EP2980509B1 - Intake manifold for an evaporator, method for manufacturing such a manifold, evaporator comprising such a diffuser and thermal installation with two-phase heat-transfer fluid - Google Patents

Intake manifold for an evaporator, method for manufacturing such a manifold, evaporator comprising such a diffuser and thermal installation with two-phase heat-transfer fluid Download PDF

Info

Publication number
EP2980509B1
EP2980509B1 EP15178404.8A EP15178404A EP2980509B1 EP 2980509 B1 EP2980509 B1 EP 2980509B1 EP 15178404 A EP15178404 A EP 15178404A EP 2980509 B1 EP2980509 B1 EP 2980509B1
Authority
EP
European Patent Office
Prior art keywords
manifold
dispatcher
distributor
ribs
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15178404.8A
Other languages
German (de)
French (fr)
Other versions
EP2980509A1 (en
Inventor
Fabien Couturier
Slimane Meziani
Eddy LHENORET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Industrielle dApplications Thermiques SA CIAT
Original Assignee
Compagnie Industrielle dApplications Thermiques SA CIAT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Industrielle dApplications Thermiques SA CIAT filed Critical Compagnie Industrielle dApplications Thermiques SA CIAT
Publication of EP2980509A1 publication Critical patent/EP2980509A1/en
Application granted granted Critical
Publication of EP2980509B1 publication Critical patent/EP2980509B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers

Definitions

  • the present invention relates to an inlet distributor for an evaporator of a two-phase refrigerant thermal installation, as well as to a method of manufacturing this distributor.
  • the invention also relates to an evaporator belonging to a thermal installation and comprising such a distributor.
  • the invention relates to a thermal installation with two-phase refrigerant which comprises such an evaporator.
  • a heat pump comprising an evaporator, a compressor, a condenser and an expander.
  • the evaporator allows heat to be taken from an area, called a cold source, by means of a refrigerant.
  • the fluid consists of two phases, a vapor phase and a liquid phase, 80% of the fluid being generally still in the liquid phase.
  • a heat source transmits heat energy to the fluid. This having a weak pressure, it evaporates.
  • all of the fluid is in gaseous form and is sucked in by the compressor.
  • An evaporator comprises a bundle of tubes, in which the refrigerant circulates, allowing the latter to be in contact with the heat source over a large surface area.
  • the overall performance of the evaporator, and therefore of the entire heat pump depends on the temperature uniformity of the fluid contained in each channel.
  • the fluid passing through the evaporator must heat up in the same way in each of the channels of the evaporator, so that the temperature is the same at the outlet of each channel of the bundle.
  • a temperature in one of the channels lower than the temperature in the other channels, reduces the temperature of the fluid leaving the evaporator and therefore the overall efficiency of the heat pump.
  • an evaporator comprises, at the entry of the refrigerant fluid into its internal volume, a distributor whose role is to distribute the fluid evenly.
  • a two-phase refrigerant distributor comprising a cup-shaped grid, onto which is welded a metal cone forming a distributor.
  • This distributor is installed at the inlet of an evaporator, at the end of an inlet pipe.
  • the cone creates an obstacle to the passage of the fluid which accelerates the fluid and allows it to be distributed over the edges of the grid.
  • the fluid passes through orifices in the grid and is projected radially, outwardly relative to the center of the cup.
  • This distributor allows the fluid to be distributed in an acceptable manner in the channels of the evaporator.
  • the distribution of the fluid in the pipes is not optimal and there are temperature differences between the channels.
  • EP 0 895 051 A1 discloses a dispenser according to the preamble of claim 1.
  • JP-A-2000 111 205 teaches providing a core with a conical tip for a distributor intended for use with an evaporator of the "direct expansion exchange coil" type.
  • This type of distributor is not directly suitable for use with a multitubular type evaporator.
  • a cover In known equipment, a cover must be placed downstream of the core, to allow the connection of the capillary tubes of the direct expansion exchange coil, which cannot be transposed to a distributor for a multitubular exchanger.
  • US-A-5,059,226 discloses a centrifugal distributor which comprises a conical central hub arranged in a cylindrical part with circular section of a body which has, moreover, a frustoconical portion, the smallest section of which faces downstream.
  • the top of the conical central hub is disposed at the junction between the cylindrical and frustoconical portions of the body of the distributor and does not protrude relative to them. The flow of the heat transfer fluid around the conical central hub is not optimized.
  • the invention more particularly intends to remedy by proposing a new inlet distributor making it possible to better mix the two phases of the fluid and to obtain a more homogeneous distribution in the channels of the evaporator.
  • the invention relates to an inlet distributor for a multitubular evaporator of a thermal installation with two-phase refrigerant, this distributor comprising a diffusion grid and a distributor of generally conical shape, having a top and a base fixed to the diffusion grid respectively directed towards an upstream side and a downstream side of the distributor.
  • This distributor also comprises a member pierced with a tapered bore centered on the axis of the distributor and which surrounds this distributor, while the smallest area section of the tapered bore of the insert is directed towards the upstream side. from the distributor.
  • the top of the distributor protrudes from the frustoconical bore of the insert upstream, over a non-zero distance.
  • a confined passage volume for the two-phase refrigerant is created around the distributor and inside the frustoconical bore of the insert.
  • This confined passage volume ensures a circumferential distribution of the refrigerant around the central axis of the distributor, even in the event of a relatively low flow rate of the refrigerant inside the distributor. Thanks to the fact that the top of the distributor protrudes upstream from the frustoconical bore of the insert, the flow of refrigerant can be established around the distributor before this flow propagates inside the tapered bore. This facilitates the distribution of the fluid around the distributor, in particular in the case where the latter is provided with ribs for guiding the refrigerant.
  • This arrangement therefore makes it possible to channel the two-phase mixture from the cylindrical supply pipe where the speed is the highest and where the vapor-liquid mixture is in homogeneous form, which eliminates the risk of stratification, in particular at load. partial.
  • This thus contributes to balancing the mass flow rates circulating in each channel formed between two helical ribs when the distributor is formed of such ribs.
  • the jet passing through the grid located at the base of the cone has a radial symmetry suitable for irrigating the bundle of tubes as well as possible.
  • the invention also relates to a method of manufacturing a dispenser as mentioned above.
  • the distributor is manufactured by three-dimensional printing.
  • the invention relates to a multitubular evaporator of a thermal installation with two-phase refrigerant comprising a distributor as mentioned above installed upstream of an internal distribution volume of the evaporator, itself arranged upstream of a two-phase refrigerant distribution system, the top of the distributor being directed upstream and the grid downstream, in the direction of the internal distribution volume, according to the direction of flow of the two-phase refrigerant .
  • the invention relates to a two-phase refrigerant installation which comprises an evaporator as mentioned above.
  • the figure 1 partially represents a multitubular evaporator 1 equipped with a distributor 2 in accordance with the invention.
  • This distributor 2 is attached to the end of an inlet pipe 4, at the inlet of the evaporator 1.
  • a two-phase refrigerant flows from the intake pipe 4 to an internal volume 3 of the evaporator 1 passing through the distributor 2.
  • X4 is denoted by the longitudinal and central axis of the pipe 4.
  • the evaporator 1 belongs to a thermal installation, in particular of the heat pump type, with two-phase refrigerant.
  • This installation which is not represented other than by the part of the evaporator visible at figure 1 , also includes a compressor, condenser and expansion valve.
  • the evaporator 1 is of the multitubular type and comprises an assembly of rectilinear tubes 6 held at each of their ends by crimping or expanding in a perforated plate 7 called a tube plate. All the tubes form the tube bundle inside which the refrigerant at low pressure evaporates.
  • the tube bundle is enclosed in a metal shell 8 usually called a shell in which circulates a coolant in liquid phase, such as water or glycol water, etc., which gives way, by heat exchange through the wall of the tubes. 6 tubes its heat to the refrigerant.
  • the flow of this heat transfer fluid is represented by the arrow F2 at the figure 1 , from a sleeve 9 entering the grille.
  • baffles are regularly arranged along the tube bundle, the purpose of which is to increase the intensity of the heat transfer between the two fluids .
  • the evaporator can be of the known type of FR-A-2 997 174 .
  • the evaporator 1 comprises, in the end wall 13, an orifice 14 for entering the two-phase refrigerant into the volume 3.
  • the pipe 4 makes it possible to direct the two-phase refrigerant to the distributor 2, which is fixed in the orifice 14. More precisely, an insert 16, which belongs to the distributor 2, is mounted in the orifice 14.
  • the pipe 4 is connected to an external or upstream face 162 of the insert 16 which is oriented upstream of the refrigerant flow when insert 16 is in place in bore 14 and when evaporator 1 is in use.
  • the two-phase refrigerant flows along and inside the intake pipe 4 then within the distributor 2 before being distributed to the various channels 8 within the volume 3 as represented by the arrows F1 '. We call upstream the direction from which the refrigerant comes and downstream its destination direction. On the figure 1 , the arrows F1 and F1 'are directed from upstream to downstream.
  • the distributor 2 comprises a grid 20 in the form of a cup, on which is fixed a distributor 30 of generally conical shape. More precisely, the grid 20 has the shape of a truncated sphere, centered on an axis X20 with its concavity turned towards the distributor 30, that is to say downward on the figure 4 .
  • the grid 20 comprises, in its center, a circular opening 22, defining an internal peripheral edge 24 of the grid 20.
  • a surface 25 of the grid is pierced with orifices 26, regularly spaced.
  • the grid 20 comprises an outer peripheral edge 28, making it possible to fix it on the insert 16 or on the periphery of the orifice 14 of the evaporator 1, on the downstream side thereof.
  • the edge 28 is planted and perpendicular to the axis X20.
  • the edge 28 is pierced with three orifices 29, regularly spaced around the axis X20, and of diameter adapted to the passage of a screw.
  • the grid can be screwed or attached to the wall 13.
  • the edge 28 is circular. However, it may have a different shape, for example lobed.
  • the grid is formed by a layer of metal a few millimeters thick and can in particular be made of steel and obtained by stamping.
  • the distributor 30 of generally conical shape is fixed on the internal edge 24 of the grid 20. It comprises a circular base 32 centered on an axis X30 to which it is perpendicular and a vertex 34.
  • the diameter of the base 32 of the distributor 30 is substantially equal to the diameter of the circular opening 22 of the grid 20.
  • the edge 36 of the base is fixed to the internal edge 24 of the grid 20 and the axes X20 and X30 are combined, in an axis X2, in the assembled configuration of the distributor 2.
  • the axis X2 passes through the center 33 of the base 32 and through the top 34.
  • X16 denotes a central axis of the insert 16. This insert is pierced with a cylindrical bore 17 and a tapered bore 18 both centered on the axis X16.
  • the bore 17 extends from the upstream face 162, up to the bore 18, which extends from the bore 17 towards a downstream face 164 of the insert 16, opposite the upstream face 162.
  • L ' bore 18 diverges in the upstream downstream direction of insert 16, that is to say going from face 162 to face 164.
  • S18 denotes the smallest area section of the bore 18 and S18 'its largest area section.
  • the section S18 is the junction section between the bores 17 and 18. It is oriented upstream of the distributor 2, that is to say towards the face 162, relative to the rest of the bore 18, while section S18 'is axially aligned with face 164.
  • the half-angle at the top of the frustoconical surface 182 which delimits the bore 18 inside the insert 16.
  • the top 34 of the distributor 30 is directed upstream, the axes X2, X4, X16, X20 and X30 are merged and the distributor 30 protrudes upstream, relative to section S18 and in the direction of face 162 of insert 16, over a non-zero distance d, which is preferably greater than 20 mm for a distributor 2 whose base 32 has a diameter of the order of 70 mm and a length, measured along the axis X2 between this base and the top 34, of the order of 85 mm while the wall 13 has a thickness of the order of 60 mm.
  • the top 34 protrudes from the bore 18 over the distance d and the distributor 30 extends partially into the bore 17.
  • the distance d is non-zero ensures that the refrigerant begins to circulate around the outer surface 37 of the distributor 30, while it is still upstream of the bore 18. This facilitates the flow of the refrigerant and also participates in maintaining a homogeneous jet through the grid 20, in particular at partial load, when the flow rate of refrigerant, and therefore the speed in the pipe 4, are reduced. This also makes it possible to promote the distribution of the flow around the distributor when the mass content of vapor is reduced, in particular in the case of low condensing temperature operation of the refrigeration unit and / or use of an economizer. This also allows the refrigerant to have a higher homogeneous density, which means that, for the same mass flow, the volume flow and therefore the speed are also reduced.
  • the distributor 30 comprises on its outer surface 37, which is conical, between its base 32 and its top 34, ribs 38.
  • the ribs 38 extend from the top 34 of the distributor 30 to its base 32 and have a shape twisted, generally like a propeller pressed against a cone.
  • each rib 38 is denoted by H38, measured perpendicularly to the surface 37, between this surface and the edge 382 of the rib.
  • the edge 382 of a rib is the edge of this rib opposite to the surface 37.
  • the height H38 of a rib 38 is the distance between its edge 382 and a junction line 384, measured perpendicular to the surface 37.
  • the height H38 increases along the axis X2 going from the top 34 towards the base 32. In other words, the height H38 of the ribs is greater at the level of the base 32 of the distributor 30 than at its top 34.
  • the distributor 30 is provided with six ribs 38, regularly spaced around the axis X2.
  • the number of ribs can be higher or lower.
  • the distributor 30 can include three, four, five, six or eight ribs 38, regularly spaced.
  • the ribs 38 are not regularly spaced, in order to generate an irregular movement of the two-phase fluid, making it possible to agitate it more as it passes through the orifice 14.
  • the surfaces 182 and 37 define between them a volume V2 for the passage of the refrigerant which extends around the axes X2, X4, X16, X20 and X30 combined.
  • this volume V2 has a cross section, perpendicular to the aforementioned axes, the area of which is relatively small, it is permanently force-fed by the refrigerant coming from the pipe 4, even if the evaporator 1 operates at partial load.
  • the refrigerant fluid is distributed homogeneously around the distributor 30, without having a tendency to separate into a gaseous part located above the axis X2 and a liquid part located below this axis.
  • the purpose of the ribs 38 is to guide the fluid entering the evaporator 1.
  • the curvature of the ribs 38 around the axis X2 makes it possible to give the fluid a rotational movement around the axes X2 and X4 combined at the outlet of the distributor, as represented by arrows F3 at the figure 7 .
  • This rotational movement stirs the fluid, mixes the two gaseous and liquid phases of the fluid and makes it possible to obtain a better distribution of the fluid in the volume 3 and the channels 8.
  • the bore 18 surrounds only a part of the distributor 2, namely its part closest to the base 32. In this way, the top 34 and the ribs 38 of the distributor 30 protrude. from bore 18 upstream, over distance d.
  • the insert 16 reduces the volume of passage of the fluid around the distributor 30 and forces the passage of the latter along the grooves 38 of the distributor 30, which accelerates the fluid and increases the efficiency of the ribs 38.
  • the intake pipe 4 is mounted against the insert 16 and its emerging section is adapted to the diameter of the bore 17, that is to say to the smallest diameter of the frustoconical bore 18 of the insert 16.
  • the refrigerant is brought into the evaporator 1 through the inlet pipe 4, in which all the components of the fluid have substantially the same speed.
  • the fluid flows parallel to the axis X4 and a surface perpendicular to the arrow F1 and corresponding to the passage section of the fluid is called the fluid flow front.
  • the refrigerant comes into contact with the top 34 distributor 30 and the passage section of the fluid decreases inside the pipe 4, until the front fluid flow reaches the bore 18.
  • the refrigerant then passes between the outer surface 37 of the distributor 30 and the inner surface 182 of the insert 16 and then through the orifices 26 of the grid 20. It is then projected into the internal volume 3 of the evaporator 1, which the arrows F1 'represent.
  • the distributor 30 can be made of metal, in particular of steel. In this case, it can be assembled to the grid 20 by welding.
  • the distributor 30 of the distributor 2 is made of synthetic material and manufactured by three-dimensional printing.
  • This manufacturing method gives the designer great freedom. It makes it possible to produce a distributor 30 according to various geometries. Thus, it is possible to achieve a large number of variations in the shape of the ribs 38. In addition, this method makes it possible to adapt the dimensions of the distributor 30 to the dimensions of the evaporator 1, more particularly to those of the bore 18. Furthermore, three-dimensional printing makes it possible to produce complex shapes at a lower cost and rapidly, which would be difficult to produce by a conventional machining process.
  • the grid 20 is preferably integral with the distributor 30 and obtained by the same manufacturing technique. This ensures geometric and mechanical continuity between these parts, without having to proceed with gluing or welding.
  • the grid 20 does not have a circular opening 22 and the distributor 30 is fixed to an internal central surface of the grid 20.
  • the grid 20 may have a shape different from that described above.
  • the holes 26 can be formed in the form of grooves or have large dimensions, so that the grid has four large holes and the inner edge 24 of the grid is only held in position by four metal tabs. connected to edge 28 which allows the grid to be fixed on evaporator 1.
  • the distributor 2 may include a distributor 30 formed by a smooth cone, while the surface 182 of the insert 16, which defines the frustoconical bore 18, is provided with ribs which extend in the direction of the X16 axis.
  • This embodiment is based on a mirror solution compared to that shown on the figures 1 to 8 and in which the ribs provided on the insert 16 also contribute to guiding the refrigerant in the circular space defined between the outer surface of the distributor 30 and the surface 182.
  • ribs for guiding the refrigerant can be provided on both surfaces 37 and 182.
  • the outer surface 37 of the distributor 30 is smooth, that is to say devoid of ribs, as is the surface 182 which defines the frustoconical bore 18 inside the insert 16.
  • annular slot is defined between the facing surfaces 37 and 182 when the distributor 30 is in place in the insert 16, as shown in figure 9 , this annular slot being identified as a volume V2 characteristic of the distributor 2.
  • the half-angle at the top ⁇ of the surface 182 is equal to the half-angle at the top ⁇ of the surface 37, so that the thickness of the annular slot V 2 is constant along the axis X2.
  • this annular slot is itself divergent or convergent from upstream to downstream of the distributor 2, that is i.e. from face 162 to face 164.
  • section S18 of smaller area of the bore 18 is directed upstream with respect to this bore, that is to say on the side of the face 162.
  • the top 34 of the distributor 30 protrudes upstream with respect to the smallest section S18 of the frustoconical bore 18, over a distance d which is not zero, in particular greater than 20 mm as explained above.
  • the invention is shown in the case where an insert 16 is installed in the opening 14 of the wall 13.
  • the wall 13 itself can define a frustoconical bore for receiving the distributor 30 of the distributor 2.
  • the member which defines this frustoconical bore is the wall 13 itself which partly belongs to the distributor 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

La présente invention concerne un distributeur d'admission pour un évaporateur d'une installation thermique à fluide frigorigène diphasique, ainsi qu'un procédé de fabrication de ce distributeur. L'invention concerne également un évaporateur appartenant à une installation thermique et comprenant un tel distributeur. Enfin, l'invention concerne une installation thermique à fluide frigorigène diphasique qui comprend un tel évaporateur.The present invention relates to an inlet distributor for an evaporator of a two-phase refrigerant thermal installation, as well as to a method of manufacturing this distributor. The invention also relates to an evaporator belonging to a thermal installation and comprising such a distributor. Finally, the invention relates to a thermal installation with two-phase refrigerant which comprises such an evaporator.

Dans le domaine de la climatisation, il est connu d'utiliser une pompe à chaleur comprenant un évaporateur, un compresseur, un condenseur et un détendeur. L'évaporateur permet de prélever la chaleur d'une zone, appelée source froide, par l'intermédiaire d'un fluide frigorigène. En entrée de l'évaporateur, le fluide est constitué de deux phases, une phase de vapeur et une phase liquide, 80 % du fluide étant généralement encore en phase liquide. Dans l'évaporateur, une source de chaleur transmet de l'énergie calorifique au fluide. Celui-ci ayant une pression faible, il s'évapore. Ainsi, à la sortie de l'évaporateur, la totalité du fluide est sous forme gazeuse et est aspiré par le compresseur.In the field of air conditioning, it is known to use a heat pump comprising an evaporator, a compressor, a condenser and an expander. The evaporator allows heat to be taken from an area, called a cold source, by means of a refrigerant. At the inlet of the evaporator, the fluid consists of two phases, a vapor phase and a liquid phase, 80% of the fluid being generally still in the liquid phase. In the evaporator, a heat source transmits heat energy to the fluid. This having a weak pressure, it evaporates. Thus, at the outlet of the evaporator, all of the fluid is in gaseous form and is sucked in by the compressor.

Un évaporateur comprend un faisceau de tubes, dans lequel circule le fluide frigorigène, permettant que celui-ci soit au contact avec la source de chaleur sur une surface d'aire importante.An evaporator comprises a bundle of tubes, in which the refrigerant circulates, allowing the latter to be in contact with the heat source over a large surface area.

La performance globale de l'évaporateur, et donc de l'ensemble de la pompe à chaleur, dépend de l'homogénéité en température du fluide contenu dans chaque canal. Autrement dit, le fluide traversant l'évaporateur doit se réchauffer de la même manière dans chacun des canaux de l'évaporateur, de sorte que la température soit la même à la sortie de chaque canal du faisceau. En effet, une température dans l'un des canaux, inférieure à la température dans les autres canaux, diminue la température du fluide en sortie de l'évaporateur et donc l'efficacité globale de la pompe à chaleur.The overall performance of the evaporator, and therefore of the entire heat pump, depends on the temperature uniformity of the fluid contained in each channel. In other words, the fluid passing through the evaporator must heat up in the same way in each of the channels of the evaporator, so that the temperature is the same at the outlet of each channel of the bundle. Indeed, a temperature in one of the channels, lower than the temperature in the other channels, reduces the temperature of the fluid leaving the evaporator and therefore the overall efficiency of the heat pump.

Ainsi, il est important de répartir de manière homogène le fluide diphasique arrivant dans les canaux de l'évaporateur. En particulier, il convient d'avoir la même proportion de gaz et de liquide dans chaque canal de l'évaporateur. Ainsi, un évaporateur comprend, au niveau de l'entrée du fluide frigorigène dans son volume interne, un distributeur dont le rôle est de repartir le fluide de manière homogène.Thus, it is important to evenly distribute the two-phase fluid arriving in the channels of the evaporator. In particular, it is necessary to have the same proportion of gas and liquid in each channel of the evaporator. Thus, an evaporator comprises, at the entry of the refrigerant fluid into its internal volume, a distributor whose role is to distribute the fluid evenly.

Il est connu, par exemple de FR-A-2 766 914 ou de FR-A-2 806 156 , de fabriquer un distributeur de fluide frigorigène diphasique comprenant une grille en forme de coupelle, sur laquelle est soudé un cône métallique formant un répartiteur. Ce distributeur est installé en entrée d'un évaporateur, à l'extrémité d'une canalisation d'admission. Le cône crée un obstacle au passage du fluide qui accélère le fluide et permet de le répartir sur les bords de la grille. Le fluide traverse des orifices de la grille et est projeté radialement, vers l'extérieur par rapport au centre de la coupelle. Ce distributeur permet de repartir de manière acceptable le fluide dans les canaux de l'évaporateur. Cependant, la répartition du fluide dans les canalisations n'est pas optimale et l'on observe des différences de températures entre les canaux. De plus, lorsque la pompe à chaleur fonctionne à charge partielle, c'est-à-dire avec un débit massique de fluide inférieur à 50% du débit massique nominal, ce problème est exacerbé. En particulier, lorsque la pompe à chaleur fonctionne à charge partielle, le débit de fluide frigorigène n'est pas suffisant pour garantir l'homogénéité de l'écoulement autour du répartiteur en forme de cône, la partie liquide de l'écoulement ayant tendance à se concentrer dans la partie basse du distributeur. EP 0 895 051 A1 divulgue un distributeur selon le préambule de la revendication 1.It is known, for example from FR-A-2 766 914 or from FR-A-2 806 156 , to manufacture a two-phase refrigerant distributor comprising a cup-shaped grid, onto which is welded a metal cone forming a distributor. This distributor is installed at the inlet of an evaporator, at the end of an inlet pipe. The cone creates an obstacle to the passage of the fluid which accelerates the fluid and allows it to be distributed over the edges of the grid. The fluid passes through orifices in the grid and is projected radially, outwardly relative to the center of the cup. This distributor allows the fluid to be distributed in an acceptable manner in the channels of the evaporator. However, the distribution of the fluid in the pipes is not optimal and there are temperature differences between the channels. In addition, when the heat pump operates at part load, that is, with a mass flow rate of fluid less than 50% of the nominal mass flow rate, this problem is exacerbated. In particular, when the heat pump is operating at part load, the flow of refrigerant is not sufficient to guarantee the homogeneity of the flow around the cone-shaped distributor, the liquid part of the flow tending to concentrate in the lower part of the distributor. EP 0 895 051 A1 discloses a dispenser according to the preamble of claim 1.

Par ailleurs, JP-A-2000 111 205 enseigne de prévoir un noyau avec une pointe conique pour un distributeur destiné à être utilisé avec un évaporateur de type « batterie d'échange à détente directe ». Ce type de distributeur n'est pas directement adapté pour être utilisé avec un évaporateur de type multitubulaire. Dans le matériel connu, un capot doit être disposé en aval du noyau, pour permettre le raccordement des tubes capillaires de la batterie d'échange à détente directe, ce qui n'est pas transposable à un distributeur pour un échangeur multitubulaire.Otherwise, JP-A-2000 111 205 teaches providing a core with a conical tip for a distributor intended for use with an evaporator of the "direct expansion exchange coil" type. This type of distributor is not directly suitable for use with a multitubular type evaporator. In known equipment, a cover must be placed downstream of the core, to allow the connection of the capillary tubes of the direct expansion exchange coil, which cannot be transposed to a distributor for a multitubular exchanger.

Enfin, US-A-5 059 226 divulgue un distributeur centrifuge qui comprend un moyeu central conique disposé dans une partie cylindrique à section circulaire d'un corps qui présente, par ailleurs, une portion tronconique dont la plus petite section est orientée vers l'aval. Le sommet du moyeu central conique est disposé à la jonction entre les portions cylindriques et tronconiques du corps du distributeur et ne dépasse pas par rapport à celles-ci. L'écoulement du fluide caloporteur autour du moyeu central conique n'est pas optimisé.Finally, US-A-5,059,226 discloses a centrifugal distributor which comprises a conical central hub arranged in a cylindrical part with circular section of a body which has, moreover, a frustoconical portion, the smallest section of which faces downstream. The top of the conical central hub is disposed at the junction between the cylindrical and frustoconical portions of the body of the distributor and does not protrude relative to them. The flow of the heat transfer fluid around the conical central hub is not optimized.

C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un nouveau distributeur d'admission permettant de mieux mélanger les deux phases du fluide et d'obtenir une répartition dans les canaux de l'évaporateur plus homogène.It is these drawbacks that the invention more particularly intends to remedy by proposing a new inlet distributor making it possible to better mix the two phases of the fluid and to obtain a more homogeneous distribution in the channels of the evaporator.

A cet effet, l'invention concerne un distributeur d'admission pour un évaporateur multitubulaire d'une installation thermique à fluide frigorigène diphasique, ce distributeur comprenant une grille de diffusion et un répartiteur de forme globalement conique, ayant un sommet et une base fixée à la grille de diffusion respectivement dirigés vers un côté amont et un côté aval du distributeur. Ce distributeur comprend également un organe percé d'un alésage tronconique centré sur l'axe du répartiteur et qui entoure ce répartiteur, alors que la section d'aire la plus petite de l'alésage tronconique de l'insert est dirigée vers le côté amont du distributeur. En outre, le sommet du répartiteur dépasse de l'alésage tronconique de l'insert vers l'amont, sur une distance non nulle.To this end, the invention relates to an inlet distributor for a multitubular evaporator of a thermal installation with two-phase refrigerant, this distributor comprising a diffusion grid and a distributor of generally conical shape, having a top and a base fixed to the diffusion grid respectively directed towards an upstream side and a downstream side of the distributor. This distributor also comprises a member pierced with a tapered bore centered on the axis of the distributor and which surrounds this distributor, while the smallest area section of the tapered bore of the insert is directed towards the upstream side. from the distributor. In addition, the top of the distributor protrudes from the frustoconical bore of the insert upstream, over a non-zero distance.

Grâce à l'invention, un volume de passage confiné du fluide frigorigène diphasique est créé autour du répartiteur et à l'intérieur de l'alésage tronconique de l'insert. Ce volume de passage confiné assure une répartition circonférentielle du fluide frigorigène autour de l'axe central du répartiteur, même en cas de débit relativement faible du fluide frigorigène à l'intérieur du distributeur. Grâce au fait que le sommet du répartiteur dépasse vers l'amont par rapport à l'alésage tronconique de l'insert, le flux de fluide frigorigène peut être établi autour du répartiteur avant que ce flux ne se propage à l'intérieur de l'alésage tronconique. Ceci facilite la distribution du fluide autour du répartiteur, notamment dans le cas où celui-ci est pourvu de nervures de guidage du fluide frigorigène. Cette disposition permet donc de canaliser le mélange diphasique à partir de la tubulure cylindrique d'alimentation là où la vitesse est la plus élevée et où le mélange vapeur-liquide est sous forme homogène, ce qui élimine les risques de stratification, en particulier à charge partielle. Cela participe ainsi à équilibrer les débits massiques circulant dans chaque canal formé entre deux nervures hélicoïdales lorsque le répartiteur est formé de telles nervures. Ainsi le jet passant à travers la grille située à la base du cône a une symétrie radiale propre à irriguer au mieux le faisceau de tubes.Thanks to the invention, a confined passage volume for the two-phase refrigerant is created around the distributor and inside the frustoconical bore of the insert. This confined passage volume ensures a circumferential distribution of the refrigerant around the central axis of the distributor, even in the event of a relatively low flow rate of the refrigerant inside the distributor. Thanks to the fact that the top of the distributor protrudes upstream from the frustoconical bore of the insert, the flow of refrigerant can be established around the distributor before this flow propagates inside the tapered bore. This facilitates the distribution of the fluid around the distributor, in particular in the case where the latter is provided with ribs for guiding the refrigerant. This arrangement therefore makes it possible to channel the two-phase mixture from the cylindrical supply pipe where the speed is the highest and where the vapor-liquid mixture is in homogeneous form, which eliminates the risk of stratification, in particular at load. partial. This thus contributes to balancing the mass flow rates circulating in each channel formed between two helical ribs when the distributor is formed of such ribs. Thus the jet passing through the grid located at the base of the cone has a radial symmetry suitable for irrigating the bundle of tubes as well as possible.

Selon des aspects avantageux mais non obligatoires de l'invention, un tel distributeur peut incorporer une ou plusieurs des caractéristiques techniques suivantes, prises en toute combinaison techniquement admissible :

  • Le répartiteur présente sur sa surface extérieure, entre sa base et son sommet, des nervures de guidage du fluide frigorigène. Grâce à cet aspect de l'invention, le fluide frigorigène diphasique en entrée de l'évaporateur est guidé le long des nervures du répartiteur et celles-ci permettent de contrôler le mouvement du fluide. En outre, ces nervures peuvent donner un mouvement de rotation au fluide, ce qui augmente l'homogénéité du mélange et permet une meilleure répartition du fluide dans les canalisations. Ces nervures peuvent également favoriser la mise en canal de l'écoulement en divisant le débit total admis dans la tubulure d'entrée en autant de sous-débits que de cellules formées par les volumes compris entre la contreforme conique femelle, les nervures et le fond formé par la surface du cône mâle.
  • Les nervures ont une forme torsadée, globalement comme une hélice plaquée su un cône.
  • Les nervures s'étendent depuis le sommet jusqu'à la base du répartiteur.
  • Les nervures sont en saillie par rapport à une surface extérieure du répartiteur, cette surface extérieure étant de forme conique.
  • La hauteur de chaque nervure, mesurée entre la surface extérieure du répartiteur et une arête de la nervure opposée à cette surface, selon une direction perpendiculaire à cette surface, est croissante en allant du sommet vers la base du répartiteur.
  • Les nervures du répartiteur dépassent également de l'alésage tronconique de l'insert vers l'amont sur la distance non nulle.
  • L'alésage tronconique est équipé, sur sa surface disposée en regard du répartiteur le long de l'axe central, de nervures de guidage du fluide frigorigène. Grâce à cet aspect de l'invention, les nervures de guidage disposées à l'intérieur de l'alésage tronconique permettent de guider l'écoulement de fluide diphasique, selon une approche comparable à celle mentionnée ci-dessus au sujet des nervures prévues sur le répartiteur.
  • Un jeu existe entre une arête des nervures et une surface délimitant l'alésage tronconique à l'intérieur de l'insert.
  • Les nervures sont régulièrement espacées entre elles, autour d'un axe central du répartiteur.
  • En variante, le répartiteur et l'alésage sont dépourvus de nervure et délimitent entre eux une fente annulaire de passage du fluide frigorigène.
  • La distance, sur laquelle le sommet du répartiteur dépasse de l'alésage tronconique de l'insert vers l'amont, est supérieure à 20 mm.
According to advantageous but not mandatory aspects of the invention, such a dispenser can incorporate one or more of the following technical characteristics, taken in any technically acceptable combination:
  • The distributor has on its outer surface, between its base and its top, ribs for guiding the refrigerant. Thanks to this aspect of the invention, the two-phase refrigerant entering the evaporator is guided along the ribs of the distributor and these make it possible to control the movement of the fluid. In addition, these ribs can give a rotational movement to the fluid, which increases the homogeneity of the mixture and allows better distribution of the fluid in the pipes. These ribs can also promote channeling of the flow by dividing the total flow admitted into the inlet pipe into as many sub-flows as there are cells formed by the volumes between the female conical counterform, the ribs and the bottom formed by the surface of the male cone.
  • The ribs have a twisted shape, generally like a helix pressed against a cone.
  • The ribs extend from the top to the base of the distributor.
  • The ribs project from an outer surface of the distributor, this outer surface being of conical shape.
  • The height of each rib, measured between the outer surface of the distributor and an edge of the rib opposite to this surface, in a direction perpendicular to this surface, increases going from the top to the base of the distributor.
  • The ribs of the distributor also protrude from the tapered bore of the insert upstream over the non-zero distance.
  • The frustoconical bore is equipped, on its surface arranged opposite the distributor along the central axis, with ribs for guiding the refrigerant. Thanks to this aspect of the invention, the guide ribs arranged inside the frustoconical bore make it possible to guide the flow of two-phase fluid, according to an approach comparable to that mentioned above with regard to the ribs provided on the distributor.
  • A clearance exists between an edge of the ribs and a surface delimiting the frustoconical bore inside the insert.
  • The ribs are regularly spaced between them, around a central axis of the distributor.
  • As a variant, the distributor and the bore have no ribs and define between them an annular slot for the passage of the refrigerant.
  • The distance over which the top of the distributor protrudes from the tapered bore of the insert upstream is greater than 20 mm.

L'invention concerne également un procédé de fabrication d'un distributeur tel que mentionné ci-dessus. Conformément à cet aspect de l'invention, le répartiteur est fabriqué par impression tridimensionnelle.The invention also relates to a method of manufacturing a dispenser as mentioned above. In accordance with this aspect of the invention, the distributor is manufactured by three-dimensional printing.

De plus, l'invention concerne un évaporateur multitubulaire d'une installation thermique à fluide frigorigène diphasique comprenant un distributeur tel que mentionné ci-dessus installé en amont d'un volume interne de répartition de l'évaporateur, lui-même ménagé en amont d'un système de répartition du fluide frigorigène diphasique, le sommet du répartiteur étant dirigé vers l'amont et la grille vers l'aval, en direction du volume interne de répartition, selon la direction d'écoulement du fluide frigorigène diphasique.In addition, the invention relates to a multitubular evaporator of a thermal installation with two-phase refrigerant comprising a distributor as mentioned above installed upstream of an internal distribution volume of the evaporator, itself arranged upstream of a two-phase refrigerant distribution system, the top of the distributor being directed upstream and the grid downstream, in the direction of the internal distribution volume, according to the direction of flow of the two-phase refrigerant .

Enfin, l'invention concerne une installation à fluide frigorigène diphasique qui comprend un évaporateur tel que mentionné ci-dessus.Finally, the invention relates to a two-phase refrigerant installation which comprises an evaporator as mentioned above.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaitront plus clairement à la lumière de la description qui va suivre de deux modes de réalisation d'un distributeur pour un évaporateur et une installation conformes à son principe, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est une coupe partielle d'un évaporateur à plaques conforme à l'invention ;
  • la figure 2 est une vue à plus grande échelle du détail II à la figure 1, montrant un distributeur de cet évaporateur ;
  • la figure 3 est une coupe éclatée du distributeur de la figure 2 ;
  • la figure 4 est un éclaté en perspective d'un répartiteur et d'une grille appartenant au distributeur des figures 2 et 3 ;
  • la figure 5 est une vue de côté du répartiteur et de la grille de la figure 4 :
  • la figure 6 est une vue de dessus du répartiteur et de la grille de la figure 4 ;
  • la figure 7 est une vue de dessous du répartiteur et de la grille de la figure 4 ;
  • la figure 8 est une coupe selon le plan VIII-VIII à la figure 5 ;
  • la figure 9 est une coupe partielle analogue à la figure 2 pour un distributeur conforme à un deuxième de réalisation de l'invention ; et
  • la figure 10 est une coupe partielle analogue à la figure 3 pour le distributeur de réalisation de la figure 9.
The invention will be better understood and other advantages thereof will appear more clearly in the light of the following description of two embodiments of a distributor for an evaporator and an installation in accordance with its principle, given only to by way of example and made with reference to the accompanying drawings in which:
  • the figure 1 is a partial section of a plate evaporator according to the invention;
  • the figure 2 is an enlarged view of detail II at the figure 1 , showing a distributor of this evaporator;
  • the figure 3 is an exploded view of the distributor of the figure 2 ;
  • the figure 4 is a perspective exploded view of a distributor and a grid belonging to the distributor of figures 2 and 3 ;
  • the figure 5 is a side view of the distributor and the grid of the figure 4 :
  • the figure 6 is a top view of the distributor and the grid of the figure 4 ;
  • the figure 7 is a bottom view of the distributor and the grid of the figure 4 ;
  • the figure 8 is a section according to plan VIII-VIII at the figure 5 ;
  • the figure 9 is a partial section similar to the figure 2 for a dispenser according to a second embodiment of the invention; and
  • the figure 10 is a partial section similar to the figure 3 for the distributor of figure 9 .

La figure 1 représente partiellement un évaporateur multitubulaire 1 équipé d'un distributeur 2 conforme à l'invention. Ce distributeur 2 est fixé à l'extrémité d'une canalisation d'admission 4, à l'entrée de l'évaporateur 1. En fonctionnement, un fluide frigorigène diphasique, dont l'écoulement est représenté par la flèche F1 à la figure 1, s'écoule depuis la canalisation d'admission 4 vers un volume interne 3 de l'évaporateur 1 en passant à travers le distributeur 2. On note X4 l'axe longitudinal et central de la canalisation 4.The figure 1 partially represents a multitubular evaporator 1 equipped with a distributor 2 in accordance with the invention. This distributor 2 is attached to the end of an inlet pipe 4, at the inlet of the evaporator 1. In operation, a two-phase refrigerant, the flow of which is represented by the arrow F1 at the figure 1 , flows from the intake pipe 4 to an internal volume 3 of the evaporator 1 passing through the distributor 2. X4 is denoted by the longitudinal and central axis of the pipe 4.

L'évaporateur 1 appartient à une installation thermique, notamment de type pompe à chaleur, à fluide frigorigène diphasique. Cette installation, qui n'est pas représentée autrement que par la partie de l'évaporateur visible à la figure 1, comprend également un compresseur, un condenseur et un détendeur.The evaporator 1 belongs to a thermal installation, in particular of the heat pump type, with two-phase refrigerant. This installation, which is not represented other than by the part of the evaporator visible at figure 1 , also includes a compressor, condenser and expansion valve.

L'évaporateur 1 est de type multitubulaire et comprend un assemblage de tubes rectilignes 6 maintenus à chacune de leur extrémité par sertissage ou dudgeonnage dans une plaque perforée 7 dite plaque tubulaire. L'ensemble des tubes forme le faisceau tubulaire à l'intérieur duquel s'évapore le fluide frigorigène à basse pression. Le faisceau tubulaire est enfermé dans une virole métallique 8 usuellement appelée calandre dans lequel circule un fluide caloporteur en phase liquide, tel que de l'eau ou de l'eau glycolée..., qui cède, par échange thermique à travers la paroi des tubes 6 sa chaleur au fluide frigorigène. L'écoulement de ce fluide caloporteur est représenté par la flèche F2 à la figure 1, à partir d'un manchon 9 d'entrée dans la calandre. Afin de forcer le fluide frigoporteur coté calandre à circuler de manière transversale au faisceau de tubes 6, des chicanes non représentées sont régulièrement disposées le long du faisceau tubulaire, ceci ayant pour finalité d'augmenter l'intensité du transfert de chaleur entre les deux fluides. Globalement, l'évaporateur peut être du type connu de FR-A-2 997 174 .The evaporator 1 is of the multitubular type and comprises an assembly of rectilinear tubes 6 held at each of their ends by crimping or expanding in a perforated plate 7 called a tube plate. All the tubes form the tube bundle inside which the refrigerant at low pressure evaporates. The tube bundle is enclosed in a metal shell 8 usually called a shell in which circulates a coolant in liquid phase, such as water or glycol water, etc., which gives way, by heat exchange through the wall of the tubes. 6 tubes its heat to the refrigerant. The flow of this heat transfer fluid is represented by the arrow F2 at the figure 1 , from a sleeve 9 entering the grille. In order to force the coolant fluid on the shell side to circulate transversely to the bundle of tubes 6, baffles, not shown, are regularly arranged along the tube bundle, the purpose of which is to increase the intensity of the heat transfer between the two fluids . Overall, the evaporator can be of the known type of FR-A-2 997 174 .

L'évaporateur 1 comprend, dans la paroi d'extrémité 13, un orifice 14 d'entrée du fluide frigorigène diphasique dans le volume 3. La canalisation 4 permet de diriger le fluide frigorigène diphasique vers le distributeur 2, lequel est fixé dans l'orifice 14. Plus précisément, un insert 16, qui appartient au distributeur 2, est monté dans l'orifice 14. La canalisation 4 est reliée à une face externe ou amont 162 de l'insert 16 qui est orientée vers l'amont de l'écoulement de fluide frigorigène lorsque l'insert 16 est en place dans l'alésage 14 et lorsque l'évaporateur 1 est en cours d'utilisation. Le fluide frigorigène diphasique s'écoule le long et à l'intérieur de la canalisation d'admission 4 puis au sein du distributeur 2 avant d'être réparti vers les différents canaux 8 au sein du volume 3 comme représenté par les flèches F1'. On appelle amont la direction d'où provient le fluide frigorigène et aval sa direction de destination. Sur la figure 1, les flèches F1 et F1' sont dirigées de l'amont vers l'aval.The evaporator 1 comprises, in the end wall 13, an orifice 14 for entering the two-phase refrigerant into the volume 3. The pipe 4 makes it possible to direct the two-phase refrigerant to the distributor 2, which is fixed in the orifice 14. More precisely, an insert 16, which belongs to the distributor 2, is mounted in the orifice 14. The pipe 4 is connected to an external or upstream face 162 of the insert 16 which is oriented upstream of the refrigerant flow when insert 16 is in place in bore 14 and when evaporator 1 is in use. The two-phase refrigerant flows along and inside the intake pipe 4 then within the distributor 2 before being distributed to the various channels 8 within the volume 3 as represented by the arrows F1 '. We call upstream the direction from which the refrigerant comes and downstream its destination direction. On the figure 1 , the arrows F1 and F1 'are directed from upstream to downstream.

Le distributeur 2 comprend une grille 20 en forme de coupelle, sur laquelle est fixé un répartiteur 30 de forme globalement conique. Plus précisément, la grille 20 a une forme de sphère tronquée, centrée sur un axe X20 avec sa concavité tournée vers le répartiteur 30, c'est-à-dire vers le bas sur la figure 4.The distributor 2 comprises a grid 20 in the form of a cup, on which is fixed a distributor 30 of generally conical shape. More precisely, the grid 20 has the shape of a truncated sphere, centered on an axis X20 with its concavity turned towards the distributor 30, that is to say downward on the figure 4 .

La grille 20 comprend, en son centre, une ouverture circulaire 22, définissant un bord périphérique interne 24 de la grille 20. Une surface 25 de la grille est percée d'orifices 26, régulièrement espacés. Par ailleurs, la grille 20 comprend un bord 28 périphérique externe, permettant de la fixer sur l'insert 16 ou sur le pourtour de l'orifice 14 de l'évaporateur 1, du côté aval de celui-ci. Le bord 28 est plant et perpendiculaire à l'axe X20. Le bord 28 est percé de trois orifices 29, régulièrement espacés autour de l'axe X20, et de diamètre adapté au passage d'une vis. Ainsi, la grille peut être vissée ou rapportée sur la paroi 13.The grid 20 comprises, in its center, a circular opening 22, defining an internal peripheral edge 24 of the grid 20. A surface 25 of the grid is pierced with orifices 26, regularly spaced. Furthermore, the grid 20 comprises an outer peripheral edge 28, making it possible to fix it on the insert 16 or on the periphery of the orifice 14 of the evaporator 1, on the downstream side thereof. The edge 28 is planted and perpendicular to the axis X20. The edge 28 is pierced with three orifices 29, regularly spaced around the axis X20, and of diameter adapted to the passage of a screw. Thus, the grid can be screwed or attached to the wall 13.

Sur les figures, le bord 28 est circulaire. Il peut toutefois avoir une forme différente, par exemple lobée.In the figures, the edge 28 is circular. However, it may have a different shape, for example lobed.

La grille est formée par une couche de métal de quelques millimètres d'épaisseur et peut notamment être réalisée en acier et obtenue par estampage.The grid is formed by a layer of metal a few millimeters thick and can in particular be made of steel and obtained by stamping.

Le répartiteur 30 de forme globalement conique est fixé sur le bord interne 24 de la grille 20. Il comprend une base circulaire 32 centré sur un axe X30 auquel elle est perpendiculaire et un sommet 34. Le diamètre de la base 32 du répartiteur 30 est sensiblement égal au diamètre de l'ouverture circulaire 22 de la grille 20. Ainsi, le bord 36 de la base est fixé au bord interne 24 de la grille 20 et les axes X20 et X30 sont confondus, en un axe X2, en configuration assemblée du distributeur 2. L'axe X2 passe par le centre 33 de la base 32 et par le sommet 34.The distributor 30 of generally conical shape is fixed on the internal edge 24 of the grid 20. It comprises a circular base 32 centered on an axis X30 to which it is perpendicular and a vertex 34. The diameter of the base 32 of the distributor 30 is substantially equal to the diameter of the circular opening 22 of the grid 20. Thus, the edge 36 of the base is fixed to the internal edge 24 of the grid 20 and the axes X20 and X30 are combined, in an axis X2, in the assembled configuration of the distributor 2. The axis X2 passes through the center 33 of the base 32 and through the top 34.

On note X16 un axe central de l'insert 16. Cet insert est percé d'un alésage cylindrique 17 et d'un alésage tronconique 18 tous deux centrés sur l'axe X16. L'alésage 17 s'étend de la face amont 162, jusqu'à l'alésage 18, lequel s'étend de l'alésage 17 vers une face aval 164 de l'insert 16, opposée à la face amont 162. L'alésage 18 est divergent dans le sens amont aval de l'insert 16, c'est-à-dire en allant de la face 162 vers la face 164.X16 denotes a central axis of the insert 16. This insert is pierced with a cylindrical bore 17 and a tapered bore 18 both centered on the axis X16. The bore 17 extends from the upstream face 162, up to the bore 18, which extends from the bore 17 towards a downstream face 164 of the insert 16, opposite the upstream face 162. L ' bore 18 diverges in the upstream downstream direction of insert 16, that is to say going from face 162 to face 164.

On note S18 la section d'aire la plus petite de l'alésage 18 et S18' sa section d'aire la plus grande. La section S18 est la section de jonction entre les alésages 17 et 18. Elle est orientée vers l'amont du distributeur 2, c'est-à-dire vers la face 162, par rapport au reste de l'alésage 18, alors que la section S18' est axialement alignée avec la face 164.S18 denotes the smallest area section of the bore 18 and S18 'its largest area section. The section S18 is the junction section between the bores 17 and 18. It is oriented upstream of the distributor 2, that is to say towards the face 162, relative to the rest of the bore 18, while section S18 'is axially aligned with face 164.

On note α le demi-angle au sommet de la surface tronconique 182 qui délimite l'alésage 18 à l'intérieur de l'insert 16.We denote α the half-angle at the top of the frustoconical surface 182 which delimits the bore 18 inside the insert 16.

Lorsque le distributeur 2 est en place dans l'évaporateur 1, le sommet 34 du répartiteur 30 se trouve dirigé vers l'amont, les axes X2, X4, X16, X20 et X30 sont confondus et le répartiteur 30 dépasse vers l'amont, par rapport à la section S18 et en direction de la face 162 de l'insert 16, sur une distance d non nulle, qui est de préférence supérieure à 20 mm pour un distributeur 2 dont la base 32 a un diamètre de l'ordre de 70 mm et une longueur, mesurée le long de l'axe X2 entre cette base et le sommet 34, de l'ordre de 85 mm alors que la paroi 13 a une épaisseur de l'ordre de 60 mm. Ainsi, le sommet 34 dépasse de l'alésage 18 sur la distance d et le répartiteur 30 s'étend partiellement dans l'alésage 17.When the distributor 2 is in place in the evaporator 1, the top 34 of the distributor 30 is directed upstream, the axes X2, X4, X16, X20 and X30 are merged and the distributor 30 protrudes upstream, relative to section S18 and in the direction of face 162 of insert 16, over a non-zero distance d, which is preferably greater than 20 mm for a distributor 2 whose base 32 has a diameter of the order of 70 mm and a length, measured along the axis X2 between this base and the top 34, of the order of 85 mm while the wall 13 has a thickness of the order of 60 mm. Thus, the top 34 protrudes from the bore 18 over the distance d and the distributor 30 extends partially into the bore 17.

Le fait que la distance d est non nulle assure que le fluide frigorigène commence à circuler autour de la surface extérieure 37 du répartiteur 30, alors qu'il est encore en amont de l'alésage 18. Ceci facilite l'écoulement du fluide frigorigène et participe également au maintien d'un jet homogène à travers la grille 20, en particulier à charge partielle, quand le débit en fluide frigorigène, et donc la vitesse dans la tubulure 4, sont réduits. Ceci permet également de favoriser la répartition du débit autour du répartiteur quand le titre massique en vapeur est réduit, notamment en case de fonctionnement à basse température de condensation du groupe frigorifique et/ou utilisation d'un économiseur. Ceci permet également que le fluide frigorigène possède une masse volumique homogène plus importante, ce qui signifie que, pour un débit massique identique, le débit volumique et par conséquent la vitesse sont également réduits.The fact that the distance d is non-zero ensures that the refrigerant begins to circulate around the outer surface 37 of the distributor 30, while it is still upstream of the bore 18. This facilitates the flow of the refrigerant and also participates in maintaining a homogeneous jet through the grid 20, in particular at partial load, when the flow rate of refrigerant, and therefore the speed in the pipe 4, are reduced. This also makes it possible to promote the distribution of the flow around the distributor when the mass content of vapor is reduced, in particular in the case of low condensing temperature operation of the refrigeration unit and / or use of an economizer. This also allows the refrigerant to have a higher homogeneous density, which means that, for the same mass flow, the volume flow and therefore the speed are also reduced.

Le répartiteur 30 comprend sur sa surface extérieure 37, qui est conique, entre sa base 32 et son sommet 34, des nervures 38. Les nervures 38 s'étendent depuis le sommet 34 du répartiteur 30 jusqu'à sa base 32 et ont une forme torsadée, globalement comme une hélice plaquée sur un cône.The distributor 30 comprises on its outer surface 37, which is conical, between its base 32 and its top 34, ribs 38. The ribs 38 extend from the top 34 of the distributor 30 to its base 32 and have a shape twisted, generally like a propeller pressed against a cone.

On note H38 la hauteur de chaque nervure 38, mesurée perpendiculairement à la surface 37, entre cette surface et l'arête 382 de la nervure. L'arête 382 d'une nervure est le bord de cette nervure opposé à la surface 37. On note 384 une ligne de jonction entre une nervure 38 et la surface 37. La hauteur H38 d'une nervure 38 est la distance entre son arête 382 et une ligne de jonction 384, mesurée perpendiculairement à la surface 37. La hauteur H38 croît le long de l'axe X2 en allant du sommet 34 vers la base 32. Autrement dit, la hauteur H38 des nervures est plus importante au niveau de la base 32 du répartiteur 30 qu'au niveau de son sommet 34.The height of each rib 38 is denoted by H38, measured perpendicularly to the surface 37, between this surface and the edge 382 of the rib. The edge 382 of a rib is the edge of this rib opposite to the surface 37. We denote 384 a junction line between a rib 38 and the surface 37. The height H38 of a rib 38 is the distance between its edge 382 and a junction line 384, measured perpendicular to the surface 37. The height H38 increases along the axis X2 going from the top 34 towards the base 32. In other words, the height H38 of the ribs is greater at the level of the base 32 of the distributor 30 than at its top 34.

Le répartiteur 30 est pourvu de six nervures 38, régulièrement espacées autour de l'axe X2. Dans des variantes de l'invention, le nombre de nervures peut être plus élevé ou plus faible. De manière préférentielle mais non exclusive, le répartiteur 30 peut inclure trois, quatre, cinq, six ou huit nervures 38, régulièrement espacées.The distributor 30 is provided with six ribs 38, regularly spaced around the axis X2. In variants of the invention, the number of ribs can be higher or lower. Preferably but not exclusively, the distributor 30 can include three, four, five, six or eight ribs 38, regularly spaced.

Dans une autre variante de l'invention, les nervures 38 ne sont pas régulièrement espacées, afin de générer un mouvement irrégulier du fluide diphasique, permettant de l'agiter davantage au passage de l'orifice 14.In another variant of the invention, the ribs 38 are not regularly spaced, in order to generate an irregular movement of the two-phase fluid, making it possible to agitate it more as it passes through the orifice 14.

On considère un cône imaginaire passant par la partie de l'arête 382 de toutes les nervures 38 qui est la plus éloignée de l'axe X30. Ce cône imaginaire est l'enveloppe cônique du répartiteur 30. On note β le demi-angle au sommet de ce cône imaginaire. Les angles α et β sont choisis égaux, de sorte que, lorsque le répartiteur 30 est introduit dans les alésages 18 et 17, dans le sens de la flèche F4 à la figure 3, les bords 382 des nervures 38 s'étendent à proximité immédiate ou au contact de la surface 182. Un jeu doit effectivement exister entre les arêtes 382 et la surface 182 pour que l'ensemble puisse se monter sans que l'alésage 18 écrase le sommet des arêtes. On veillera cependant à ce que le jeu soit minimum, soit moins de 1 mm, afin que les cellules présentent une étanchéité suffisante entre elles pour éviter le mélange des sous-débits.Consider an imaginary cone passing through the part of the edge 382 of all the ribs 38 which is furthest from the axis X30. This imaginary cone is the conical envelope of the distributor 30. We denote by β the half-angle at the top of this imaginary cone. The angles α and β are chosen to be equal, so that, when the distributor 30 is introduced into the bores 18 and 17, in the direction of the arrow F4 at the figure 3 , the edges 382 of the ribs 38 extend in close proximity to or in contact with surface 182. Clearance must indeed exist between ridges 382 and surface 182 so that the assembly can be fitted without the bore 18 crushing the top of the ridges. However, care should be taken to ensure that the clearance is a minimum, ie less than 1 mm, so that the cells have sufficient sealing between them to avoid mixing of the sub-flows.

Ainsi, lorsque le répartiteur 30 est en place dans l'insert 16, au sein du distributeur 2 ainsi constitué, les surfaces 182 et 37 définissent entre elles un volume V2 de passage du fluide frigorigène qui s'étend autour des axes X2, X4, X16, X20 et X30 confondus. Comme ce volume V2 présente une section transversale, perpendiculaire aux axes précités, dont l'aire est relativement faible, il est en permanence gavé par le fluide frigorigène provenant de la canalisation 4, même si l'évaporateur 1 fonctionne à charge partielle. Ceci a pour conséquence que le fluide frigorigène est réparti de façon homogène autour du répartiteur 30, sans avoir tendance à se séparer en une partie gazeuse située au-dessus de l'axe X2 et une partie liquide située en dessous de cet axe.Thus, when the distributor 30 is in place in the insert 16, within the distributor 2 thus constituted, the surfaces 182 and 37 define between them a volume V2 for the passage of the refrigerant which extends around the axes X2, X4, X16, X20 and X30 combined. As this volume V2 has a cross section, perpendicular to the aforementioned axes, the area of which is relatively small, it is permanently force-fed by the refrigerant coming from the pipe 4, even if the evaporator 1 operates at partial load. The consequence of this is that the refrigerant fluid is distributed homogeneously around the distributor 30, without having a tendency to separate into a gaseous part located above the axis X2 and a liquid part located below this axis.

Les nervures 38 ont pour but de guider le fluide entrant dans l'évaporateur 1. En effet, la courbure des nervures 38 autour de l'axe X2 permet de donner au fluide un mouvement de rotation autour des axes X2 et X4 confondus en sortie du distributeur, comme représenté par les flèches F3 à la figure 7. Ce mouvement de rotation agite le fluide, mélange les deux phases gazeuse et liquide du fluide et permet d'obtenir une meilleure répartition du fluide dans le volume 3 et les canaux 8.The purpose of the ribs 38 is to guide the fluid entering the evaporator 1. In fact, the curvature of the ribs 38 around the axis X2 makes it possible to give the fluid a rotational movement around the axes X2 and X4 combined at the outlet of the distributor, as represented by arrows F3 at the figure 7 . This rotational movement stirs the fluid, mixes the two gaseous and liquid phases of the fluid and makes it possible to obtain a better distribution of the fluid in the volume 3 and the channels 8.

Le long de l'axe X2, l'alésage 18 n'entoure qu'une partie du répartiteur 2, à savoir sa partie la plus proche de la base 32. De cette manière, le sommet 34 et les nervures 38 du répartiteur 30 dépassent de l'alésage 18 vers l'amont, sur la distance d.Along the axis X2, the bore 18 surrounds only a part of the distributor 2, namely its part closest to the base 32. In this way, the top 34 and the ribs 38 of the distributor 30 protrude. from bore 18 upstream, over distance d.

L'insert 16 réduit le volume de passage du fluide autour du répartiteur 30 et force le passage de celui-ci le long des rainures 38 du répartiteur 30, ce qui accélère le fluide et augmente l'efficacité des nervures 38.The insert 16 reduces the volume of passage of the fluid around the distributor 30 and forces the passage of the latter along the grooves 38 of the distributor 30, which accelerates the fluid and increases the efficiency of the ribs 38.

La canalisation d'admission 4 est montée contre l'insert 16 et sa section débouchante est adaptée au diamètre de l'alésage 17, c'est-à-dire au plus petit diamètre de l'alésage tronconique 18 de l'insert 16. En fonctionnement, le fluide frigorigène est amené dans l'évaporateur 1 par la canalisation d'admission 4, dans laquelle tous les composants du fluide ont sensiblement la même vitesse. Le fluide s'écoule parallèlement à l'axe X4 et on appelle front d'écoulement du fluide une surface perpendiculaire à la flèche F1 et correspondant à la section de passage du fluide. A l'entrée de l'évaporateur 1, le fluide frigorigène entre en contact avec le sommet 34 distributeur 30 et la section de passage du fluide diminue à l'intérieur de la canalisation 4, jusqu'à ce que le front d'écoulement du fluide atteigne l'alésage 18. Le fluide frigorigène passe alors entre la surface extérieure 37 du répartiteur 30 et la surface intérieure 182 de l'insert 16 puis à travers les orifices 26 de la grille 20. Il est alors projeté dans le volume interne 3 de l'évaporateur 1, ce que représentent les flèches F1'.The intake pipe 4 is mounted against the insert 16 and its emerging section is adapted to the diameter of the bore 17, that is to say to the smallest diameter of the frustoconical bore 18 of the insert 16. In operation, the refrigerant is brought into the evaporator 1 through the inlet pipe 4, in which all the components of the fluid have substantially the same speed. The fluid flows parallel to the axis X4 and a surface perpendicular to the arrow F1 and corresponding to the passage section of the fluid is called the fluid flow front. At the inlet of the evaporator 1, the refrigerant comes into contact with the top 34 distributor 30 and the passage section of the fluid decreases inside the pipe 4, until the front fluid flow reaches the bore 18. The refrigerant then passes between the outer surface 37 of the distributor 30 and the inner surface 182 of the insert 16 and then through the orifices 26 of the grid 20. It is then projected into the internal volume 3 of the evaporator 1, which the arrows F1 'represent.

Le répartiteur 30 peut être réalisé en métal, notamment en acier. Dans ce cas, il peut être assemblé à la grille 20 par soudage.The distributor 30 can be made of metal, in particular of steel. In this case, it can be assembled to the grid 20 by welding.

En variante, et de façon préférentielle, le répartiteur 30 du distributeur 2 est réalisé en matière synthétique et fabriqué par impression tridimensionnelle.As a variant, and preferably, the distributor 30 of the distributor 2 is made of synthetic material and manufactured by three-dimensional printing.

Ce mode de fabrication donne une grande liberté au concepteur. Il permet de réaliser un répartiteur 30 selon diverses géométries. Ainsi, il est possible de réaliser un grand nombre de variantes dans la forme des nervures 38. De plus, ce procédé permet d'adapter les dimensions du répartiteur 30 aux dimensions de l'évaporateur 1, plus particulièrement à celles de l'alésage 18. Par ailleurs, l'impression tridimensionnelle permet de réaliser à moindre coût et rapidement des formes complexes, qui seraient difficilement réalisables par un procédé d'usinage classique. Dans ce cas, la grille 20 est de préférence monobloc avec le répartiteur 30 et obtenue par la même technique de fabrication. Ceci assure une continuité géométrique et mécanique entre ces pièces, sans avoir à procéder à un collage ou un soudage.This manufacturing method gives the designer great freedom. It makes it possible to produce a distributor 30 according to various geometries. Thus, it is possible to achieve a large number of variations in the shape of the ribs 38. In addition, this method makes it possible to adapt the dimensions of the distributor 30 to the dimensions of the evaporator 1, more particularly to those of the bore 18. Furthermore, three-dimensional printing makes it possible to produce complex shapes at a lower cost and rapidly, which would be difficult to produce by a conventional machining process. In this case, the grid 20 is preferably integral with the distributor 30 and obtained by the same manufacturing technique. This ensures geometric and mechanical continuity between these parts, without having to proceed with gluing or welding.

Dans une variante de l'invention, non représentée, la grille 20 ne comporte pas d'ouverture circulaire 22 et le répartiteur 30 est fixé sur une surface centrale interne de la grille 20.In a variant of the invention, not shown, the grid 20 does not have a circular opening 22 and the distributor 30 is fixed to an internal central surface of the grid 20.

Par ailleurs, la grille 20 peut avoir une forme différente de celle décrite précédemment. Par exemple, les trous 26 peuvent être ménagés sous forme de rainures ou avoir de grandes dimensions, de telle sorte que la grille comporte quatre grands trous et que le bord interne 24 de la grille n'est maintenu en position que par quatre pattes de métal reliées au bord 28 qui permet de fixer la grille sur l'évaporateur 1.Furthermore, the grid 20 may have a shape different from that described above. For example, the holes 26 can be formed in the form of grooves or have large dimensions, so that the grid has four large holes and the inner edge 24 of the grid is only held in position by four metal tabs. connected to edge 28 which allows the grid to be fixed on evaporator 1.

Selon un mode de réalisation non représenté de l'invention, le distributeur 2 peut comprendre un répartiteur 30 formé par un cône lisse, alors que la surface 182 de l'insert 16, qui définit l'alésage tronconique 18, est pourvue de nervures qui s'étendent en direction de l'axe X16. Ce mode de réalisation repose sur une solution miroir par rapport à celle représentée sur les figures 1 à 8 et dans laquelle les nervures prévues sur l'insert 16 contribuent également au guidage du fluide frigorigène dans l'espace circulaire défini entre la surface extérieure du répartiteur 30 et la surface 182.According to a not shown embodiment of the invention, the distributor 2 may include a distributor 30 formed by a smooth cone, while the surface 182 of the insert 16, which defines the frustoconical bore 18, is provided with ribs which extend in the direction of the X16 axis. This embodiment is based on a mirror solution compared to that shown on the figures 1 to 8 and in which the ribs provided on the insert 16 also contribute to guiding the refrigerant in the circular space defined between the outer surface of the distributor 30 and the surface 182.

Selon un autre mode de réalisation non représenté de l'invention, des nervures de guidage du fluide frigorigène peuvent être prévues à la fois sur les surfaces 37 et 182.According to another embodiment of the invention, not shown, ribs for guiding the refrigerant can be provided on both surfaces 37 and 182.

Dans le mode de réalisation représenté aux figures 8 et 9, les éléments analogues à ceux du premier mode de réalisation portent les mêmes références.In the embodiment shown in figures 8 and 9 , elements similar to those of the first embodiment bear the same references.

Dans ce qui suit, on ne décrit que ce qui distingue ce mode de réalisation du précédent.In what follows, only what distinguishes this embodiment from the previous one is described.

Dans ce mode de réalisation, la surface extérieure 37 du répartiteur 30 est lisse, c'est-à-dire dépourvue de nervures, de même que la surface 182 qui définit l'alésage tronconique 18 à l'intérieur de l'insert 16.In this embodiment, the outer surface 37 of the distributor 30 is smooth, that is to say devoid of ribs, as is the surface 182 which defines the frustoconical bore 18 inside the insert 16.

Ainsi, une fente annulaire est définie entre les surfaces 37 et 182 en regard lorsque le répartiteur 30 est en place dans l'insert 16, comme représenté à la figure 9, cette fente annulaire étant repérée comme un volume V2 caractéristique du distributeur 2. Dans l'exemple, le demi-angle au sommet α de la surface 182 est égal au demi-angle au sommet β de la surface 37, de sorte que l'épaisseur de la fente annulaire V2 est constante le long de l'axe X2. Ceci n'est pas obligatoire et, en jouant sur la valeur relative des angles α et β, il est possible que cette fente annulaire soit elle-même divergente ou convergente de l'amont vers l'aval du distributeur 2, c'est-à-dire de la face 162 vers la face 164.Thus, an annular slot is defined between the facing surfaces 37 and 182 when the distributor 30 is in place in the insert 16, as shown in figure 9 , this annular slot being identified as a volume V2 characteristic of the distributor 2. In the example, the half-angle at the top α of the surface 182 is equal to the half-angle at the top β of the surface 37, so that the thickness of the annular slot V 2 is constant along the axis X2. This is not compulsory and, by playing on the relative value of the angles α and β, it is possible that this annular slot is itself divergent or convergent from upstream to downstream of the distributor 2, that is i.e. from face 162 to face 164.

Dans tous les cas, la section S18 d'aire la plus petite de l'alésage 18 est dirigée vers l'amont par rapport à cet alésage, c'est-à-dire du côté de la face 162.In all cases, the section S18 of smaller area of the bore 18 is directed upstream with respect to this bore, that is to say on the side of the face 162.

Comme dans le premier mode de réalisation, le sommet 34 du répartiteur 30 dépasse vers l'amont par rapport à la plus petite section S18 de l'alésage tronconique 18, sur une distance d qui est non nulle, en particulier supérieure à 20 mm comme expliqué ci-dessus.As in the first embodiment, the top 34 of the distributor 30 protrudes upstream with respect to the smallest section S18 of the frustoconical bore 18, over a distance d which is not zero, in particular greater than 20 mm as explained above.

L'invention est représentée dans le cas où un insert 16 est installé dans l'ouverture 14 de la paroi 13. En variante, la paroi 13 elle-même peut définir un alésage tronconique de réception du répartiteur 30 du distributeur 2. Dans ce cas, l'organe qui définit cet alésage tronconique est la paroi 13 elle-même qui appartient en partie au distributeur 2.The invention is shown in the case where an insert 16 is installed in the opening 14 of the wall 13. As a variant, the wall 13 itself can define a frustoconical bore for receiving the distributor 30 of the distributor 2. In this case. , the member which defines this frustoconical bore is the wall 13 itself which partly belongs to the distributor 2.

Claims (15)

  1. Intake manifold (2) for a multitubular evaporator (1) of a two-phase heat-transfer fluid type installation, wherein this manifold comprises a diffusion grille (20) and a dispatcher (30) with a generally conical shape centered on an axis (X30) and comprising a top (34) and a base (32) fixed to the diffusion grille that is respectively directed towards an upstream side (162) and a downstream side of the dispatcher (164), wherein this dispatcher is characterized in that it also comprises a member (16) pierced with a frustoconical bore (18) centered on the axis (X30) of the dispatcher (30) and which surrounds this dispatcher, and in that the section (S18) is the smallest section of the tapered bore and is directed towards the upstream side (162) of the manifold (2), and in that the top (34) of the dispatcher (30) protrudes upstream from the frustoconical bore (18) of the insert (16) over a non-zero distance (d).
  2. Manifold (2) according to claim 1, characterized in that the dispatcher (30) has, on its outer surface, between its base (32) and its top (34), ribs (38) for guiding the heat-transfer fluid.
  3. Manifold (2) according to claim 2, characterized in that the ribs (38) have a twisted shape, generally like a helix pressed onto a cone.
  4. Manifold (2) according to one of claims 2 or 3, characterized in that the ribs (38) extend from the top (34) to the base (32) of the dispatcher (30).
  5. Manifold (2) according to one of claims 2 to 4, characterized in that the ribs (38) project from an outer surface (37) of the dispatcher (30), wherein this outer surface (37) is conical in shape.
  6. Manifold (2) according to claim 5, characterized in that the height (H38) of each rib (38), measured between the outer surface (37) of the dispatcher (30) and an edge (382) of the rib opposite to this surface, in a direction perpendicular to this surface, increases as it passes from the top (34) to the base (32) of the dispatcher (30).
  7. Manifold according to one of claims 2 to 6, characterized in that the ribs (38) of the dispatcher (30) also protrude from the frustoconical bore (18) of the insert (16) upstream by the non-zero distance (d).
  8. Manifold according to one of the preceding claims, characterized in that the frustoconical bore (18) is equipped on its surface (182) lying opposite the dispatcher (30) along the central axis (X2), with ribs for guiding the heat-transfer fluid.
  9. Manifold according to one of claims 2 to 8, characterized in that a clearance exists between an edge (382) of the ribs (38) and a surface (182) delimiting the frustoconical bore (18) at the inside of the insert (16).
  10. Manifold (2) according to one of claims 2 to 7, characterized in that the ribs (38) are regularly spaced from each other, around a central axis (X30) of the dispatcher (30).
  11. Manifold according to claim 1, characterized in that the dispatcher (30) and the bore (18) are devoid of ribs and define between them an annular slot (V2) for the passage of the heat-transfer fluid.
  12. Manifold (2) according to one of the preceding claims, characterized in that the distance (d), over which the top (34) of the dispatcher (30) protrudes upstream from the frustoconical bore (18) of the Insert (16), is greater than 20 mm.
  13. Method of manufacturing a manifold (2) according to one of the preceding claims, characterized in that it comprises a step of manufacturing the dispatcher (30) by three-dimensional printing.
  14. Multitubular evaporator (1) of a two-phase heat-transfer fluid type installation characterized in that it comprises a manifold (2) according to one of claims 1 to 12, installed upstream of an internal volume (3) for distribution to the evaporator that is itself arranged upstream of the two-phase heat-transfer fluid distribution system (6-8), and in that the top (34) of the dispatcher (30) is directed upstream and the grille (20) downstream, in the direction of the internal distribution volume (3), along a direction of flow (F1) of the dlphasic heat-transfer fluid.
  15. Thermal installation with two-phase heat-transfer fluid, characterized in that it comprises an evaporator according to claim 14.
EP15178404.8A 2014-07-28 2015-07-27 Intake manifold for an evaporator, method for manufacturing such a manifold, evaporator comprising such a diffuser and thermal installation with two-phase heat-transfer fluid Active EP2980509B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1457266A FR3024218B1 (en) 2014-07-28 2014-07-28 INTAKE DISPENSER FOR EVAPORATOR, METHOD FOR MANUFACTURING SUCH DISPENSER, EVAPORATOR COMPRISING SUCH DIFFUSER, AND DIPHASIC HEAT PUMP THERMAL INSTALLATION

Publications (2)

Publication Number Publication Date
EP2980509A1 EP2980509A1 (en) 2016-02-03
EP2980509B1 true EP2980509B1 (en) 2020-11-04

Family

ID=51932388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15178404.8A Active EP2980509B1 (en) 2014-07-28 2015-07-27 Intake manifold for an evaporator, method for manufacturing such a manifold, evaporator comprising such a diffuser and thermal installation with two-phase heat-transfer fluid

Country Status (3)

Country Link
EP (1) EP2980509B1 (en)
FR (1) FR3024218B1 (en)
RU (1) RU2684062C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957857B2 (en) * 2016-10-13 2021-11-02 株式会社Ihi Fluid dispersion device and heat treatment device
CN110455017A (en) * 2019-07-01 2019-11-15 上海昶协实业有限公司 A kind of composite structure liquid-dividing head
US11709020B2 (en) * 2021-04-21 2023-07-25 Lennox Industries Inc. Efficient suction-line heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1275199A1 (en) * 1985-07-22 1986-12-07 Специальное Конструкторско-Технологическое Бюро Компрессорного И Холодильного Машиностроения Cooling agent distributor
US5059226A (en) * 1989-10-27 1991-10-22 Sundstrand Corporation Centrifugal two-phase flow distributor
FR2766914B1 (en) 1997-07-29 1999-10-29 D Applic Thermiques Comp Ind DISTRIBUTOR FOR FITTING INTRATUBULAR HEAT EXCHANGERS OF DIPHASIC-TYPE REFRIGERATION FLUID COOLING PLANTS
JP2000111205A (en) * 1998-10-07 2000-04-18 Hitachi Ltd Distributor and air conditioner
FR2806156B1 (en) * 2000-03-07 2002-05-31 Ciat Sa PLATE HEAT EXCHANGER
ITPN20060030U1 (en) * 2006-07-27 2008-01-28 Gi Di Meccanica Spa DISTRIBUTOR DEVICE OF FLUIDS, IN PARTICULAR GAS
RU2377462C1 (en) * 2008-06-20 2009-12-27 Открытое акционерное общество "Сибирский химический комбинат" Cryogenic liquid evaporator
CN101907376B (en) * 2009-06-02 2012-07-25 江森自控楼宇设备科技(无锡)有限公司 Device for distributing refrigerant in refrigeration system
JP5306279B2 (en) * 2010-04-27 2013-10-02 三菱電機株式会社 Refrigerant distributor and evaporator
FR2997174B1 (en) 2012-10-18 2015-10-30 Ciat Sa TUBE EVAPORATOR AND METHOD FOR MANUFACTURING SUCH EVAPORATOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2684062C2 (en) 2019-04-03
FR3024218B1 (en) 2019-05-24
FR3024218A1 (en) 2016-01-29
RU2015131090A3 (en) 2019-02-04
EP2980509A1 (en) 2016-02-03
RU2015131090A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
EP1261829B1 (en) Plate exchanger
EP2980509B1 (en) Intake manifold for an evaporator, method for manufacturing such a manifold, evaporator comprising such a diffuser and thermal installation with two-phase heat-transfer fluid
FR2966868A1 (en) SYSTEM AND METHOD FOR COOLING ROTARY BLADE PLATFORM AREAS OF TURBINE
EP3973236B1 (en) Optimized heat exchange system for a turbomachine
FR2966869A1 (en) SYSTEM FOR COOLING TURBINE ROTARY BLADE PLATFORM ZONES
EP2809999B1 (en) TAP NOZZLE POSITIONED AT tHE INTAKE OF A HOT WATER RESERVOIR
FR2969692A1 (en) TURBINE HAVING EXHAUST PANEL
CA2503066A1 (en) Turbine ring
FR3058460A1 (en) CONNECTION ASSEMBLY FOR COOLING TURBOMACHINE TURBINE
EP1930659B1 (en) Jet engine combustion chamber
FR2856468A1 (en) ANNULAR COMBUSTION CHAMBER OF TURBOMACHINE
FR2967461A1 (en) LOW PRESSURE EXHAUST GAS DIFFUSER FOR STEAM TURBINE
EP3447271B1 (en) Heating system for convergent-divergent secondary nozzle
EP2883013B1 (en) Spiral-plate heat exchanger with homogeneous fluid supply
FR2978200A1 (en) LOW PRESSURE TURBINE EXHAUST DIFFUSER WITH TURBULATORS
EP1797963B1 (en) Mixing chamber and spraying device comprising said chamber
EP3443131B1 (en) Blowing lance nozzle
WO1992016297A1 (en) Partition for cylindrical ball mill with several elevation levels
WO2020193913A1 (en) Turbine engine blade provided with an optimised cooling circuit
EP3847342B1 (en) Pressurized-air supply unit for an air-jet cooling device
FR2999277A1 (en) Annular internal or external wall for e.g. direct flow combustion chamber, of turboshaft engine, has cooling holes whose drilling axes are directed according to direction of air flow so as to maintain supply of air axially across holes
EP3443132B1 (en) Blowing lance nozzle
FR3135313A1 (en) Explosion-proof and anti-knock surface combustion gas burner.
FR3131700A1 (en) Reactor for storing ammonia in a solid form, which can be used in particular in a heat engine.
EP4370840A1 (en) Condensation heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160705

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1331363

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015061400

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602015061400

Country of ref document: DE

Representative=s name: LAVOIX MUNICH, DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1331363

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015061400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210825

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210727

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210727

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150727

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104