EP2995606A1 - Tritylated ethers - Google Patents
Tritylated ethers Download PDFInfo
- Publication number
- EP2995606A1 EP2995606A1 EP15187464.1A EP15187464A EP2995606A1 EP 2995606 A1 EP2995606 A1 EP 2995606A1 EP 15187464 A EP15187464 A EP 15187464A EP 2995606 A1 EP2995606 A1 EP 2995606A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heteroalkyl
- ppm
- compound
- alkoxy
- ring system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002170 ethers Chemical class 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 43
- 125000004404 heteroalkyl group Chemical group 0.000 claims abstract description 22
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 13
- 125000004093 cyano group Chemical group *C#N 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 claims abstract description 9
- 125000003118 aryl group Chemical group 0.000 claims abstract description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 8
- 239000000446 fuel Substances 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 22
- 239000003209 petroleum derivative Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000003550 marker Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000010992 reflux Methods 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 6
- 150000008379 phenol ethers Chemical class 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 6
- 239000003225 biodiesel Substances 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 229960000583 acetic acid Drugs 0.000 description 4
- 239000003502 gasoline Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 125000004642 (C1-C12) alkoxy group Chemical group 0.000 description 3
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 3
- YRVGQABFOKCHHO-UHFFFAOYSA-N 4-tritylbenzene-1,2-diol Chemical compound C1=C(O)C(O)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 YRVGQABFOKCHHO-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010183 spectrum analysis Methods 0.000 description 3
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 2
- CFDRQRFAQCJPBZ-UHFFFAOYSA-N 1-chlorohexan-1-ol Chemical compound CCCCCC(O)Cl CFDRQRFAQCJPBZ-UHFFFAOYSA-N 0.000 description 2
- JNTPTNNCGDAGEJ-UHFFFAOYSA-N 6-chlorohexan-1-ol Chemical compound OCCCCCCCl JNTPTNNCGDAGEJ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 2
- LZTRCELOJRDYMQ-UHFFFAOYSA-N triphenylmethanol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C1=CC=CC=C1 LZTRCELOJRDYMQ-UHFFFAOYSA-N 0.000 description 2
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 2
- -1 trityl halide Chemical class 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical group COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- YJKXCIPESVDDBG-UHFFFAOYSA-N 4,6-ditritylbenzene-1,3-diol Chemical compound OC1=CC(O)=C(C(C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 YJKXCIPESVDDBG-UHFFFAOYSA-N 0.000 description 1
- NIPKXTKKYSKEON-UHFFFAOYSA-N 4-tritylphenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 NIPKXTKKYSKEON-UHFFFAOYSA-N 0.000 description 1
- XCLGCFDKEWATED-UHFFFAOYSA-N 6-(4-tritylphenoxy)hexan-1-ol Chemical compound C1=CC(OCCCCCCO)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 XCLGCFDKEWATED-UHFFFAOYSA-N 0.000 description 1
- VMEJFNUUUTZGTR-UHFFFAOYSA-N 6-[2-(6-hydroxyhexoxy)-4-tritylphenoxy]hexan-1-ol Chemical compound C1=C(OCCCCCCO)C(OCCCCCCO)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 VMEJFNUUUTZGTR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- UHHKSVZZTYJVEG-UHFFFAOYSA-N oxepane Chemical compound C1CCCOCC1 UHHKSVZZTYJVEG-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000004816 paper chromatography Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/23—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/003—Marking, e.g. coloration by addition of pigments
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/185—Ethers; Acetals; Ketals; Aldehydes; Ketones
- C10L1/1852—Ethers; Acetals; Ketals; Orthoesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0453—Petroleum or natural waxes, e.g. paraffin waxes, asphaltenes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2230/00—Function and purpose of a components of a fuel or the composition as a whole
- C10L2230/16—Tracers which serve to track or identify the fuel component or fuel composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
Definitions
- This invention relates to new compounds useful in a method for marking liquid hydrocarbons and other fuels and oils.
- Marking of petroleum hydrocarbons and other fuels and oils with various kinds of chemical markers is well known in the art.
- a variety of compounds have been used for this purpose, as well as numerous techniques for detection of the markers, e.g., absorption spectroscopy and mass spectrometry.
- U.S. Pat. No. 7,858,373 discloses the use of a variety of organic compounds for use in marking liquid hydrocarbons and other fuels and oils.
- Combinations of markers can be used as digital marking systems, with the ratios of amounts forming a code for the marked product. Additional compounds useful as fuel and lubricant markers would be desirable to maximize the available codes.
- the problem addressed by this invention is to find additional markers useful for marking liquid hydrocarbons and other fuels and oils.
- the present invention provides a compound having formula (Ph 3 C) m Ar(GR) n , wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO 2 ; R is: (a) C 1 -C 18 alkyl substituted by at least one of OH, SH, C 1 -C 18 alkoxy and cyano; or (b) C 4 -C 18 heteroalkyl; m is one or two; and n is an integer from one to four.
- the present invention further provides a method for marking a petroleum hydrocarbon or a liquid biologically derived fuel; said method comprising adding to said petroleum hydrocarbon or liquid biologically derived fuel at least one compound having formula (Ph 3 C) m Ar(GR) n , wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO 2 ; R is: (a) C 1 -C 18 alkyl substituted by at least one of OH, SH, C 1 -C 18 alkoxy and cyano; or (b) C 4 -C 18 heteroalkyl; m is one or two; and n is an integer from one to four; wherein each compound having formula (Ph 3 C) m Ar(GR) n is present at a level from 0.01 ppm to 20 ppm.
- Ph represents a phenyl group
- Ar is an aromatic ring system having from six to twenty carbon atoms
- G is O, S,
- Percentages are weight percentages (wt%) and temperatures are in °C, unless specified otherwise. Concentrations are expressed either in parts per million ("ppm") calculated on a weight/weight basis, or on a weight/volume basis (mg/L); preferably on a weight/volume basis.
- ppm parts per million
- the term "petroleum hydrocarbon” refers to products having a predominantly hydrocarbon composition, although they may contain minor amounts of oxygen, nitrogen, sulfur or phosphorus; petroleum hydrocarbons include crude oils as well as products derived from petroleum refining processes; they include, for example, crude oil, lubricating oil, hydraulic fluid, brake fluid, gasoline, diesel fuel, kerosene, jet fuel and heating oil.
- Marker compounds of this invention can be added to a petroleum hydrocarbon or a liquid biologically derived fuel; examples of the latter are biodiesel fuel, ethanol, butanol, ethyl tert-butyl ether or mixtures thereof.
- a substance is considered a liquid if it is in the liquid state at 20°C.
- a biodiesel fuel is a biologically derived fuel containing a mixture of fatty acid alkyl esters, especially methyl esters.
- Biodiesel fuel typically is produced by transesterification of either virgin or recycled vegetable oils, although animal fats may also be used.
- An ethanol fuel is any fuel containing ethanol, in pure form, or mixed with petroleum hydrocarbons, e.g., "gasohol.”
- An "alkyl” group is a substituted or unsubstituted hydrocarbyl group having from one to twenty-two carbon atoms in a linear, branched or cyclic arrangement. Substitution on alkyl groups of one or more OH or alkoxy groups is permitted; other groups may be permitted when specified elsewhere herein. Preferably, alkyl groups are saturated. Preferably, alkyl groups are unsubstituted. Preferably, alkyl groups are linear or branched.
- An "aryl” group is a substituent derived from an aromatic hydrocarbon compound.
- An aryl group has a total of from six to twenty ring atoms, unless otherwise specified, and has one or more rings which are separate or fused. Substitution on aryl groups of one or more alkyl or alkoxy groups is permitted.
- a "heteroalkyl” group is an alkyl group in which one or more methylene groups has been replaced by O or S.
- heteroalkyl groups contain from one to six O or S atoms, preferably from one to four, preferably from one to three. The methylene groups replaced by O or S were bonded to two other carbon atoms in the corresponding alkyl group.
- heteroalkyl groups do not contain S atoms.
- Heteroalkyl groups may be substituted by OH, SH or C 1 -C 18 alkoxy groups, preferably OH or C 1 -C 6 alkoxy groups, preferably hydroxy or C 1 -C 4 alkoxy groups.
- heteroalkyl groups include oligomers of ethylene oxide, propylene oxide or butylene oxide having two to six units of the alkylene oxide (preferably two to four, preferably two or three) and a terminal hydroxy or C 1 -C 6 alkoxy group (preferably hydroxy or C 1 -C 4 alkoxy, preferably hydroxy or methoxy, preferably hydroxy); an example of an ethylene oxide oligomer is - ⁇ (CH 2 ) 2 O ⁇ j R 2 , where j is an integer from two to six and R 2 is hydrogen or C 1 -C 6 alkyl.
- j is from two to four, preferably two or three.
- R 2 is hydrogen or C 1 -C 4 alkyl, preferably hydrogen or methyl, preferably hydrogen.
- the compounds of this invention contain elements in their naturally occurring isotopic proportions.
- Ar is an aromatic ring system having from six to twenty carbon atoms and whose substituents include Ph 3 C and OR groups, preferably one in which the only substituents are Ph 3 C and OR groups.
- Ar is a C 6 -C 12 hydrocarbyl aromatic ring system.
- Ar is benzene, naphthalene, biphenyl, phenyl ether, diphenylmethane or one of the preceding systems substituted with alkyl and/or alkoxy groups; preferably benzene.
- n is from one to three, preferably two or three, preferably two.
- G is O or S, preferably O.
- R is (a) C 2 -C 18 alkyl substituted by at least one of OH, SH, C 1 -C 12 alkoxy and cyano, or (b) C 4 -C 18 heteroalkyl; preferably (a) C 3 -C 12 alkyl substituted by at least one of OH, SH and C 1 -C 6 alkoxy, or (b) C 4 -C 12 heteroalkyl; preferably (a) C 3 -C 12 alkyl substituted by at least one of OH and C 1 -C 6 alkoxy, or (b) C 4 -C 12 heteroalkyl; preferably C 4 -C 18 heteroalkyl; preferably C 4 -C 12 heteroalkyl; preferably C 4 -C 8 heteroalkyl; preferably C 4 -C 6 heteroalkyl.
- R has a single substituent selected from OH, SH, C 1 -C 18 alkoxy and cyano; preferably said single substituent is in a terminal position on R, i.e., on the carbon furthest from Ar.
- R when G is O, R is: (a) C 1 -C 18 alkyl substituted by at least one of SH and cyano; (b) C 2 -C 12 alkyl substituted by OH or C 1 -C 18 alkoxy; or (c) C 4 -C 18 heteroalkyl; preferably when G is O, R is: (a) C 1 -C 18 alkyl substituted by at least one of SH and cyano; (b) C 2 -C 18 alkyl substituted by OH or C 1 -C 18 alkoxy, said OH or C 1 -C 18 alkoxy group being in a terminal position; or (c) C 4 -C 18 heteroalkyl; preferably when G is O, R is: (a) C 1 -C
- the compound of this invention is represented by formula (I) wherein R is as defined above.
- the compound of this invention is represented by formula (II) wherein R is as defined above.
- the minimum amount of each compound added to a liquid to be marked is at least 0.01 ppm, preferably at least 0.02 ppm, preferably at least 0.05 ppm, preferably at least 0.1 ppm, preferably at least 0.2 ppm.
- the maximum amount of each marker is 50 ppm, preferably 20 ppm, preferably 15 ppm, preferably 10 ppm, preferably 5 ppm, preferably 2 ppm, preferably 1 ppm, preferably 0.5 ppm.
- the maximum total amount of marker compounds is 100 ppm, preferably 70 ppm, preferably 50 ppm, preferably 30 ppm, preferably 20 ppm, preferably 15 ppm, preferably 12 ppm, preferably 10 ppm, preferably 8 ppm, preferably 6 ppm, preferably 4 ppm, preferably 3 ppm, preferably 2 ppm, preferably 1 ppm.
- a marker compound is not detectible by visual means in the marked petroleum hydrocarbon or liquid biologically derived fuel, i.e., it is not possible to determine by unaided visual observation of color or other characteristics that it contains a marker compound.
- a marker compound is one that does not occur normally in the petroleum hydrocarbon or liquid biologically derived fuel to which it is added, either as a constituent of the petroleum hydrocarbon or liquid biologically derived fuel itself, or as an additive used therein.
- the marker compounds have a log P value of at least 3, where P is the 1-octanol/water partition coefficient.
- the marker compounds have a log P of at least 4, preferably at least 5.
- Log P values which have not been experimentally determined and reported in the literature can be estimated using the method disclosed in Meylan, W.M & Howard, P.H., J. Pharm. Sci., vol. 84, pp. 83-92 (1995 ).
- the petroleum hydrocarbon or liquid biologically derived fuel is a petroleum hydrocarbon, biodiesel fuel or ethanol fuel; preferably a petroleum hydrocarbon or biodiesel fuel; preferably a petroleum hydrocarbon; preferably crude oil, gasoline, diesel fuel, kerosene, jet fuel or heating oil; preferably gasoline.
- the marker compounds are detected by at least partially separating them from constituents of the petroleum hydrocarbon or liquid biologically derived fuel using a chromatographic technique, e.g., gas chromatography, liquid chromatography, thin-layer chromatography, paper chromatography, adsorption chromatography, affinity chromatography, capillary electrophoresis, ion exchange and molecular exclusion chromatography. Chromatography is followed by at least one of: (i) mass spectral analysis, and (ii) FTIR. Identities of the marker compounds preferably are determined by mass spectral analysis. Preferably, mass spectral analysis is used to detect the marker compounds in the petroleum hydrocarbon or liquid biologically derived fuel without performing any separation. Alternatively, marker compounds may be concentrated prior to analysis, e.g., by distilling some of the more volatile components of a petroleum hydrocarbon or liquid biologically derived fuel.
- a chromatographic technique e.g., gas chromatography, liquid chromatography, thin-layer chromatography, paper chromat
- more than one marker compound is present.
- Use of multiple marker compounds facilitates incorporation into the petroleum hydrocarbon or liquid biologically derived fuel of coded information that may be used to identify the origin and other characteristics of the petroleum hydrocarbon or liquid biologically derived fuel.
- the code comprises the identities and relative amounts, e.g., fixed integer ratios, of the marker compounds.
- One, two, three or more marker compounds may be used to form the code.
- Marker compounds according to this invention may be combined with markers of other types, e.g., markers detected by absorption spectrometry, including those disclosed in U.S. Pat. No. 6,811,575 ; U.S. Pat. App. Pub. No. 2004/0250469 and EP App. Pub. No. 1,479,749 .
- Marker compounds are placed in the petroleum hydrocarbon or liquid biologically derived fuel directly, or alternatively, placed in an additives package containing other compounds, e.g., antiwear additives for lubricants, detergents for gasoline, etc., and the additives package is added to the petroleum hydrocarbon or liquid biologically derived fuel.
- an additives package containing other compounds, e.g., antiwear additives for lubricants, detergents for gasoline, etc.
- the compounds of this invention may be prepared by methods known in the art, e.g., alkylation of phenols or polyhydroxyaromatics with trityl halide or alcohol, followed by alkylation with organic halides in the presence of base.
- tritylated phenolic ethers may be prepared according to the following reaction scheme, wherein M is one or two and N is 1 to 4.
- Corresponding compounds in which G is S may be prepared from the corresponding thiophenolic starting materials.
- Typical mono-tritylated phenol synthesis procedure is illustrated by the following example: 4-Tritylbenzene-1,2-diol: A 1L 3-neck flask was equipped with a mechanical stirrer, a reflux condenser with nitrogen blanket, and a heating mantle with a temperature controller and a thermocouple. The flask was charged with 78.20 grams (0.30 moles) of trityl alcohol, 39.39 grams (0.36 moles) of catechol, and 250 mL of glacial acetic acid. The mixture was stirred under nitrogen while heating to about 80°C. A clear amber solution was obtained. To this solution were added 16.73 grams (0.06 moles) of trityl chloride in one portion.
- the chloride dissolved quickly.
- the mixture was brought to reflux. After about 30 minutes at reflux, solids began to separate out. Reflux was continued for another 5 hours before cooling to room temperature.
- the reaction mixture was filtered, and the grey solids were washed on the filter with several portions of acetic acid.
- the product was dried - first in air and finally in a vacuum oven at 60°C for 2 hours. The yield of product was 92.0 grams (72.5%), having a melting point of 245 - 248°C.
- the structure was confirmed by IR, 1 H- and 13 C-NMR, and GC/MS analyses.
- Typical bis-tritylated phenol synthesis procedure is illustrated by the following example: 4,6-Ditritylbenzene-1,3-diol: A 1L 3-neck flask was equipped with a mechanical stirrer, a reflux condenser with nitrogen blanket, and a heating mantle with a temperature controller and a thermocouple. The flask was charged with 12.39 grams (0.0475 moles) of trityl alcohol, 15.03 grams (0.054 moles) of trityl chloride, 5.53 grams (0.05 moles) of resorcinol, and with 50 mL of glacial acetic acid. The mixture was stirred under nitrogen while heating to reflux. At about 80°C, a clear amber solution was obtained.
- GC/MS STUDIES Stock solutions of functionalized tritylated phenol ethers were prepared in dichloromethane (DCM). These solutions were used to establish GC retention times and MS fragmentation patterns. The results are shown in Table 2.
- Solubility Studies The solubility properties of functionalized tritylated phenol ethers were determined by mixing 0.1 gram samples of sample in 0.9 grams of solvent. The mixtures were warmed at 60°C for a few minutes to make homogeneous solutions. The solutions were cooled back to room temperature, and then they were placed into a freezer at -10°C. The solutions were checked daily to see if crystallization had occurred.
- AROMATIC 200 10 insoluble insoluble Tetralin 10 soluble insoluble DPGME 10 soluble soluble crystals after 6 days NMP 10 soluble soluble soluble after 7 days DMAc 10 soluble soluble after 7 days 1-Octanol 10 soluble soluble crystals after 1 day Ex. 5 AROMATIC 200 10 soluble soluble soluble after 7 days Tetralin 10 soluble soluble soluble after 7 days DPGME 10 soluble soluble soluble after 7 days NMP 10 soluble soluble soluble after 7 days DMAc 10 soluble soluble soluble after 7 days
- DPGME is dipropylene glycol mono-methyl ether and NMP is N-methylpyrrolidone; AROMATIC 200 is a mixed aromatic solvent available from Exxon Mobil Corp.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
- This invention relates to new compounds useful in a method for marking liquid hydrocarbons and other fuels and oils.
- Marking of petroleum hydrocarbons and other fuels and oils with various kinds of chemical markers is well known in the art. A variety of compounds have been used for this purpose, as well as numerous techniques for detection of the markers, e.g., absorption spectroscopy and mass spectrometry. For example,
U.S. Pat. No. 7,858,373 discloses the use of a variety of organic compounds for use in marking liquid hydrocarbons and other fuels and oils. However, there is always a need for additional marker compounds for these products. Combinations of markers can be used as digital marking systems, with the ratios of amounts forming a code for the marked product. Additional compounds useful as fuel and lubricant markers would be desirable to maximize the available codes. The problem addressed by this invention is to find additional markers useful for marking liquid hydrocarbons and other fuels and oils. - The present invention provides a compound having formula (Ph3C)mAr(GR)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO2; R is: (a) C1-C18 alkyl substituted by at least one of OH, SH, C1-C18 alkoxy and cyano; or (b) C4-C18 heteroalkyl; m is one or two; and n is an integer from one to four.
- The present invention further provides a method for marking a petroleum hydrocarbon or a liquid biologically derived fuel; said method comprising adding to said petroleum hydrocarbon or liquid biologically derived fuel at least one compound having formula (Ph3C)mAr(GR)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO2; R is: (a) C1-C18 alkyl substituted by at least one of OH, SH, C1-C18 alkoxy and cyano; or (b) C4-C18 heteroalkyl; m is one or two; and n is an integer from one to four; wherein each compound having formula (Ph3C)mAr(GR)n is present at a level from 0.01 ppm to 20 ppm.
- Percentages are weight percentages (wt%) and temperatures are in °C, unless specified otherwise. Concentrations are expressed either in parts per million ("ppm") calculated on a weight/weight basis, or on a weight/volume basis (mg/L); preferably on a weight/volume basis. The term "petroleum hydrocarbon" refers to products having a predominantly hydrocarbon composition, although they may contain minor amounts of oxygen, nitrogen, sulfur or phosphorus; petroleum hydrocarbons include crude oils as well as products derived from petroleum refining processes; they include, for example, crude oil, lubricating oil, hydraulic fluid, brake fluid, gasoline, diesel fuel, kerosene, jet fuel and heating oil. Marker compounds of this invention can be added to a petroleum hydrocarbon or a liquid biologically derived fuel; examples of the latter are biodiesel fuel, ethanol, butanol, ethyl tert-butyl ether or mixtures thereof. A substance is considered a liquid if it is in the liquid state at 20°C. A biodiesel fuel is a biologically derived fuel containing a mixture of fatty acid alkyl esters, especially methyl esters. Biodiesel fuel typically is produced by transesterification of either virgin or recycled vegetable oils, although animal fats may also be used. An ethanol fuel is any fuel containing ethanol, in pure form, or mixed with petroleum hydrocarbons, e.g., "gasohol." An "alkyl" group is a substituted or unsubstituted hydrocarbyl group having from one to twenty-two carbon atoms in a linear, branched or cyclic arrangement. Substitution on alkyl groups of one or more OH or alkoxy groups is permitted; other groups may be permitted when specified elsewhere herein. Preferably, alkyl groups are saturated. Preferably, alkyl groups are unsubstituted. Preferably, alkyl groups are linear or branched. An "aryl" group is a substituent derived from an aromatic hydrocarbon compound. An aryl group has a total of from six to twenty ring atoms, unless otherwise specified, and has one or more rings which are separate or fused. Substitution on aryl groups of one or more alkyl or alkoxy groups is permitted. A "heteroalkyl" group is an alkyl group in which one or more methylene groups has been replaced by O or S. Preferably, heteroalkyl groups contain from one to six O or S atoms, preferably from one to four, preferably from one to three. The methylene groups replaced by O or S were bonded to two other carbon atoms in the corresponding alkyl group. Preferably, heteroalkyl groups do not contain S atoms. Heteroalkyl groups may be substituted by OH, SH or C1-C18 alkoxy groups, preferably OH or C1-C6 alkoxy groups, preferably hydroxy or C1-C4 alkoxy groups. Examples of heteroalkyl groups include oligomers of ethylene oxide, propylene oxide or butylene oxide having two to six units of the alkylene oxide (preferably two to four, preferably two or three) and a terminal hydroxy or C1-C6 alkoxy group (preferably hydroxy or C1-C4 alkoxy, preferably hydroxy or methoxy, preferably hydroxy); an example of an ethylene oxide oligomer is -{(CH2)2O}jR2, where j is an integer from two to six and R2 is hydrogen or C1-C6 alkyl. Preferably, j is from two to four, preferably two or three. Preferably, R2 is hydrogen or C1-C4 alkyl, preferably hydrogen or methyl, preferably hydrogen. Preferably, the compounds of this invention contain elements in their naturally occurring isotopic proportions.
- Ar is an aromatic ring system having from six to twenty carbon atoms and whose substituents include Ph3C and OR groups, preferably one in which the only substituents are Ph3C and OR groups. Preferably, Ar is a C6-C12 hydrocarbyl aromatic ring system. Preferably, Ar is benzene, naphthalene, biphenyl, phenyl ether, diphenylmethane or one of the preceding systems substituted with alkyl and/or alkoxy groups; preferably benzene. Preferably, n is from one to three, preferably two or three, preferably two. Preferably, G is O or S, preferably O. Preferably, R is (a) C2-C18 alkyl substituted by at least one of OH, SH, C1-C12 alkoxy and cyano, or (b) C4-C18 heteroalkyl; preferably (a) C3-C12 alkyl substituted by at least one of OH, SH and C1-C6 alkoxy, or (b) C4-C12 heteroalkyl; preferably (a) C3-C12 alkyl substituted by at least one of OH and C1-C6 alkoxy, or (b) C4-C12 heteroalkyl; preferably C4-C18 heteroalkyl; preferably C4-C12 heteroalkyl; preferably C4-C8 heteroalkyl; preferably C4-C6 heteroalkyl. Preferably, R has a single substituent selected from OH, SH, C1-C18 alkoxy and cyano; preferably said single substituent is in a terminal position on R, i.e., on the carbon furthest from Ar. Preferably, when G is O, R is: (a) C1-C18 alkyl substituted by at least one of SH and cyano; (b) C2-C12 alkyl substituted by OH or C1-C18 alkoxy; or (c) C4-C18 heteroalkyl; preferably when G is O, R is: (a) C1-C18 alkyl substituted by at least one of SH and cyano; (b) C2-C18 alkyl substituted by OH or C1-C18 alkoxy, said OH or C1-C18 alkoxy group being in a terminal position; or (c) C4-C18 heteroalkyl; preferably when G is O, R is: (a) C1-C18 alkyl substituted by at least one of SH and cyano; (b) C2-C12 alkyl substituted by OH or C1-C12 alkoxy, said OH or C1-C12 alkoxy group being in a terminal position; or (c) C4-C18 heteroalkyl; preferably when G is O, R is: (a) C1-C18 alkyl substituted by at least one of SH and cyano; or (b) C4-C18 heteroalkyl.
-
-
- In using the compounds of this invention as markers, preferably the minimum amount of each compound added to a liquid to be marked is at least 0.01 ppm, preferably at least 0.02 ppm, preferably at least 0.05 ppm, preferably at least 0.1 ppm, preferably at least 0.2 ppm. Preferably, the maximum amount of each marker is 50 ppm, preferably 20 ppm, preferably 15 ppm, preferably 10 ppm, preferably 5 ppm, preferably 2 ppm, preferably 1 ppm, preferably 0.5 ppm. Preferably, the maximum total amount of marker compounds is 100 ppm, preferably 70 ppm, preferably 50 ppm, preferably 30 ppm, preferably 20 ppm, preferably 15 ppm, preferably 12 ppm, preferably 10 ppm, preferably 8 ppm, preferably 6 ppm, preferably 4 ppm, preferably 3 ppm, preferably 2 ppm, preferably 1 ppm. Preferably, a marker compound is not detectible by visual means in the marked petroleum hydrocarbon or liquid biologically derived fuel, i.e., it is not possible to determine by unaided visual observation of color or other characteristics that it contains a marker compound. Preferably, a marker compound is one that does not occur normally in the petroleum hydrocarbon or liquid biologically derived fuel to which it is added, either as a constituent of the petroleum hydrocarbon or liquid biologically derived fuel itself, or as an additive used therein.
- Preferably, the marker compounds have a log P value of at least 3, where P is the 1-octanol/water partition coefficient. Preferably, the marker compounds have a log P of at least 4, preferably at least 5. Log P values which have not been experimentally determined and reported in the literature can be estimated using the method disclosed in Meylan, W.M & Howard, P.H., J. Pharm. Sci., vol. 84, pp. 83-92 (1995). Preferably the petroleum hydrocarbon or liquid biologically derived fuel is a petroleum hydrocarbon, biodiesel fuel or ethanol fuel; preferably a petroleum hydrocarbon or biodiesel fuel; preferably a petroleum hydrocarbon; preferably crude oil, gasoline, diesel fuel, kerosene, jet fuel or heating oil; preferably gasoline.
- Preferably, the marker compounds are detected by at least partially separating them from constituents of the petroleum hydrocarbon or liquid biologically derived fuel using a chromatographic technique, e.g., gas chromatography, liquid chromatography, thin-layer chromatography, paper chromatography, adsorption chromatography, affinity chromatography, capillary electrophoresis, ion exchange and molecular exclusion chromatography. Chromatography is followed by at least one of: (i) mass spectral analysis, and (ii) FTIR. Identities of the marker compounds preferably are determined by mass spectral analysis. Preferably, mass spectral analysis is used to detect the marker compounds in the petroleum hydrocarbon or liquid biologically derived fuel without performing any separation. Alternatively, marker compounds may be concentrated prior to analysis, e.g., by distilling some of the more volatile components of a petroleum hydrocarbon or liquid biologically derived fuel.
- Preferably, more than one marker compound is present. Use of multiple marker compounds facilitates incorporation into the petroleum hydrocarbon or liquid biologically derived fuel of coded information that may be used to identify the origin and other characteristics of the petroleum hydrocarbon or liquid biologically derived fuel. The code comprises the identities and relative amounts, e.g., fixed integer ratios, of the marker compounds. One, two, three or more marker compounds may be used to form the code. Marker compounds according to this invention may be combined with markers of other types, e.g., markers detected by absorption spectrometry, including those disclosed in
U.S. Pat. No. 6,811,575 ;U.S. Pat. App. Pub. No. 2004/0250469 andEP App. Pub. No. 1,479,749 . Marker compounds are placed in the petroleum hydrocarbon or liquid biologically derived fuel directly, or alternatively, placed in an additives package containing other compounds, e.g., antiwear additives for lubricants, detergents for gasoline, etc., and the additives package is added to the petroleum hydrocarbon or liquid biologically derived fuel. - The compounds of this invention may be prepared by methods known in the art, e.g., alkylation of phenols or polyhydroxyaromatics with trityl halide or alcohol, followed by alkylation with organic halides in the presence of base. For example, tritylated phenolic ethers may be prepared according to the following reaction scheme,
- Typical mono-tritylated phenol synthesis procedure is illustrated by the following example: 4-Tritylbenzene-1,2-diol: A 1L 3-neck flask was equipped with a mechanical stirrer, a reflux condenser with nitrogen blanket, and a heating mantle with a temperature controller and a thermocouple. The flask was charged with 78.20 grams (0.30 moles) of trityl alcohol, 39.39 grams (0.36 moles) of catechol, and 250 mL of glacial acetic acid. The mixture was stirred under nitrogen while heating to about 80°C. A clear amber solution was obtained. To this solution were added 16.73 grams (0.06 moles) of trityl chloride in one portion. The chloride dissolved quickly. The mixture was brought to reflux. After about 30 minutes at reflux, solids began to separate out. Reflux was continued for another 5 hours before cooling to room temperature. The reaction mixture was filtered, and the grey solids were washed on the filter with several portions of acetic acid. The product was dried - first in air and finally in a vacuum oven at 60°C for 2 hours. The yield of product was 92.0 grams (72.5%), having a melting point of 245 - 248°C. The structure was confirmed by IR, 1H- and 13C-NMR, and GC/MS analyses.
- Typical bis-tritylated phenol synthesis procedure is illustrated by the following example: 4,6-Ditritylbenzene-1,3-diol: A 1L 3-neck flask was equipped with a mechanical stirrer, a reflux condenser with nitrogen blanket, and a heating mantle with a temperature controller and a thermocouple. The flask was charged with 12.39 grams (0.0475 moles) of trityl alcohol, 15.03 grams (0.054 moles) of trityl chloride, 5.53 grams (0.05 moles) of resorcinol, and with 50 mL of glacial acetic acid. The mixture was stirred under nitrogen while heating to reflux. At about 80°C, a clear amber solution was obtained. Solids began to separate out after about 30 minutes. Reflux was continued for a total of about 34 hours. The reaction mixture was cooled to room temperature, then it was filtered. The white solids were washed on the filter with several portions of acetic acid. The product was dried - first in air for about 2 hours, and then in a vacuum oven at 50°C for 3 hours. The yield of product was 15.27 grams (95%), having a melting point of 272 - 274°C. The structure was confirmed by IR, 1H- and 13C-NMR, and GC/MS analyses.
- Typical functionalized mono-tritylated phenol mono-ether synthesis procedure is illustrated by the following example:
- 6-(4-Tritylphenoxy)hexan-1-ol: A 25 mL 3-neck flask was equipped with a magnetic stirrer, a reflux condenser with nitrogen blanket, and a heating mantle with a temperature controller and a thermocouple. The flask was charged with 1.12 grams (0.0033 moles) of 4-tritylphenol, 0.22 grams (0.0033 moles, 85 wt. %) of potassium hydroxide pellets, and with 5 mL of dimethylsulfoxide. The mixture was stirred under nitrogen while heating to 100°C. After about 2 hours, all of the potassium hydroxide had dissolved, and the mixture was cooled to 70°C. 6-Chlorohexanol (0.45 grams, 0.0033 moles) was then added in one portion. The reaction mixture was maintained at 100°C for about 0.5 hours, then it was stirred at room temperature overnight. A sample withdrawn for GC analysis at this point showed no remaining starting materials, indicating that the reaction was completed. The reaction mixture was poured into 100 mL of water. Solids precipitated. The mixture was filtered. The beige solids were washed on the filter with several portions of water, then they were air-dried. The yield of product was 1.2 grams (83%). The structure was confirmed by IR, 1H-and 13C-NMR, and GC/MS analyses.
- Typical functionalized mono-tritylated phenol bis-ether synthesis procedure is illustrated by the following example:
- 6,6'-((4-trityl-1,2-phenylene)bis(oxy))bis(hexan-1-ol): A 100 mL 3-neck flask was equipped with a magnetic stirrer, a reflux condenser with nitrogen blanket, and a heating mantle with a temperature controller and a thermocouple. The flask was charged with 3.52 grams (0.01 moles) of 4-tritylbenzene-1,2-diol, 1.32 grams (0.02 moles, 85 wt. %) of potassium hydroxide pellets, and with 25 mL of dimethylsulfoxide. The mixture was stirred under nitrogen while heating to 105°C until the potassium hydroxide pellets had dissolved. The mixture was cooled to 55°C, then 6-chlorohexanol (2.73 grams, 0.02 moles) was added in one portion. An exotherm to about 58°C was observed. After the exotherm subsided, the reaction mixture was maintained at 65°C for about 2 hours. A sample withdrawn for GPC analysis at this point showed about 83% conversion to the bis-ether. The presence of unreacted 4-tritylbenzene-1,2-diol suggested that some of the chlorohexanol had cyclized to oxepane; an additional 0.5 grams (0.0037 moles) of chlorohexanol was added to the reaction mixture, and heating at 60°C was continued. After 5.5 hours, the reaction mixture was poured into 400 mL of water. The product separated as an oil. The mixture was extracted with about 2 X 75 mL of toluene. The toluene layers were combined, and were then washed with 1 X 50 mL of saturated aqueous sodium chloride solution. After drying over anhydrous magnesium sulfate, the toluene was removed by rotary evaporation to give 1.97 grams of beige solid product (36% yield). MP = 81 - 84°C. The structure was confirmed by IR, 1H- and 13C-NMR, and GC/MS analyses.
- Using the above procedure, the following functionalized tritylated phenol ethers were prepared:
TABLE 1: Synthesis Data for Functionalized Tritylated Phenol Ethers Ex. No. Functionalized Tritylated Phenol mono-Ethers: R % Yield MP, °C 1 (CH2)6OH 83 158-161 2 (CH2)2O(CH2)2OH 93 144-146 Functionalized Tritylated Phenol bis-Ethers: R % Yield MP, °C 3 (CH2)4OH <10 oil 4 (CH2)6OH 36 81 - 84 5 (CH2)2O(CH2)2OH 89 oil - GC/MS STUDIES: Stock solutions of functionalized tritylated phenol ethers were prepared in dichloromethane (DCM). These solutions were used to establish GC retention times and MS fragmentation patterns. The results are shown in Table 2.
- GC/MS Parameters:
- Column: Agilent DB 35m, 15.0 m X 0.25 mm X 0.25 µl
- Flow Rate: 1.5 mL / min. He carrier gas
- Oven: initial: 100°C
- Ramp 1: 20°C / min. to 280°C; Hold: 10 min.
- Ramp 2: 20°C / min. to 340°C; Hold: 6 min.
- Inlet Temp.: 280°C
- Insert: Splitless; Vent: 15 min., Single taper, glass wool, deactivated, 5062-3587
- Injection Volume: 3 µL; Viscosity: 5 sec., Plunger: fast
- Mass Transfer Line Temp.: 280°C
- MS Quad: 200°C; MS Source: 250°C
- Solvent Delay: 18.5 min.
- Solubility Studies: The solubility properties of functionalized tritylated phenol ethers were determined by mixing 0.1 gram samples of sample in 0.9 grams of solvent. The mixtures were warmed at 60°C for a few minutes to make homogeneous solutions. The solutions were cooled back to room temperature, and then they were placed into a freezer at -10°C. The solutions were checked daily to see if crystallization had occurred.
Compound Solvent wt % 60 C RT -10 C Ex. 4 AROMATIC 200 10 insoluble insoluble Tetralin 10 soluble insoluble DPGME 10 soluble soluble crystals after 6 days NMP 10 soluble soluble soluble after 7 days DMAc 10 soluble soluble soluble after 7 days 1-Octanol 10 soluble soluble crystals after 1 day Ex. 5 AROMATIC 200 10 soluble soluble soluble after 7 days Tetralin 10 soluble soluble soluble after 7 days DPGME 10 soluble soluble soluble after 7 days NMP 10 soluble soluble soluble after 7 days DMAc 10 soluble soluble soluble after 7 days - DPGME is dipropylene glycol mono-methyl ether and NMP is N-methylpyrrolidone; AROMATIC 200 is a mixed aromatic solvent available from Exxon Mobil Corp.
Ex. No. | Functionalized Tritylated Phenol mono-Ethers: R | GC Retention Time, min. | Major Mass, m/e |
1 | (CH2)6OH | 21.72 | 436,359,259 |
2 | (CH2)2O(CH2)2OH | 20.42 | 424,347,259 |
Functionalized Tritylated Phenol bis-Ethers: R | GC Retention Time, min. | Major Mass, m/e | |
4 | (CH2)6OH | 28.29 | 552, 375, 275 |
5 | (CH2)2O(CH2)2OH | 25.16 | 528, 451, 363 |
Claims (10)
- A compound having formula (Ph3C)mAr(GR)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO2; R is: (a) C1-C18 alkyl substituted by at least one of OH, SH, C1-C18 alkoxy and cyano; or (b) C4-C18 heteroalkyl; m is one or two; and n is an integer from one to four.
- The compound of claim 1 in which Ar is a C6-C12 hydrocarbyl aromatic ring system and R is C4-C18 heteroalkyl.
- The compound of claim 2 in which n is an integer from one to three.
- The compound of claim 3 in which R is C4-C8 heteroalkyl not containing sulfur and G is O.
- The compound of claim 4 in which Ar is a benzene ring system and n is two.
- A method for marking a petroleum hydrocarbon or a liquid biologically derived fuel; said method comprising adding to said petroleum hydrocarbon or liquid biologically derived fuel at least one compound having formula (Ph3C)mAr(GR)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms; G is O, S, SO or SO2; R is: (a) C1-C18 alkyl substituted by at least one of OH, SH, C1-C18 alkoxy and cyano; or (b) C4-C18 heteroalkyl; m is one or two; and n is an integer from one to four, wherein each compound having formula (Ph3C)mAr(GR)n is present at a level from 0.01 ppm to 20 ppm.
- The method of claim 6 in which Ar is a C6-C12 hydrocarbyl aromatic ring system and R is C4-C18 heteroalkyl.
- The method of claim 7 in which n is an integer from one to three.
- The method of claim 8 in which R is C4-C8 heteroalkyl not containing sulfur and G is O.
- The method of claim 9 in which Ar is a benzene ring system and n is two.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261642560P | 2012-05-04 | 2012-05-04 | |
EP13722196.6A EP2844630B1 (en) | 2012-05-04 | 2013-04-26 | Tritylated ethers |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13722196.6A Division EP2844630B1 (en) | 2012-05-04 | 2013-04-26 | Tritylated ethers |
EP13722196.6A Division-Into EP2844630B1 (en) | 2012-05-04 | 2013-04-26 | Tritylated ethers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2995606A1 true EP2995606A1 (en) | 2016-03-16 |
EP2995606B1 EP2995606B1 (en) | 2017-03-29 |
Family
ID=48428649
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13722196.6A Active EP2844630B1 (en) | 2012-05-04 | 2013-04-26 | Tritylated ethers |
EP15187464.1A Active EP2995606B1 (en) | 2012-05-04 | 2013-04-26 | Tritylated ethers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13722196.6A Active EP2844630B1 (en) | 2012-05-04 | 2013-04-26 | Tritylated ethers |
Country Status (12)
Country | Link |
---|---|
US (1) | US9410100B2 (en) |
EP (2) | EP2844630B1 (en) |
JP (1) | JP6220381B2 (en) |
KR (1) | KR102096863B1 (en) |
CN (1) | CN104245652B (en) |
BR (1) | BR112014026082B8 (en) |
ES (2) | ES2625014T3 (en) |
IL (2) | IL235258A (en) |
IN (1) | IN2014DN07169A (en) |
MY (1) | MY169305A (en) |
TW (2) | TWI571458B (en) |
WO (1) | WO2013165839A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI516468B (en) * | 2012-07-06 | 2016-01-11 | 羅門哈斯公司 | Tritylated alkyl aryl ethers |
TWI516469B (en) * | 2013-04-05 | 2016-01-11 | 陶氏全球科技責任有限公司 | Alkyl trityl phenyl ethers |
EP3140381B1 (en) | 2014-05-09 | 2019-06-12 | Rohm and Haas Company | Tetrarylmethane ethers as fuel markers |
BR112016025211B1 (en) | 2014-05-09 | 2021-01-12 | Dow Global Technologies Llc | tetraryl methane ethers for use as oil and fuel markers |
CN108291160A (en) * | 2015-11-30 | 2018-07-17 | 沙特基础工业全球技术有限公司 | Method, gasoline accelerating agent and gasoline for enhancing octane number accelerating agent |
US10414899B2 (en) * | 2016-11-30 | 2019-09-17 | Dow Global Technologies Llc | Markers for aqueous compositions |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981283A (en) * | 1992-01-29 | 1999-11-09 | Isotag, L.L.C. | Method of tagging hydrocarbon fuels |
US6811575B2 (en) | 2001-12-20 | 2004-11-02 | Rohm And Haas Company | Method for marking hydrocarbons with anthraquinones |
EP1479749A1 (en) | 2003-05-23 | 2004-11-24 | Rohm and Haas Company | Method for marking hydrocarbons with substituted anthraquinones |
US20040250469A1 (en) | 2003-06-13 | 2004-12-16 | Baxter David Roderick | Method for marking hydrocarbons with substituted anthraquinones |
US7858373B2 (en) | 2006-02-03 | 2010-12-28 | Rohm And Haas Company | Chemical markers |
EP2441745A1 (en) * | 2010-10-14 | 2012-04-18 | ANGUS Chemical Company | Biphenyl benzyl ether marker compounds for liquid hydrocarbons and other fuels and oils |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU640314B2 (en) | 1991-05-03 | 1993-08-19 | Nalco Chemical Company | Identification of liquid hydrocarbons using chemical markers |
US6506704B1 (en) * | 1999-03-23 | 2003-01-14 | Cryovac, Inc. | Olefin polymerization catalysts and processes for making and using same |
JP5651291B2 (en) * | 2008-04-11 | 2015-01-07 | 株式会社センカファーマシー | Polyethylene glycol derivative and process for producing the intermediate |
BR112013028028A2 (en) | 2011-05-09 | 2017-08-08 | Angus Chemical | method for preparing a biologically liquid petroleum or derived fuel hydrocarbon |
KR101947434B1 (en) | 2011-05-09 | 2019-02-13 | 다우 글로벌 테크놀로지스 엘엘씨 | Ortho-phenylphenol compounds useful as hydrocarbon markers |
JP5913583B2 (en) * | 2011-06-24 | 2016-04-27 | ダウ グローバル テクノロジーズ エルエルシー | Tritylated ether |
-
2013
- 2013-04-15 TW TW104127857A patent/TWI571458B/en not_active IP Right Cessation
- 2013-04-15 TW TW102113244A patent/TWI518061B/en not_active IP Right Cessation
- 2013-04-26 EP EP13722196.6A patent/EP2844630B1/en active Active
- 2013-04-26 WO PCT/US2013/038378 patent/WO2013165839A1/en active Application Filing
- 2013-04-26 KR KR1020147032515A patent/KR102096863B1/en active IP Right Grant
- 2013-04-26 CN CN201380020833.8A patent/CN104245652B/en active Active
- 2013-04-26 JP JP2015510345A patent/JP6220381B2/en not_active Expired - Fee Related
- 2013-04-26 US US14/398,751 patent/US9410100B2/en active Active
- 2013-04-26 IN IN7169DEN2014 patent/IN2014DN07169A/en unknown
- 2013-04-26 ES ES15187464.1T patent/ES2625014T3/en active Active
- 2013-04-26 BR BR112014026082A patent/BR112014026082B8/en active IP Right Grant
- 2013-04-26 ES ES13722196.6T patent/ES2603256T3/en active Active
- 2013-04-26 MY MYPI2014002982A patent/MY169305A/en unknown
- 2013-04-26 EP EP15187464.1A patent/EP2995606B1/en active Active
-
2014
- 2014-10-22 IL IL235258A patent/IL235258A/en active IP Right Grant
-
2017
- 2017-02-09 IL IL250540A patent/IL250540B/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981283A (en) * | 1992-01-29 | 1999-11-09 | Isotag, L.L.C. | Method of tagging hydrocarbon fuels |
US6811575B2 (en) | 2001-12-20 | 2004-11-02 | Rohm And Haas Company | Method for marking hydrocarbons with anthraquinones |
EP1479749A1 (en) | 2003-05-23 | 2004-11-24 | Rohm and Haas Company | Method for marking hydrocarbons with substituted anthraquinones |
US20040250469A1 (en) | 2003-06-13 | 2004-12-16 | Baxter David Roderick | Method for marking hydrocarbons with substituted anthraquinones |
US7858373B2 (en) | 2006-02-03 | 2010-12-28 | Rohm And Haas Company | Chemical markers |
EP2441745A1 (en) * | 2010-10-14 | 2012-04-18 | ANGUS Chemical Company | Biphenyl benzyl ether marker compounds for liquid hydrocarbons and other fuels and oils |
Non-Patent Citations (6)
Title |
---|
FAYEZ H. OSMAN ET AL: "Reaction of Phosphonium Ylides with 4-Triphenylmethyl-1,2-benzoquinone", TETRAHEDRON, vol. 49, no. 38, 1 September 1993 (1993-09-01), pages 8691 - 8704, XP055070987, ISSN: 0040-4020, DOI: 10.1016/S0040-4020(01)96274-X * |
K. L. AGARWAL ET AL: "Studies on polynucleotides. CXLIII. A rapid and convenient method for the synthesis of deoxyribooligonucleotides carrying 5'-phosphate end groups using a new protecting group", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 98, no. 5, 1 March 1976 (1976-03-01), pages 1065 - 1072, XP055070984, ISSN: 0002-7863, DOI: 10.1021/ja00421a001 * |
MEYLAN, W.M; HOWARD, P.H., J. PHARM. SCI., vol. 84, 1995, pages 83 - 92 |
N.E. GALANIN ET AL.: "Synthesis and Properties of [4-(Triphenylmethyl)phenoxy]acetic and 3-[4-(Triphenylmethyl)phenoxy]propionic Acids and Their Condensation with Phthalimide Leading to meso-Substituted Tetrabenzoporphyrins", RUSSIAN JOURNAL OF CHEMISTRY, vol. 45, no. 7, 2009, pages 1024 - 1030, XP002701473, ISSN: 1070-4280 * |
PIER-LUCIO ANELLI ET AL: "Toward Controllable Molecular Shuttles", CHEMISTRY - A EUROPEAN JOURNAL, vol. 3, no. 7, 1 July 1997 (1997-07-01), pages 1113 - 1135, XP055070988, ISSN: 0947-6539, DOI: 10.1002/chem.19970030719 * |
R. BALLARDINI ET AL.: "Molecular Meccano, 56 Anthracene-Containing [2]Rotaxanes: Synthesis, Spectroscopic, and Electrochemical Properties", EUROPEAN JOURNAL OF CHEMISTRY, 2000, pages 591 - 602, XP002701472, ISSN: 1434-193X * |
Also Published As
Publication number | Publication date |
---|---|
CN104245652B (en) | 2017-05-17 |
BR112014026082B8 (en) | 2021-05-04 |
WO2013165839A1 (en) | 2013-11-07 |
ES2625014T3 (en) | 2017-07-18 |
KR20150013560A (en) | 2015-02-05 |
CN104245652A (en) | 2014-12-24 |
US9410100B2 (en) | 2016-08-09 |
TWI518061B (en) | 2016-01-21 |
IL250540A0 (en) | 2017-03-30 |
TW201345888A (en) | 2013-11-16 |
TW201544495A (en) | 2015-12-01 |
KR102096863B1 (en) | 2020-04-03 |
ES2603256T3 (en) | 2017-02-24 |
BR112014026082A2 (en) | 2017-07-18 |
IN2014DN07169A (en) | 2015-04-24 |
US20150128485A1 (en) | 2015-05-14 |
IL250540B (en) | 2018-05-31 |
TWI571458B (en) | 2017-02-21 |
EP2844630A1 (en) | 2015-03-11 |
IL235258A (en) | 2017-05-29 |
JP6220381B2 (en) | 2017-10-25 |
EP2995606B1 (en) | 2017-03-29 |
BR112014026082B1 (en) | 2020-10-27 |
EP2844630B1 (en) | 2016-09-07 |
JP2015520141A (en) | 2015-07-16 |
MY169305A (en) | 2019-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102096325B1 (en) | Tritylated alkyl aryl ethers | |
US10259763B2 (en) | Tritylated ethers | |
EP2726585B1 (en) | Biphenol ether compounds as markers for liquid hydrocarbons and other fuels and oils | |
EP2995606B1 (en) | Tritylated ethers | |
EP2909291B1 (en) | Thpe ethers | |
EP3140271B1 (en) | Tetrarylmethane ethers for use as fuel and oil markers | |
EP3140381B1 (en) | Tetrarylmethane ethers as fuel markers | |
EP2709976B1 (en) | Biphenol ether compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150929 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2844630 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 43/23 20060101AFI20160929BHEP Ipc: C10L 1/00 20060101ALI20160929BHEP Ipc: C10L 1/185 20060101ALI20160929BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161108 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SWEDO, RAYMOND Inventor name: GREEN, GEORGE DAVID |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2844630 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 879604 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013019315 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2625014 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170630 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170629 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 879604 Country of ref document: AT Kind code of ref document: T Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170629 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170729 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013019315 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
26N | No opposition filed |
Effective date: 20180103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170329 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240307 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240313 Year of fee payment: 12 Ref country code: FR Payment date: 20240308 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240306 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240508 Year of fee payment: 12 |