EP3001697B1 - Tonaufnahmesystem - Google Patents

Tonaufnahmesystem Download PDF

Info

Publication number
EP3001697B1
EP3001697B1 EP14186544.4A EP14186544A EP3001697B1 EP 3001697 B1 EP3001697 B1 EP 3001697B1 EP 14186544 A EP14186544 A EP 14186544A EP 3001697 B1 EP3001697 B1 EP 3001697B1
Authority
EP
European Patent Office
Prior art keywords
microphones
output signals
microphone
signal
equidistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14186544.4A
Other languages
English (en)
French (fr)
Other versions
EP3001697A1 (de
Inventor
Markus Christoph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Becker Automotive Systems GmbH
Original Assignee
Harman Becker Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Becker Automotive Systems GmbH filed Critical Harman Becker Automotive Systems GmbH
Priority to EP14186544.4A priority Critical patent/EP3001697B1/de
Publication of EP3001697A1 publication Critical patent/EP3001697A1/de
Application granted granted Critical
Publication of EP3001697B1 publication Critical patent/EP3001697B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction

Definitions

  • the disclosure relates to a sound capture system, in particular to a sound capture system with a spherical microphone array for use in a modal beamforming system.
  • a microphone array-based modal beamforming system commonly comprises a spherical microphone array of a multiplicity of microphones equally distributed over the surface of a solid or virtual sphere for converting sounds into electrical audio signals and a modal beamformer combining the audio signals generated by the microphones to form an auditory scene representative of at least a portion of an acoustic sound field.
  • This combination enables picking up acoustic signals dependent on their direction of propagation.
  • microphone arrays are also sometimes referred to as spatial filters.
  • Spherical microphone arrays exhibit low- and high-frequency limitations, so that the sound field can only be accurately described over a limited frequency range.
  • the sphere may exist physically, or may merely be conceptual.
  • the microphones are arranged around a rigid sphere (e.g., made of wood, hard plastic or the like).
  • the microphones are arranged in free-field around an "open" sphere, referred to as an open-sphere configuration.
  • the rigid-sphere configuration provides a more robust numerical formulation, the open-sphere configuration might be more desirable for use at low frequencies, where large spheres are realized.
  • Such spherical arrays are disclosed, e.g., in US 2014/0270245 2. A1 and EP2747449 A1 .
  • directional microphones i.e., microphones having an axis along which they exhibit maximum sensitivity
  • directional microphones are commonly much bulkier than omnidirectional microphones, i.e., microphones having sensitivity independent of the direction.
  • An exemplary type of directional microphone is called a shotgun microphone, which is also known as a line plus gradient microphone. Shotgun microphones may comprise an acoustic tube that, with its mechanical structure, reduces noises that arrive from directions other than directly in front of the microphone along the axis of the tube.
  • Another exemplary directional microphone is a parabolic dish that concentrates the acoustic signal from one direction by reflecting away other noise sources coming from directions other than the desired direction.
  • a sound capture system that avoids the dimensional problems noted above is desired.
  • FIG. 1 is a schematic diagram of an array 100 of microphones.
  • Microphones 103-108 are disposed at different positions at a first equidistance d1 from a point of symmetry 101.
  • Microphones 109-114 are disposed at different positions at a second equidistance d2 from the point of symmetry 101.
  • First microphones 103-108 are arranged on an open sphere 115 in a basic hexahedron structure, and second microphones 109-114 are arranged on an open sphere 116 also in a basic hexahedron structure.
  • the difference between the first equidistance d1 and the point of symmetry 101 may be between 0.5cm and 1.5cm, e.g., 0.85cm.
  • the difference between the second equidistance d2 and the first equidistance d1 may be between 9cm and 11cm, e.g., 10cm.
  • the difference between the first equidistance d1 and the point of symmetry 101 is smaller than the difference between the second equidistance d2 and the first equidistance d1.
  • a center omnidirectional microphone 102 provides a fourth output signal with an omnidirectional response and is disposed at the point of symmetry 101.
  • an evaluation circuit 200 for array 100 receives the first output signals from the first microphones 103-108 and the second output signals from the second microphones 109-114, and superimposes by way of signal couplers 220-225 the output signals of pairs of the second omnidirectional microphones to produce, in response thereto, six third output signals 207-212 with a directional response pattern.
  • Each of the second omnidirectional microphones 109-114 forms a pair of second microphones with another second omnidirectional microphone that is disposed in line with it and the point of symmetry.
  • Signals with a directional response pattern are signals provided by a directional (e.g., unidirectional) microphone constellation and signals with an omnidirectional response pattern are signals provided by an omnidirectional microphone constellation.
  • Evaluation circuit 200 may further receive the fourth output signal from the center microphone 102 and superimpose by way of signal couplers 214-219 the output signal of each first microphones 103-108 with the fourth output signal from the center microphone 102 for producing, in response thereto, six fifth output signals 201-206 with a directional response pattern.
  • the center microphone 102 may also be used, in a similar way as done above in connection with the inner ring microphones 103-108, for the outer ring microphones 109-114 for the combination/formation of the desired virtual directional microphones.
  • a combination (difference) between the outer ring microphones 109-114 with the inner ring microphones 103-108 is possible, for example, microphone 109 may be combined with microphone 103 and so on. Following this concept leads to a maximum logical combination of six different distances and hence 26 optimal frequency ranges which could further be beneficially combined.
  • Figure 3 is a schematic diagram of an array 300 of microphones.
  • First microphones 303-308 are disposed at different positions at a first equidistance d3 from a point of symmetry 301.
  • Microphones 309-314 are disposed at different positions at a second equidistance d4 from the point of symmetry 301.
  • first microphones 303-308 may be arranged on an open sphere or a rigid sphere 315 in a basic hexahedron structure
  • second microphones 309-314 are arranged on an open sphere 316 also in a basic hexahedron structure.
  • the diameter of the inner (rigid) sphere 315 may be 1.5cm or more so that the difference between the first equidistance d3 and the point of symmetry 101 may be greater than 0.75cm.
  • the difference between the second equidistance d4 and the point of symmetry 101 may be between 9 and 11cm for example.
  • the difference between the first equidistance d1 and the point of symmetry 101 is smaller than the difference between the second equidistance d2 and the first equidistance d1.
  • No center omnidirectional microphone is required here in contrast to the sound capture system illustrated above in connection with Figures 1 and 2 .
  • an evaluation circuit 400 for array 300 with open sphere receives the first output signals from first microphones 303-308 and the second output signals from second microphones 309-314, and superimposes by way of signal couplers 414-419 the first output signals from pairs of omnidirectional microphones to produce, in response thereto, six fifth output signals 401-406 with a directional response pattern.
  • Each of the second omnidirectional microphones 309-314 forms a pair of second microphones with another second omnidirectional microphone that is disposed in line with it and the point of symmetry.
  • Evaluation circuit 400 may further superimpose by way of signal couplers 420-425 the second output signals from pairs of second omnidirectional microphones for producing, in response thereto, six third output signals 407-412 with a directional response pattern.
  • Each of the second omnidirectional microphones 309-314 forms a pair of second microphones with another second omnidirectional microphone that is disposed in line with it and the point of symmetry.
  • Microphones mounted on a solid sphere do not have to be directional and hence it is not necessary to use directional microphones on the inner (rigid) sphere 315.
  • the way described above of forming virtual directional microphones from omnidirectional microphones disposed on an open sphere does not work with a solid body residing at a central line on opposite sides of a solid body, i.e., a rigid sphere. This means that when using a rigid sphere 315 signal couplers 414-419 in the system shown in Figure 4 can be omitted without substitution and instead microphones 303-308 directly provide signals 401-406.
  • an obstacle resides in-between two opposite microphones on the outer sphere, e.g., microphone 309 and 312, which may require combining microphone 309 with microphone 303 instead of microphone 312.
  • the outer sphere is only used to cover the low spectral range of a modal beamformer, the diffraction of a small obstacle in the spectral range with larger wave lengths than the dimensions of the obstacle, i.e., the solid center sphere, may play a minor role in practice.
  • FIG. 5 is a schematic illustration of a 6-element 3D microphone array 500, which is applicable instead of sphere 315 in the array shown in Figure 3 , and which is mounted in a sound-diffracting structure provided by rigid sphere 501. Note that only three of the six microphone elements can be seen in Figure 5 (i.e., microphones 502, 503, and 504), while the remaining three microphone elements are hidden on the back side of the sphere 500. All six microphone elements are mounted on the surface of sphere 500 at points where an included regular octahedron's vertices would contact the spherical surface. Other shapes (structures) such as a hexahedron shape may be used as well. The individual microphones are omnidirectional microphones.
  • Figure 6 shows a perspective view of a 3D microphone array 600 having a hexahedron shape.
  • microphone array 600 of Figure 6 has a plurality of individual omnidirectional microphones, analogous to first microphones 303-308 in the array shown in Figure 3 , distributed around and integrated into different rigid, triangular sections 601 of sphere 600, where the microphones elements are mounted onto the surface of each square section 601.
  • the microphones may be distributed uniformly or non-uniformly around the polyhedron, with each square section 601 having the same number of microphone elements or different square sections 601 having different numbers of microphone elements, including some square sections 601 having no microphone elements.
  • Figure 7 illustrates a 3D microphone array 700 having a rigid spherical sound-diffracting structure 701 with microphones 702 embedded in cavities whose dimensions and shapes are optimized to tailor to the directivity pattern.
  • Figure 7 shows a circular conical cavity, however alternatively sectional cavies, inverse spherical caps, inverse circular paraboloids or any other appropriate shaped cavity may be used to form an indentation of the spherical surface.
  • the cavity shape can be tailored and optimized to obtain the best compromise between directivity and low-pass filtering, which is achieved in the sound-diffracting structure 701 due to a combination of obstacle size and cavity design.
  • a person of ordinary skill in the art will appreciate that there is a large variety of shapes of indentations that can be implemented.
  • FIG 8 illustrates in more detail a microphone pair 801 (such as first and second microphone pairs described above in connection with Figures 1-4 ) and a related signal coupler 802 (such as couplers 214-225 and 420-425 in Figures 2 and 4 ) in an exemplary sound capture system 800 such as the sound capture systems shown in Figures 2 and 4 .
  • Microphone pair 801 features two omnidirectional microphones 803 and 804 of a pair of microphones. Within the evaluation circuit 802, the outputs of omnidirectional microphones 803 and 804 are subtracted, one from the other, by e.g. a differential amplifier 805.
  • the output of, e.g., omnidirectional microphone 804 is passed through a delay element 806 to delay the outputs of the two omnidirectional microphones 803 and 804 relative to each other.
  • This element may be, for example, an allpass, a fractional delay filter or time delay circuit.
  • the output of differential amplifier 805 is optionally passed through a filter 807 to compensate for frequency shifts introduced by delay element 806.
  • microphone 803 may be used as center microphone 102 in the system shown in Figure 1 and microphone 804 as any of the microphones 103-108 and vice versa.
  • omnidirectional microphone element 900 signals from two omnidirectional microphones 901 and 902 are delayed by a time delay at delay elements 903 and 904, respectively.
  • the delayed signal from microphone 901 is subtracted from the undelayed signal from microphone 902 at subtractor 905 to form a forward-facing cardioid signal.
  • the delayed signal from microphone 902 is subtracted from the undelayed signal from microphone 901 at subtractor 906 to form a signal with a directional response pattern (e.g. backward-facing cardioids).
  • the evaluation circuit 200 for array 100 may be simplified so that only one delay element is required for evaluating the output signals of the first microphones 103-108 in connection with the center microphone 102 as shown in Figure 10 .
  • a delay element 1001 is connected downstream of the center microphone 102 and the signal couplers 214-219 are provided simply by subtractors 1002-1007.
  • a modal beamformer circuit 1100 that may receive and process third signals 201-212 and fifth signals 401-412 from the sound capture systems described above in connection with Figures 1, 2 and 3, 4 is shown in Figure 11 .
  • Modal beamformer circuit 1100 receives the third and fifth signals 201-212 and 401-412, transforms these signals 201-212 or 401-412 into the spherical harmonics, and steers the spherical harmonics.
  • FIG. 11 An exemplary beamformer arrangement 1100 based on microphone array 300 with omnidirectional microphones 309-314 disposed on an open outer sphere 316 as shown in Figure 3 and based on evaluation circuit 400 for array 300 with rigid inner sphere 315 as shown in Figure 4 is illustrated in Figure 11 .
  • Output signals 407-412 are fed into a matrixing module 1101 which supplies N spherical harmonics to a rotational module 1102.
  • Rotational module 1102 generates M rotated spherical harmonics (modes) from the N spherical harmonics which are weighted (multiplied with frequency dependent weighting coefficients C 1 ... C M ) in a modal weighting module 1103 and then summed up in a summing module 1104 to an outer sphere output signal.
  • a signal processing chain similar or identical to the one described above i.e., the chain including matrixing module 1101, rotational module 1102, modal weighting module 1103, and summing module 1104) includes a matrixing module 1105, rotational module 1106, modal weighting module 1107, and summing module 1108.
  • An adder 1111 receives the output of summing module 1104 via a lowpass filter 1109 and the output of summing module 1108 via a highpass filter 1110, and outputs a specific directional signal 1112 of microphone array 300.
  • the inner rigid sphere and the outer open sphere are used for different spectral ranges, which in combination allows for a broader spectral range of directional signal 1112.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Claims (9)

  1. Tonaufnahmesystem, umfassend:
    eine erste Anzahl ungerichteter erster Mikrofone (103-108), die erste Ausgangssignale mit einem ungerichteten Ansprechmuster bereitstellen und die auf einer ersten offenen Kugel (115) an verschiedenen Stellen in einer ersten Äquidistanz (d1) von einem Symmetriepunkt (101) angeordnet sind;
    eine zweite Anzahl ungerichteter zweiter Mikrofone (109-114), die zweite Ausgangssignale mit einem ungerichteten Ansprechmuster bereitstellen und die auf einer zweiten offenen Kugel (116) an verschiedenen Stellen in einer zweiten Äquidistanz (d2) von dem Symmetriepunkt (101) angeordnet sind;
    ein mittiges ungerichtetes Mikrofon (102), das ein viertes Ausgangssignal mit einem ungerichteten Ansprechen bereitstellt und das an dem Symmetriepunkt (101) angeordnet ist;
    einen Auswertestromkreis (200), der dazu konfiguriert ist, die ersten Ausgangssignale und die zweiten Ausgangssignale zu empfangen und aus den ersten Ausgangssignalen fünfte Ausgangssignale (201-206) mit einem gerichteten Ansprechmuster zu erzeugen und aus den zweiten Ausgangssignalen dritte Ausgangssignale (207-212) mit einem gerichteten Ansprechmuster zu erzeugen, wobei der Auswertestromkreis (200) ferner dazu konfiguriert ist, das vierte Ausgangssignal von dem mittigen Mikrofon (102) zu empfangen und das Ausgangssignal von jedem der ersten Mikrofone (103-108) mit dem vierten Ausgangssignal von dem mittigen Mikrofon (102) zu überlagern, um als Antwort darauf die fünften Ausgangssignale (201-206) mit einem gerichteten Ansprechmuster zu erzeugen; und
    eine modale Beamformer-Anordnung (1101-1108), die eine erste Signalkette (1101-1104), eine zweite Signalkette (1105-1108), einen Tiefpassfilter (1109), einen Hochpassfilter (1110) und einen Addierer (1111) umfasst, wobei der Addierer (1111) mit der ersten Signalkette (1101-1104) über den Tiefpassfilter (1109) und mit der zweiten Signalkette (1105-1108) über den Hochpassfilter (1110) gekoppelt ist, wobei die erste Signalkette (1101-1104) mit den dritten Ausgangssignalen (207-212) beliefert wird und die zweite Signalkette (1105-1108) mit den fünften Ausgangssignalen (201-206) beliefert wird; wobei die zweite Anzahl ein Vielfaches von zwei ist;
    die erste Äquidistanz (d1) kleiner als die zweite Äquidistanz (d2) ist;
    jedes der zweiten Mikrofone (109-114) mit einem anderen der zweiten Mikrofone (109-114) ein Paar zweiter Mikrofone (109-114) bildet, wobei die Mikrofone eines Paars zweiter Mikrofone (109-114) in einer Linie miteinander und mit dem Symmetriepunkt (101) angeordnet sind; und
    die erste Signalkette (1101-1104) und die zweite Signalkette (1105-1108) jeweils ein Matriziermodul (1101, 1105), ein rotierendes Modul (1102, 1106), ein modales Wichtungsmodul (1103, 1107) und ein Summiermodul (1104, 1108) umfassen.
  2. Tonaufnahmesystem nach Anspruch 1, wobei die Differenz zwischen der ersten Äquidistanz (d1) und dem Symmetriepunkt (101) kleiner ist als die Differenz zwischen der zweiten Äquidistanz (d2) und der ersten Äquidistanz (d1).
  3. Tonaufnahmesystem nach Anspruch 2, wobei die Differenz zwischen der ersten Äquidistanz (d1) und dem Symmetriepunkt (101) zwischen 0,5 cm und 1,5 cm beträgt und die Differenz zwischen der zweiten Äquidistanz (d2) und der ersten Äquidistanz (d1) zwischen 9 cm und 11 cm beträgt.
  4. Tonaufnahmesystem nach Anspruch 1, wobei
    die erste Anzahl ein Vielfaches von zwei ist; und
    jedes der ersten Mikrofone (103-108) mit einem anderen der ersten Mikrofone ein Paar erster Mikrofone (103-108) bildet, wobei die Mikrofone eines Paars erster Mikrofone (103-108) in einer Linie miteinander und mit dem Symmetriepunkt (101) angeordnet sind.
  5. Tonaufnahmesystem nach Anspruch 1, wobei die Anzahl erster Mikrofone (103-108) und die Anzahl zweiter Mikrofone (109-114) identisch sind.
  6. Tonaufnahmesystem nach Anspruch 5, wobei die Anzahl erster Mikrofone (103-108) und die Anzahl zweiter Mikrofone (109-114) sechs ist und die sechs ersten Mikrofone (103-108) und die sechs zweiten Mikrofone (109-114) in einer Hexaederstruktur angeordnet sind.
  7. Tonaufnahmesystem nach Anspruch 1, wobei der Auswertestromkreis (200) Folgendes umfasst:
    mindestens einen ersten Verzögerungsweg (1001), der dazu konfiguriert ist, das vierte Ausgangssignal zu empfangen und das vierte Ausgangssignal zu verzögern, um ein verzögertes viertes Ausgangssignal zu erzeugen; und
    erste Subtraktionsknoten (1002-1007), die dazu konfiguriert sind, die ersten Ausgangssignale von den ersten Mikrofonen (103-108) und das verzögerte vierte Ausgangssignal zu empfangen, und die dazu konfiguriert sind, die fünften Ausgangssignale (201-206) basierend auf Differenzen zwischen den ersten Ausgangssignalen und dem verzögerten vierten Ausgangssignal zu erzeugen.
  8. Tonaufnahmesystem nach Anspruch 1, wobei der Auswertestromkreis (200) ferner Folgendes umfasst:
    zweite Verzögerungswege (806), die dazu konfiguriert sind, die ersten Ausgangssignale zu empfangen, und die dazu konfiguriert sind, die ersten Ausgangssignale zu verzögern, um verzögerte erste Ausgangssignale zu erzeugen; und
    zweite Subtraktionsknoten (805), die dazu konfiguriert sind, das vierte Ausgangssignal und die verzögerten ersten Ausgangssignale zu empfangen, und die dazu konfiguriert sind, die fünften Ausgangssignale (201-206) basierend auf Differenzen zwischen dem vierten Ausgangssignal und die verzögerten ersten Ausgangssignalen zu erzeugen.
  9. Tonaufnahmesystem nach Anspruch 1, wobei der Auswertestromkreis (200) Folgendes umfasst:
    dritte Verzögerungswege (903; 904), die dazu konfiguriert sind, die zweiten Ausgangssignale zu empfangen und die zweiten Ausgangssignale zu verzögern, um verzögerte zweite Ausgangssignale zu erzeugen; und
    dritte Subtraktionsknoten (905; 906), die jeweils dazu konfiguriert sind, das zweite Ausgangssignal eines Mikrofons eines Paars zweiter Mikrofone (109-114) und das verzögerte zweite Ausgangssignal des anderen Mikrofons des entsprechenden Paars zweiter Mikrofone (109-114) zu empfangen, und die dazu konfiguriert sind, die dritten Ausgangssignale (201-206) basierend auf der Differenz zwischen dem zweiten Ausgangssignal des einen Mikrofons eines Paars zweiter Mikrofone (109-114) und dem verzögerten zweiten Ausgangssignal des anderen Mikrofons des entsprechenden Paars zweiter Mikrofone (109-114) zu erzeugen.
EP14186544.4A 2014-09-26 2014-09-26 Tonaufnahmesystem Active EP3001697B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14186544.4A EP3001697B1 (de) 2014-09-26 2014-09-26 Tonaufnahmesystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14186544.4A EP3001697B1 (de) 2014-09-26 2014-09-26 Tonaufnahmesystem

Publications (2)

Publication Number Publication Date
EP3001697A1 EP3001697A1 (de) 2016-03-30
EP3001697B1 true EP3001697B1 (de) 2020-07-01

Family

ID=51619037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14186544.4A Active EP3001697B1 (de) 2014-09-26 2014-09-26 Tonaufnahmesystem

Country Status (1)

Country Link
EP (1) EP3001697B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525482B1 (de) * 2018-02-09 2023-07-12 Dolby Laboratories Licensing Corporation Mikrofonanordnung für die erfassung eines schallfeldes
GB2575491A (en) * 2018-07-12 2020-01-15 Centricam Tech Limited A microphone system
IL272380B2 (en) * 2020-01-30 2023-08-01 Kramer Electronics Ltd Configurable microphone assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747449A1 (de) * 2012-12-20 2014-06-25 Harman Becker Automotive Systems GmbH Tonaufnahmesystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6041127A (en) * 1997-04-03 2000-03-21 Lucent Technologies Inc. Steerable and variable first-order differential microphone array
EP2168396B1 (de) * 2007-07-09 2019-01-16 MH Acoustics, LLC Vergrösserte elliptische mikrofonanordnung
EP2773131B1 (de) * 2013-02-27 2020-04-01 Harman Becker Automotive Systems GmbH Kugelförmiges Mikrofonarray
US9197962B2 (en) * 2013-03-15 2015-11-24 Mh Acoustics Llc Polyhedral audio system based on at least second-order eigenbeams

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747449A1 (de) * 2012-12-20 2014-06-25 Harman Becker Automotive Systems GmbH Tonaufnahmesystem

Also Published As

Publication number Publication date
EP3001697A1 (de) 2016-03-30

Similar Documents

Publication Publication Date Title
CN112335261B (zh) 图案形成麦克风阵列
US9936291B2 (en) Spherical microphone array including a sound diffracting structure with cavity
US11381906B2 (en) Conference system with a microphone array system and a method of speech acquisition in a conference system
US9445198B2 (en) Polyhedral audio system based on at least second-order eigenbeams
EP2773131B1 (de) Kugelförmiges Mikrofonarray
EP2905975B1 (de) Tonaufnahmesystem
EP0869697B1 (de) Steuerbare und variable Differentialmikrofonsanordnung erster Ordnung
US10659873B2 (en) Spatial encoding directional microphone array
Poletti et al. An approach to generating two zones of silence with application to personal sound systems
US9271069B2 (en) Microphone housing arrangement for an audio conference system
EP3001697B1 (de) Tonaufnahmesystem
CN109151670B (zh) 声音收集装置
Moazzen et al. A nested microphone array for broadband audio signal processing
US20230262374A1 (en) Sound pickup device
Jingzhou et al. End-fire microphone array based on phase difference enhancement algorithm
Inoue et al. ``Hat-type hearing system using MEMS microphone array,''
Burns Directional robustness of an in-situ, dual dipole omni microphone array for hearing instruments.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170929

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 1/40 20060101AFI20200211BHEP

Ipc: H04R 3/00 20060101ALI20200211BHEP

INTG Intention to grant announced

Effective date: 20200303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1287293

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014067186

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014067186

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230823

Year of fee payment: 10

Ref country code: AT

Payment date: 20230823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230822

Year of fee payment: 10