EP2994985B1 - Halfbridge controller - Google Patents
Halfbridge controller Download PDFInfo
- Publication number
- EP2994985B1 EP2994985B1 EP14719272.8A EP14719272A EP2994985B1 EP 2994985 B1 EP2994985 B1 EP 2994985B1 EP 14719272 A EP14719272 A EP 14719272A EP 2994985 B1 EP2994985 B1 EP 2994985B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- switching device
- latency
- switching
- determined
- close signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 31
- 230000005669 field effect Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 6
- 238000013500 data storage Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
- H02M7/53873—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
Definitions
- the present invention relates to a control of a half-bridge for driving an electrical load.
- the invention relates to the optimization of a temporal sequence of switching states at the half-bridge.
- a bridge circuit with a half-bridge can be used.
- the half bridge comprises a first switching device for connecting a terminal to a first potential and a second switching device for connecting the terminal to a second potential.
- the consumer is operated between the terminal and a suitable potential.
- This potential may be fixed or controlled by means of another half-bridge.
- the two half-bridges can each provide the consumer with mutually complementary potentials, so that a direction of current through the load can be controlled by the control of the half-bridges.
- the switching devices of the half-bridge must be switched so that both switching devices are not closed at the same time. Otherwise, a high short-circuit current would flow through the switching elements, whereby the switching elements can be damaged or destroyed. It should be noted that if a switching device is designed as a field effect transistor, this switching device can even pass power in one direction in the off state. To avoid the short circuit current through the switching devices is therefore between the opening of the switching devices and the closing of another switching device usually inserted a predetermined dead time, during which none of the switching devices is closed. This dead time is usually determined by worst-case calculations and a safety margin.
- the power loss at the half-bridge can be determined as the product of the flowing current and the voltage drop across the switching device.
- the current may be in the range of 10A and the falling diode voltage may be about one volt.
- the power loss is therefore about 10 ⁇ J.
- the power loss of the switching device is the product of the square of the flowing current and the forward resistance, the latter can be in the range of about 6m ⁇ for a field effect transistor.
- the power loss is therefore outside the dead time about 30 ⁇ J.
- the dead time is only about 2% of the period, it therefore has a share of about 30% of the power loss.
- the invention solves these objects by means of a method, a computer program product and a control device having the features of the independent claims. Subclaims give preferred embodiments again.
- a half bridge comprises a first switching device for connecting a terminal to a first potential and a second switching device for connecting the terminal to a second potential.
- An inventive method for controlling the half-bridge comprises steps of outputting a Closing signal for the first switching device, while the second switching device is opened, and determining a latency between the beginning of the closing signal and a collapse of a voltage applied across the first switching device voltage. Subsequently, on the basis of the determined Latency minimizes a dead time, which lies between an opening of the second switching device and a closing of the first switching device.
- a consumer controlled by the half-bridge may be energized or de-energized while minimizing deadtime.
- an optimized control of the switching devices is carried out so that the dead time is minimized and a power loss is reduced.
- An electromagnetic compatibility (EMC) can also be improved. If the switching device comprises a MOSFET, an emission of electromagnetic interference can be significantly caused by a body diode and parasitic inductances of the MOSFET. The shorter this resonant circuit is active, the lower the electromagnetic emissions can be. If the switching devices of the half-bridge are controlled precisely enough, damping elements (so-called snubbers) on the MOSFET may possibly also be omitted.
- the method is also used for a reverse switching operation.
- a further latency period between the end of the closing signal and an increase in the voltage applied across the first switching device is determined.
- a further dead time which lies between a closing of the second switching device and an opening of the first switching device, is then minimized.
- the closing signal for the first switching device is output at least by the predetermined latency earlier than an opening signal for the second switching device. If the closing signal is given exactly by the latency before the opening signal for the second switching device, the dead time can be reduced to 0. Since the latency of the first switching device is known, reducing the dead time to a negative range so that both switching devices are closed at the same time can be surely prevented.
- the switching devices are closed alternately in order to control a consumer connected to the connection by means of pulse width modulation.
- the consumer may be provided in particular on board a motor vehicle.
- the consumer may include an electric motor or other electrical load.
- the control of a consumer on board a motor vehicle by means of pulse width modulation is widespread, so that the method can help to minimize power loss on board the motor vehicle. Thus, it can be contributed to a fuel consumption or pollutant emissions of the motor vehicle is reduced.
- the method further comprises steps of outputting a closing signal for the second switching device while the first switching device is opened, determining a latency between the start of the closing signal and a collapse of a voltage applied across the second switching device, and minimizing a dead time that is between opening the first switching device and closing the second switching device, based on the determined latency.
- a further half-bridge is provided with a further connection in order to operate a load between terminals of the half-bridges, and switching elements of different half-bridges are supplied with closing signals in such a way that they close as simultaneously as possible.
- the method can also be used to control an existing of two half-bridges H-bridge. It can also be controlled bridge circuits with more than two half-bridges in a corresponding manner.
- the method is suitable for the control of a commutated or brushless electric motor, wherein two, three or four half-bridges can be provided.
- the electric motor can drive a Windscreen wiper, a window lift or other device on board a motor vehicle form.
- the determination of the latency period is performed periodically.
- the dead time can be adapted to a changing latency of the switching device.
- the first switching device may comprise a field effect transistor having a temperature-dependent latency. During operation of the field effect transistor in a heating or cooling environment, this effect can be compensated by the periodic determination of the latency.
- a computer program product comprises program code means for carrying out the method described, when the computer program product runs on a processing device or is stored on a computer-readable data carrier.
- the first drive is set up to minimize a dead time, which lies between an opening of the second switching device and a closing of the first switching device, on the basis of the determined latency.
- the switching devices may in particular comprise field-effect transistors.
- the field effect transistors can be integrated in the control device.
- a compact and powerful control device can be provided by means of which a consumer with reduced power loss can be controlled.
- the switching devices are adapted for use in a high temperature environment.
- a high temperature environment may include, for example, an actuator, a module or an actuator on board a motor vehicle.
- FIG. 1 shows a control device 100 for use on board a motor vehicle 105.
- the control device 100 is configured to control a half-bridge 110, wherein the half-bridge 110 may be integrated into the control device 100.
- the half bridge 110 includes a first switching device 115 and a second switching device 120, each of which may be embodied, for example, as bipolar transistors, IGBTs (insulated gate bipolar transistor) for HEV or EV or as field-effect transistors, more preferably as MOSFETs.
- the first switching device 115 is configured to connect a terminal 125 to a first potential 130 and the second switching device 120 is configured to connect the terminal 125 to a second potential 135.
- a consumer 140 can be connected to the half-bridge 110 or the control device 100.
- the consumer 140 may comprise, for example, an electric motor, in particular on board a motor vehicle, for example for actuating a windshield wiper.
- Between the first potential 130 and the second potential 135 is preferably the ground potential.
- a processing device 145 is provided, which can be designed in particular as a programmable microcomputer.
- the control device 100 comprises an interface 150, which is connected to the processing device 145 in order to enable a communication between an external control component and the control device 100.
- a first comparator 155 is associated with the first switching device 115 and provides the processing means 145 a signal when a voltage applied across the first switching device 115 voltage breaks.
- the first comparator 155 may be provided for so-called drain-source monitoring in order to detect a short-circuited first switching device 115 during operation.
- the first comparator 155 is implemented by the control device or integrated with it.
- a second comparator 160 is associated with the second switching device 120 and otherwise configured as the first comparator 155.
- a timer 165 is provided which is connected to the processing device 145.
- the timer 165 may be constructed, for example, as a programmable counter or timer. In this case, the timer 165 can be started or stopped by the processing device 145 and a counter reading can be set or read out. In a further embodiment, the Timers 165 are started or stopped by one of the signals of comparators 155 or 160.
- the processing device 145 is set up to determine, by means of the timer 165 and the first comparator 155, a latency that elapses between the issuing of a closing signal to the first switching device 115 and an actual closing of the switching device 115.
- the actual closing is recognizable by the breakdown of the voltage applied across the first switching device 115. If the voltage ceases, the first comparator 155 can output a corresponding signal to the processing device 145 or the timer 165. In the illustrated preferred embodiment with the second comparator 160, a corresponding determination can also be made for a latency of the second switching device 120.
- the processing device 145 is set up to output opening signals to the first switching device 115 and optionally the second switching device 120 depending on previously determined latencies, so that the actual closing times of the switching devices 115 and 120 improves on the opening times of the respective other switching devices 115 , 120 or another, external switching device can be tuned.
- the processing device 145 is set up to provide the switching devices 115 and 120 with alternating closing signals in order to realize a pulse width modulation of the load 140.
- FIG. 2 shows a circuit diagram of the device 100 of FIG. 1 in another embodiment, not all of the in FIG. 1 also shown in elements FIG. 2 are shown.
- a further half-bridge 205 is provided, which is constructed in a corresponding manner and whose further connected terminal 210 is connected to the other terminal of the consumer 140.
- the further half-bridge 205 comprises a third switching device 215, to which a third comparator 220 is assigned, and a fourth switching device 225, to which a fourth comparator 230 is assigned.
- the further half bridge 205 including the comparators 220 and 230 are preferably included or integrated by the control device 100 executed with her.
- the consumer 140 may in particular be a commutated or brushless electric motor.
- the processing device 145 is preferably configured to also determine the latencies of the third switching device 215 and the fourth switching device 225. Furthermore, the processing device 145 is set up to provide the switching devices 115, 120, 215 and 225 with opening signals or closing signals, depending on the specific latencies. Usually in each case in FIG. 2 diagonally offset switching devices shown closed or opened together, so that either the switching devices 155 and 225 or the switching devices 220 and 160 are closed at the same time. The control of the switching devices 155, 160, 220 and 230 to open and close them can be done within the scope of a pulse width modulation. The determined latencies are preferably compensated so that dead times between switching on a pair of switching devices 115 and 225 or 120 and 215 and switching off the respective other pair of switching devices 120 and 215 or 115 and 225 are minimized as possible.
- FIG. 3 shows a flowchart of a method for controlling one of the half bridges 110 or 205 of FIG Figures 1 or 2 , The method 300 is set up in particular for running on the processing device 145.
- a latency of the first switching device 115 is determined, whereby this section of the method 300 can also be applied in a corresponding manner to every other activated switching device 120, 215 and 225.
- a first step 305 the other switching device of the same half-bridge 110, 205, in the present case the second switching device 120, is opened. This step can be omitted if the other switching device is already open.
- a closing signal for the first switching device 115 is output.
- the timer 165 is started in a step 315. Then, it is detected in a step 320 that the voltage across the first switching device 115 breaks down.
- the timer 165 is stopped.
- the latency of the first switching device 115 from the timer 165 can be read out.
- the latency is the time required for the first switching device 115 to allow an electrical current to flow from the first potential 130 to the terminal 125 in response to a closing signal.
- the determination of the latency of the first switching device 115 is completed.
- the determined latency may be used to better control switching times of the first switching device 115.
- a time is determined at which the first switching device 115 should be closed.
- a step 340 it waits until the specific time minus the determined latency has occurred.
- a closing signal is output to the first switching device 115.
- the switching device 115 is closed in step 355.
- the method 300 is also used in a corresponding manner for the reverse switching operation when the first switching device 115 is to be opened and the second switching device 110 is to be opened.
- the switching devices 115 and 120 and the switching on and off are respectively to swap.
- a further latency period between the end of the closing signal and an increase of the voltage applied across the first switching means is determined, and on the basis of the determined further latency time is then a further dead time, which lies between the closing of the second switching means and the opening of the first switching means, minimized.
- the different passes of the method 300 may alternate, for example in the context of a periodic control of the consumer 140.
- FIG. 4 shows a flowchart of a method for the pulse width modulated control of a consumer 140 by means of one of the control devices 100 of Figures 1 or 2 ,
- the method 400 is also set up to run on the processing device 145.
- the following is an example of the structure of FIG. 1 went out; In a similar way, however, the structure of FIG. 2 be supported, in which as described above, as each diagonally offset switching means 115, 120, 215 and 225 closed or opened as possible simultaneously.
- both switching devices 115 and 120 are opened.
- a closing signal is output to the first switching device 115.
- the first switching device 115 is closed in a step 415.
- a step 420 which is also referred to as on-phase in connection with a pulse width modulation
- the first switching device 115 remains closed.
- a closing signal is output to the second switching device 120 to end the on-phase.
- an opening signal is output to the first switching device 115.
- the first switching device 115 is opened.
- the second switching device 120 is not yet closed due to its latency. Accordingly, in a step 440, a dead time expires. Thereafter, in a subsequent step 445, the dead time is ended and the second switching device 120 jit.
- a step 450 which is referred to as off-phase in the range of a pulse width modulation, the second switching device 120 remains closed.
- a closing signal is output to the first switching device 115, and an opening signal is output to the second switching device 120 in a step 460.
- the second switching device 120 opens quickly and is opened in a step 465, while the first switching device 115 is not yet closed because of their latency time that has not yet elapsed. This is followed by another dead time in a step 470.
- the first switching device 115 is closed and the dead time ended. The circuit is then in the on-phase of step 420 again and the method 400 may run again.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Control Of Direct Current Motors (AREA)
Description
Die vorliegende Erfindung betrifft eine Steuerung einer Halbbrücke zur Ansteuerung eines elektrischen Verbrauchers. Insbesondere betrifft die Erfindung die Optimierung einer zeitlichen Abfolge von Schaltzuständen an der Halbbrücke.The present invention relates to a control of a half-bridge for driving an electrical load. In particular, the invention relates to the optimization of a temporal sequence of switching states at the half-bridge.
Zur Steuerung eines elektrischen Verbrauchers, beispielsweise eines Elektromotors oder einer elektrischen Heizung, kann eine Brückenschaltung mit einer Halbbrücke verwendet werden. Die Halbbrücke umfasst eine erste Schalteinrichtung zur Verbindung eines Anschlusses mit einem ersten Potential und eine zweite Schalteinrichtung zur Verbindung des Anschlusses mit einem zweiten Potential. Der Verbraucher wird zwischen dem Anschluss und einem geeigneten Potential betrieben. Dieses Potential kann fest gewählt sein oder mittels einer weiteren Halbbrücke gesteuert sein. Dabei können die beiden Halbbrücken dem Verbraucher jeweils zueinander komplementäre Potentiale bereitstellen, so dass eine Stromrichtung durch den Verbraucher durch die Ansteuerung der Halbbrücken steuerbar ist.For controlling an electrical load, for example an electric motor or an electric heater, a bridge circuit with a half-bridge can be used. The half bridge comprises a first switching device for connecting a terminal to a first potential and a second switching device for connecting the terminal to a second potential. The consumer is operated between the terminal and a suitable potential. This potential may be fixed or controlled by means of another half-bridge. In this case, the two half-bridges can each provide the consumer with mutually complementary potentials, so that a direction of current through the load can be controlled by the control of the half-bridges.
Die Schalteinrichtungen der Halbbrücke müssen so geschaltet werden, dass nicht beide Schalteinrichtungen gleichzeitig geschlossen sind. Anderenfalls würde ein hoher Kurzschlussstrom durch die Schaltelemente fließen, wodurch die Schaltelemente beschädigt oder zerstört werden können. Dabei ist zu beachten, dass falls eine Schalteinrichtung als Feldeffekttransistor ausgeführt ist, diese Schalteinrichtung selbst im ausgeschalteten Zustand Strom in einer Richtung durchlassen kann. Um den Kurzschlussstrom durch die Schalteinrichtungen zu vermeiden wird daher zwischen dem Öffnen einer der Schalteinrichtungen und dem Schließen einer anderen Schalteinrichtung üblicherweise eine vorbestimmte Totzeit eingefügt, während derer keine der Schalteinrichtungen geschlossen ist. Diese Totzeit wird üblicherweise anhand von Worst-Case-Berechnungen und einem Sicherheitszuschlag bestimmt.The switching devices of the half-bridge must be switched so that both switching devices are not closed at the same time. Otherwise, a high short-circuit current would flow through the switching elements, whereby the switching elements can be damaged or destroyed. It should be noted that if a switching device is designed as a field effect transistor, this switching device can even pass power in one direction in the off state. To avoid the short circuit current through the switching devices is therefore between the opening of the switching devices and the closing of another switching device usually inserted a predetermined dead time, during which none of the switching devices is closed. This dead time is usually determined by worst-case calculations and a safety margin.
Je länger die Totzeit ist, desto größer kann eine Verlustleistung an der Halbbrücke ausfallen. Ist die Schalteinrichtung geöffnet, so bestimmt sich die Verlustleistung als Produkt aus dem fließenden Strom und der über der Schalteinrichtung abfallenden Spannung. Im Fall eines Feldeffekttransistors können der Strom im Bereich von 10A und die abfallende Diodenspannung bei ca. einem Volt liegen. Während einer Totzeit von ca. einer Mikrosekunde beträgt die Verlustleistung daher ca. 10µJ. Im geschlossenen Zustand beträgt die Verlustleistung der Schalteinrichtung das Produkt aus dem Quadrat des fließenden Stroms und des Durchlasswiderstandes, wobei letzterer bei einem Feldeffekttransistor im Bereich von ca. 6mΩ liegen kann. Bei einer Pulsweitenmodulation mit einer Periodendauer von 50µs beträgt die Verlustleistung daher außerhalb der Totzeit ca. 30µJ. Obwohl die Totzeit nur ca. 2% der Periodendauer beträgt, hat sie demnach einen Anteil von ca. 30% an der Verlustleistung.The longer the dead time, the greater the power loss at the half-bridge can be. If the switching device is open, the power loss is determined as the product of the flowing current and the voltage drop across the switching device. In the case of a field effect transistor, the current may be in the range of 10A and the falling diode voltage may be about one volt. During a dead time of about one microsecond, the power loss is therefore about 10μJ. In the closed state, the power loss of the switching device is the product of the square of the flowing current and the forward resistance, the latter can be in the range of about 6mΩ for a field effect transistor. For a pulse width modulation with a period of 50μs, the power loss is therefore outside the dead time about 30μJ. Although the dead time is only about 2% of the period, it therefore has a share of about 30% of the power loss.
Es ist daher Aufgabe der Erfindung, ein Verfahren, ein Computerprogrammprodukt und eine Steuereinrichtung zur Steuerung einer Halbbrücke anzugeben, so dass die Verlustleistung verringert wird. Die Erfindung löst diese Aufgaben mittels eines Verfahrens, eines Computerprogrammprodukts und einer Steuereinrichtung mit den Merkmalen der unabhängigen Ansprüche. Unteransprüche geben bevorzugte Ausführungsformen wieder.It is therefore an object of the invention to provide a method, a computer program product and a control device for controlling a half-bridge, so that the power loss is reduced. The invention solves these objects by means of a method, a computer program product and a control device having the features of the independent claims. Subclaims give preferred embodiments again.
Eine Halbbrücke umfasst eine erste Schalteinrichtung zur Verbindung eines Anschlusses mit einem ersten Potential und eine zweite Schalteinrichtung zur Verbindung des Anschlusses mit einem zweiten Potential. Ein erfindungsgemäßes Verfahren zur Steuerung der Halbbrücke umfasst Schritte des Ausgebens eines Schließsignals für die erste Schalteinrichtung, während die zweite Schalteinrichtung geöffnet ist, und des Bestimmens einer Latenzzeit zwischen dem Beginn des Schließsignals und einem Einbrechen einer über der ersten Schalteinrichtung anliegenden Spannung. Anschließend wird auf der Basis der bestimmten Latenzzeit eine Totzeit minimiert, die zwischen einem Öffnen der zweiten Schalteinrichtung und einem Schließen der ersten Schalteinrichtung liegt.A half bridge comprises a first switching device for connecting a terminal to a first potential and a second switching device for connecting the terminal to a second potential. An inventive method for controlling the half-bridge comprises steps of outputting a Closing signal for the first switching device, while the second switching device is opened, and determining a latency between the beginning of the closing signal and a collapse of a voltage applied across the first switching device voltage. Subsequently, on the basis of the determined Latency minimizes a dead time, which lies between an opening of the second switching device and a closing of the first switching device.
Dadurch kann eine dynamische Anpassung der Totzeit innerhalb oder außerhalb eines laufenden Betriebs der Halbbrücke erfolgen. Anders ausgedrückt kann ein durch die Halbbrücke gesteuerter Verbraucher bestromt oder unbestromt sein, während die Totzeit minimiert wird. Insbesondere dann, wenn die Latenzzeit von äußeren Einflüssen abhängig ist, beispielsweise einer Umgebungstemperatur, kann durch das beschriebene Verfahren sichergestellt werden, dass eine optimierte Ansteuerung der Schalteinrichtungen durchgeführt wird, so dass die Totzeit minimiert und eine Verlustleistung reduziert werden. Auch eine elektromagnetische Verträglichkeit (EMV) kann verbessert sein. Umfasst die Schalteinrichtung einen MOSFET, so kann eine Abstrahlung elektromagnetischer Störungen maßgeblich durch eine Bodydiode und parasitäre Induktivitäten des MOSFET bedingt sein. Je kürzer dieser Schwingkreis aktiv ist, desto geringer können elektromagnetische Emissionen ausfallen. Werden die Schalteinrichtungen der Halbbrücke genau genug gesteuert, können gegebenenfalls auch Dämpfungselemente (so genannte Snubber) am MOSFET entfallen.This allows a dynamic adjustment of the dead time within or outside of a running operation of the half bridge. In other words, a consumer controlled by the half-bridge may be energized or de-energized while minimizing deadtime. In particular, when the latency is dependent on external influences, for example an ambient temperature, it can be ensured by the described method that an optimized control of the switching devices is carried out so that the dead time is minimized and a power loss is reduced. An electromagnetic compatibility (EMC) can also be improved. If the switching device comprises a MOSFET, an emission of electromagnetic interference can be significantly caused by a body diode and parasitic inductances of the MOSFET. The shorter this resonant circuit is active, the lower the electromagnetic emissions can be. If the switching devices of the half-bridge are controlled precisely enough, damping elements (so-called snubbers) on the MOSFET may possibly also be omitted.
In einer besonders bevorzugten Ausführungsform wird das Verfahren auch für einen umgekehrten Schaltvorgang eingesetzt. Dazu wird eine weitere Latenzzeit zwischen dem Ende des Schließsignals und einem Ansteigen der über der ersten Schalteinrichtung anliegenden Spannung bestimmt. Auf der Basis der bestimmten weiteren Latenzzeit wird dann eine weitere Totzeit, die zwischen einem Schließen der zweiten Schalteinrichtung und einem Öffnen der ersten Schalteinrichtung liegt, minimiert.In a particularly preferred embodiment, the method is also used for a reverse switching operation. For this purpose, a further latency period between the end of the closing signal and an increase in the voltage applied across the first switching device is determined. On the basis of the determined further latency, a further dead time, which lies between a closing of the second switching device and an opening of the first switching device, is then minimized.
Bevorzugterweise wird während des Minimierens der Totzeit das Schließsignal für die erste Schalteinrichtung mindestens um die vorbestimmte Latenzzeit früher ausgegeben als ein Öffnungssignal für die zweite Schalteinrichtung. Wird das Schließsignal genau um die Latenzzeit vor dem Öffnungssignal für die zweite Schalteinrichtung gegeben, so kann die Totzeit bis auf 0 reduziert werden. Da die Latenzzeit der ersten Schalteinrichtung bekannt ist, kann eine Verringerung der Totzeit in einen negativen Bereich hinein, so dass beide Schalteinrichtungen gleichzeitig geschlossen sind, sicher verhindert werden.Preferably, during the minimization of the dead time, the closing signal for the first switching device is output at least by the predetermined latency earlier than an opening signal for the second switching device. If the closing signal is given exactly by the latency before the opening signal for the second switching device, the dead time can be reduced to 0. Since the latency of the first switching device is known, reducing the dead time to a negative range so that both switching devices are closed at the same time can be surely prevented.
In einer bevorzugten Variante werden die Schalteinrichtungen alternierend geschlossen, um einen mit dem Anschluss verbundenen Verbraucher mittels Pulsweitenmodulation zu steuern. Der Verbraucher kann insbesondere an Bord eines Kraftfahrzeugs vorgesehen sein. Beispielsweise kann der Verbraucher einen Elektromotor oder eine andere elektrische Last umfassen. Die Steuerung eines Verbrauchers an Bord eines Kraftfahrzeugs mittels Pulsweitenmodulation ist verbreitet, so dass das Verfahren dazu beitragen kann, eine Verlustleistung an Bord des Kraftfahrzeugs zu minimieren. So kann dazu beigetragen werden, dass ein Kraftstoffverbrauch oder ein Schadstoffausstoß des Kraftfahrzeugs verringert ist.In a preferred variant, the switching devices are closed alternately in order to control a consumer connected to the connection by means of pulse width modulation. The consumer may be provided in particular on board a motor vehicle. For example, the consumer may include an electric motor or other electrical load. The control of a consumer on board a motor vehicle by means of pulse width modulation is widespread, so that the method can help to minimize power loss on board the motor vehicle. Thus, it can be contributed to a fuel consumption or pollutant emissions of the motor vehicle is reduced.
In einer weiteren Ausführungsform umfasst das Verfahren ferner Schritte des Ausgebens eines Schließsignals für die zweite Schalteinrichtung, während die erste Schalteinrichtung geöffnet ist, des Bestimmens einer Latenzzeit zwischen dem Beginn des Schließsignals und einem Einbrechen einer über der zweiten Schalteinrichtung anliegenden Spannung, und des Minimierens einer Totzeit, die zwischen einem Öffnen der ersten Schalteinrichtung und einem Schließen der zweiten Schalteinrichtung liegt, auf der Basis der bestimmten Latenzzeit.In a further embodiment, the method further comprises steps of outputting a closing signal for the second switching device while the first switching device is opened, determining a latency between the start of the closing signal and a collapse of a voltage applied across the second switching device, and minimizing a dead time that is between opening the first switching device and closing the second switching device, based on the determined latency.
Durch eine solchermaßen symmetrische Ausgestaltung des Verfahrens können die Latenzzeiten beider Schalteinrichtungen der Halbbrücke erfasst und die korrespondierenden Totzeiten beim Umschalten der Schalteinrichtungen minimiert werden.By such a symmetrical configuration of the method, the latencies of both switching devices of the half-bridge can be detected and the corresponding dead times when switching the switching devices can be minimized.
In einer weiteren Ausgestaltung ist eine weitere Halbbrücke mit einem weiteren Anschluss vorgesehen, um einen Verbraucher zwischen Anschlüssen der Halbbrücken zu betreiben, und Schaltelemente unterschiedlicher Halbbrücken werden derart mit Schließsignalen versorgt, dass sie möglichst gleichzeitig schließen. So kann das Verfahren auch zur Ansteuerung einer aus zwei Halbbrücken bestehenden H-Brücke verwendet werden. Es können auch Brückenschaltungen mit mehr als zwei Halbbrücken in entsprechender Weise angesteuert werden.In a further embodiment, a further half-bridge is provided with a further connection in order to operate a load between terminals of the half-bridges, and switching elements of different half-bridges are supplied with closing signals in such a way that they close as simultaneously as possible. Thus, the method can also be used to control an existing of two half-bridges H-bridge. It can also be controlled bridge circuits with more than two half-bridges in a corresponding manner.
In besonderer Weise eignet sich das Verfahren für die Steuerung eines kommutierten oder bürstenlosen Elektromotors, wobei zwei, drei oder vier Halbbrücken vorgesehen sein können. Der Elektromotor kann insbesondere einen Antrieb eines Scheibenwischers, eines Fensterhebers oder einer anderen Einrichtung an Bord eines Kraftfahrzeugs bilden.In a special way, the method is suitable for the control of a commutated or brushless electric motor, wherein two, three or four half-bridges can be provided. In particular, the electric motor can drive a Windscreen wiper, a window lift or other device on board a motor vehicle form.
Durch die Synchronisation der Einschaltzeitpunkte zueinander korrespondierender Schalteinrichtungen kann eine besonders präzise Einstellung der Totzeit erreicht werden. Durch die Verwendung der Halbbrücke kann auch ein Verbraucher angesteuert werden, bei dem eine Stromflussrichtung bedeutsam ist, beispielsweise ein Elektromotor.By synchronizing the switch-on time of each other corresponding switching devices, a particularly precise adjustment of the dead time can be achieved. Through the use of the half-bridge, it is also possible to drive a load in which a direction of current flow is important, for example an electric motor.
In einer bevorzugten Ausführungsform wird das Bestimmen der Latenzzeit periodisch durchgeführt. Dadurch kann die Totzeit an eine sich ändernde Latenzzeit der Schalteinrichtung angepasst werden. Beispielsweise kann die erste Schalteinrichtung einen Feldeffekttransistor umfassen, der eine temperaturabhängige Latenzzeit aufweist. Während eines Betriebs des Feldeffekttransistors in einer sich erwärmenden oder abkühlenden Umgebung kann durch die periodische Bestimmung der Latenzzeit dieser Effekt kompensiert werden.In a preferred embodiment, the determination of the latency period is performed periodically. As a result, the dead time can be adapted to a changing latency of the switching device. For example, the first switching device may comprise a field effect transistor having a temperature-dependent latency. During operation of the field effect transistor in a heating or cooling environment, this effect can be compensated by the periodic determination of the latency.
Ein erfindungsgemäßes Computerprogrammprodukt umfasst Programmcodemittel zur Durchführung des beschriebenen Verfahrens, wenn das Computerprogrammprodukt auf einer Verarbeitungseinrichtung abläuft oder auf einem computerlesbaren Datenträger gespeichert ist.A computer program product according to the invention comprises program code means for carrying out the method described, when the computer program product runs on a processing device or is stored on a computer-readable data carrier.
Eine erfindungsgemäße Steuereinrichtung zur Steuerung einer Halbbrücke mit einer ersten Schalteinrichtung zur Verbindung eines Anschlusses mit einem ersten Potential und einer zweiten Schalteinrichtung zur Verbindung des Anschlusses mit einem zweiten Potential umfasst eine erste Ansteuereinrichtung zur Ausgabe eines Schließsignals an die erste Schalteinrichtung, eine zweite Ansteuereinrichtung zur Ausgabe eines Öffnungssignals an die zweite Schalteinrichtung, einen Komparator zur Bestimmung, dass eine über der ersten Schalteinrichtung anliegende Spannung einbricht, und einen Zeitmesser zur Bestimmung einer Latenzzeit zwischen dem Beginn des Schließsignals, während die zweite Schalteinrichtung geöffnet ist, und einem Einbrechen der Spannung. Dabei ist die erste Ansteuerung dazu eingerichtet, eine Totzeit, die zwischen einem Öffnen der zweiten Schalteinrichtung und einem Schließen der ersten Schalteinrichtung liegt, auf der Basis der bestimmten Latenzzeit zu minimieren.A control device according to the invention for controlling a half-bridge having a first switching device for connecting a connection to a first potential and a second switching device for connecting the connection to a second potential comprises a first drive device for outputting a closing signal to the first switching device, a second drive device for outputting a Opening signal to the second switching means, a comparator for determining that a voltage applied across the first switching means voltage breaks, and a timer for determining a latency between the start of the closing signal, while the second switching means is opened, and a breakdown of the voltage. In this case, the first drive is set up to minimize a dead time, which lies between an opening of the second switching device and a closing of the first switching device, on the basis of the determined latency.
Dabei können die Schalteinrichtungen insbesondere Feldeffekttransistoren umfassen. Die Feldeffekttransistoren können in die Steuereinrichtung integriert sein. Dadurch kann eine kompakte und leistungsfähige Steuereinrichtung bereitgestellt sein, mittels derer ein Verbraucher mit verringerter Verlustleistung gesteuert werden kann.In this case, the switching devices may in particular comprise field-effect transistors. The field effect transistors can be integrated in the control device. As a result, a compact and powerful control device can be provided by means of which a consumer with reduced power loss can be controlled.
Bevorzugterweise sind die Schalteinrichtungen zum Einsatz in einer Umgebung mit stark veränderlicher Temperatur eingerichtet. Eine solche Umgebung kann beispielsweise einen Aktuator, ein Modul oder ein Stellglied an Bord eines Kraftfahrzeugs umfassen.Preferably, the switching devices are adapted for use in a high temperature environment. Such an environment may include, for example, an actuator, a module or an actuator on board a motor vehicle.
Die Erfindung wird nun mit Bezug auf die beigefügten Figuren genauer beschrieben, in denen:
- Figur 1
- ein Schaltbild einer Vorrichtung zur Steuerung einer Halbbrücke;
- Figur 2
- ein Schaltbild einer H-Brücke mit der Vorrichtung von
Fig. 1 ; - Figur 3
- ein Ablaufdiagramm eines Verfahrens zur Bestimmung einer Latenzzeit einer Schalteinrichtung in einer der Brücken der
Figuren 1 oder 2 , und - Figur 4
- ein Ablaufdiagramm eines Verfahrens zur pulsweitenmodulierten Steuerung eines Verbrauchers mittels einer der Vorrichtungen der
Figuren 1 oder 2
- FIG. 1
- a circuit diagram of a device for controlling a half-bridge;
- FIG. 2
- a diagram of an H-bridge with the device of
Fig. 1 ; - FIG. 3
- a flowchart of a method for determining a latency of a switching device in one of the bridges of
Figures 1 or 2 , and - FIG. 4
- a flowchart of a method for the pulse width modulated control of a consumer by means of one of the devices of
Figures 1 or 2
Zwischen dem Anschluss 125 und einem Masseanschluss kann ein Verbraucher 140 mit der Halbbrücke 110 bzw. der Steuereinrichtung 100 verbunden werden. Der Verbraucher 140 kann beispielsweise einen Elektromotor umfassen, insbesondere an Bord eines Kraftfahrzeugs, etwa zur Betätigung eines Scheibenwischers. Zwischen dem ersten Potential 130 und dem zweiten Potential 135 liegt bevorzugterweise das Massepotential.Between the
Zur Ansteuerung der Schalteinrichtungen 115 und 120 ist eine Verarbeitungseinrichtung 145 vorgesehen, die insbesondere als programmierbarer Mikrocomputer ausgeführt sein kann. Bevorzugterweise umfasst die Steuereinrichtung 100 eine Schnittstelle 150, die mit der Verarbeitungseinrichtung 145 verbunden ist, um eine Kommunikation zwischen einer externen Steuerungskomponente und der Steuereinrichtung 100 zu ermöglichen. Ein erster Komparator 155 ist der ersten Schalteinrichtung 115 zugeordnet und stellt der Verarbeitungseinrichtung 145 ein Signal bereit, wenn eine über der ersten Schalteinrichtung 115 anliegende Spannung einbricht. Der erste Komparator 155 kann für ein so genanntes Drain-Source-Monitoring vorgesehen sein, um eine kurzgeschlossene erste Schalteinrichtung 115 im Betrieb zu detektieren. Bevorzugterweise ist der erste Komparator 155 von der Steuereinrichtung umfasst bzw. integriert mit ihr ausgeführt.For controlling the
Ein zweiter Komparator 160 ist der zweiten Schalteinrichtung 120 zugeordnet und ansonsten so ausgebildet wie der erste Komparator 155. Außerdem ist ein Zeitmesser 165 vorgesehen, der mit der Verarbeitungseinrichtung 145 verbunden ist. Der Zeitmesser 165 kann beispielsweise als programmierbarer Zähler oder Zeitgeber aufgebaut sein. Dabei kann der Zeitmesser 165 durch die Verarbeitungseinrichtung 145 gestartet oder angehalten werden und ein Zählerstand kann gesetzt oder ausgelesen werden. In einer weiteren Ausführungsform kann der Zeitmesser 165 durch eines der Signale der Komparatoren 155 oder 160 gestartet oder angehalten werden.A
Die Verarbeitungseinrichtung 145 ist dazu eingerichtet, mittels des Zeitmessers 165 und des ersten Komparators 155 eine Latenzzeit zu bestimmen, die zwischen dem Ausgeben eines Schließsignals an die erste Schalteinrichtung 115 und einem tatsächlichen Schließen der Schalteinrichtung 115 vergeht. Das tatsächliche Schließen ist erkennbar am Einbrechen der über der ersten Schalteinrichtung 115 anliegenden Spannung. Bricht die Spannung ein, so kann der erste Komparator 155 ein entsprechendes Signal an die Verarbeitungseinrichtung 145 oder den Zeitmesser 165 ausgeben. In der dargestellten, bevorzugten Ausführungsform mit dem zweiten Komparator 160 kann eine entsprechende Bestimmung auch für eine Latenzzeit der zweiten Schalteinrichtung 120 durchgeführt werden.The
Im vorliegenden Beispiel ist die Verarbeitungseinrichtung 145 dazu eingerichtet, Öffnungssignale an die erste Schalteinrichtung 115 und ggf. die zweite Schalteinrichtung 120 in Abhängigkeit von zuvor bestimmten Latenzzeiten auszugeben, so dass die tatsächlichen Schließzeiten der Schalteinrichtungen 115 und 120 verbessert auf die Öffnungszeiten der jeweils anderen Schalteinrichtungen 115, 120 oder einer anderen, externen Schalteinrichtung abgestimmt werden können. Insbesondere ist die Verarbeitungseinrichtung 145 dazu eingerichtet, den Schalteinrichtungen 115 und 120 alternierend Schließsignale bereitzustellen, um eine Pulsweitenmodulation des Verbrauchers 140 zu realisieren.In the present example, the
In der dargestellten Ausführungsform ist die Verarbeitungseinrichtung 145 vorzugsweise dazu eingerichtet, auch die Latenzzeiten der dritten Schalteinrichtung 215 und der vierten Schalteinrichtung 225 zu bestimmen. Ferner ist die Verarbeitungseinrichtung 145 dazu eingerichtet, die Schalteinrichtungen 115, 120, 215 und 225 in Abhängigkeit der bestimmten Latenzzeiten mit Öffnungssignalen bzw. Schließsignalen zu versehen. Üblicherweise werden jeweils in
In einem ersten Teil des Verfahrens 300 wird eine Latenzzeit der ersten Schalteinrichtung 115, bestimmt, wobei dieser Abschnitt des Verfahrens 300 auch in entsprechender Weise auf jede andere angesteuerte Schalteinrichtung 120, 215 und 225 angewendet werden kann. In einem ersten Schritt 305 wird die andere Schalteinrichtung der gleichen Halbbrücke 110, 205, im vorliegenden Fall die zweite Schalteinrichtung 120, geöffnet. Dieser Schritt kann entfallen, wenn die andere Schalteinrichtung bereits geöffnet ist. In einem folgenden Schritt 310 wird ein Schließsignal für die erste Schalteinrichtung 115 ausgegeben. Gleichzeitig oder möglichst kurz davor oder danach wird in einem Schritt 315 der Zeitmesser 165 gestartet. Dann wird in einem Schritt 320 erfasst, dass die Spannung über der ersten Schalteinrichtung 115 einbricht. Gleichzeitig oder möglichst kurz danach wird in einem Schritt 325 der Zeitmesser 165 angehalten. In einem Schritt 330 kann dann die Latenzzeit der ersten Schalteinrichtung 115 aus dem Zeitmesser 165 ausgelesen werden. Die Latenzzeit ist die Zeit, die die erste Schalteinrichtung 115 braucht, um auf ein Schließsignal hin das Fließen eines elektrischen Stroms vom ersten Potential 130 zum Anschluss 125 zu ermöglichen.In a first part of the
Damit ist die Bestimmung der Latenzzeit der ersten Schalteinrichtung 115 abgeschlossen. In einem folgenden Abschnitt des Verfahrens 300 kann die bestimmte Latenzzeit dazu verwendet werden, Schaltzeiten der ersten Schalteinrichtung 115 verbessert zu steuern. Dazu wird in einem Schritt 335 ein Zeitpunkt bestimmt, zu dem die erste Schalteinrichtung 115 geschlossen sein soll. Anschließend wird in einem Schritt 340 abgewartet, bis der bestimmte Zeitpunkt minus der bestimmten Latenzzeit eingetreten ist. Dann wird in einem Schritt 345 ein Schließsignal an die erste Schalteinrichtung 115 ausgegeben. Nach Ablauf der Latenzzeit in Schritt 350 ist die Schalteinrichtung 115 im Schritt 355 geschlossen.Thus, the determination of the latency of the
In einer besonders bevorzugten Ausführungsform wird das Verfahren 300 in entsprechender Weise auch für den umgekehrten Schaltvorgang eingesetzt, wenn die erste Schalteinrichtung 115 geöffnet und die zweite Schalteinrichtung 110 geöffnet werden sollen. Dazu ist sind obiger Beschreibung die Schalteinrichtungen 115 und 120 und das Ein- bzw. Ausschalten jeweils zu vertauschen. Somit wird eine weitere Latenzzeit zwischen dem Ende des Schließsignals und einem Ansteigen der über der ersten Schalteinrichtung anliegenden Spannung bestimmt und auf der Basis der bestimmten weiteren Latenzzeit wird dann eine weitere Totzeit, die zwischen dem Schließen der zweiten Schalteinrichtung und dem Öffnen der ersten Schalteinrichtung liegt, minimiert. Die unterschiedlichen Durchläufe des Verfahrens 300 können sich abwechseln, beispielsweise im Rahmen einer periodischen Steuerung des Verbrauchers 140.In a particularly preferred embodiment, the
In einem ersten Schritt 405 sind beide Schalteinrichtungen 115 und 120 geöffnet. In einem nachfolgenden Schritt 410 wird ein Schließsignal an die erste Schalteinrichtung 115 ausgegeben. Nach Ablauf der zuvor bestimmten Latenzzeit ist die erste Schalteinrichtung 115 in einem Schritt 415 geschlossen. In einem Schritt 420, der im Zusammenhang mit einer Pulsweitenmodulation auch als On-Phase bezeichnet wird, bleibt die erste Schalteinrichtung 115 geschlossen. In einem anschließenden Schritt 425 wird ein Schließsignal an die zweite Schalteinrichtung 120 ausgegeben, um die On-Phase zu beenden. Außerdem wird in einem Schritt 430 ein Öffnungssignal an die erste Schalteinrichtung 115 ausgegeben. In einem Schritt 435 ist die erste Schalteinrichtung 115 geöffnet. Die zweite Schalteinrichtung 120 ist jedoch aufgrund ihrer Latenzzeit noch nicht geschlossen. Dementsprechend läuft in einem Schritt 440 eine Totzeit ab. Danach ist in einem nachfolgenden Schritt 445 die Totzeit beendet und die zweite Schalteinrichtung 120 gesch lossen.In a
In einem Schritt 450, der im Bereich einer Pulsweitenmodulation als Off-Phase bezeichnet wird, bleibt die zweite Schalteinrichtung 120 geschlossen. In einem Schritt 455 wird an die erste Schalteinrichtung 115 ein Schließsignal und in einem Schritt 460 ein Öffnungssignal an die zweite Schalteinrichtung 120 ausgegeben. Die zweite Schalteinrichtung 120 öffnet schnell und ist in einem Schritt 465 geöffnet, während die erste Schalteinrichtung 115 wegen ihrer noch nicht abgelaufenen Latenzzeit noch nicht geschlossen ist. Es schließt sich eine weitere Totzeit in einem Schritt 470 an. In einem anschließenden Schritt 475 ist die erste Schalteinrichtung 115 geschlossen und die Totzeit beendet. Die Schaltung befindet sich dann wieder in der On-Phase von Schritt 420 und das Verfahren 400 kann erneut durchlaufen.In a
Claims (10)
- Method (300, 400) for controlling a half-bridge (110) having a first switching device (115) for connecting a connection (125) to a first potential (130) and a second switching device (120) for connecting the connection (125) to a second potential (135), wherein the method (300) comprises the following steps:- outputting (310) a close signal for the first switching device (115) while the second switching device (120) is open;- determining (330) a latency between the beginning (310) of the close signal and a dip (320) in a voltage applied across the first switching device (115), wherein a voltage is ascertained metrologically by means of a first comparator (155) via the first switching device (115) and is evaluated by means of a timer (165),- characterized by- determining a time at which the first switching device (115) is intended to be closed; and- outputting (340, 345) a close signal to the first switching device (115) at the determined time minus the determined latency;- wherein the time corresponds to an opening of the second switching device (120) in order to minimize a dead time between the opening of the second switching device (120) and a closing (355) of the first switching device (115) based on the determined latency;- wherein latencies for each switching device (115, 120) are ascertained individually during operation of the half-bridge (100).
- Method (300, 400) according to Claim 1, wherein a further latency between the end of the close signal and an increase in the voltage applied across the first switching device (115) is determined and a further dead time between a closing of the second switching device (120) and an opening of the first switching device (115) is minimized based on the determined further latency.
- Method (300, 400) according to Claim 1 or 2, wherein, during minimization of the dead time, the close signal for the first switching device (115) is output (345) at least by the predetermined latency earlier than an open signal for the second switching device (120).
- Method (300, 400) according to one of the preceding claims, wherein the switching devices (115, 120) are closed alternately in order to control a consumer (140), which is connected to the connection, by means of pulse-width modulation.
- Method (300, 400) according to one of the preceding claims, further comprising the following steps:- outputting (310) a close signal for the second switching device (120) while the first switching device (115) is open;- determining (330) a latency between the beginning (310) of the close signal and a dip (320) in a voltage applied across the second switching device (120), and- minimizing (335, 355) a dead time between an opening of the first switching device and a closing (355) of the second switching device (120) based on the determined latency.
- Method (300, 400) according to one of the preceding claims, wherein the determination (305-330) of the latency is carried out periodically.
- Computer program product comprising program code means for carrying out the method (300, 400) according to one of the preceding claims when the computer program product runs on a processing device (145) or is stored on a computer-readable data storage medium.
- Control device (100) for controlling a half-bridge (110) having a first switching device (115) for connecting a connection (125) to a first potential (130) and a second switching device (120) for connecting the connection (125) to a second potential (135), wherein the control device (100) comprises the following:- a first actuation device (145) for outputting a close signal to the first switching device (115);- a second actuation device (145) for outputting an open signal to the second switching device (120);- a comparator (115) for determining that a voltage applied across the first switching device (115) dips;- a timer (165) for determining a latency between the beginning of the close signal and a dip in the voltage while the second switching device (120) is open,- characterized in that- the first actuation device (145) is configured to determine a time at which the first switching device (115) is intended to be closed and- to output a close signal to the first switching device (115) at the determined time minus the determined latency such that a dead time between an opening of the second switching device (120) and a closing of the first switching device (115) is minimized based on the determined latency, wherein latencies for the switching devices (115, 120) are able to be ascertained individually during operation of the half-bridge (110).
- Control device (100) according to Claim 8, wherein the switching devices (115, 120) comprise field-effect transistors.
- Control device according to Claim 8 or 9, wherein the switching devices (115, 120) are configured for use in an environment (105) with a greatly varying temperature.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013208574.5A DE102013208574A1 (en) | 2013-05-08 | 2013-05-08 | Control of a half bridge |
PCT/EP2014/057847 WO2014180644A1 (en) | 2013-05-08 | 2014-04-17 | Control of a half-bridge |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2994985A1 EP2994985A1 (en) | 2016-03-16 |
EP2994985B1 true EP2994985B1 (en) | 2019-10-09 |
Family
ID=50549303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14719272.8A Active EP2994985B1 (en) | 2013-05-08 | 2014-04-17 | Halfbridge controller |
Country Status (5)
Country | Link |
---|---|
US (1) | US9793792B2 (en) |
EP (1) | EP2994985B1 (en) |
CN (1) | CN105191094B (en) |
DE (1) | DE102013208574A1 (en) |
WO (1) | WO2014180644A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10230311B2 (en) | 2017-03-15 | 2019-03-12 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Method and apparatus of dead time tuning in an inverter |
DE102018204017A1 (en) * | 2018-03-16 | 2019-09-19 | Robert Bosch Gmbh | Method and device for adjusting a dead time of switching elements of a half-bridge, and inverters |
US11025159B2 (en) | 2019-11-06 | 2021-06-01 | Ford Global Technologies, Llc | Control of direct parallel automotive switches for power converters to selectively prevent activation thereof |
DE102020203016A1 (en) | 2020-03-10 | 2021-09-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for operating a control device for controlling an electric motor, in particular a steering system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396250B1 (en) * | 2000-08-31 | 2002-05-28 | Texas Instruments Incorporated | Control method to reduce body diode conduction and reverse recovery losses |
GB0227792D0 (en) * | 2002-11-29 | 2003-01-08 | Koninkl Philips Electronics Nv | Driver for switching circuit and drive method |
US6958592B2 (en) * | 2003-11-26 | 2005-10-25 | Power-One, Inc. | Adaptive delay control circuit for switched mode power supply |
US7456620B2 (en) * | 2004-12-03 | 2008-11-25 | The Regents Of The University Of Colorado | Determining dead times in switched-mode DC-DC converters |
US7800350B2 (en) * | 2007-05-11 | 2010-09-21 | Freescale Semiconductor, Inc. | Apparatus for optimizing diode conduction time during a deadtime interval |
US7683594B2 (en) * | 2007-06-01 | 2010-03-23 | International Rectifier Corporation | Intelligent dead time control |
US7906948B2 (en) * | 2007-07-23 | 2011-03-15 | Intersil Americas Inc. | Threshold voltage monitoring and control in synchronous power converters |
US7868597B2 (en) * | 2007-07-23 | 2011-01-11 | Intersil Americas Inc. | Dead-time transition adjustments for synchronous power converters |
JP4941223B2 (en) * | 2007-10-12 | 2012-05-30 | 三菱電機株式会社 | Semiconductor device |
US8008902B2 (en) * | 2008-06-25 | 2011-08-30 | Cirrus Logic, Inc. | Hysteretic buck converter having dynamic thresholds |
US8760891B2 (en) * | 2010-06-03 | 2014-06-24 | Honeywell International Inc. | Real time dynamic optimization of deadtime |
US8648583B2 (en) * | 2010-10-29 | 2014-02-11 | R2 Semiconductor, Inc. | Delay block for controlling a dead time of a switching voltage regulator |
WO2013075737A1 (en) * | 2011-11-22 | 2013-05-30 | Abb Technology Ag | Intelligent gate driver for igbt |
US8933679B2 (en) * | 2011-12-07 | 2015-01-13 | Maxim Integrated Products, Inc. | Adaptive dead-time control |
US9128498B2 (en) * | 2012-01-30 | 2015-09-08 | Texas Instruments Incorporated | Dead-time compensation in a power supply system |
US9166469B2 (en) * | 2012-08-29 | 2015-10-20 | Eaton Corporation | System for optimizing switching dead-time and method of making same |
DE102013208813A1 (en) * | 2013-05-14 | 2014-11-20 | Robert Bosch Gmbh | Control of a half bridge |
GB201311997D0 (en) * | 2013-07-04 | 2013-08-21 | Amantys Ltd | Synchronising parallel power switches |
US9537400B2 (en) * | 2014-08-29 | 2017-01-03 | Infineon Technologies Austria Ag | Switching converter with dead time between switching of switches |
-
2013
- 2013-05-08 DE DE102013208574.5A patent/DE102013208574A1/en not_active Withdrawn
-
2014
- 2014-04-17 CN CN201480025873.6A patent/CN105191094B/en active Active
- 2014-04-17 US US14/785,685 patent/US9793792B2/en active Active
- 2014-04-17 WO PCT/EP2014/057847 patent/WO2014180644A1/en active Application Filing
- 2014-04-17 EP EP14719272.8A patent/EP2994985B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN105191094B (en) | 2019-06-11 |
EP2994985A1 (en) | 2016-03-16 |
CN105191094A (en) | 2015-12-23 |
US9793792B2 (en) | 2017-10-17 |
US20160087521A1 (en) | 2016-03-24 |
WO2014180644A1 (en) | 2014-11-13 |
DE102013208574A1 (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012025769B3 (en) | Power semiconductor device with a plurality of parallel switching elements | |
EP3163740A2 (en) | Electrical assembly and method for controlling at least two electric motors | |
EP1859288B1 (en) | Method and circuit for detecting a line break | |
EP3028377B1 (en) | Direct current converter | |
EP2994985B1 (en) | Halfbridge controller | |
EP2715939B1 (en) | Method and apparatus for operating a power output stage | |
EP2342824B1 (en) | Half-bridge circuit protected against short circuits and having semiconductor switches | |
EP2154784A1 (en) | Driving circuit device with at least one power switch and method for controlling said device | |
DE102019204280A1 (en) | Control unit for determining a dead time for power electronic switches | |
DE102011078899A1 (en) | Transistor half-bridge controller | |
DE102016122191A1 (en) | Current threshold detection in synchronous control | |
EP2733849B1 (en) | Method and device for variable setting an IGBT switching characteristic | |
EP3748827A1 (en) | Converter half-bridge with reduced turn-off gate voltage during dead times | |
EP2786475B1 (en) | Circuit arrangement and method for ascertaining switching times for a dc-dc voltage converter | |
DE102014226165A1 (en) | Adaptive driver for a transistor | |
EP2997658B1 (en) | Actuating an electric load | |
EP3042445B1 (en) | Circuit for limiting duty ratio in a switched-mode regulator, and method for operating a switched-mode regulator | |
EP3125651A1 (en) | Dimming of lighting devices | |
DE102012203073A1 (en) | Device for discharging intermediate circuit capacitor at high volt supply to supply electrical power to e.g. battery, has control unit for opening and closing switch while capacitor pole terminal is decoupled from load terminals | |
EP2945288A1 (en) | Circuit assembly and method for controlling a semiconductor switching element | |
DE102015114284B3 (en) | METHOD AND CONTROL UNIT FOR CONTROLLING A TRANSISTOR | |
DE102019008570A1 (en) | POWER CONVERTER, PACKED SEMICONDUCTOR DEVICES FOR CONTROLLING POWER CONVERTERS AND PROCESSES | |
LU502669B1 (en) | METHOD FOR SELECTING A CONTROL PARAMETER SET, INTEGRATED CIRCUIT AND POWER ASSEMBLY | |
EP2909935B1 (en) | Method and circuit arrangement for actuating a semiconductor switch | |
DE102017129983B4 (en) | Device for converting a first voltage into a different second voltage from this |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170804 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190612 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014012812 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1189982 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200210 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200110 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014012812 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200209 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
26N | No opposition filed |
Effective date: 20200710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200417 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200417 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1189982 Country of ref document: AT Kind code of ref document: T Effective date: 20200417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240430 Year of fee payment: 11 Ref country code: FR Payment date: 20240419 Year of fee payment: 11 |