EP2989389B1 - Sequenzielle verbrennung mit verdünnungsgas - Google Patents

Sequenzielle verbrennung mit verdünnungsgas Download PDF

Info

Publication number
EP2989389B1
EP2989389B1 EP14708266.3A EP14708266A EP2989389B1 EP 2989389 B1 EP2989389 B1 EP 2989389B1 EP 14708266 A EP14708266 A EP 14708266A EP 2989389 B1 EP2989389 B1 EP 2989389B1
Authority
EP
European Patent Office
Prior art keywords
injection
mixer
injection tubes
combustion chamber
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14708266.3A
Other languages
English (en)
French (fr)
Other versions
EP2989389A1 (de
Inventor
Xianfeng GAO
Luis TAY WO CHONG HILARES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2013/058650 external-priority patent/WO2014063835A1/en
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Priority to EP14708266.3A priority Critical patent/EP2989389B1/de
Priority claimed from PCT/EP2014/054355 external-priority patent/WO2014173578A1/en
Publication of EP2989389A1 publication Critical patent/EP2989389A1/de
Application granted granted Critical
Publication of EP2989389B1 publication Critical patent/EP2989389B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the invention refers to a sequential combustor arrangement for a gas turbine with admixing dilution gas into the combustor arrangement.
  • the invention additionally refers to a method for operating a gas turbine with admixing dilution gas into a combustor arrangement.
  • emission limit values and overall emission permits are becoming more stringent, so that it is required to operate at lower emission values, keep low emissions also at part load operation and during transients, as these also count for cumulative emission limits.
  • State-of-the-art combustion systems are designed to cope with a certain variability in operating conditions, e.g. by adjusting the compressor inlet mass flow or controlling the fuel split among different burners, fuel stages or combustors. However, this is not sufficient to meet the new requirements.
  • the object of the present disclosure is to propose a sequential combustor arrangement with a mixing section for dilution gas admixing between the first combustion chamber and the second burner.
  • the dilution gas is admixed in the mixing section to provide proper inlet flow conditions for the second burner.
  • the hot gases are cooled to a predetermined temperature profile.
  • High local inlet temperatures may result in high emissions (in particular NOx, CO, and unburned hydrocarbons) and/or flashback in the second burner. Flashback and NOx are induced by the reduced self-ignition time for the injected fuel due to a high inlet gas temperature or high oxygen concentration, which causes earlier ignition (leading to flashback) or reduced time for fuel air mixing resulting in local hot spots during combustion and consequently increases NOx emission. Low temperature regions can cause CO emissions, due to the increased self-ignition time. This can reduce the time for CO to CO2 burnout, and a reduced local flame temperature, which is can further slowdown the CO to CO2 burnout. Finally local hot spots may lead to overheating of certain parts downstream of the mixer.
  • a sequential combustor arrangement comprises a first burner, a first combustion chamber, a mixing device for admixing a dilution gas to the hot gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection, wherein the mixer is adapted to guide combustion gases in a hot gas flow path extending between the first combustion chamber and the second burner comprising a duct having an inlet at an upstream end adapted for connection to the first combustion chamber and an outlet at a downstream end adapted for connection to the second burner.
  • a local high oxygen concentration can have a similar effect as a local high temperature, e.g. fast reaction reducing the time for mixing, high combustion temperatures, increased NOx emissions and possibly flash back.
  • a local low oxygen concentration can have a similar effect as a local low temperature, e.g. slow reaction leading to increased CO and UHC (unburned hydrocarbon) emissions.
  • a high or low local inlet velocity can lead to increased or reduced residence time in the second burner and subsequent second combustion chamber, which has similar negative effects as inhomogeneous self-ignition times, e.g. a reduced residence time in the second burner can lead to incomplete mixing and high NOx.
  • a reduced residence time in the second combustor can lead to incomplete combustion resulting in increased CO emissions.
  • a reduced flow velocity in the second burner can lead to early ignition and flash back.
  • the mixer comprises a plurality of injection tubes (also called injection pipe), which are pointing inwards from the walls of the duct for admixing the dilution gas to cool the hot flue gases leaving the first combustion chamber to provide appropriate inlet conditions to the second burner.
  • injection tubes also called injection pipe
  • the diameter, length and number of these tubes are designed to admix dilution gas into the hot gas flow such that the required local mass flow and temperature drop are achieved with a low pressure drop.
  • the injection tubes allow admixing of dilution gas with a pressure drop of 0.4% to 2% of the total pressure of the dilution gas pressure before admixing. With a low pressure drop at the inlet of the injector tubes, a pressure drop of 0.2% to 1% of the total pressure of the dilution gas pressure before admixing can be sufficient. To reduce the inlet pressure drop rounded tube inlets can be used.
  • the sequential combustor arrangement comprises at least three groups of injection tubes pointing inwards from the side walls of the mixer for admixing the dilution gas to cool the hot flue gases leaving the first combustion chamber.
  • the injection tubes of each group are arranged circumferentially distributed along the side wall of the mixer and the first injection tubes of the first group have a first protrusion depth into the hot gas flow path, the second injection tubes of the second group have a protrusion depth, and the third injection tubes of the third group have a third protrusion depth.
  • the tubes are arranged normal to the side wall, the length of the tubes extending into the hot gas path is equal to the protrusion depth.
  • the distance in flow direction between the center point of first injection tube and center point of the second injection tube is between 0.1 and 2 times the diameter of the first injection tube.
  • the distance in flow direction between the center point of second injection tube and center point of the third injection tube is between 0.1 and 2 times the diameter of the second injection tube.
  • the injection tubes of two neighboring groups are not arranged directly downstream of each other but offset in circumferential direction, thus a distance in axial direction of less than the diameter of the injection tubes is possible.
  • the duct wall is at least partly effusion cooled. Due to admixing of dilution gas the average temperature of the hot gas in the mixer is reduced downstream of the injection tubes. Typically, a reduced cooling requirement and less diffusion cooling are expected. However, due to locally increased turbulence the heat load on the side wall downstream of an injection tube can be increased. Therefore in first effusion cooled regions downstream of each first injection tube and upstream of an array of subsequent third injection tube the number of effusion cooling holes per unit area can be increased. It is for example at least 30% bigger than the number of effusion cooling holes per unit area in a second region extending upstream of the first injection tube. Typically the second region extends for one to three diameters of the first injection tube upstream of the first injection tube.
  • the hot gas temperature Downstream of the last injection tube the hot gas temperature can be reduced to a level where no diffusion cooling is required or other cooling methods are applied. Thus a third region without effusion cooling can be arranged towards the exit of the mixer.
  • the first effusion cooled region has a trapezoidal shape with bases normal to the main flow direction of the hot gases, and wherein the downstream base of the trapezoidal first region is longer than the upstream base of the trapezoidal first region.
  • the length of the upstream base of the trapezoidal first region can for example be in the order of 1 to 2 times the diameter of the first injection tube.
  • the first region can for example have the shape of an isosceles trapezoid.
  • the effusion cooling holes have a diameter in a range from 0.5 to 1.2 mm. Further the distance between neighboring effusion cooling holes is in a range from 3 to 10 mm in the first region and in a range from 6 to 20 mm in the second region.
  • the first injection tubes are arranged upstream of the second injection tubes, and upstream of the third injection tubes. Further, the third injection tubes are arranged downstream of the second injection tubes. Such an arrangement allows the injection of dilution gas to different regions of the mixer with minimum interference between the dilution gas injected by different injection tubes.
  • the shorter injection tubes are upstream of the longer injection tubes first the dilution gas injected by the short injection tubes reduces the heat load of the subsequent longer injection tubes.
  • the long injection tubes are in the flow path of the dilution gas of an upstream injection tube the long injection tube is cooled due to a cool shower effect.
  • the diameter of the first injection tube is larger than the diameter of the second injection tube.
  • the diameter of the second injection tube can be larger than the diameter of the third injection tube.
  • the first injection tubes are arranged circumferentially distributed along the side wall of the mixer in a plane normal to the main flow direction of the hot gases flowing through the mixer, and the second injection tubes are arranged circumferentially distributed along the side wall of the mixer in one plane normal to the main flow direction of the hot gases flowing through the mixer.
  • the number of second injection tubes can be equal to the number of first injection tubes.
  • the second injection tubes can be arranged downstream or upstream of the first injection tubes wherein in radial direction they are in the center between two first injection tubes.
  • the third injection tubes are arranged circumferentially distributed along the side wall of the mixer and staggered relative to a plane which is normal to the main flow direction of the hot gases flowing through the mixer.
  • the stagger of the injection tubes reduces flow blockage due to the injection tubes.
  • the stagger can for example be in a range of 0.1 to 3.5 times the diameter of the third injection tube.
  • the tubes of the mixer are exposed to the hot gases leaving the first combustion chamber.
  • the tubes are inherently cooled by the dilution gas which is flowing through them.
  • additional measures to reduce the temperature of the tubes can be applied.
  • At least part of the outer surface of the injection tubes is coated with TBC.
  • at least part of the inner surface of the side wall of the mixer can be coated with TBC to reduce the cooling requirements of the wall, and to thereby avoid cool peripheral regions in the hot gas flow leaving the mixer.
  • the heat transfer coefficient on the inside of the tube is increased.
  • ribs and/or a pin field can be arranged on the inner surface of the injection tubes.
  • the mixer additionally comprises injection holes arranged along the side wall.
  • the first, second and third injection tubes are arranged to admix dilution gas towards the central region of the hot gas flow path and the injection holes are arranged to admix dilution gas into the wall regions of the hot gas flow path.
  • a gas turbine comprising such a sequential combustor arrangement is subject of the present disclosure.
  • a gas turbine comprises at least a compressor, a sequential combustor arrangement with a first burner, a first combustion chamber, a mixing device for admixing a dilution gas to the hot gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in fluid flow connection, wherein the mixer is adapted to guide combustion gases in a hot gas flow path extending between the first combustion chamber and the second burner comprising a duct having an inlet at an upstream end adapted for connection to the first combustion chamber and an outlet at a downstream end adapted for connection to the second burner, and at least one turbine.
  • the mixer comprises at least three groups of injection tubes pointing inwards from the side walls of the mixer for admixing the dilution gas to cool the hot flue gases leaving the first combustion chamber during operation.
  • the injection tubes of each group are arranged circumferentially distributed along the side wall of the mixer and wherein the first injection tubes of the first group have a first protrusion depth into the hot gas flow path, the second injection tubes of the second group have a second protrusion depth, and the third injection tubes of the third group have a third protrusion.
  • the mixer is arranged such that the dilution gas is admixed during operation to cool the hot gases.
  • the number of injection tubes in a group with a small protrusion depth can be larger than the number of injection tubes in a group with a high protrusion depth, e.g. if the second protrusion depth is bigger than the third protrusion depth the number of third injection tubes can be bigger than the number of second injection tubes.
  • the number of injection tubes can for example be chosen such that the distance between the exit openings of neighboring injection tubes in two groups are similar. Similar in this context can mean that the distance between exit openings in the group with larger penetration depth one to three times the distance between exit openings of injection tubes of the group with smaller penetration depth.
  • the distance between exit openings can further be increased with the exit diameter of the injection tubes. For example it can be proportional to the exit diameter.
  • Dilution gas can be admixed to the hot gases in the mixer such that the hot gases are cooled.
  • dilution gas is admixed into different regions of the cross section of the mixer via the first, second and third injection tubes.
  • the first injection tubes are arranged to admix dilution gas towards the central region of the hot gas flow path.
  • Effusion cooling might be used to cool the combustor walls and/or side walls of the mixing section.
  • Downstream of the dilution air injection mixing between dilution air and hot gas can be enhanced by a contraction of the flow path.
  • the combination of combustors can be disposed as follows:
  • Fig. 1a and 2a show a gas turbine 100 with a sequential combustor arrangement 104 according to the disclosure. It comprises a compressor 103, a sequential combustor arrangement 104, and a turbine 105.
  • the sequential combustor arrangement 104 comprises a first burner 112, a first combustion chamber 101, and a mixer 117 for admixing a dilution gas to the hot gases leaving the first combustion chamber 101 during operation. Downstream of the mixer 117 the sequential combustor arrangement 104 further comprises a second burner 113, and a second combustion chamber 102.
  • the first burner 112, first combustion chamber 101, mixer 117, second burner 113 and second combustion chamber 102 are arranged sequentially in a fluid flow connection.
  • Fuel can be introduced into the first burner 112 via a first fuel injection 123, mixed with compressed air which is compressed in the compressor 103, and combusted in the first combustion chamber 101. Dilution gas is admixed in the subsequent mixer 117. Additional fuel can be introduced into the second burner via a second fuel injection 124, mixed with hot gases leaving the mixer 117, and combusted in the second combustion chamber 102. The hot gases leaving the second combustion chamber 102 are expanded in the subsequent turbine 105, performing work.
  • the turbine 105 and compressor 103 are arranged on a shaft 106.
  • the remaining heat of the exhaust gas 107 leaving the turbine 105 can be further used in a heat recovery steam generator or boiler (not shown) for steam generation.
  • compressor exit gas is admixed as dilution gas.
  • compressor exit gas is compressed ambient air.
  • the compressor exit gas is a mixture of ambient air and recirculated flue gas.
  • the gas turbine system includes a generator (not shown) which is coupled to a shaft 106 of the gas turbine 100.
  • FIG. 1b and 2b Two different exemplary embodiments of the mixer 117 are shown in Figs. 1b and 2b as an enlarged section of the Fig. 1a and 2b
  • Fig. 2a shows a first example with a mixer comprising first injection tubes 114 with length of second injection tube 11, second injection tubes 115 with a length of second injection tube 12, and third injection tubes 116 with a length of second injection tube 13.
  • the second injection tubes 115 are arranged downstream of the first injection tubes 114, and the third injection tubes 116 are arranged downstream of the second injection tubes 115.
  • the length of the injection tubes is decreasing in flow direction.
  • compressed gas from the compressor plenum is guided along the combustor liner in a connection duct 111 as dilution gas 110. From the connection duct 111 the dilution gas 110 is injected into the mixer via the first injection tubes 114, second injection tubes 115, and third injection tubes.
  • the mixer 117 has a cross section with a height.
  • the mixer can be arranged with an annular cross section.
  • the height is the difference between the diameter of an outer wall of the annular flow section and the inner wall of the annular flow section.
  • the height is the diameter of the cross section.
  • the length l1, l2, and l3 of the first, second and third injection tubes 114, 115, 116 are chosen such that good mixing of injected dilution gas 110 with the hot gas leaving the first combustion chamber 101 is assured.
  • Fig. 2b shows example which is based on the example of Fig. 1b .
  • the dilution gas 110 is directly supplied to the first injection tubes 114, second injection tubes 115, and third injection tubes 116 from the compressor plenum (downstream of the compressor 103).
  • the first injection tubes 114, and second injection tubes 115 are extending into the compressor plenum and therefore dilution gas 110 with a higher pressure and lower temperature (no temperature pick-up due to the cooling of the combustor before use as dilution gas) is available.
  • Fig. 3 shows an example of the mixer 117 of figs. 1b , 2b in detail.
  • the first injection tube 114 has a diameter of the first injection tube D1 which is bigger than the diameter of the second injection tube D2.
  • the second injection tube 115 has a diameter of the second injection tube D2 which is bigger than the diameter of the third injection tube D3.
  • the second injection tube 115 is arranged downstream of the first injection tube 114 with a distance in flow direction a1 in the main flow direction of the hot gas 127.
  • the third injection tube 116 is arranged downstream of the second injection tube 115 with a distance in flow direction a2.
  • Fig. 4 shows another example of a mixer 117.
  • the second injection tube 115 is arranged downstream of the short third injection tube 116.
  • the long first injection tube 114 is arranged downstream of the second injection tube 115.
  • the dilution gas 110 injected from the third injection tube 116 at least partly cools the first and/or second injection tube 114, 115.
  • the dilution gas 110 injected from the second injection tube 115 at least partly cools the first injection tube 114.
  • Fig. 5 shows an example of a section of mixer in a can architecture. It shows a cut-out of a cylindrical side wall 119.
  • First, second, and 3 injection tubes 114, 115, 116 are arranged on the cylindrical side wall 119.
  • the second injection tubes 115 are arranged downstream of the first injection tubes 114 n the main flow direction of the hot gas 127.
  • a staggered array of third injection tubes 116 is arranged downstream of the second injection tubes 115.
  • Neighbouring third injection tubes 116 are staggered by a stagger s in direction of the main flow direction of the hot gas 127 relative to a plane normal to the hot gas flow direction.
  • the inlet to the injection tubes 114, 115, 116 is rounded to reduce the pressure loss of the dilution gas entering the injection tubes 114, 115, 116.
  • the side wall 119 of the mixer is diffusion cooled. Diffusion cooling holes 120 are distributed over a large area of the side wall 119.
  • a homogeneously cooled second region 126 the wall extends upstream of the first injection tubes 114.
  • the first region 125 has an increased density of diffusion cooling holes 120 relative to the second region 126.
  • the first region 125 has the shape of an isosceles trapezoid.
  • the shorter base extends in a direction normal to the main flow direction of the hot gases 127 in both directions from the centre of the first injection tube 114.
  • the legs of the trapezoid typically have an angle of about 30° to 45° relative to the main flow direction of the hot gases 127.
  • the first region 125 extends in the main flow direction of the hot gases 127 to the upstream side of subsequent third injection tubes 116.
  • the hot gas temperature can be reduced to a level where no diffusion cooling is required or other cooling methods are applied.
  • a third region 128 without effusion cooling is shown arranged towards the exit of the mixer 117.
  • thermal barrier coating 122 The inner surface of the side wall 119 is protected by thermal barrier coating 122. In addition the outer surface of the first injection tube 114 is protected by thermal barrier coating 122.
  • Fig. 6 shows an injection tube 114, 115, 116 attached to the side wall 119.
  • the outer surface of the injection tube 114, 115, 116 is coated with thermal barrier coating 122 to reduce the heat transfer to the hot gas flow.
  • Ribs 121 are applied on the inner surface of the injection tube 114, 115, 116 to increase the heat transfer for better cooling of the injection tube 114, 115, 116.
  • the first combustion chamber 101 and the second combustion chamber 102 can be arranged in a combustor can-can-architecture, i.e. the first combustion chamber 101 and second combustion chamber 102 are can combustion chamber.
  • the first combustion chamber 101 and the second combustion chamber 102 can be arranged in a combustor can-annular-architecture, i.e. the first combustion chamber 101 is arranged as an annular combustion chamber and second combustion chamber 102 is arranged as can combustion chamber.
  • the first combustion chamber 101 and the second combustion chamber 102 can be arranged in a combustor annular-can-architecture, i.e. the first combustion chamber 101 is arranged as can combustion chamber and second combustion chamber 102 is arranged as an annular combustion chamber.
  • the first combustion chamber 101 and the second combustion chamber 102 can be arranged in a combustor annular-annular-architecture, i.e. the first combustion chamber 101 and second combustion chamber 102 are annular combustion chambers.
  • the mixing quality of the mixer 117 is crucial since the burner system of the second combustion chamber 102 requires a prescribed inlet temperature and inlet velocity profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Claims (13)

  1. Sequentielle Brennraumanordnung (104), die einen ersten Brenner (112), eine erste Brennkammer (101), einen Mischer (117) zum Beimischen eines Verdünnungsgases zu den heißen Gasen, welche die erste Brennkammer (101) während des Betriebs verlassen, einen zweiten Brenner (113) und eine zweite Brennkammer (102), die nacheinander in einer Fluidstromverbindung angeordnet sind, umfasst, wobei der Mischer (117) dafür eingerichtet ist, Verbrennungsgase in einer Heißgas-Strömungsbahn zu leiten, die sich zwischen der ersten Brennkammer (101) und dem zweiten Brenner (113) erstreckt, wobei sie eine Leitung umfasst, die einen Einlass an einem stromaufwärts gelegenen Ende, das für eine Verbindung mit der ersten Brennkammer (101) eingerichtet ist, und einen Auslass an einem stromabwärts gelegenen Ende, das für eine Verbindung mit dem zweiten Brenner (113) eingerichtet ist, aufweist,
    dadurch gekennzeichnet, dass der Mischer (117) wenigstens drei Gruppen von Einspritzrohren (114, 115, 116) umfasst, die von den Seitenwänden (119) des Mischers (117) nach innen zeigen, zum Beimischen des Verdünnungsgases, um die heißen Abgase, welche die erste Brennkammer (101) verlassen, zu kühlen, wobei die Einspritzrohre (114, 115, 116) jeder Gruppe senkrecht zu der Seitenwand (119) angeordnet und umlaufend entlang der Seitenwand (119) des Mischers (117) verteilt sind und wobei die ersten Einspritzrohre (114) der ersten Gruppe eine erste Vorsprungstiefe (I1) aufweisen, die zweiten Einspritzrohre (115) der zweiten Gruppe eine zweite Vorsprungstiefe (I2) aufweisen und die dritten Einspritzrohre (116) der dritten Gruppe eine dritte Vorsprungstiefe (I3) aufweisen, wobei die zweiten Einspritzrohre (115) stromabwärts von den ersten Einspritzrohren (114) angeordnet sind und die dritten Einspritzrohre (116) stromabwärts von den zweiten Einspritzrohren (115) angeordnet sind, wobei die Vorsprungstiefe der Einspritzrohre (114, 115, 116) in der Strömungsrichtung abnimmt oder zunimmt.
  2. Sequentielle Brennraumanordnung (104) nach Anspruch 1, dadurch gekennzeichnet, dass die Entfernung (a1) in Strömungsrichtung zwischen dem Mittelpunkt des ersten Einspritzrohres (114) und dem Mittelpunkt des zweiten Einspritzrohres (115) zwischen dem 0,1- und dem 2-Fachen des Durchmessers (D1) des ersten Einspritzrohres (114) beträgt.
  3. Sequentielle Brennraumanordnung (104) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Entfernung (a2) in Strömungsrichtung zwischen dem Mittelpunkt des zweiten Einspritzrohres (115) und dem Mittelpunkt des dritten Einspritzrohres (116) zwischen dem 0,1- und dem 2-Fachen des Durchmessers (D2) des zweiten Einspritzrohres (115) beträgt.
  4. Sequentielle Brennraumanordnung (104) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Leitungswand (119) wenigstens teilweise effusionsgekühlt ist und dass die Anzahl von Effusionskühllöchern (120) je Flächeneinheit in ersten Bereichen (125) stromabwärts von jedem ersten Einspritzrohr (114) und stromaufwärts von einer Anordnung eines darauffolgenden dritten Einspritzrohres (116) wenigstens 30 % größer ist als die Anzahl von Effusionskühllöchern (120) je Flächeneinheit in einem zweiten Bereich (126), der sich stromaufwärts von dem ersten Einspritzrohr (114) erstreckt.
  5. Sequentielle Brennraumanordnung (104) nach Anspruch 4, dadurch gekennzeichnet, dass der erste Bereich (125) eine trapezförmige Gestalt mit Basen, senkrecht zu der Hauptströmungsrichtung der heißen Gase, aufweist, und wobei die stromabwärts gelegene Basis des trapezförmigen ersten Bereichs (125) länger ist als die stromaufwärts gelegene Basis des trapezförmigen ersten Bereichs (125).
  6. Sequentielle Brennraumanordnung (104) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Effusionskühllöcher (120) einen Durchmesser in einem Bereich von 0,5 bis 1,2 mm aufweisen, wobei die Entfernung zwischen benachbarten Effusionskühllöchern (120) in einem Bereich von 3 bis 10 mm im ersten Bereich (125) und in einem Bereich von 6 bis 20 mm im zweiten Bereich (126) liegt.
  7. Sequentielle Brennraumanordnung (104) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchmesser (D1) des ersten Einspritzrohres größer ist als der Durchmesser (D2) des zweiten Einspritzrohres, und/oder dadurch, dass der Durchmesser (D2) des zweiten Einspritzrohres größer ist als der Durchmesser (D3) des dritten Einspritzrohres.
  8. Sequentielle Brennraumanordnung (104) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die ersten Einspritzrohre (114) umlaufend entlang der Seitenwand (119) des Mischers (117) in einer Ebene senkrecht zu der Hauptströmungsrichtung der heißen Gase, die durch den Mischer (117) strömen, verteilt angeordnet sind und die zweiten Einspritzrohre (115) umlaufend entlang der Seitenwand (119) des Mischers (117) in einer Ebene senkrecht zu der Hauptströmungsrichtung der heißen Gase, die durch den Mischer (117) strömen, verteilt angeordnet sind.
  9. Sequentielle Brennraumanordnung (104) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die dritten Einspritzrohre (116) umlaufend entlang der Seitenwand (119) des Mischers (117) verteilt und gestaffelt im Verhältnis zu einer Ebene senkrecht zu der Hauptströmungsrichtung der heißen Gase, die durch den Mischer (117) strömen, angeordnet sind, wobei die Staffelung zwischen dem 0,1- und dem 3,5-Fachen des Durchmessers (D3) des dritten Einspritzrohres beträgt.
  10. Sequentielle Brennraumanordnung (104) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass wenigstens ein Teil der Außenfläche der Einspritzrohre (114, 115, 116) und/oder wenigstens ein Teil der Innenfläche der Seitenwand (119) des Mischers (117) mit TBC (122) beschichtet sind.
  11. Sequentielle Brennraumanordnung (104) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass Kühlrippen (121) und/oder ein Stiftfeld auf der Innenfläche der Einspritzrohre (114, 115, 116) angeordnet sind.
  12. Gasturbine (100) mit wenigstens einem Verdichter (103), einem Brennraum und wenigstens einer Turbine (105), dadurch gekennzeichnet, dass sie wenigstens eine sequentielle Brennraumanordnung (104) nach einem der Ansprüche 1 bis11 umfasst.
  13. Verfahren zum Betreiben einer Gasturbine (100) mit wenigstens einem Verdichter (103) und einer sequentiellen Brennraumanordnung (104), die einen ersten Brenner (112), eine erste Brennkammer (101), einen Mischer (117) zum Beimischen eines Verdünnungsgases zu den heißen Gasen, welche die erste Brennkammer (101) während des Betriebs verlassen, einen zweiten Brenner (113) und eine zweite Brennkammer (102), die nacheinander in einer Fluidstromverbindung angeordnet sind, umfasst, wobei der Mischer (117) dafür eingerichtet ist, Verbrennungsgase in einer Heißgas-Strömungsbahn zu leiten, die sich zwischen der ersten Brennkammer (101) und dem zweiten Brenner (113) erstreckt, wobei sie eine Leitung umfasst, die einen Einlass an einem stromaufwärts gelegenen Ende, das für eine Verbindung mit der ersten Brennkammer (101) eingerichtet ist, und einen Auslass an einem stromabwärts gelegenen Ende, das für eine Verbindung mit dem zweiten Brenner (113) eingerichtet ist, aufweist,
    wobei der Mischer (117) wenigstens drei Gruppen von Einspritzrohren (114, 115, 116) umfasst, die von den Seitenwänden (119) des Mischers (117) nach innen zeigen, zum Beimischen des Verdünnungsgases, um die heißen Abgase, welche die erste Brennkammer (101) verlassen, zu kühlen, wobei die Einspritzrohre (114, 115, 116) jeder Gruppe senkrecht zu der Seitenwand (119) angeordnet und umlaufend entlang der Seitenwand (119) des Mischers (117) verteilt sind und wobei die ersten Einspritzrohre (114) der ersten Gruppe eine erste Vorsprungstiefe (I1) aufweisen, die zweiten Einspritzrohre (115) der zweiten Gruppe eine zweite Vorsprungstiefe (I2) aufweisen und die dritten Einspritzrohre (116) der dritten Gruppe eine dritte Vorsprungstiefe (I3) aufweisen, wobei die zweiten Einspritzrohre (115) stromabwärts von den ersten Einspritzrohren (114) angeordnet sind und die dritten Einspritzrohre (116) stromabwärts von den zweiten Einspritzrohren (115) angeordnet sind, wobei die Vorsprungstiefe der Einspritzrohre (114, 115, 116) in der Strömungsrichtung abnimmt oder zunimmt,
    dadurch gekennzeichnet, dass Verdünnungsgas (110) in unterschiedliche Bereiche des Querschnitts des Mischers (117) über die ersten, zweiten und dritten Einspritzrohre (114, 115, 116) zugemischt wird.
EP14708266.3A 2013-04-25 2014-03-06 Sequenzielle verbrennung mit verdünnungsgas Active EP2989389B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14708266.3A EP2989389B1 (de) 2013-04-25 2014-03-06 Sequenzielle verbrennung mit verdünnungsgas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/EP2013/058650 WO2014063835A1 (en) 2012-10-24 2013-04-25 Sequential combustion with dilution gas mixer
EP14708266.3A EP2989389B1 (de) 2013-04-25 2014-03-06 Sequenzielle verbrennung mit verdünnungsgas
PCT/EP2014/054355 WO2014173578A1 (en) 2013-04-25 2014-03-06 Sequential combustion with dilution gas

Publications (2)

Publication Number Publication Date
EP2989389A1 EP2989389A1 (de) 2016-03-02
EP2989389B1 true EP2989389B1 (de) 2018-08-01

Family

ID=55174084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14708266.3A Active EP2989389B1 (de) 2013-04-25 2014-03-06 Sequenzielle verbrennung mit verdünnungsgas

Country Status (1)

Country Link
EP (1) EP2989389B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178820A1 (de) * 1984-10-04 1986-04-23 Westinghouse Electric Corporation Stossstrahlgekühlte Gasturbinenbrennkammer mit innerer Filmkühlung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178820A1 (de) * 1984-10-04 1986-04-23 Westinghouse Electric Corporation Stossstrahlgekühlte Gasturbinenbrennkammer mit innerer Filmkühlung

Also Published As

Publication number Publication date
EP2989389A1 (de) 2016-03-02

Similar Documents

Publication Publication Date Title
US10502423B2 (en) Sequential combustion with dilution gas
US10451283B2 (en) Sequential combustor arrangement with a mixer
EP2837889B1 (de) Sequentielle Verbrennung mit Verdünnungsgasmischer
EP2966356B1 (de) Sequentielle brennkammeranordnung mit einem mischer
EP2888531B1 (de) Sequenzielle verbrennung mit verdünnungsgasmischer
EP3220047B1 (de) Gasturbinenstromhülsenhalterung
EP2685172A2 (de) Rohr-Ringkammer-Gasturbinenverbrennungssystem mit gestufter Vormisch-Verbrennung
US10443847B2 (en) Dilution gas or air mixer for a combustor of a gas turbine
US10443849B2 (en) Separate feedings of cooling and dilution air
WO2014173578A1 (en) Sequential combustion with dilution gas
US20140352312A1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
US20170184310A1 (en) System for Injecting a Liquid Fuel into a Combustion Gas Flow Field
EP2989389B1 (de) Sequenzielle verbrennung mit verdünnungsgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1024744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014029478

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1024744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181102

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014029478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190306

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190306

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190306

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240430