is provided 475 that electrically contacts but does not puncture the skin surface when the patient is tested.
  • Setting switch 230 in position B couples 480 the electrotherapy signal to electrically conductive tip 1 15 as described above.
  • the autonomic nervous system sensitivity-point tester 110 is set up to do skin surface testing on the patient.
  • FIG. 4B depicts a simplified flowchart of a method 405 for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with another embodiment of the present invention.
  • the method starts 410 in one embodiment, by using 415 a locator application running on computer 1 65 to generally determine the needle locations.
  • choosing a first portion of the patient's skin is done by obtaining a preliminary skin location, e.g. on the ear, from graphical user interface 160 coupled to computer 165 executing a program responsive to a symptom of the patient.
  • the patient may be complaining to the medical practitioner of a pain in the lower back.
  • the medical practitioner may select that symptom on graphical user interface f 60, which responds by displaying the general location on a map of the ear, where acupuncture electrotherapy has been associated with lower back pain treatment.
  • the sensitivity-point location may be further localized by choosing a first portion of skin within the region identified in step 415 by determining 420 low resistance points using autonomic nervous system sensitivity - point tester 1 10 operating in resistance measuring mode, i.e. by setting switch 230 in position A. Then resistivity measurement 210 generates the electrical resistance-measuring signal, which is coupled to electrically conductive tip 115. Electrode 120 is applied to a second portion of skin, the electrode being a return signal path for the resistance-measuring signal
  • the medical practitioner may then apply the electrical resistance measuring signal to the first portion of skin with electrically conductive tip 1 15 that electrically contacts but does not puncture the skin when the patient is tested.
  • the electrical resistance at the first portion of skin is measured by resistivity measurement 210 and causes indicator 215 to provide an indication responsive to a value of skin resistivity 225, i.e. changing an emitted sound pitch correlated with the value.
  • the medical practitioner moves or probes the electrically conductive tip on the skin surface in response to the indication to selectively find a low resistance location of skin near the first portion of skin,
  • the medical practitioner may then further optimize the electrotherapy needle insertion location by determining 425 the autonomic sensitivity of the chosen point using autonomic nervous system sensitivity -point tester 1 10 in autonomic nervous system mode, i.e. by setting switch 230 in position B. Then autonomic nervous system stimulator 220 generates the electrotherapy signal, which is coupled to electrically conductive tip 1 15. Electrode 120 is applied, if not already applied during step 420, to another portion of skin, the electrode being a return signal path for the electrotherapy signal.
  • the medical practitioner may then apply the electrotherapy signal to the selected portion of skin with electrically conductive tip 115 that electrically contacts but does not puncture the skin when the patient is tested.
  • the electrotherapy signal may stimulate a vagal response of the autonomic nervous system of the patient when electrically conductive tip 1 15 is located in contact with an autonomic nervous system sensitivity -point on the skin surface when the patient is tested.
  • the medical practitioner couples autonomic nervous system monitor 135 to the patient as described above.
  • Autonomic nervous system monitor 135 analyzes a state of the autonomic nervous sy stem of the patient from a time- varying signal representing a chaotic series of time inten'als between quasi-periodical events produced by a cardiac system of the patient, i.e. from the patient's electrocardiogram. Autonomic nervous system monitor 135 also measures and displays a first sympathovagal balance of the patient,
  • Figure 5 depicts an exemplary response of a sympathovagal balance 500 used in method 425 represented in Figure 4B.
  • Figure 5 depicts sympathovagal balance 500, which plots balance trajectory 530 for the patient in real time as shown by the series of arrows on the balance trajectory.
  • the horizontal axis represents a parasympathetic or vagal response in the direction towards higher negative numbers, i.e. towards the left direction on the plot.
  • a sympathetic response is represented on the plot's horizontal axis in the direction of smaller negative numbers, i.e. towards the right of the plot.
  • a sympathetic trending balance trajectory 530 over time indicates increasing pain or dysfunction, while a vagal trending balance trajectory indicates pain relief.
  • the patient may be suffering anxiety to the clinical setting and the patient's balance trajectory 530 starts out generally moving away from the parasympathetic or vagal part of the horizontal axis and towards the sympathetic direction as indicated at point 510.
  • the medical practitioner determines 430 a response outcome based on the sympathovagal balance.
  • the response outcome is positive when the sympathovagal balance moves towards the vagal response as shown at point 520 indicating the electrically conductive tip 1 15 is positioned optimally on the skin surface and the patient's autonomic nervous system is responding favorably to the electrotherapy signal In conirast, the response outcome is negative when the sympaihovagal balance does not move towards the vagal response.
  • the medical practitioner checks 435 or chooses a slightly different neighboring portion of skin of the patient abutting the earlier portion of chosen skin.
  • the medical practitioner repeats applying the electrotherapy signal, measuring the sympaihovagal balance, and determining the response outcome until the response outcome is positive or until a certain predetermined number of portions of skin are tested or time has elapsed.
  • the medical practitioner inserts 440 an electrotherapy needle at that portion of skin.
  • the electrotherapy needle location selected with the procedure described above has been tested earlier at step 430 raising the confidence that the same electrotherapy signal applied to that location during the treatment regimen should have the desired beneficial effect on the patient's autonomic nervous system.
  • the needle insertion will cause a little pain creating a sympathetic deviation such as shown at point 510 on balance trajectory 530 that should quickly subside or reverse.
  • the needle insertion location may be at a point that will stimulate an undesired long-term pain response. Therefore, after needle insertion, the medical practitioner measures a second sympathovagal balance of the patient to determine 445 a sympathetic deviation reversal outcome based on the second sympathovagal balance.
  • the reversal outcome is positive when the second sympathovagal balance reverses from a sympathetic response towards a vagal response as shown at point 520 on balance trajectory 530.
  • the reversal outcome is negative when the second sympathovagal balance does not reverse from a sympathetic response towards a vagal response,
  • the medical practitioner removes 450 the electrotherapy needle from the portion of skin and moves the needle slightly to the side to choose another portion of skin abutting the earlier portion of skin.
  • the medical practitioner repeats inserting, measuring the second sympathovagal balance, and determining the reversal outcome until the reversal outcome is positive or until a certain predetermined number of portions of skin are tested or time has elapsed.
  • the electrotherapy treatment may require more than one stimulation point on the patient's ear.
  • one point may be stimulated to address lower back pain and another point may be stimulated for general pain relief Accordingly, when the reversal outcome at step 445 is positive, the medical practitioner determines 455 a number of inserted electrotherapy needles. The testing is finished 460 when the number of inserted
  • electrotherapy needles is equal to a predetermined number of electrotherapy needles required for the electrotherapy treatment, e.g. three stimulation needles - one needle located for a specific symptom and two needles located at two different locations for general pain relief.
  • a number of inserted electrotherapy needles is less than the predetermined number of electrotherapy needles, the medical practitioner repeats choosing the location, applying the electrotherapy signal, measuring the first sympathovagal balance, determining the response outcome, inserting the needle, measuring the second sympathovagal balance, and determining the reversal outcome.
  • FIG. 6 depicts a simplified block diagram of a patient treatment theatre 600, in accordance with one embodiment of the present invention.
  • Patient treatment theatre 600 includes the same elements as patient testing theatre 100 represented in Figure i except autonomic nervous system sensitivity-point tester 1 10, electrically conductive tip 1 15, and electrode 120, are replaced in Figure 6 by an electrotherapy stimulator 610, an electrotherapy needle 615, and an electrically conductive electrode 620. Electrotherapy needle 615 and electrically conductive electrode 620 are coupled to electrotherapy stimulator 610.
  • electrotherapy needle 615 includes a short, sharp-tipped electrically conductive electrode needle adapted to electrically contact and puncture a portion of the skin surface to inject the electrotherapy signal below the skin surface.
  • electrotherapy stimulator 610 may be a wearable device that is attached to the patient for a prolonged period of time to deliver elec trotherapy signals to the needles emplaced in the skin.
  • Autonomic nervous system monitor 135 may be attached to the patient during the placement of electrotherapy needle 615 but may be disconnected from the patient during the electrotherapy treatment regimen, thus providing mobility for the patient during treatment.
  • Wireless transceiver 175, graphical user interface 160 and computer 165 may be used as referenced in Figures 1, 2, and 3, to pass electrotherapy signal characteristics to electrotherapy stimulator 610 during set up when the needles are placed into the skin.
  • electrically conductive electrode 620 may be similar to electrode 12.0 and is adapted to electrically contact but not puncture a different portion of the skin surface than where electrotherapy needle 615 is inserted. Electrically conductive electrode 620 may provide a direct electrical contact between a surface of electrically- conductive electrode 620 and the skin surface thereby providing a return signal path for the electrotherapy signal when the periodic signal is injected below the skin surface. The direct electrical contact avoids signal degradation when adhesive glue is instead used between the skin and the electrode. Electrically conductive electrode 620 may be taped to the skin for a prolonged attachment time. Electrically conductive electrode 620 may include a short strip of metal foil that is coupled to electrotherapy stimulator 610 via a flexible wire.
  • electrically conductive electrode 620 may include a thin flexible braided wire directly coupled to electrotherapy stimulator 610.
  • Figure 7 depicts a simplified block diagram of the electrotherapy stimulator 610 and the portion of the patient's skin 125 represented in Figure 6, in accordance with one embodiment of the present invention.
  • Figure 7 depicts electrotherapy stimulator 610, which includes autonomic nervous system stimulator 220, one or more electrotherapy needles 615A, 615B, a battery 717, a housing 723, and an electrode 620.
  • Battery 717 provides portable power to the circuit and enables prolonged operation.
  • Autonomic nervous system stimulator 220 previously described and referenced in Figure 2 and Figure 3 may be similar to autonomic nervous system stimulator 2.2.0 included in electrotherapy stimulator 610 depicted in Figure 7,
  • the one or more electrotherapy needles 615A, 615B may be coupled in parallel to the electrotherapy signal (SIG) line output of autonomic nervous system stimulator 220.
  • Housing 723 may have an insulating surface and at least one orifice in the insulating surface, the electrotherapy needles 615 A may be located outside the housing and coupled through the orifice to the autonomic nervous system stimulator circuit. Housing 723 may hermetically seal or enclose the battery and the autonomic nervous system stimulator circuit.
  • Housing 723 may have a shape being adapted to conform to a portion of the skin surface when the periodic signal is injected below the skin surface.
  • the shape of the housing may have a fiat surface when electrotherapy stimuiator 610 is mounted on a flat portion of skin or may have a contoured surface when mounted on a portion of skin having a contour.
  • Housing 723 may be attached to the skin via tape or adhesive.
  • housing 723 may be attached by an adhesive layer to the skin on the head behind and below the ear with flexible wires reaching around the ear to the front of the ear surface where electrotherapy needles 615A, 615B are attached.
  • Electrode 620 may be taped to the skin surface on the inside or back surface of the ear facing the head.
  • FIG. 8 depicts a simplified flowchart of a method 800 for electrotherapy signal injection into a skin of a patient, in accordance with another embodiment of the present invention.
  • the method starts 810 by providing 820 battery 717, wireless radio transceiver 330, and one or more electrotherapy needles 615A, 615B.
  • the electrotherapy signal is a periodic signal in time that stimulates a vagal response of the autonomic nervous system of the patient is generated 830 using the circuit in electrotherapy stimulator 610.
  • Electrotherapy stimulator 610 may recieve 840 a characteristic of the periodic signal via an input of wireless transceiver 330.
  • Control circuit 320 may then set 850 the characteristic into the circuit of pulse generator 310.
  • the periodic electrotherapy signal is coupled 860 to electrotherapy needle 615.
  • the periodic signal is injected below the portion of the skin surface by electrically contacting and puncturing 870 the skin surface when electrotherapy needle 615 is inserted into the skin by the medical practitioner.
  • the location of the needle insertion may be determined using the method described in reference to Figures 4A, 4B and the autonomic nervous system sensitivity -point tester 110 described in reference to Figures 1, 2, and 3.
  • the electrotherapy stimulator is attached to the patient, and the patient's autonomic nervous system is checked.
  • autonomic nervous system monitor 135 may be disconnected, and the patient may go about his or her routine activities while electrotherapy stimulator 610 delivers periodic pulses that stimulate a vagal response of the autonomic nervous system over a predetermined and / ' or extended therapy time,
  • the patient may return for further monitoring by the medical practitioner using autonomic nervous system monitor 135 to quantitatively determine the treatment outcome by comparing quantitative measurements of the patient's autonomic nervous system before and after the treatment round.
  • the settings of electrotherapy stimulator 610 may be adjusted between the electrotherapy treatment rounds to optimize treatment. For example, the amplitude of the electrotherapy signal may be increased by the medical practitioner as treatment progresses due to desensiiization of the nerves at the electrotherapy needle sites, as determined by quantitatively monitoring the patient using autonomic nervous system monitor 135.
  • Electrotherapy signal characteristics may affect treatment outcomes.
  • Figure 9 depicts a chart showing patient responses to electrotherapy signal injection versus electrotherapy signal frequency from peer-reviewed literature. The frequency characteristic is shown along the horizontal axis in a range below 200 Hz. The following therapeutic responses have been observed in ascending frequency order in the range between 1 Hz and 10 FIz respectively; melatonin secretion 910, nerve regeneration, neurite outgrowth 915, osteogenesis 920, cartilage 925, bone growth 930, ligament healing, cell growth,
  • osteogenesis collagen production, and deoxyribonucleic acid (DNA) synthesis 935.
  • A deoxyribonucleic acid
  • nerve growth 945 has been observed.
  • Nerve growth, osteogenesis, and lymphocyte activation 950 have been observed at about 30 Hz.
  • Decreased skin necrosis, angiogenesis, and fibroblast proliferation have also been observed at about 70 FIz.
  • Osteogenesis, bony defect, and DNA synthesis 960 have been observed at about 95 Hz.
  • Osteogenesis 965 has also been observed at about 200 Hz. Accordingly, setting the frequency characteristic of the periodic signal generated by pulse generator 310 to a predetermined frequency associated with a therapeutic response mode of the patient may improve or accelerate electrotherapy treatment outcome.

Abstract

An electrical apparatus includes a battery, a circuit adapted to generate a periodic signal, and a wireless radio transceiver. The electrical apparatus further includes a control circuit adapted to set a characteristic of the periodic signal. The characteristic is received by an input of the wireless radio transceiver. The electrical apparatus further includes a first electrically conductive electrode adapted to electrically contact and puncture a first portion of a surface when the periodic signal is injected below the first portion of the surface. The periodic signal is coupled to the first electrically conductive electrode.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS [Θ00Ϊ ] This application is related to U.S. Patent No. 7,092,849, titled "EXTRACTING CAUSAL INFORMATION FROM A CHAOTIC TIME SERIES," granted August 15, 2006, the content of which is incorporated herein by reference in its entirety. This application is also related to the following applications filed herewith: U.S. Patent Application Attorney Docket No. 89562-000300US-874038, titled "STIMULATIVE ELECTROTHERAPY USING AUTONOMIC NERVOUS SYSTEM CONTROL," U.S. Patent Application Attorney Docket No. 89562-000400US-874044, titled "METHOD AND APPARATUS FOR AUTONOMIC NERVOUS SYSTEM SENSITIVITY-POINT TESTING", and U.S. Patent Application Attorney Docket No. 89562 -000500US-874022, titled "COMPUTER
IMPLEMENTED TRAINING OF A PROCEDURE," the contents of all of which are incorporated herein by reference in their entirety.
BACKGROUND
[0002] The present invention relates generally to a method and apparatus for applying an electrical signal to a patient, and in particular, for applying a time varying signal to a nervous system of a patient.
[0003] Measures of heart rate variability have been shown to be a powerful means of assessing the influence of the autonomic nervous system on the cardiac system. Indeed, the autonomic nervous system, with its sympathetic and parasympathetic, hereinafter also referred to as 'Vagal" subsystems, governs involuntary actions of the cardiac muscle and every visceral organ in the body.
[0004] The autonomic nervous system is not directly accessible to voluntary control.
Instead, it operates in an autonomic fashion on the basis of autonomic reflexes and central control. One of its major functions is the maintenance of homeostasis within the body. The autonomic nervous system further plays an adaptive role in the interaction of the organism with its surroundings. [0005] In many diseases, the sympathetic and/or parasympathetic parts of the autonomic nervous system are affected leading to autonomic dysfunction. It is then important to have reliable and representative measures of the activity and the state of the autonomic nervous system, |ΘΘΘ6] U.S. Patent No. 7,092,849 to Lafitte, et al. describes a method, a system, and a computer code for analyzing the state of the autonomic nervous system from a time-varying signal representing a chaotic series of time intervals between quasi-periodical events produced by the cardiac system governed by the autonomic system. Thus, real-time monitoring of the sympathovagal balance between the parasympathetic and the sympathetic components of the autonomic nervous system is possible.
[0007] The autonomic nervous system plays an important role in pain modulation and perception and chronic pain is likely due to a malfunction in the body's central nerv ous system. While there are many medications and physical therapies that are used to treat pain, they do not cure it and only mask the pain response, sometimes with undesired side effects such as with narcotic medications.
[0008] A point stimulation dev ice is a non-narcotic combination of permanent acupuncture- like needles and electrical stimulation used to treat chronic pain over time. A point stimulation device uses auricular acupuncture as a treatment based on normalizing the body's dysfunction through stimulation of points on the ear. The resulting amelioration of pain and illness is believed to be through the reticular formation and the sympathetic and
parasympathetic nervous systems. Specific points in the ear are related to major organs in the body. However, existing medical devices and treatment protocols for testing and locating sensitivity-points on the skin surface for point stimulation needle insertion have not taken advantage of the capabilities of real-time sy mpathovagal balance monitoring. Present point stimulation devices provide only a fixed electrical stimulation signal.
BRIEF SUMMARY
[0009] According to one embodiment of the present invention, an electrical apparatus includes a battery, a circuit adapted to generate a periodic signal, and a wireless radio transceiver. The electrical apparatus further includes a control circuit adapted to set a characteristic of the periodic signal. The characteristic is received by an input of the wireless radio transceiver. The electrical apparatus further includes a first electrically conductive electrode adapted to electrically contact and puncture a first portion of a surface when the periodic signal is injected below the firs t portion of the surface. The periodic signal is coupled to the first electrically conductive electrode.
[ΘΘ10] According to one embodiment, the electrical apparatus further includes a second electrically conductive electrode adapted to electrically contact but not puncture a second portion of the surface. The second electrically conductive electrode provides a direct electrical contact between the second electrically conductive electrode and the second portion of the surface, which provides a return signal path for the periodic signal when the periodic signal is injected below the first portion of the surface. [Θ01Ϊ ] According to one embodiment, the electrical apparatus further includes a housing having an insulating surface and at least a first orifice in the insulating surface. The first electrically conductive electrode is adapted to be located outside the housing and coupled through the first orifice to the circuit. The housing encloses the battery and the circuit.
[0012] According to one embodiment, the housing is adapted to have a shape being adapted to conform to a third portion of the surface when the periodic signal is injected below the first portion of the surface. According to one embodiment, the housing is adapted to hermetically seal the electrical apparatus.
[0013] According to one embodiment, the wireless radio transceiver operates on a transmission standard selected from one of Bluetooth®, 6L0WPAN®, ZigBee®, DASH7®, Z-Wave©, MiWi®, or OSION®. According to one embodiment, the characteristic is selected from one of a frequency , an amplitude, a pulse shape, or a duty cycle.
[0014] According to one embodiment, the periodic signal is an electrotherapy signal. The characteristic of the periodic signal is adapted to stimulate a response in a parasympathetic nervous system of a. patient. The surface is a. skin of the patient when the periodic signal is injected below the first portion of the surface. According to one embodiment, the frequency of the periodic signal is set to a predetermined frequency associated with a treatment of a patient.
[0015] According to one embodiment of the present invention, a method for signal injection includes providing a battery, providing a wireless radio transceiver, and providing a first electrically conductive electrode. The method further includes generating a periodic signal in time from a circuit, receiving a characteristic of the periodic signal by an input of the wireless transceiver, and setting the characteristic via a control circuit. The method further includes coupling the periodic signal to the first electrically conductive electrode, and electrically contacting and puncturing a first portion of a surface when the periodic signal is injected below the first portion of the surface. [0016] According to one embodiment, the method further includes contacting but not puncturing a second portion of the surface by a second electrically conductive electrode. The second electrically conductive electrode provides a direct electrical contact between the second electrically conductive electrode and the second portion of the surface, thereby providing a return signal path for the periodic signal when the periodic signal is injected below the first portion of the surface.
[0017] According to one embodiment, the method further includes providing a housing having an insulating surface and at least a first orifice in the insulating surface, and locating the first electrically conductive electrode outside the housing. The method further includes coupling the first electrically conductive electrode through the first orifice to the circuit, and enclosing the battery and the circuit with the housing.
[0018] According to one embodiment, the method further includes shaping the housing to conform to a third portion of the surface when the periodic signal is injected below the first portion of the surface. According to one embodiment, the method further includes hermetically sealing the electrical apparatus with the housing. [0019] According to one embodiment, the method further includes selecting the characteristic from one of a frequency, an amplitude, a pulse shape, or a duty cycle.
According to one embodiment, the method further includes setting the frequency of the periodic signal to a predetermined frequency associated with, a treatment of a patient.
[0020] A better understanding of the nature and advantages of the embodiments of the present invention may be gained with reference to the following detailed description and the accompanying drawings,
BRIEF DESCRIPTION OF THE DRAWINGS
[ΘΘ21 ] Figure 1 depicts a simplified block diagram of a patient testing theatre, in accordance with one embodiment of the present invention. [0022] Figure 2 depicts a simplified block diagram of the autonomic nervous system sensitivity-point tester and the portion of the patient's skin represented irs Figure 1 , in accordance with one embodiment of the present invention,
[0023] Figure 3 depicts a simplified block diagram of the autonomic nervous system stimulator represented in Figure 2, in accordance with one embodiment of the present invention.
[0024] Figure 4A depicts a simplified flowchart of a method for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with one embodiment of the present invention. [0025] Figure 4B depicts a simplified flowchart of a method for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with another embodiment of the present invention.
[0026] Figure 5 depicts an exemplar}? response of a sympathovagal balance used in the method represented in Figure 4B. [0027] Figure 6 depicts a simplified block diagram of a patient treatment theatre, in accordance with one embodiment of the present invention.
[0028] Figure 7 depicts a simplified block diagram of the electrotherapy stimulator and the portion of the patient's skin represented in Figure 6, in accordance with one embodiment of the present invention. [0029] Figure 8 depicts a simplified flowchart of a method for electrotherapy signal injection into a skin of a patient, in accordance with another embodiment of the present invention.
[0030] Figure 9 depicts a chart showing patient responses to electrotherapy signal injection versus electrotherapy signal frequency from peer-reviewed literature.
DETAILED DESCRIPTION
[0031] The present invention relates generally to a method and apparatus for testing a patient's skin, and in particular, to testing a patient's skin to find autonomic nervous system sensitivity-points. Auricular acupuncture electrotherapy treatments involve inserting an electrotherapy needle into the skin of a patient at certain sensitivity-points on the ear associated with a particular therapy regimen and applying an electrotherapy signal to the electrotherapy needle. Finding a location to place the needle may be determined by foreknowledge of general locations and testing or measuring local skin resistance. However, electrotherapy treatment acts through the autonomic nervous system so skin resistivity alone may not be the best test indicator for electrotherapy needle placement.
[0032] In accordance with one embodiment of the present invention, a test and
measurement for electrotherapy needle placement may generate and apply an electrical signal similar or identical to the electrotherapy signal that would be used during treatment to a portion of the patient's skin surface without puncturing the skin. The skin surface is then probed with the electrotherapy signal via an electrically conductive tip, to identify a location that stimulates a vagal response of the patient's autonomic nervous system by monitoring the sympathovagal balance. The identified location may then be pricked by an electrotherapy needle which is then connected to the electrotherapy signal for a long duration treatment period. Locating the needle sites initially may not constitute therapy but may improve the outcome of planned acupuncture electrotherapy.
[0033] Figure 1 depicts a simplified block diagram of a patient testing theatre 100, in accordance with one embodiment of the present invention. Patient testing theatre 100 includes an autonomic nervous system sensitivity-point tester 110 coupled to an electrically conductive tip 1 15 and an electrode 120, which in -turn are connected to an ear 125, hereinafter also referred to as "portion of skin", of a patient 130. In one embodiment, an autonomic nervous system monitor 135 is coupled to electrodes 140, 145, 150, 155 respectively on the patient's left arm, right arm, left leg, right leg to receive quasi-periodical electro cardiogram signals from the cardiac system that are in -turn governed by the patient's autonomic nervous system. The patient is preferably in a supine position on an examination table in a clinical environment for autonomic nervous system testing and monitoring.
[0034] In the exemplary embodiment depicted in Figure 1, the patient is represented as a human. It is understood, however, that the patient may be any living creature possessing an autonomic nervous system and cardiac system. In the exemplary embodiment depicted in Figure I , autonomic nervous system sensitivity-point tester 110 is shown as connecting to an ear. It is understood, however, that autonomic nervous system sensitivity-point tester 1 10 may instead be connected to any portion of skin demonstrated to have nerve connections sensitive enough to affect the autonomic nervous system of the patient. [0035] In one embodiment, the patient testing theatre 100 may include a graphical user interface 160 coupled to a computer 165, which may be coupled via cable (not shown) or via wireless radio transmission 170 to autonomic nervous system sensitivity-point tester 1 10. Preferably, the autonomic nervous system sensitivity-point tester is a wireless hand held device, which may be programmed or have certain characteristics set by a medical practitioner or technician (not shown) via graphical user interface 160 and computer 165. In one embodiment, computer 165 may be a desktop, laptop, pad, mini -pad, or smart phone that may have a wireless transceiver 175.
[0036] The autonomic nervous system monitor 135 is adapted to convert the patient's electro cardiogram signals to, among other information, a sympathovagal balance between the parasympathetic and the sympathetic components of the autonomic nervous system. U.S. Patent No. 7,092,849 to Lafitte, et al. and co-pending U.S. Patent, titled "STIMULATIVE ELECTROTHERAPY USING AUTONOMIC NERVOUS SYSTEM CONTROL" to Nageshwar, which are incorporated by reference, describe, in part, the theory of operation for autonomic nervous system monitor 135.
[0037] Figure 2 depicts a simplified block diagram of autonomic nervous system sensitivity-point tester 1 10 and portion of the patient's skin 125 represented in Figure 1 , in accordance with one embodiment of the present invention. Figure 2 depicts autonomic nervous system sensitivity-point tester 1 10, hereinafter also referred to as "circuit", which includes a resistivity measurement unit 210, an indicator 215, an autonomic nervous system stimulator 220, a switch 230, an electrically conductive tip 1 15, a batter}' 217, a housing 223, and an electrode 120. Resistivity measurement 210 couples to indicator 215. Battery 217 provides portable power to the circuit and enables hand-held operation.
[0038] Resistivity measurement 210 is adapted to generate an electrical resistance measuring signal to measure a skin resistivity 225 coupled between electrically conductive tip 1 15 and electrode 120 when the patient is tested. Indicator 215 is responsive to a value of electrical resistance measured by the circuit and may provide a visual indicator, a sonic indicator, and/or a vibrational indicator. For example, indicator 215 may be a buzzer that changes sound pitch in relation to the measured value of skin resistivity 225, which may change as electrically conductive tip 115 is moved around by the medical practitioner to contact different portions of the patient's skin surface. [0039] Autonomic nervous system stimulator 220 is adapted to generate an electrotherapy signal, hereinafter also referred to as "periodic signal" or "periodic signal in time," coupled to electrically conductive tip 1 15 that stimulates a vagal response of the patient's autonomic nervous system when the patient is tested. Electrically conductive tip 1 15 provides electrical contact to b ut does not puncture a portion of the skin surface of the patient when the patient is tested.
[0040] Electrode 120 is applied to a different portion of skin than that portion of skin surface being tested to optimize electrotherapy needle placement. Electrode 120 is adapted to be a return signal path, i.e. ground, for either the electrical resistance-measuring signal or the electrotherapy signal thereby enabling a gloved medical practitioner, hereinafter also referred to as "tester" to facilitate applying the electrical resistance measuring signal or the electrotherapy signal to the patient. Electrode 120 may be a portion of metal foil taped temporarily on the patient's skin or an electrotherapy needle temporarily placed in the patient's skin. [0041] Housing 223 may have an insulating surface and at least one orifice in the insulating surface through which electrically conductive tip 115 protrudes or extends outside the housing. Housing 223 may enclose batter)' 217 and the circuit. The housing may have a shape that may be adapted to be hand held when the skin surface is tested. In other words, the housing is shaped to fit the hand grasp of a person using autonomic nervous system sensitivity -point tester 110. The insulating surface of the housing may have other orifices for example to allow a tester to operate switch 230 and for electrode 120. Housing 223 may hermetically seal the circuit and seal the orifices, for example by using a flexible gasket around the electrically conductive tip to facilitate cleaning and disinfecting autonomic nervous system sensitivity-point tester 1 10 between testing uses, [0042] Since electrotherapy needle placement punctures the skin, the medical practitioner may be required to wear gloves during needle placement. Prior sensitivity-point tester designs provide the return signal path via the bare hand of the medical practitioner, which must be placed over a metal contact on the housing of the sensitivity-point tester. In contrast, providing electrode 120 is advantageous over prior sensitivity-point tester designs because the medical practitioner's gloves need not be removed in patient testing theatre 100.
[0043] Resistivity measurement 210 and autonomic nervous system stimulator 220 are coupled to switch 230, which may be a double-pole, double-throw switch with positions B, A thai selectively couple the electrotherapy signal or the electrical resistance measuring signal respectively to electrically conductive tip 1 15, while simultaneously coupling the
corresponding return signals to electrode 120, Therefore, circuit 1 10 is in a resistance- measuring mode when switch 230 is in position A and in an autonomic nerv ous system mode when switch 230 is in position B.
[0044] Figure 3 depicts a simplified block diagram of autonomic nervous system stimulator 220 represented in Figure 2, in accordance with one embodiment of the present invention. Figure 3 depicts autonomic nervous system stimulator 220, which includes a pulse generator 310, a control unit 320, and a wireless transceiver 330. Pulse generator 310 provides the electrotherapy signal, which includes characteristic such as frequency, amplitude, pulse shape, and duty cycle, which are set by control unit 320. The electrotherapy signal may be similar or identical to the signal used during long-term electrotherapy treatment. Control unit 320 couples to wireless transceiver 330, which may receive characteristic settings from computer 165 and set the characteristics in pulse generator 310. Control unit 320 may also perform power saving functions such as turning off either resistivity measurement 210 or autonomic nervous system stimulator 220 responsive to switch 230 position.
[0045] Wireless transceiver 330 need not have high bandwidth or long transmission range capability but because autonomic nervous system sensitivity-point tester 1 10 may be a handheld portable device, power savings may be desirable to extend battery life. Therefore, wireless transceiver may operate on low bandwidth, power saving radio transmission standards such as Bluetooth®, 6L0WPAN®, ZigBee®, DASIT7®, Z-Wave®, MiWi®, or OSION®.
[0046] Figure 4A depicts a simplified flowchart of a method 400 for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with one embodiment of the present invention. Referring simultaneously to Figure 2 and Figure 4A, the method starts 465 by the medical practitioner generating 470 the electrotherapy signal that stimulates a vagal response of an autonomic nerv ous system of the patient when the patient is tested by using autonomic nervous system sensitivity-point tester 1 10 in autonomic nervous system mode, i.e. setting switch 230 in position B. The electrically conductive tip 1 15 is provided 475 that electrically contacts but does not puncture the skin surface when the patient is tested. Setting switch 230 in position B couples 480 the electrotherapy signal to electrically conductive tip 1 15 as described above. Thus, before finish 485 of this embodiment, the autonomic nervous system sensitivity-point tester 110 is set up to do skin surface testing on the patient.
[0047] Figure 4B depicts a simplified flowchart of a method 405 for autonomic nervous system sensitivity-point testing on a skin of a patient, in accordance with another embodiment of the present invention. Referring simultaneously to Figure 1 and Figure 4B, the method starts 410 in one embodiment, by using 415 a locator application running on computer 1 65 to generally determine the needle locations. In other words, choosing a first portion of the patient's skin is done by obtaining a preliminary skin location, e.g. on the ear, from graphical user interface 160 coupled to computer 165 executing a program responsive to a symptom of the patient. For example, the patient may be complaining to the medical practitioner of a pain in the lower back. The medical practitioner may select that symptom on graphical user interface f 60, which responds by displaying the general location on a map of the ear, where acupuncture electrotherapy has been associated with lower back pain treatment.
[0048] Referring simultaneously to Figure 2 and Figure 4B, the sensitivity-point location may be further localized by choosing a first portion of skin within the region identified in step 415 by determining 420 low resistance points using autonomic nervous system sensitivity - point tester 1 10 operating in resistance measuring mode, i.e. by setting switch 230 in position A. Then resistivity measurement 210 generates the electrical resistance-measuring signal, which is coupled to electrically conductive tip 115. Electrode 120 is applied to a second portion of skin, the electrode being a return signal path for the resistance-measuring signal
[0049] The medical practitioner may then apply the electrical resistance measuring signal to the first portion of skin with electrically conductive tip 1 15 that electrically contacts but does not puncture the skin when the patient is tested. The electrical resistance at the first portion of skin is measured by resistivity measurement 210 and causes indicator 215 to provide an indication responsive to a value of skin resistivity 225, i.e. changing an emitted sound pitch correlated with the value. The medical practitioner moves or probes the electrically conductive tip on the skin surface in response to the indication to selectively find a low resistance location of skin near the first portion of skin,
[0050] The medical practitioner may then further optimize the electrotherapy needle insertion location by determining 425 the autonomic sensitivity of the chosen point using autonomic nervous system sensitivity -point tester 1 10 in autonomic nervous system mode, i.e. by setting switch 230 in position B. Then autonomic nervous system stimulator 220 generates the electrotherapy signal, which is coupled to electrically conductive tip 1 15. Electrode 120 is applied, if not already applied during step 420, to another portion of skin, the electrode being a return signal path for the electrotherapy signal.
[Θ051 ] The medical practitioner may then apply the electrotherapy signal to the selected portion of skin with electrically conductive tip 115 that electrically contacts but does not puncture the skin when the patient is tested. The electrotherapy signal may stimulate a vagal response of the autonomic nervous system of the patient when electrically conductive tip 1 15 is located in contact with an autonomic nervous system sensitivity -point on the skin surface when the patient is tested. Referring to Figure 1 and Figure 4B, to measure the autonomic nervous system, the medical practitioner couples autonomic nervous system monitor 135 to the patient as described above. Autonomic nervous system monitor 135 analyzes a state of the autonomic nervous sy stem of the patient from a time- varying signal representing a chaotic series of time inten'als between quasi-periodical events produced by a cardiac system of the patient, i.e. from the patient's electrocardiogram. Autonomic nervous system monitor 135 also measures and displays a first sympathovagal balance of the patient,
[0052] Figure 5 depicts an exemplary response of a sympathovagal balance 500 used in method 425 represented in Figure 4B. Figure 5 depicts sympathovagal balance 500, which plots balance trajectory 530 for the patient in real time as shown by the series of arrows on the balance trajectory. The horizontal axis represents a parasympathetic or vagal response in the direction towards higher negative numbers, i.e. towards the left direction on the plot. Conversely, a sympathetic response is represented on the plot's horizontal axis in the direction of smaller negative numbers, i.e. towards the right of the plot. A sympathetic trending balance trajectory 530 over time indicates increasing pain or dysfunction, while a vagal trending balance trajectory indicates pain relief. In this example, the patient may be suffering anxiety to the clinical setting and the patient's balance trajectory 530 starts out generally moving away from the parasympathetic or vagal part of the horizontal axis and towards the sympathetic direction as indicated at point 510.
[0053] Referring simultaneously to Figure 4B and Figure 5, the medical practitioner determines 430 a response outcome based on the sympathovagal balance. The response outcome is positive when the sympathovagal balance moves towards the vagal response as shown at point 520 indicating the electrically conductive tip 1 15 is positioned optimally on the skin surface and the patient's autonomic nervous system is responding favorably to the electrotherapy signal In conirast, the response outcome is negative when the sympaihovagal balance does not move towards the vagal response.
[0054] When the response outcome is negative, the medical practitioner checks 435 or chooses a slightly different neighboring portion of skin of the patient abutting the earlier portion of chosen skin. The medical practitioner repeats applying the electrotherapy signal, measuring the sympaihovagal balance, and determining the response outcome until the response outcome is positive or until a certain predetermined number of portions of skin are tested or time has elapsed.
[0055] When the response outcome is positive, the medical practitioner inserts 440 an electrotherapy needle at that portion of skin. The electrotherapy needle location selected with the procedure described above has been tested earlier at step 430 raising the confidence that the same electrotherapy signal applied to that location during the treatment regimen should have the desired beneficial effect on the patient's autonomic nervous system.
[0056] The needle insertion will cause a little pain creating a sympathetic deviation such as shown at point 510 on balance trajectory 530 that should quickly subside or reverse.
However, the needle insertion location may be at a point that will stimulate an undesired long-term pain response. Therefore, after needle insertion, the medical practitioner measures a second sympathovagal balance of the patient to determine 445 a sympathetic deviation reversal outcome based on the second sympathovagal balance. The reversal outcome is positive when the second sympathovagal balance reverses from a sympathetic response towards a vagal response as shown at point 520 on balance trajectory 530. The reversal outcome is negative when the second sympathovagal balance does not reverse from a sympathetic response towards a vagal response,
[0057] When the reversal outcome is negative, the medical practitioner removes 450 the electrotherapy needle from the portion of skin and moves the needle slightly to the side to choose another portion of skin abutting the earlier portion of skin. The medical practitioner repeats inserting, measuring the second sympathovagal balance, and determining the reversal outcome until the reversal outcome is positive or until a certain predetermined number of portions of skin are tested or time has elapsed. [0058] The electrotherapy treatment may require more than one stimulation point on the patient's ear. For example, one point may be stimulated to address lower back pain and another point may be stimulated for general pain relief Accordingly, when the reversal outcome at step 445 is positive, the medical practitioner determines 455 a number of inserted electrotherapy needles. The testing is finished 460 when the number of inserted
electrotherapy needles is equal to a predetermined number of electrotherapy needles required for the electrotherapy treatment, e.g. three stimulation needles - one needle located for a specific symptom and two needles located at two different locations for general pain relief. When a number of inserted electrotherapy needles is less than the predetermined number of electrotherapy needles, the medical practitioner repeats choosing the location, applying the electrotherapy signal, measuring the first sympathovagal balance, determining the response outcome, inserting the needle, measuring the second sympathovagal balance, and determining the reversal outcome.
[0059] Figure 6 depicts a simplified block diagram of a patient treatment theatre 600, in accordance with one embodiment of the present invention. Patient treatment theatre 600 includes the same elements as patient testing theatre 100 represented in Figure i except autonomic nervous system sensitivity-point tester 1 10, electrically conductive tip 1 15, and electrode 120, are replaced in Figure 6 by an electrotherapy stimulator 610, an electrotherapy needle 615, and an electrically conductive electrode 620. Electrotherapy needle 615 and electrically conductive electrode 620 are coupled to electrotherapy stimulator 610. In contrast to electrically conductive tip 115, which includes a small but dull tip that prevents skin puncture, electrotherapy needle 615 includes a short, sharp-tipped electrically conductive electrode needle adapted to electrically contact and puncture a portion of the skin surface to inject the electrotherapy signal below the skin surface.
[0060] The location where electrotherapy needle 615 is located on ear 125 may be determined by the procedures outlined earlier referenced in Figure 4A and Figure 4B using the autonomic nervous system sensitivity-point tester 1 10 referenced in Figure 1 and Figure 2. Unlike autonomic nervous system sensitivity-point tester 1 10, which may be a hand-held device used only for testing the location of electrotherapy needle placement, electrotherapy stimulator 610 may be a wearable device that is attached to the patient for a prolonged period of time to deliver elec trotherapy signals to the needles emplaced in the skin. Autonomic nervous system monitor 135 may be attached to the patient during the placement of electrotherapy needle 615 but may be disconnected from the patient during the electrotherapy treatment regimen, thus providing mobility for the patient during treatment. Wireless transceiver 175, graphical user interface 160 and computer 165 may be used as referenced in Figures 1, 2, and 3, to pass electrotherapy signal characteristics to electrotherapy stimulator 610 during set up when the needles are placed into the skin.
[Θ06Ϊ ] Referring to Figure 6, electrically conductive electrode 620 may be similar to electrode 12.0 and is adapted to electrically contact but not puncture a different portion of the skin surface than where electrotherapy needle 615 is inserted. Electrically conductive electrode 620 may provide a direct electrical contact between a surface of electrically- conductive electrode 620 and the skin surface thereby providing a return signal path for the electrotherapy signal when the periodic signal is injected below the skin surface. The direct electrical contact avoids signal degradation when adhesive glue is instead used between the skin and the electrode. Electrically conductive electrode 620 may be taped to the skin for a prolonged attachment time. Electrically conductive electrode 620 may include a short strip of metal foil that is coupled to electrotherapy stimulator 610 via a flexible wire. Alternatively, electrically conductive electrode 620 may include a thin flexible braided wire directly coupled to electrotherapy stimulator 610. [0062] Figure 7 depicts a simplified block diagram of the electrotherapy stimulator 610 and the portion of the patient's skin 125 represented in Figure 6, in accordance with one embodiment of the present invention. Figure 7 depicts electrotherapy stimulator 610, which includes autonomic nervous system stimulator 220, one or more electrotherapy needles 615A, 615B, a battery 717, a housing 723, and an electrode 620. Battery 717 provides portable power to the circuit and enables prolonged operation. Autonomic nervous system stimulator 220 previously described and referenced in Figure 2 and Figure 3 may be similar to autonomic nervous system stimulator 2.2.0 included in electrotherapy stimulator 610 depicted in Figure 7, The one or more electrotherapy needles 615A, 615B may be coupled in parallel to the electrotherapy signal (SIG) line output of autonomic nervous system stimulator 220. [0063] Housing 723 may have an insulating surface and at least one orifice in the insulating surface, the electrotherapy needles 615 A may be located outside the housing and coupled through the orifice to the autonomic nervous system stimulator circuit. Housing 723 may hermetically seal or enclose the battery and the autonomic nervous system stimulator circuit. Housing 723 may have a shape being adapted to conform to a portion of the skin surface when the periodic signal is injected below the skin surface. For example, the shape of the housing may have a fiat surface when electrotherapy stimuiator 610 is mounted on a flat portion of skin or may have a contoured surface when mounted on a portion of skin having a contour. Housing 723 may be attached to the skin via tape or adhesive. For example, housing 723 may be attached by an adhesive layer to the skin on the head behind and below the ear with flexible wires reaching around the ear to the front of the ear surface where electrotherapy needles 615A, 615B are attached. Electrode 620 may be taped to the skin surface on the inside or back surface of the ear facing the head.
[0064] Figure 8 depicts a simplified flowchart of a method 800 for electrotherapy signal injection into a skin of a patient, in accordance with another embodiment of the present invention. Referring simultaneously to Figures 3 , 6, 7, and 8, the method starts 810 by providing 820 battery 717, wireless radio transceiver 330, and one or more electrotherapy needles 615A, 615B. The electrotherapy signal is a periodic signal in time that stimulates a vagal response of the autonomic nervous system of the patient is generated 830 using the circuit in electrotherapy stimulator 610. Electrotherapy stimulator 610 may recieve 840 a characteristic of the periodic signal via an input of wireless transceiver 330. Control circuit 320 may then set 850 the characteristic into the circuit of pulse generator 310. [0065] The periodic electrotherapy signal is coupled 860 to electrotherapy needle 615. The periodic signal is injected below the portion of the skin surface by electrically contacting and puncturing 870 the skin surface when electrotherapy needle 615 is inserted into the skin by the medical practitioner. The location of the needle insertion may be determined using the method described in reference to Figures 4A, 4B and the autonomic nervous system sensitivity -point tester 110 described in reference to Figures 1, 2, and 3. After the electrotherapy needles are set in the skin, the electrotherapy stimulator is attached to the patient, and the patient's autonomic nervous system is checked. Then, autonomic nervous system monitor 135 may be disconnected, and the patient may go about his or her routine activities while electrotherapy stimulator 610 delivers periodic pulses that stimulate a vagal response of the autonomic nervous system over a predetermined and /' or extended therapy time,
[0066] When a. round of electrotherapy is done, the patient may return for further monitoring by the medical practitioner using autonomic nervous system monitor 135 to quantitatively determine the treatment outcome by comparing quantitative measurements of the patient's autonomic nervous system before and after the treatment round. The settings of electrotherapy stimulator 610 may be adjusted between the electrotherapy treatment rounds to optimize treatment. For example, the amplitude of the electrotherapy signal may be increased by the medical practitioner as treatment progresses due to desensiiization of the nerves at the electrotherapy needle sites, as determined by quantitatively monitoring the patient using autonomic nervous system monitor 135.
[0067] Electrotherapy signal characteristics may affect treatment outcomes. For example, Figure 9 depicts a chart showing patient responses to electrotherapy signal injection versus electrotherapy signal frequency from peer-reviewed literature. The frequency characteristic is shown along the horizontal axis in a range below 200 Hz. The following therapeutic responses have been observed in ascending frequency order in the range between 1 Hz and 10 FIz respectively; melatonin secretion 910, nerve regeneration, neurite outgrowth 915, osteogenesis 920, cartilage 925, bone growth 930, ligament healing, cell growth,
osteogenesis, collagen production, and deoxyribonucleic acid (DNA) synthesis 935. At about 20 Hz decreased skin necrosis, angiogenesis, fibroblast proliferation, and osteogenesis 940 have been observed. At about 25 Hz nerve growth 945 has been observed. Nerve growth, osteogenesis, and lymphocyte activation 950 have been observed at about 30 Hz. Decreased skin necrosis, angiogenesis, and fibroblast proliferation have also been observed at about 70 FIz. Osteogenesis, bony defect, and DNA synthesis 960 have been observed at about 95 Hz. Osteogenesis 965 has also been observed at about 200 Hz. Accordingly, setting the frequency characteristic of the periodic signal generated by pulse generator 310 to a predetermined frequency associated with a therapeutic response mode of the patient may improve or accelerate electrotherapy treatment outcome.
[0068] The above embodiments of the present invention are illustrative and not limiting. Various alternatives and equivalents are possible. Although, the invention has been described with reference to a human patient by way of an example, it is understood that the invention is not limited by the type of patient so long as the patient has an autonomic nervous system and cardiac system. Although, the invention has been described with reference to auricular acupuncture electrotherapy by way of an example, it is understood that the invention is not limited by the location of the skin portion being tested or treated so long as the location has autonomic nervous system sensitivity-points. Other additions, subtractions, or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.

Claims

WHAT IS CLAIMED IS: 1. An electrical apparatus comprising:
a batter)';
a circuit adapted to generate a periodic signal;
a wireless radio transceiver;
a control circuit adapted to set a characteristic of the periodic signal, the characteristic being received by an input of the wireless radio transceiver; and
a first electrically conductive electrode adapted to electrically contact and puncture a first portion of a surface when the periodic signal is injected below the first portion of the surface, wherein the periodic signal is coupled to the first electrically conductive electrode.
2. The electrical apparatus of claim 1 further comprising a second electrically conductive electrode adapted to electrically contact but not puncture a second portion of the surface, the second electrically conductive electrode providing a direct electrical contact between the second electrically conductive electrode and the second portion of the surface thereby providing a return signal path for the periodic signal when the periodic signal is injected below the first portion of the surface.
3. The electrical apparatus of claim 1 further comprising a housing having an insulating surface and at least a first orifice in the insulating surface, the first electrically conductive electrode adapted to be located outside the housing and coupled through the first orifice to the circuit, the housing enclosing the battery and the circuit.
4. The electrical apparatus of claim 3, wherein the housing is adapted to have a shape being adapted to conform to a third portion of the surface when the periodic signal is injected below the first portion of the surface.
5. The electrical apparatus of claim 3, wherein the housing is adapted to hermetically seal the electrical apparatus.
6. The electrical apparatus of claim 1, wherein the wireless radio transceiver operates on a transmission standard selected from the group consisting of Bluetooth®, 6L0WPAN®, ZigBee®, DA8H7®, Z-Wave®, MiWi®, and OSION®.
7. The electrical apparatus of claim 1, wherein the characteristic is selected from the group consisting of a frequency, an amplitude, a pulse shape, and a duty cycle,
8. The elec trical apparatus of claim 1, wherein the frequency of the periodic signal is set to a predetermined frequency.
9. A method for signal injection comprising:
providing a battery;
providing a wireless radio transceiver;
providing a first electrically conductive electrode;
generating a periodic signal in time from a circuit;
receiving a characteristic of the periodic signal by an input of the wireless transceiver;
setting the characteristic via a control circuit;
coupling the periodic signal to the first electrically conductive electrode; and electrically contacting and puncturing a first portion of a surface when the periodic signal is injected below the first portion of the surface.
10. The method of claim 9 further comprising;
contacting but not puncturing a second portion of the surface by a second electrically conductive electrode, the second electrically conductive electrode providing a direct electrical contact between the second electrically conductive electrode and the second portion of the surface thereby providing a return signal path for the periodic signal when the periodic signal is injected below the first portion of the surface.
1 1. The method of claim 9 further comprising:
providing a housing having an insulating surface and at least a first orifice in the insulating surface;
locating the first electrically conductive electrode outside the housing; coupling the first electrically conductive electrode through the first orifice to the circuit; and
enclosing the battery and the circuit with the housing.
12. The method of claim 11 further comprising: shaping the housing to conform to a third portion of the surface when the periodic signal is injected below the first portion of the surface.
13. The method of claim 1 1 further comprising:
hermetically sealing the electrical apparatus with the housing.
14. The method of claim 9 further comprising:
Operating the wireless radio transceiver on a transmission standard selected from the group consisting of Bluetooth®, 6L0WPAN®, ZigBee®, DASH7®, Z-Wave®, MiWi®, and OSION®.
15. The method of claim 9 further comprising;
selecting the characteristic from the group consisting of a frequency, an amplitude, a pulse shape, and a duty cycle.
16. The method of claim 9 further comprising:
setting the frequency of the periodic signal to a predetermined frequency.
EP13886840.1A 2013-06-13 2013-06-13 Method and apparatus for stimulative electrotherapy Withdrawn EP3007759A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/045587 WO2014200488A1 (en) 2013-06-13 2013-06-13 Method and apparatus for stimulative electrotherapy

Publications (2)

Publication Number Publication Date
EP3007759A1 true EP3007759A1 (en) 2016-04-20
EP3007759A4 EP3007759A4 (en) 2017-03-08

Family

ID=52022619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13886840.1A Withdrawn EP3007759A4 (en) 2013-06-13 2013-06-13 Method and apparatus for stimulative electrotherapy

Country Status (4)

Country Link
EP (1) EP3007759A4 (en)
CN (1) CN105492066B (en)
BR (1) BR112015031143A2 (en)
WO (1) WO2014200488A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052257B2 (en) 2013-06-13 2018-08-21 Dyansys, Inc. Method and apparatus for stimulative electrotherapy
US10130275B2 (en) 2013-06-13 2018-11-20 Dyansys, Inc. Method and apparatus for autonomic nervous system sensitivity-point testing
US9662269B2 (en) 2013-10-22 2017-05-30 Innovative Health Solutions, Inc. Systems and methods for auricular peripheral nerve field stimulation
US10413719B2 (en) 2016-04-15 2019-09-17 Innovative Health Solutions, Inc. Methods of treating disease using auricular peripheral nerve field stimulation
US11369791B2 (en) 2018-04-26 2022-06-28 Neuraxis, Inc. Auricular nerve field stimulation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977525B1 (en) * 2008-04-11 2010-08-23 주식회사 뉴로바이오시스 A cochlea implant system in ITE in the ear type using infrared communication
JP5676445B2 (en) * 2008-08-01 2015-02-25 エヌディーアイ メディカル, エルエルシー Portable assembly, system and method for providing functional or therapeutic neural stimulation
US8700177B2 (en) * 2008-08-01 2014-04-15 Ndi Medical, Llc Systems and methods for providing percutaneous electrical stimulation
CN101773701A (en) * 2010-01-11 2010-07-14 杭州诺尔康神经电子科技有限公司 Nerve stimulator
US9649494B2 (en) * 2011-04-29 2017-05-16 Medtronic, Inc. Electrical stimulation therapy based on head position

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014200488A1 *

Also Published As

Publication number Publication date
CN105492066A (en) 2016-04-13
CN105492066B (en) 2018-03-27
BR112015031143A2 (en) 2017-07-25
WO2014200488A1 (en) 2014-12-18
EP3007759A4 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
US20210322268A1 (en) Auricular peripheral nerve field stimulator and method of operating same
US8000785B2 (en) Method and apparatus for diagnosing and treating neural dysfunction
US8909334B2 (en) Electrical stimulation device for locating an electrical stimulation point and method
US10130275B2 (en) Method and apparatus for autonomic nervous system sensitivity-point testing
US10052257B2 (en) Method and apparatus for stimulative electrotherapy
CA2892996C (en) Extracorporeal unit for inspecting the insulation of an electrical wire of an implanted medical device
BRPI0713151A2 (en) noninvasive neurostimulatory system
JP2013544177A (en) Pain treatment apparatus and method using body impedance analyzer
WO2014200488A1 (en) Method and apparatus for stimulative electrotherapy
US9579507B2 (en) System for decreasing the blood flow of a targeted organ's artery with an electrical stimulation
EP3007619A1 (en) Method and apparatus for autonomic nervous system sensitivity-point testing
RU2553185C1 (en) Device for correction of sleep characteristics
KR20140102879A (en) Electro-acupuncture system
KR20200042276A (en) Skull mounted transcranial electric stimulation system for rodent
CN103845805B (en) A kind of doctor's program control instrument demo function implementation method of Implanted medical system
RU44054U1 (en) ELECTRONEUROADAPTIVE STIMULANT (OPTIONS) AND ELECTRODE DEVICE
EP4114513A1 (en) Wireless electrostimulating applicator and method of determining acupuncture points
CN117883705A (en) Electrotherapy system based on peripheral nerve impedance topology distribution measurement algorithm
MX2015003264A (en) Technique for determining optimum treatment parameters.
RU2262957C1 (en) Electric neuroadaptive stimulator and electrode device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170203

RIC1 Information provided on ipc code assigned before grant

Ipc: A61N 1/00 20060101AFI20170130BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170905