EP2976488B1 - Système et procédé de manipulation de tubes de colonne montante - Google Patents

Système et procédé de manipulation de tubes de colonne montante Download PDF

Info

Publication number
EP2976488B1
EP2976488B1 EP14709558.2A EP14709558A EP2976488B1 EP 2976488 B1 EP2976488 B1 EP 2976488B1 EP 14709558 A EP14709558 A EP 14709558A EP 2976488 B1 EP2976488 B1 EP 2976488B1
Authority
EP
European Patent Office
Prior art keywords
movement
tubular elements
vessel
trolley
handling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14709558.2A
Other languages
German (de)
English (en)
Other versions
EP2976488A2 (fr
Inventor
Angelo Misson
Luca AMBROSIO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Navalimpianti SpA
Fincantieri SpA
Original Assignee
Navalimpianti SpA
Fincantieri SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Navalimpianti SpA, Fincantieri SpA filed Critical Navalimpianti SpA
Publication of EP2976488A2 publication Critical patent/EP2976488A2/fr
Application granted granted Critical
Publication of EP2976488B1 publication Critical patent/EP2976488B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/14Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole
    • E21B19/143Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/14Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole
    • E21B19/15Racking of rods in horizontal position; Handling between horizontal and vertical position

Definitions

  • the present invention relates to a movement system for tubular elements on a vessel according to the characteristics of the pre-characterizing part of claim 1.
  • the present invention also relates to vessels according to the characteristics of claims 40 to 42.
  • the present invention also relates to a movement method for tubular elements according to the characteristics of the pre-characterizing part of claim 43.
  • vessels In the present description and in the appended claims by the general expression "vessels" one will indicate ships, boats, rigs, floating structures in general and in particular drillships, semisubmersible drilling rigs.
  • tubular elements one will indicate both real pipes suitable to be laid on the sea or ocean bed by means of pipe-laying vessels, or the so-called “risers” which are tubular elements suitable to be reciprocally fastened after one another to form the drilling duct between the vessel and the sea bed and in the underwater drilling wells.
  • the vertical duct that connects the vessel to the sea bed, in correspondence with which the drilling of the well occurs.
  • Said vertical duct is made up of elements called “risers” which are tubular elements that form a vertical or catenary duct of connection between a control valve placed on the sea bed usually called BOP [Blow Out Preventer] and the vessel.
  • the risers are normally flanged tubular elements made up of a main hole and a number of auxiliary lines for the passage of the control fluids, in addition to pushing floating elements inserted around the structure of the riser itself.
  • the auxiliary lines can comprise a line for the inlet of sludge (kill line), a line for the recovery of sludge (choke line), two lines relating to the control of the control valve, a pumping line (booster line).
  • the present invention in general relates to the movement of tubular elements from a storage zone present on the vessel and handling means of the tubular elements.
  • the present invention in particular, relates to the movement of risers from a storage zone present on the vessel towards the derrick.
  • the present invention is not limited to the single specific application of the risers but, in general, it is applicable to the movement of generic tubular elements such as in the case of pipe-laying ships.
  • the length of the risers or of the tubular elements can be in the range of 22-27 metres and the diameter of the main hole can be in the range of 530-540 mm but it will be evident in view of the present description that the invention is applicable to tubular elements in general, independently of the sizes indicated.
  • the risers there are also further elements called "pushing modules" having the function of reducing the weight in water of the single riser.
  • the weight of the risers can be in the range of 20-40 tons.
  • the risers are connected to one another according to various coupling modes that are considered known for the purpose of the present invention.
  • each “riser” is a delicate element that must be moved appropriately. It is necessary to be particularly careful in the phase of taking out from the storage zone, typically a parking zone on the deck of the vessel or a hold. Furthermore, the movement phase on the deck of the vessel for the purpose of taking the riser towards the derrick in order to connect it to the vertical duct of already positioned risers is very delicate as well.
  • the risers once connected to one another to form the vertical duct, form the connection between the probe plane of the vessel and the control valve placed on the sea bed usually indicated by the term "Blow Out Preventer". During the drilling activities, the drilling rods are lowered into the riser. To carry out the drilling activity some drilling fluids are used, which are pressure-pumped into the drilling rods that are hollow.
  • the drilling fluids are made up of drilling sludge, specially prepared with the addition of various additives to modify its physical properties.
  • the drilling sludge pumped through the rods, comes out of the drilling head to go back up towards the surface where it is treated to be recycled and pumped into the well again.
  • the sludge goes back towards the drilling means passing through the air space between the main hole of the riser and the drilling rods lowered into it. This is, in fact, the main function of the risers, that is to say, creating an "airtight" passage for the rise of the drilling sludge from the sea bed to the drilling means.
  • the tubular elements or risers are usually stored in a covered hold or on the deck of the vessel.
  • the movement of the tubular elements occurs by means of bridge cranes that take out the tubular elements from storage stacks to take them towards a movement device which in its turn takes them towards the deck of the vessel.
  • a first movement phase occurs by means of bridge cranes or movement cranes.
  • a transfer device usually known by the name of "catwalk” which is a trolley that allows to transfer the riser into the derrick where each tubular element or riser is driven from an essentially horizontal condition to an essentially vertical condition to connect it to the series of previously installed risers to form the vertical duct up to the sea or ocean bed where the well closed by the respective control valve is dug.
  • a vessel for oil drilling must be able to operate at great depths on sea or ocean beds, where by "great depths” one means, without limits for the purpose of the present invention, sea or ocean depths in the range of 3000-4000 metres.
  • the hold is essentially free from bridge cranes but a bridge crane is used mounted on the upper part and externally to the hold, that is to say, on the deck of the vessel.
  • the hold must be necessarily provided with considerably wide ports that may ensure the access of the external bridge crane to the various zones of the hold for the taking out and the movement of the risers.
  • This solution in addition to the need for huge hold ports is also subjected to the previously described problems concerning the risks and dangers of management of suspended loads.
  • US-A-4.081.084 discloses a handling system for tubular elements and a method for moving tubular elements having the features of the pre-characterising portion of independent claims 1 and 43, respectively.
  • US-A-4.202.653 describes a pipe handling system including bridge crane and swing crane for storing and moving pipes to and from a common axial transport between a drilling rig platform and storage racks. Components of the systems include a piggyback riser and casing skate, spin rolls for uncoupling the pipe located between the racks and the axial transport, and a modular stabber which can accommodate different sizes of pipes.
  • the movement process is managed manually by the operators who control the bridge crane or the transfer cranes, without the use of automated procedures.
  • the presence of the operators in the control zones exposes the operators themselves to conditions of possible danger.
  • the poor automation of the process is often a serious problem in the phases of the operators' shift change. In fact when, after about six months, the operators are replaced by a new crew, a reduction in the crew's performance occurs with a consequent slowdown in the operations of laying of the tubular elements.
  • the prior art solutions make the phases of inspection of the tubular elements prior to their taking out difficult.
  • the movement activities of the tubular elements are often made complex due to the number of necessary operations and to the number of various machines involved, which are not coordinated or integrated with one another and which must be necessarily managed manually by single operators with all the risks connected to errors of movement, fall of suspended loads, impacts, damage, etc.
  • the risers are not all identical but can differ from each other depending on the depth at which they are suitable to operate.
  • a drawback of the prior art systems is that the loading and the taking out of the risers generally occurs manually by the operators who establish the order of loading.
  • An error by those who are in charge of the loading may cause following delays in the laying phase for example in the case in which a riser suitable to operate at great depths (that must be taken before the others) has been loaded on a bottom rack and below with respect to a series of risers suitable to operate at shallow depths (that must be the last to be taken). Furthermore, if the operators in charge of the laying do not notice the error, they might lay at great depths a riser that is not suitable to operate at such depths with the risk of breaks that may cause irreparable environmental damage and compromise the operators' safety.
  • the aim of the present invention is to provide an improved movement device and method for the movement of tubular elements from the hold of the vessel to the deck of the vessel itself.
  • a further aim of the present invention is to provide an improved lifting device and method for the movement of tubular elements on the deck of the vessel for the purpose of taking the tubular elements to the transfer device that transfers them to the derrick.
  • the solution according to the present invention allows to best use the space available inside the hold where the tubular elements are stored obtaining definitely more favourable coefficients of filling of the hold with respect to the prior art solutions.
  • the solution according to the present invention allows to eliminate the traditional lifting members, normally made up of bridge cranes, hold elevators and deck cranes, replacing them with more effective and safer devices able to ensure the movement of the tubular elements or risers in conditions of maximum safety. Furthermore, it allows for a high degree of automation of the process of movement of the tubular elements. Moreover, the number of transfers of the tubular elements or risers between different types of machines is minimized.
  • the solution according to the present invention allows to solve the safety problems related to the presence of suspended loads because the solution according to the present invention allows to obtain a movement of the tubular elements in a locking condition on the driving means, eliminating all the conditions of presence of suspended loads. This is further advantageous because impacts are prevented, which may damage the tubular elements.
  • the solution according to the present invention also allows to completely automate the transfer phase as well as the hold loading phase, so that the operators no longer have to handle the driving means manually, reducing the possibilities of error and reducing the exposure of the operators to conditions of danger. Furthermore, the solution according to the present invention also allows to maintain high standards of operative efficiency also in the case of changes of the crew or of the operators. Furthermore, the solution according to the present invention facilitates the phases of inspection of the tubular elements prior to their taking out from the storage stacks and also allows to know with precision and automatically the position of the various types of tubular elements or risers present in the storage stacks. Moreover, the solution according to the present invention allows for the assembly of the movement devices for tubular elements also on existing ships and, anyway, after the launch of the ship itself, preventing the movement devices from remaining exposed to the weather for long periods of time.
  • the solution according to the present invention allows to carry out the movement of the tubular elements or risers on the deck without having to use the on-board cranes and, therefore, completely eliminating the suspended loads, to the advantage of the personnel's safety and of the preservation of the riser from possible damage.
  • This is further advantageous as impacts are prevented, which may damage the tubular elements.
  • it advantageously allows for an efficient transfer of the tubular elements or risers between the taking out position within the hold or on the deck and the unload position towards the transfer device with one single operation in a constant condition of locking of the tubular element or riser.
  • the solution according to the present invention allows to obtain a movement system for tubular elements that is able to manage in an automatic way the entire movement of the tubular elements themselves both in the loading phase of the tubular elements within the storage zone and during the laying phase of the tubular elements.
  • the system according to the present invention also allows to have one single subject supplying the entire management and movement chain of the tubular elements, to the advantage of the reciprocal integration of the various constituents of the system and to the advantage of an efficient and safe movement of the tubular elements themselves.
  • the solution according to the present invention can be installed on the vessel also once the construction of the latter has been almost completed, thus preventing the equipment and the devices of the movement system from having to be installed in the phase of construction of the vessel, exposing them to the weather and to tough environmental conditions that may compromise their efficiency and functionality. Furthermore, it allows for a high degree of integration with the phase of design of the vessel, which already in the design phase can be pre-arranged to house the system according to the present invention allowing, with an equal capacity of tubular elements carried, to optimize and therefore to reduce the size of the area destined to their storage and therefore of the vessel itself, or, with equal sizes of the vessel, to increase the area intended for their storage.
  • the system according to the present invention allows for an easy and fast inspection of the tubular elements also when these are stored within the storage zone, which advantageously allows to carry out their inspection during the navigation phase. Therefore, it is possible to save time during the operations of installation of the tubular elements themselves, or rather preliminarily and beforehand highlighting any possible problems in such a way as to allow to prearrange appropriate actions of correction of the procedure of taking out of the tubular elements from the storage zone keeping into account any possible anomalies evidenced in the preliminary inspection phase.
  • the present invention finds application in the movement of tubular elements (6) from a storage zone (14) of a vessel (1) towards at least one laying or use zone (2) of the tubular elements.
  • the tubular elements will be risers that are taken from a storage zone (14) that can be a hold or a deposition zone on the deck.
  • the risers (6) are ( Fig. 2, Fig.
  • the riser ( Fig. 3 ) normally tubular elements flanged in correspondence with a first end (11) and in correspondence with a second end (12) that are opposite ends with respect to the longitudinal development of the tubular element in the form of a riser.
  • the riser ( Fig. 3 ) includes a main hole (10) and a number of auxiliary lines (13) for the passage of the control fluids, as well as floating pushing elements inserted around the structure of the riser itself.
  • each tubular element or riser is taken from an essentially horizontal condition to an essentially vertical condition to connect it to the series of risers previously installed to form the vertical duct (7) up to the sea or ocean bed (9) where the well closed by the respective control valve (8) is dug.
  • tubular elements (6) or the risers can be stored within an internal storage zone (14) such as a hold of the vessel (1) or they can be stored in correspondence with an external storage zone (14), such as a deck of the vessel (1).
  • an internal storage zone (14) such as a hold of the vessel (1)
  • an external storage zone (14) such as a deck of the vessel (1).
  • the system according to the present invention is applicable also to the racks within which the tubular elements are stored on the deck and is advantageous because the bridge cranes or movement cranes, which imply the previously described risks and dangers related to the conditions of movement of suspended loads, are eliminated.
  • the present invention advantageously exploits the combination and reciprocal coordination of the movement of the tubular elements (6) that is operated by means of at least two different devices that coordinate with each other to obtain a guided movement of the tubular elements from a storage zone (14), preferably a hold of the vessel (1), to a laying or use zone (2) of the tubular elements, which, for example in the case of a vessel for oil drilling can be ( Fig. 1 ) a derrick (2).
  • a first inventive device is ( Fig. 4 , Fig. 5 , Fig. 6 , Fig. 8 , Fig. 9 , Fig. 10 , Fig. 11 , Fig. 12 ) a movement device (5) which is able to manage the movement of the tubular elements in the storage zone (14):
  • the movement device (5) interfaces and coordinates ( Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24 ) with a lifting device (4), which is able to manage the movement of the tubular elements between the storage zone (14) and the deck (16) of the vessel (1):
  • the lifting device (4) can interface with cranes or driving means, such as a tilter device, able to move the tubular element (6) or the riser between the deck (16) and the laying or use zone (2) of the tubular elements.
  • the transfer device (3) can for example be a transfer device of the type usually known by the name of "catwalk", which is considered known for the purpose of the present invention.
  • the main components of the developed innovative system can interact and coordinate with one another to automatically manage the whole movement of the tubular elements.
  • the movement device (5) that manages the movement of the tubular elements in the storage zone (14) is made up ( Fig. 4 , Fig. 8, Fig. 9 ) of a pair of trolleys (17, 18) that are able to translate ( Fig. 4 , Fig. 5 , Fig. 10, Fig. 11 , Fig. 12 , Fig. 14 ) along a first direction (49) in the air space (51) between the stack (52) or column (15) of risers or tubular elements (6) and a wall or supporting structure (25, 62) whose function will be explained in more detail in the following of the present description.
  • the first trolley (17) and the second trolley (18) of the movement device (5) are placed in correspondence with opposite ends of the storage zone (14), that is to say, they are placed on opposite sides with respect to at least one stack (52) of tubular elements and in particular they are placed on opposite sides of at least one stack (52) that are the opposite sides in correspondence with which are the first end (11) and the second end (12) of the tubular elements (6), that is to say, the ends (11, 12) of the tubular elements on which there are the main holes (10) and any holes of the auxiliary lines (13) of the risers or tubular elements (6).
  • the first trolley (17) and the second trolley (18) of the movement device (5) are each provided with a base (44) which is sliding ( Fig. 5 , Fig.
  • first trolley (17) and the second trolley (18) of the movement device (5) are each provided with a frame (26) with substantially vertical development which is integral with the base (44) and translatable jointly and integrally with the base.
  • the frame (26) with substantially vertical development develops for a corresponding height but lower with respect to the height of the hold or of the storage zone (14).
  • a cursor (27) is vertically sliding.
  • the cursor (27) is provided with at least one engagement means (29, 30) with a corresponding end of the ends (11, 12) of the tubular elements (6). Since the movement device (5) is made up ( Fig. 4 , Fig. 8, Fig. 9 ) of a pair of trolleys (17, 18) each of which is provided with a base (44) sliding according to a first direction (49) and since on each base (44) a corresponding frame (26) is mounted, which is able to constitute a supporting and guiding element for the movement according to a substantially vertical second direction (50) of a corresponding cursor (27) provided with engagement means (29, 30) with a corresponding end of the ends (11, 12) of the tubular elements (6), one obtains that by coordinating the movement of the two trolleys (17, 18) it is possible to:
  • the described system can work also according to the opposite sequence to carry out the loading of the tubular elements or risers (6) from the lifting device (4) to the stacks (52) within the storage space.
  • the stacks (52) will be provided with retaining elements able to receive one or more rows of tubular elements or risers (6) arranged in columns, in a way absolutely similar to the retaining elements (53) represented with reference to the solution of storage on the deck ( Fig. 34 ).
  • the engagement means (29, 30) of the cursor (27) are made in the form of pins that enter the main hole (10) of the tubular element.
  • the engagement means (29, 30) are also possible, which can be considered equivalent and, as such, falling within the scope of the present invention.
  • the solution with the pins is conceived in such a way that each cursor (27) is provided with at least one respective retractable pin (29, 30) suitable to make an insertion or disengagement movement with respect to the main hole (10) of the tubular element.
  • the described movement device (5) is in practice made up of a pair of reciprocally coordinated translating columns, which are placed at the two ends of the storage zone (14).
  • the described movement device (5) allows for the movement of the tubular elements within the storage zone both transversely, that is to say, according to the first direction (49), and vertically, that is to say, according to the second direction (50). Furthermore, the described movement device (5) allows to reach any position of the storage zone (14).
  • the two translating columns of the movement device (5) are not physically constrained to each other, as usually occurs in a bridge crane, but their alignment and coordination is ensured by the automation system of the machine.
  • the device is much more compact with respect to a bridge crane usually used, allowing for its installation on the vessel (1) also once the construction of the vessel has been completed, so that the movement device (5) is not exposed to the weather or to impacts during the phase of construction of the vessel.
  • the movement device (5) further presents advantageous solutions to allow for an efficient filling of the storage zone (14), both if it is placed within a hold ( Fig. 1 , Fig. 4 , Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24 ) of the vessel (1) and if it is placed ( Fig. 34, Fig. 35 ) on the deck (16) of the vessel.
  • the system is in any case advantageous because it allows, in this case too, to prevent the resort to bridge cranes or cranes with the consequent problems concerning the movement of suspended loads that expose the operators to conditions of danger and that expose the tubular elements (6) to possible impacts and damage. Also in the case of application of the system of the invention with the storage zone (14) placed ( Fig. 34, Fig. 35 ) on the deck (16) of the vessel (1), it is possible to obtain a completely guided movement of the tubular elements (6) that prevents the presence of conditions of suspended loads and allows for a high degree of automation of the process.
  • a first particularly advantageous solution consists of the fact that the cursor (27), which is by itself vertically mobile on the frame (26) according to the second direction (50), is further provided ( Fig. 15, Fig. 16 ) with an elevation element (28), which is by itself vertically mobile along the body of the cursor (27) according to the second direction (50).
  • the fact of having the elevation element (28) vertically mobile on the body of the cursor advantageously allows to optimize the filling of the hold as it is necessary to observe that the engagement means (29, 30) must be placed at such a height as to allow them to store and take ( Fig. 12 ) the tubular elements in correspondence with the bottom of the hold or the floor of the deck.
  • the engagement means (29, 30) must be placed at such a height as to allow for the transfer ( Fig. 21, Fig. 22, Fig. 23 ) of the tubular elements (6) onto the lifting device (4). These two requirements for the engagement means (29, 30) are in contrast with each other because:
  • the cursor (27) is provided with two different engagement means (29, 30) that are arranged spaced from each other along the first direction (49) and essentially symmetrical with respect to an axis of symmetry of the cursor (27). In this way it is possible to use:
  • the engagement means or pins (29, 30) can be shaped ( Fig. 44 ) with an essentially quadrangular shaped section with radiused edges according to connection radiuses essentially corresponding to the internal radius of the riser.
  • the engagement means or pins (29, 30) are provided with at least one portion which is covered by a soft or friction material, such as a gummy material or plastic material.
  • the quadrangular shape is particularly advantageous as it allows to have two contact areas spaced from each other between the head (67) and the inside of the tubular element, ensuring greater stability with respect to a solution with a circular head, which in any case will be an adoptable solution, although less preferred with respect to the solution with the quadrangular head.
  • each pin (29, 30) is retractable ( Fig. 10, Fig. 11 ):
  • the first pins (29) and the second pins (30) of the just described elevation elements (28) as well as the third pins (66) of the tilter device (65) that will be described in the following of the present description, can have the previously described quadrangular configuration ( Fig. 43 , Fig. 44 , Fig. 48, Fig. 49 ).
  • the pin (29, 30, 66) can slide ( Fig. 48, Fig. 49 ) within a holder (92), but the head (67), which is the part suitable to get in contact with the tubular element (6), always remains external with respect to the holder (92) also in the withdrawn position of the pin (29, 30, 66).
  • This solution allows to be able to adopt interchangeable heads (67) without having to modify the rest of the mechanism of the pins, for example for the purpose of replacement in case of wear or for the purpose of allowing the handling of tubular elements having shapes very different from each other with a same device of general applicability, which will be adapted to the different needs by simply replacing the head (67) only and keeping unchanged the rest of the pin (29, 30, 66) and of the movement device of the pins themselves to obtain the movement between the extracted and withdrawn positions.
  • the whole unit of the pin (29, 30, 66), that is to say, comprehensive of the pin itself, of the relative holder (92) and of the relative pin actuator (88), has been designed in such a way as to be able to be installed in a removable manner, for the purpose of facilitating and fastening any possible replacements.
  • the pin (29, 30, 66) slides on guide shoes inside the holder (92) and a suitable greasing system is provided to reduce friction and keep the system efficient.
  • the pin (29, 30, 66) is movable between the extracted position and the withdrawn position by means of a pin actuator (88) which acts in extension and in traction between the pin itself and the holder (92).
  • the pin actuator (88) can be an electrical actuator or a hydraulic cylinder which is advantageously placed below the unit and external with respect to the pin and holder improving accessibility for maintenance or replacement although remaining in a protected position and not interfering with the tubular element during the operations of movement and taking out.
  • the positioning of the pin (29, 30, 66) opposite the tubular element (6) can be made in different ways according to the degree of automation that one wishes to obtain.
  • a particularly simple and economical solution ( Fig. 48, Fig. 49 ) provides the definition of a Cartesian Plane of movement coordinates on which Cartesian Plane the positions of the tubular elements within the retaining elements (53) are previously defined.
  • signals of the movement encoders of the various motors it is possible to carry out a sufficiently precise positioning of the pin (29, 30, 66) in correspondence with the tubular element (6) to be taken out from a stack (52).
  • a different solution provides the resort to optical pointing systems that allow to detect the position of the head flange of the tubular element or its end edge in such a way as to control in a more accurate way the positioning of the pin with respect to the insertion hole.
  • the sensors (89, 90, 91) not only confirm the positioning, but ensure to prevent impacts between the pin (29, 30) and the tubular element (6) sequentially enabling the movements.
  • the automation system and in particular the control unit (63) controls both trolleys (17, 18) and the respective elevation elements (28) and cursors (27) in correspondence with the opposite ends of the tubular element (6), the control unit (63) proceeding with the sequence of the movements only when both systems give a positive result, that is to say, when both the sensors (89, 90, 91) of the pin (29, 30) of the first trolley (17) and the sensors (89, 90, 91) of the pin (29, 30) of the second trolley (18) confirm that the tubular element (6) has been taken out correctly.
  • cursor driving means (31) which are preferably mounted on the base (44) of the trolley and are preferably made up of a first motor (35) which by means of a first gear-reducing device (48) actuates a winch (32), preferably a pair of winches (32) which, by means of one or more cables (33) that slide on first snub pulleys (34), allow for the lifting and the lowering of the cursor (27) which is advantageously constrained and guided in the vertical movement by means of the frame (26).
  • the movement of the cursor (27) according to the second direction (50) is controlled by means ( Fig. 43 ) of the first motor (35) which by means of the first gear-reducing device (48) actuates the pair of winches (32) which are controlled in a reciprocally synchronized way by means of one single drive shaft.
  • Each of the two cables (33) winds on a respective winch of the pair of winches (32) and each cable (33) preferably makes a double trip back and forth between the winch and the first snub pulleys (34).
  • each of the two cables (33) is able to support the whole cursor (27) independently of the other of the two cables (33), in such a way that also in the case in which one of the two cables failed, the other would be able to support on its own the whole weight of the cursor (27) and of any loads.
  • a double section winch is obtained with two symmetrical cables and with 100 % redundancy.
  • This brake mainly has safety purposes because in case of breakdowns it intervenes to stop the lifting system.
  • the brake is of the type normally tightened in braking and, for the normal operation of the system, it must be kept constantly deactivated by means of a specific control. In this way in case of breakdowns or failures, at the drop of the control that keeps the brake released, it will intervene and immediately stop the system.
  • the brake can also be useful to brake the descent movement of the cursor when it supports the weight of a tubular element (6) during transport.
  • the described braking system will intervene on the respective faulty trolley and will also control the activation of the braking system of the other trolley that is not subject to failure, preventing any tubular element that is being carried from possibly bending due to the stopping of one of the two trolleys while the other continues its stroke or movement.
  • a compensator device system (86) was realized ( Fig. 50, Fig. 51 ), which allows to balance for any traction difference between the two cables.
  • the compensator device (86) by oscillating, compensates for any different traction of the two cables.
  • the compensator device (86) can compensate for a different length of the cables, due for example to the progressive extension of the latter due to wear.
  • the compensator device (86) will be preferably oscillating between a central position and two positions of maximum inclination that will be preferably corresponding to an inclination of +/- 15 degrees with respect to the central position, even more preferably of +/- 10 degrees with respect to the central position.
  • the positions of maximum inclination can be defined by means of rabbet elements that prevent inclinations exceeding the limit value set mechanically.
  • One can also provide sensors that generate a corresponding signal of reaching of the maximum inclination limit, in which case the system is no longer able to compensate for further differences between the cables and it is necessary to schedule a maintenance intervention.
  • the cursor (27) will be provided with a compensator device (86) intended for the passage of the two cables (33), the compensator device (86) being suitable to incline alternatively on the one side or on the opposite side under the action of the traction difference present between the two cables (33), said inclination of the compensator device (86) compensating for the traction difference present between the two cables (33) in such a way as to bring them in a condition of equal traction and preventing one cable only from being subject to all the stress.
  • a compensator device (86) intended for the passage of the two cables (33)
  • the compensator device (86) being suitable to incline alternatively on the one side or on the opposite side under the action of the traction difference present between the two cables (33), said inclination of the compensator device (86) compensating for the traction difference present between the two cables (33) in such a way as to bring them in a condition of equal traction and preventing one cable only from being subject to all the stress.
  • the compensator device (86) comprises rabbet elements that prevent inclinations of the compensator device (86) exceeding limit values set mechanically, said rabbet elements preferably limiting the inclination of the compensator device (86) to angles included between +/- 15 degrees with respect to the balance position in which the two cables (33) exert an equal tensile force, even more preferably limiting the inclination of the compensator device (86) to angles included between +/- 10 degrees.
  • the other cable is still able to support the whole load and in that case the control unit will be able to bring the load and the cursor (27) in a safety position.
  • the cables (33) are connected to the compensator device by means of threaded tighteners with eyelet or fork and are fastened with a grommet nut and lock nut.
  • the end of the cables in its turn is provided with a cable terminal with an eyelet or fork.
  • the rough adjustment of the difference between the two cables will be carried out by acting on the thrust ring of one of the two drums.
  • the fine adjustment and the following corrections will be carried out with the tie-rods of the compensator device (86).
  • the compensator device (86) is placed in the low part of the elevator to allow this to be able to exploit all the height of the guiding plate without interfering with the wheels or the snub pulleys. As a result the connections are realized on the sides of the trolley.
  • the position of the compensator device (86) is controlled by three limit stops, the central one says that the compensator device (86) is horizontal, while the other two give the signal that the compensator device (86) is too inclined on the one side or on the opposite side.
  • the movement of the trolley (17, 18) according to the first direction (49) is guided ( Fig. 6 , Fig. 7 ) by means of a second guide (21) placed below with respect to the development in height of the frame (26) and by means of a third guide (23) placed above with respect to the development in height of the frame (26).
  • the second guide (21) is made in the form of a rail on whose opposite sides opposite pairs of second wheels (22) engage, which are arranged on a plane essentially orthogonal to the plane on which the frame (26) of movement of the cursor (27) develops.
  • the third guide (23) is made in the form of a rail on whose opposite sides opposite pairs of third wheels (24) engage, which are placed on a plane essentially orthogonal to the plane on which the frame (26) of movement of the cursor (27) develops.
  • This solution is advantageous because the frame (26) can also have a considerable development in height and must support the weight both of the cursor (27) and of the tubular element (6) carried.
  • the transmissions (39) are preferably cardan shafts, which by means of the second gear-reducing device (56) receive the motion from the third motor (38) thus being reciprocally synchronized in order to control the movement of the trolley (17, 18) by means of the just described rack system.
  • the cursor (27) is provided with an elevation element (28) which is itself vertically mobile along the body of the cursor (27) according to the second direction (50).
  • the movement of the elevation element (28) occurs ( Fig. 43 , Fig. 44 ) advantageously by means of a worm screw system.
  • a second motor (85) acts on the worm screw system in such a way that the elevation element (28) is controlled in lifting and in lowering along the screws (72).
  • All the machines of the supply communicate between each other through a central control system and in particular by means of the control unit (63).
  • the control unit (63) receives the signals from the inverters of the electric motors of control of the various devices to operate their control and their synchronization.
  • the trolleys (17, 18) are also provided with sensors connected to the control unit (63) for the coordination and the synchronization of the movements, to simplify the communication between different devices and to put in safety the handling system as a whole in case of breakdowns of one or more devices.
  • This command and control logic can be assisted by other control systems such as with the aid of a video camera that enables other management modes also in situations other than the operative ones, such as the manual advancement for maintenance and control activities with the presence of the operator on the trolley (17, 18) or remotely by means of the visualization of the video signals of the video camera on a remote control monitor or still by means of diagnostic and automatic inspection systems by means of video cameras that control the movements of one or more trolleys (17, 18) to perform an automatic inspection by means of video cameras of the stored tubular elements (6) prior to their actual use.
  • each trolley (17, 18) moves along first guides (19) and is provided with a frame (26) with vertical development along which the cursor (27) slides which in its turn is provided with one or more grasping pins (29, 30) if necessary mounted on an elevation element (28) that increases the vertical stroke achievable with the cursor (27).
  • the cursor (27) is vertically mobile on the frame (26) and is lifted by means of cables (33) which are operated by a lifting system comprising the two winches (32) controlled by the first motor (35).
  • the winches are placed on the trolley (17, 18) down and near the frame (26) with vertical development along which the cursor (27) slides. Laterally there are supporting seats to enable the support of the cursor (27) when it is not used for the sliding along the frame (26).
  • the encoder can be controlled by a mechanical system provided with a chain.
  • the electrical system of each trolley (17, 18) preferably consists of three sensors for the detection of the inclination of the compensator device (86), as previously described, two proximity sensors for stopping the movement of the trolley (17, 18) at the functional end limits of the first guide (19), an alarm sensor that signals an excessive elongation of the chain of the encoder, possible position sensors of the cursor (27) along the frame (26) during the vertical movement of the cursor itself or sensors in correspondence with the respective lower and upper limit of the frame.
  • the cursor (27) is guided ( Fig. 43 ) along the frame by means of two rear main wheels placed in correspondence with the upper end of the body of the cursor (27) and by means of two front main wheels placed in correspondence with the lower end of the body of the cursor (27).
  • the trolley is guided by means of four rollers two of which are placed on the upper part and two are placed on the lower part and is fastened by four further auxiliary rollers in an opposite position with respect to the main rollers to prevent overturning.
  • the four main rollers support the load on the ground while the side rollers are able to discharge the lateral or longitudinal loads due to the weight of the tubular element or to the movements of the vessel.
  • the auxiliary rollers during normal operativeness do not touch the respective guides except in the case in which there are longitudinal acceleration peaks or movements of the ship, impacts, etc.
  • the lifting system or cursor driving means (31) consist of two cables (33) that wind on the two winches (32) with at least five safety turns that are maintained also in the case of maximum release of the cable. From the winch the cable (33) passes along first fixed pulleys that are applied on the walls of the vessel itself or on the fixed supporting structure of the whole system. The cable (33) then reaches ( Fig. 43 ) the top first pulleys (34) that are on top of the frame (26) along which the cursor (27) moves.
  • the cables will preferably have a diameter of 26 mm and are fastened to the compensator device (86) by means of eyelet or fork systems ( Fig. 50 ).
  • the nut and lock nut system allows to adjust the tension of the cables (33) in order to set a relative tension of one with respect to the other that is such as to maintain the compensator device (86) in an approximately horizontal position.
  • the encoder system includes an encoder box installed on top of the frame (26) near the first pulleys (34).
  • the box protects the encoder and the respective electric contacts.
  • the encoder is axially coupled with an axis that ends with an external pinion that is connected to a chain.
  • the chain is tensioned by means of an idle wheel in correspondence with the lower end.
  • Said idle wheel is mounted on a hinged support that is tensioned by means of a spring. Both ends of the chain are connected to a compact connection arm screwed to the cursor (27). Between the upper end of the chain and the connection arm a tensioning device is mounted for the automatic adjustment of the tension of the chain.
  • the automation system and the control unit will know in every moment the vertical position of the cursor (27) along the frame (26) and can coordinate and synchronize the vertical movement of the two cursors (27) of the first trolley (17) and of the second trolley (18).
  • the sensors that measure the position of the compensator device (86) are made up of:
  • the lifting system includes the two winches (32) controlled by the first motor (35).
  • the first motor (35) that controls the winches (32) is connected to a first planetary gear-reducing device (48) integral with one of the two winches (32).
  • the winches are directly welded on the rotation drive shaft and are supported by means of end bearings on both sides.
  • the winches and the moving members are preferably protected by protection cases.
  • the movement device (5) coordinates ( Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24 ) with the lifting device (4) that carries out the following handling phase of the tubular element to move it towards the tilter device that loads it onto the transfer device (3), which in the case of tubular elements (6) in the form of risers can be the device usually indicated by "catwalk” that transfers the risers to the derrick (2) also dealing with their verticalization.
  • the lifting device (4) is preferably installed in correspondence with an existing wall of the vessel and near the hatch of access to the storage zone (14). It is made up ( Fig. 36 ) of a first elevator (70) and a second elevator (71) that are moved in a reciprocally coordinated and synchronized way to carry out the lifting and lowering operations of a pair of cradles (57).
  • the cradles (57) form a deposition seat (60) onto which the movement device (5) lays ( Fig. 22, Fig. 23 ) the tubular element (6) in case of taking out from the storage zone (14) or from which the movement device (5) takes out the tubular element (6) in case of loading of the tubular elements (6) towards the storage zone (14).
  • the cradles (57) are preferably provided with a retractable tooth (36) which is able to be moved between a first position ( Fig. 21 ) in which the tooth (36) is bent downwards leaving completely free the access to the deposition seat (60) for the movement within it of the tubular element (6) and a second position ( Fig. 23 , Fig. 31 ) in which the tooth (36) is bent upwards acting as restraint means of the tubular element (6) within the deposition seat (60) during the lifting or lowering phases of the cradles (57).
  • Each cradle (57) is mounted on a respective first body (58) which can slide vertically in lifting and in lowering along ( Fig. 32, Fig. 33 ) a stanchion (59) that guides its movement and on which the driving means of the first body (58) supporting the cradles (57) are installed.
  • each cradle (57) is mounted on a respective second body (84) which in its turn is vertically sliding on the first body (58).
  • the first body (58) can slide vertically in lifting and in lowering along the stanchion (59) that guides its movement and on which the driving means of the first body (58) supporting the cradles (57) are installed.
  • the driving means of the first body (58) can be made in the form of a motor (not shown) that, by means of a cable (not shown) and second pulleys (76), carries out the lifting and lowering movement of the first body (58) along the stanchion (59).
  • the movement of the second body (84) is of the vertical type in the same way as that of the first body (58) and allows to obtain a prolongation of the movement of the cradles (57) obtaining a movement stroke greater than the one that would be obtainable with the stanchion (59) only.
  • the second body (58) can be ( Fig. 38 ) vertically mobile by means of a worm screw system in which an actuator (73) controls by means of a pair of shafts (75) the vertical stroke of the second body (58) along the screws (72).
  • a lowering and lifting movement of the cradles (57) is enabled by the interaction of the lifting device (4) with:
  • the tilter device (65) is made up of a pair of components of which a first component (68) and a second component (69) which are reciprocally aligned ( Fig. 36 , Fig. 37 ) according to a direction corresponding to the width of the tubular element (6) to be moved.
  • the first component (68) and the second component (69) are spaced from each other by a distance greater than the width of the tubular element (6).
  • the first component (68) and the second component (69) comprise ( Fig. 41, Fig. 42 ) each a pair of supporting elements (77) which support a rotating arm (78) by hinging.
  • the centres of rotation around which the two arms (78) are rotating are reciprocally aligned ( Fig. 36 , Fig.
  • the centre of rotation of the arm (78) of the first component is aligned with the centre of rotation of the arm (78) of the second component in such a way that the arms (78) perform a rotation along reciprocally parallel planes.
  • the rotation of the arm (78) is controlled by means of a fourth motor (83) which by means of a third gear-reducing device (82) puts in rotation a pair of gears (81) arranged on a same motor shaft.
  • Each gear acts on a corresponding toothed portion (80) present on operating wings (79) of the arm (78) that are integral with the arm itself.
  • the wing (79) is made in the form of a portion of circular plate, because the rotation that has to be made by the tilter device (65) is not made on an arc of 360 degrees but must follow only a stretch approximately of 180 degrees to take ( Fig. 28, Fig. 29, Fig. 30 ) the tubular element (6) from the lifting device (4) to the following transfer device (3) or vice versa in case of loading of the hold.
  • the tubular element (6) is lifted from the hold (14) by means ( Fig. 25, Fig.
  • the arm (78) is rotated ( Fig. 30 ) to lift the tubular element (6) from the lifting device (4), which is thus free to go down into the hold again to take out another tubular element while the tilter device (65) lays ( Fig. 47 ) the tubular element onto the transfer device (3).
  • the grasp of the tubular element (6) by the tilter device (65) occurs by means of engagement means in the form ( Fig. 41, Fig. 42 , Fig. 37 ) of a retractable third pin (66) placed in correspondence with the arm (78), the third pin (66) of the arm (78) of the first component (68) being movable in a coordinated way with the third pin (66) of the arm (78) of the second component (69):
  • the innovative system according to the present invention can advantageously manage in a completely automatic way the main phases of the operation of movement of the tubular elements (6) from the storage zone (14) to the laying zone (2) or vice versa from a loading zone or from a laying zone (2) to the storage zone (14).
  • the system according to the present invention preventing suspended load conditions, is able to carry out a completely guided and restrained movement of the tubular elements also allowing, therefore, for the automatic transfer of a tubular element from a device to the other, such as from the movement device (5) to the lifting device (4) or from the lifting device (4) to the tilter device or vice versa.
  • the movement device (5) is made up of two trolleys, that is to say, a first trolley (17) and a second trolley (18) which are movable in a reciprocally coordinated and synchronized way during the movement phases of the tubular elements.
  • a first trolley (17) and a second trolley (18) which are movable in a reciprocally coordinated and synchronized way during the movement phases of the tubular elements.
  • Such operating mode is particularly useful during the inspection phases.
  • the first trolley (17) and the second trolley (18) are provided ( Fig. 15, Fig. 16 ) with at least one protection basket (61) able to accommodate an operator who, by controlling the respective trolley, can inspect freely and rapidly the tubular elements reaching any position within the storage zone without having to move physically within the storage zone itself but always remaining within the basket (61) placed on the cursor (27) of the trolley (17, 18).
  • the two trolleys in an independent way one can carry out the inspection simultaneously from opposite sides of the stack by means of two operators, a first operator on the first trolley (17) and a second operator on the second trolley (18).
  • the system according to the present invention also allows to completely automate the inspection phase as the cursor (27) of the trolley (17, 18) can be advantageously provided with visual detection or measurement means to perform operations of automatic supervision of the stored tubular elements (6).
  • visual detection or measurement means to perform operations of automatic supervision of the stored tubular elements (6).
  • the system can display on a monitor an image of the tubular element (6) on which the anomaly was detected so that the operator can decide whether to catalogue this signal as a false alarm or as a real anomaly or can decide to send to the site an operator who will carry out an in-depth control to establish the cause of the problem and verify whether the tubular element (6) is actually damaged or if it is usable.
  • the operator who must carry out the control will not have the need to locate the tubular element in the stacks as the trolley (17, 18) itself will take the operator in correspondence with the position in which the tubular element to be inspected is.
  • the lifting device (4) is characterised by having the lower section of its cradles (57) configured according to a telescopic shape. This allows the cradles (57), sized to lift the tubular elements (6), to go down into the hold or into the storage zone (14). This particularity allows to eliminate the need for a further hold elevator to take the tubular elements out of the hold as is necessary in some prior art solutions. In this way, by eliminating a further device from the hold it is possible to obtain a further saving of space in height within the hold which can be advantageously exploited to house a greater number of tubular elements (6) or to reduce the size of the vessel (1), with evident great benefits in both cases.
  • the particularity of the different engagement system of the tubular elements that for the movement device (5) is made up of the pins (29, 30) and for the lifting device (4) is made up of the cradles (57), allows for the transfer of the tubular elements between the two devices with the tubular element (6) never being left free to all advantage of the safety of the operation enabling a movement in an always guided and restrained condition of the tubular elements (6).
  • the lifting device (4) can thus lift the tubular element (6) out of the hold taking it to the tilter device.
  • the tilter device can then take out the tubular element (6) by an engagement system with telescopic pins similar to the engagement system with pins of the movement device (5) that has been previously described.
  • the tilter device will lay the tubular element (6) onto the transfer device (3), which in the case of the specific application of the risers on a drilling vessel will be made up of the device usually called "catwalk".
  • the transfer device (3) which in the case of the specific application of the risers on a drilling vessel will be made up of the device usually called "catwalk".
  • the lifting device (4) and tilter device allows for a completely guided and restrained transfer of the tubular element in conditions of maximum control and safety both for the operators and for the tubular elements.
  • the present invention is applicable in the movement of tubular elements (6) on vessels (1) that operate in offshore work conditions.
  • the tubular elements can be risers in the case of drilling vessels or pipes in the case of pipe-laying vessels.
  • the pipe-laying offshore means are means used to build and lay on the sea bed underwater ducts.
  • the present invention advantageously provides a movement method for tubular elements (6) on a vessel (1) at least in correspondence with a storage zone (14) of the vessel (1) itself or from the storage zone (14) to a feeding zone (2) or vice versa, wherein the tubular element (6) is advantageously always moved in an essentially restrained condition preventing suspended load conditions.
  • the movement method includes movement phases of the tubular elements carried out by means of at least one pair of devices of a handling system (3, 4, 5, 65) of the tubular elements (6) and transfer phases of the tubular element (6) from a first device of said handling system (3, 4, 5, 65) to a second device of said handling system (3, 4, 5, 65).
  • the transfer of the tubular element (6) from the first device to the second device of said handling system (3, 4, 5, 65) occurs by alternating different types of grasp and transfer means of the tubular element (6).
  • the transfer phases from the first device to the second device can comprise:

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Prostheses (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ship Loading And Unloading (AREA)

Claims (45)

  1. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) en correspondance avec une zone de stockage (14) dudit navire (1) ou à partir de ladite zone de stockage (14) vers une zone d'alimentation (2) ou vice versa, ledit système de manipulation (3, 4, 5, 65) comprenant un dispositif de déplacement (5) pour déplacer lesdits éléments tubulaires en correspondance avec ladite zone de stockage (14), ledit dispositif de déplacement (5) comprenant au moins deux chariots mobiles (17, 18) qui sont mobiles selon au moins une première direction de déplacement (49) et qui sont réciproquement espacés d'une distance (d), caractérisé en ce que chacun desdits chariots (17, 18) est pourvu d'au moins un moyen d'engagement (29, 30) s'engageant avec des extrémités respectives (11, 12) dudit élément tubulaire (6), ledit engagement desdites extrémités (11, 12) correspondant à une sortie dudit élément tubulaire (6) au moyen dudit dispositif de déplacement (5) pour le déplacement d'au moins l'un desdits éléments tubulaires (6) en correspondance avec ladite zone de stockage (14).
  2. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 1 caractérisé en ce que ledit dispositif de déplacement (5) comprend au moins deux desdits chariots (17, 18) dont :
    - un premier chariot (17) est mobile au moins selon ladite première direction de déplacement (49) en correspondance avec une première structure de support (25) se développant de façon parallèle par rapport à ladite première direction de déplacement (49) ;
    - un deuxième chariot (18) est mobile au moins selon ladite première direction de déplacement (49) en correspondance avec une deuxième structure de support (62) se développant de façon parallèle par rapport à ladite première direction de déplacement (49), ladite deuxième structure de support (62) étant espacée de ladite distance (d) par rapport à ladite première structure de support (25).
  3. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 2 caractérisé en ce que chacun desdits chariots (17, 18) est pourvu d'au moins l'un desdits moyens d'engagement (29, 30), l'au moins un moyen d'engagement (29, 30) dudit premier chariot (17) étant engageable avec une première extrémité (11) desdites extrémités (11, 12) dudit élément tubulaire (6) et l'au moins un moyen d'engagement (29, 30) dudit deuxième chariot (18) étant engageable avec une deuxième extrémité (12) desdites extrémités (11, 12) dudit élément tubulaire (6) qui est une extrémité opposée dudit élément tubulaire (6) par rapport à ladite première extrémité (11).
  4. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 3 caractérisé en ce qu'il comprend au moins une unité de contrôle (63) qui contrôle au moins ledit dispositif de déplacement (5), ladite unité de contrôle (63) contrôlant le déplacement desdits deux chariots (17, 18) d'une façon réciproquement coordonnée et synchronisée l'un par rapport à l'autre selon un premier mode de contrôle où chacun desdits deux chariots (17, 18) est contrôlé pour effectuer le même déplacement que l'autre desdits deux chariots (17, 18).
  5. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 4 caractérisé en ce qu'il comprend au moins une unité de commande (64) qui commande au moins l'un desdits deux chariots (17, 18), ladite unité de commande (64) contrôlant le déplacement d'au moins l'un desdits deux chariots (17, 18) d'une façon indépendante par rapport à l'autre chariot desdits deux chariots (17, 18) selon un deuxième mode de contrôle où chacun desdits deux chariots (17, 18) est contrôlé d'une façon indépendante par rapport à l'autre desdits deux chariots (17, 18) pour effectuer des opérations d'entretien ou d'inspection desdits éléments tubulaires (6) dans ladite zone de stockage (14).
  6. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 2 à 5 caractérisé en ce que ladite première structure de support (25) et ladite deuxième structure de support (62) sont des structures de cadre qui sont des structures réciproquement opposées et parallèles et qui sont placées sur la partie supérieure d'un pont (16) dudit navire (1), ledit pont (16) dudit navire constituant ladite zone de stockage (14) desdits éléments tubulaires (6).
  7. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 2 à 5 caractérisé en ce que ladite première structure de support (25) et ladite deuxième structure de support (62) sont des parois réciproquement opposées et parallèles d'une cale dudit navire (1), ladite cale dudit navire constituant ladite zone de stockage (14) desdits éléments tubulaires (6).
  8. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 7 caractérisé en ce que chacun desdits chariots (17, 18) comprend un cadre (26) se développant selon une deuxième direction (50) qui est une direction essentiellement verticale et essentiellement orthogonale par rapport à ladite première direction (49), ledit cadre (26) entraînant le déplacement d'un curseur (27), ledit curseur (27) étant verticalement mobile le long dudit cadre (26) et étant pourvu dudit au moins un moyen d'engagement (29, 30), ledit au moins un moyen d'engagement (29, 30) étant mobile selon ladite première direction (49) au moyen du déplacement dudit chariot (17, 18), ledit au moins un moyen d'engagement (29, 30) étant mobile selon ladite deuxième direction (50) au moyen du déplacement dudit curseur (27), lesdits déplacements desdits moyens d'engagement (29, 30) constituant un système de déplacement à deux axes pour le déplacement d'au moins l'un desdits éléments tubulaires (6) en correspondance avec ladite zone de stockage (14).
  9. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 8 caractérisé en ce que chacun desdits chariots (17, 18) comprend des moyens d'entraînement de curseur (31), lesdits moyens d'entraînement de curseur (31) étant structurés de façon à effectuer le déplacement dudit curseur (27) selon ladite deuxième direction (50) le long dudit cadre (26), lesdits moyens d'entraînement de curseur (31) comprenant un premier moteur (35) qui transmet son mouvement de rotation à au moins un treuil (32) qui est structuré de façon à enrouler et dérouler un câble (33) pour le déplacement dudit curseur (27) selon ladite deuxième direction (50) le long dudit cadre (26).
  10. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 9 caractérisé en ce que ledit premier moteur (35) est pourvu d'un disque de freinage (42) qui est pourvu de freines (43) correspondants ou ledit premier moteur (35) est pourvu d'un paquet de disques de freinage qui est placé en correspondance avec un arbre de sortie dudit premier moteur (35) vers ledit au moins un treuil (32) ou en correspondance avec un arbre d'entrée dudit au moins un treuil (32).
  11. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 9 à 10 caractérisé en ce que lesdits moyens d'entraînement de curseur (31) comprennent deux desdits treuils (32) et deux desdits câbles (33) tous les deux contrôlés par ledit premier moteur (35) avec l'interposition d'un premier réducteur (48), lesdits deux treuils (32) étant contrôlés de façon réciproquement synchronisée au moyen d'un seul arbre d'entraînement qui est connecté audit premier réducteur (48), chacun desdits deux treuils (32) étant structuré de manière à enrouler l'un desdits deux câbles (33), chacun desdits deux câbles (33) ayant des caractéristiques de résistance mécanique correspondant aux caractéristiques mécaniques qui sont nécessaires pour supporter tout seul le poids dudit curseur (27) et la charge possible dudit élément tubulaire (6).
  12. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 11 caractérisé en ce que ledit curseur (27) est pourvu d'un balancier (86) qui est structuré pour le passage desdits deux câbles (33), ledit dispositif compensateur (86) étant structuré de manière à être incliné alternativement vers un côté ou vers le côté opposé sous l'action de la différence de la force de traction qui est présente entre lesdits deux câbles (33), ladite inclination dudit balancier (86) compensant ladite différence de la force de traction entre lesdits deux câbles (33).
  13. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 12 caractérisé en ce que ledit balancier (86) comprend des éléments de feuillure empêchant les inclinations dudit balancier (86) au-delà des valeurs limites établies mécaniquement, lesdits éléments de feuillure limitant de préférence l'inclination dudit balancier (86) à des angles entre + / - 15 degrés par rapport à la position d'équilibre où lesdits deux câbles (33) appliquent la même force de traction, de façon encore plus préférée limitant l'inclination dudit balancier (86) à des angles entre + / - 10 degrés.
  14. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 13 caractérisé en ce que chacun desdits chariots (17, 18) comprend un élément d'élévation (28) qui est verticalement mobile entre au moins deux positions, ledit au moins un moyen d'engagement (29, 30) étant solidaire dudit élément d'élévation (28).
  15. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 14 caractérisé en ce que ledit élément d'élévation (28) est verticalement mobile au moins entre lesdites deux positions au moyen d'un système de déplacement à vis sans fin, un deuxième moteur (85) agissant sur ledit système à vis sans fin, ledit deuxième moteur (85) étant structuré pour contrôler le déplacement dudit élément d'élévation (28) pour le mouvement de soulèvement et d'abaissement le long des vis (72).
  16. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 14 à 15 et selon l'une quelconque des revendications précédentes 8 à 11 caractérisé en ce que ledit élément d'élévation (28) est installé sur ledit curseur (27), ledit au moins un moyen d'engagement (29, 30) étant verticalement mobile selon ladite deuxième direction (50) au moyen du déplacement dudit curseur (27) et étant en outre mobile verticalement selon ladite deuxième direction (50) entre au moins deux positions le long du corps dudit curseur (27) au moyen du déplacement dudit élément d'élévation (28).
  17. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 16 caractérisé en ce que chacun desdits chariots (17, 18) comprend des roues sélectionnées parmi :
    - des premières roues (20) qui reposent sur un premier guide (19) qui se développe de façon parallèle par rapport à ladite première direction (49), lesdites premières roues (20) actionnant le glissement dudit chariot (17, 18) le long de ladite première direction (49) et déchargeant sur ledit premier guide (19) le poids du chariot respectif (17, 18) et dudit élément tubulaire manipulé au moyen desdits chariots (17, 18) ;
    - des paires opposées de deuxièmes roues (22) dont le plan de rotation est placé sur un plan essentiellement horizontal, lesdites deuxièmes roues (22) étant structurées pour s'accoupler en correspondance avec les côtés opposés d'un deuxième guide (21) sous la forme d'un rail qui est serré dans une position intermédiaire entre ladite paire de deuxièmes roues (22) ;
    - des paires opposées de troisièmes roues (24) dont le plan de rotation est placé sur un plan essentiellement horizontal, lesdites troisièmes roues (24) étant structurées pour s'accoupler en correspondance avec les côtés opposés d'un troisième guide (23) sous la forme d'un rail qui est serré dans une position intermédiaire entre ladite paire de troisièmes roues (24).
  18. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 8 à 16 et selon la revendication 17 caractérisé en ce que lesdites deuxièmes roues (22) sont placées le long dudit cadre (26) en correspondance avec une première position le long dudit cadre (26) qui est une position espacée et abaissée par rapport à une deuxième position le long dudit cadre (26) qui est une position supérieure par rapport à ladite première position, lesdites troisièmes roues (24) étant placées le long dudit cadre (26) en correspondance avec ladite deuxième position.
  19. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 18 caractérisé en ce que chacun desdits chariots (17, 18) comprend des moyens d'entraînement de chariot (37), lesdits moyens d'entraînement de chariot (37) étant structurés pour effectuer le déplacement dudit chariot (17, 18) selon ladite première direction (49).
  20. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 19 et selon l'une quelconque des revendications précédentes 8 à 18 caractérisé en ce que lesdits moyens d'entraînement de chariot (37) sont composés d'un troisième moteur (38) qui, au moyen d'un deuxième réducteur (56), est accouplé à deux transmissions (39) qui mettent respectivement en rotation des quatrièmes roues (41) dont:
    - une quatrième roue (41) supérieure qui est supportée au moyen d'un élément de palier respectif (46) au moyen de paliers (47), la quatrième roue (41) supérieure étant placée sur la partie supérieure par rapport au développement dudit cadre (26) selon ladite deuxième direction (50), ladite quatrième roue (41) supérieure étant une roue dentée s'accouplant à un quatrième guide (40) supérieur sous la forme d'une crémaillère;
    - une quatrième roue (41) inférieure qui est supportée au moyen d'un élément de palier respectif (46) au moyen de paliers (47), la quatrième roue (41) inférieure étant placée sur la partie inférieure par rapport au développement dudit cadre (26) selon ladite deuxième direction (50), ladite quatrième roue (41) inférieure étant une roue dentée s'accouplant à un quatrième guide (40) inférieur sous la forme d'une crémaillère;
    les termes "supérieur" et "inférieur" se référant audit cadre (26) ayant un développement substantiellement vertical selon une direction qui correspond à la direction de la force de gravité conformément aux significations usuelles conventionnellement attribuées aux termes "supérieur" et "inférieur".
  21. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 20 caractérisé en ce que lesdites transmissions (39) sont des arbres de cardan qui, au moyen dudit deuxième réducteur (56) reçoivent le mouvement dudit troisième moteur (38) étant en conséquence réciproquement synchronisés afin de contrôler le déplacement dudit chariot (17, 18) au moyen desdits quatrièmes guides (40) sous la forme d'une crémaillère.
  22. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 21 caractérisé en ce que ledit au moins un moyen d'engagement (29, 30) est au moins une broche rétractable qui est mobile entre au moins deux positions dont une première position est une position retirée qui est une position de non-engagement avec ledit élément tubulaire (6) et une deuxième position est une position extraite qui est une position d'engagement où ladite broche est insérée dans un trou (10) dudit élément tubulaire (6).
  23. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 22 caractérisé en ce que ledit au moins un moyen d'engagement (29, 30) est une paire desdites broches rétractables, lesdites broches rétractables étant rétractables et extractibles entre ladite première position retirée de non-engagement et ladite position extraite d'engagement de façon indépendante l'une par rapport à l'autre.
  24. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 23 caractérisé en ce que ladite paire de broches rétractables est composée d'une première broche (29) et d'une deuxième broche (30) qui sont espacées réciproquement d'une distance supérieure à l'encombrement en section dudit élément tubulaire (6).
  25. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 24 caractérisé en ce que ledit système de manipulation (3, 4, 5, 65) comprend un dispositif de soulèvement (4) pour soulever ou abaisser lesdits éléments tubulaires (6) entre au moins deux positions dont une première position est une position d'interface avec ledit dispositif de déplacement (5) et une deuxième position est une position d'interface avec un autre dispositif dudit système de manipulation (3, 4, 5, 65), ladite première position d'interface avec ledit dispositif de déplacement (5) étant une position pour transférer au moins l'un desdits éléments tubulaires (6) à partir dudit dispositif de déplacement (5) vers ledit dispositif de soulèvement (4) dans un siège de dépôt (60) ou, vice versa, étant une position pour transférer au moins l'un desdits éléments tubulaires (6) à partir dudit siège de dépôt (60) dudit dispositif de soulèvement (4) vers ledit dispositif de déplacement (5).
  26. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 25 caractérisé en ce que ledit dispositif de soulèvement (4) est constitué par une paire de berceaux (57) qui forment ledit siège de dépôt (60) sur lequel ledit dispositif de déplacement (5) dépose ledit élément tubulaire (6) ou à partir duquel le dispositif de déplacement (5) prend ledit élément tubulaire (6).
  27. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 26 caractérisé en ce que ledit berceau (57) est pourvu d'une dent rétractable qui est mobile entre une première position où ladite dent (36) est rétractée laissant un accès complètement libre audit siège de dépôt (60) pour déplacer dans celui-ci ledit élément tubulaire (6) et une deuxième position où ladite dent (36) est tournée vers ledit berceau (57) fonctionnant comme un moyen de retenue pour ledit élément tubulaire (6) dans ledit siège de dépôt (60) pendant les étapes de soulèvement et d'abaissement dudit berceau (57), le mouvement de ladite dent (36) se faisant au moyen d'un dispositif d'actionnement électrique ou hydraulique (74) de préférence un dispositif d'actionnement (74) sous la forme d'un piston qui applique une force de poussée ou de traction sur ladite dent (36) par rapport audit berceau (57) sur lequel ladite dent (36) est articulée.
  28. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 26 à 27 caractérisé en ce que chacun desdits berceaux (57) est monté sur un respectif premier corps (58) qui peut glisser verticalement dans un mouvement de soulèvement et dans un mouvement d'abaissement le long d'un montant (59) qui actionne le déplacement dudit premier corps (58), ledit montant (59) étant pourvu de moyens d'entraînement dudit premier corps (58) portant l'un desdits berceaux (57).
  29. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 28 caractérisé en ce que chacun desdits berceaux (57) est monté sur ledit respectif premier corps (58) avec l'interposition d'un deuxième corps (84), chacun desdits berceaux (57) étant monté sur ledit deuxième corps (84) qui est à son tour verticalement coulissant sur ledit premier corps (58), ledit premier corps (58) étant coulissant dans un mouvement de soulèvement et dans un mouvement d'abaissement le long dudit montant (59), ledit deuxième corps (84) étant coulissant dans un mouvement de soulèvement et dans un mouvement d'abaissement le long dudit premier corps (58), le mouvement dudit deuxième corps (84) constituant une extension du mouvement des berceaux (57) au moyen dudit premier corps (58).
  30. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 25 à 29 et selon la revendication 7 et selon l'une quelconque des revendications 8 à 24 caractérisé en ce que ledit dispositif de déplacement (5) est structuré pour le déplacement desdits éléments tubulaires (6) entre ladite zone de stockage (14) sous la forme de ladite cale dudit navire (1) et caractérisé en outre en ce que ledit dispositif de déplacement (5) est connecté et coordonné avec ledit dispositif de soulèvement (4) pour le déplacement desdits éléments tubulaires entre ladite zone de stockage (14) et ledit pont (16) dudit navire (1), ledit dispositif de soulèvement (4) opérant le soulèvement ou l'abaissement d'au moins l'un desdits éléments tubulaires (6) entre:
    - une première position d'interface et de transfert desdits éléments tubulaires entre ledit dispositif de déplacement (5) et ledit dispositif de soulèvement (4), ladite première position d'interface et de transfert étant située intérieurement par rapport à ladite zone de stockage (14) sous la forme de la dite cale dudit navire (1);
    - une deuxième position d'interface et de transfert desdits éléments tubulaires entre ledit dispositif de soulèvement (4) et un autre dispositif dudit système de manipulation (3, 4, 5, 65), ladite deuxième position d'interface et de transfert étant située à l'extérieur par rapport à ladite zone de stockage (14) sous la forme de ladite cale dudit navire (1).
  31. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 25 à 30 caractérisé en ce que ledit système de manipulation (3, 4, 5, 65) comprend un dispositif basculeur (65) qui est connecté et coordonné avec ledit dispositif de soulèvement (4), ledit dispositif basculeur (65) étant pourvu de bras (78) qui sont structurés pour effectuer un basculement d'au moins l'un desdits éléments tubulaires (6) entre une position de support dans ledit siège de dépôt (60) et une position de support sur un dispositif de transfert (3) pour transférer ledit élément tubulaire (6) vers une zone de pose (2) ou à partir d'une zone de chargement desdits éléments tubulaires (6) sur ledit navire (1).
  32. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 31 caractérisé en ce que ledit dispositif basculeur (65) consiste en une paire de composants, un premier composant (68) et un deuxième composant (69) qui sont réciproquement alignés selon une direction correspondant à la largeur dudit élément tubulaire (6) et qui sont réciproquement espacés d'une distance supérieure à la largeur dudit élément tubulaire (6), chacun dudit premier composant (68) et dudit deuxième composant (69) comprenant une paire d'éléments de support (77) qui supportent ledit bras (78) qui peut tourner au moyen de moyens d'articulation, le centre de rotation du bras (78) du premier composant (68) étant aligné avec le centre de rotation du bras (78) du deuxième composant (69), lesdits bras (78) effectuant une rotation le long de plans qui sont des plans réciproquement parallèles.
  33. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon la revendication 32 caractérisé en ce que ledit bras (78) est contrôlé en rotation au moyen d'une paire d'engrenages (81) qui sont placés sur un même arbre d'actionnement, chaque engrenage agissant sur une partie dentée correspondante (80) qui est présente sur des ailes d'actionnement (79) dudit bras (78) qui sont solidaires du bras lui-même.
  34. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 32 à 33 caractérisé en ce que l'action de saisir ledit élément tubulaire (6) au moyen dudit dispositif basculeur (65) se fait au moyen de moyens d'engagement sous la forme d'une troisième broche rétractable (66) qui est placée en correspondance avec ledit bras (78), la troisième broche (66) du bras (78) du premier composant (68) étant mobile de façon coordonnée avec la troisième broche (66) du bras (78) du deuxième composant (69) selon des directions d'engagement avec ledit élément tubulaire (6) qui correspondent à des directions d'approche réciproque desdites troisièmes broches (66) et selon des directions de désengagement dudit élément tubulaire (6) qui correspondent à des directions d'écartement réciproque desdites troisièmes broches (66), l'approche réciproque desdites troisièmes broches (66) impliquant l'insertion desdites troisièmes broches (66) dans ledit élément tubulaire (6) à partir de directions qui sont des directions réciproquement opposées l'une par rapport à l'autre.
  35. Système de manipulation (3, 4, 5,65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 22 à 34 caractérisé en ce que ladite broche (29, 30, 66) a une section en forme essentiellement quadrangulaire avec des rayons de connexion qui correspondent essentiellement au rayon intérieur dudit élément tubulaire (6), au moins une partie de contact de ladite section en forme essentiellement quadrangulaire étant possiblement recouverte par un matériel souple ou de friction.
  36. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 22 à 35 caractérisé en ce que ladite broche (29, 30, 66) est coulissante entre une position où la broche est au moins partiellement rétractée entre un support (92) et une position extraite dudit support (92) où ladite broche s'engage avec ledit élément tubulaire (6), ladite broche (29, 30, 66) étant mobile au moyen d'un actionneur de broche (88) qui opère en extension et en traction entre la broche elle-même et le support (92), ledit actionneur de broche (88) étant de préférence un actionneur électrique ou un vérin hydraulique.
  37. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 22 à 36 caractérisé en ce que ladite broche (29, 30, 66) est pourvue d'une tête interchangeable (67) constituant l'élément d'engagement de ladite broche avec ledit élément tubulaire (6).
  38. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 37 caractérisé en ce que ledit système de manipulation (3, 4, 5, 65) est un système de manipulation d'éléments tubulaires (6) sous la forme de colonnes montantes d'installations de forage.
  39. Système de manipulation (3, 4, 5, 65) d'éléments tubulaires (6) sur un navire (1) selon l'une quelconque des revendications précédentes 1 à 37 caractérisé en ce que ledit système de manipulation (3, 4, 5, 65) est un système de manipulation d'éléments tubulaires (6) sous la forme de tubes à poser sur le fond de la mer ou de l'océan pour la connexion réciproque et constituent un conduit sous-marin.
  40. Navire (1) pour transporter et / ou poser lesdits éléments tubulaires (6) caractérisé en ce qu'il comprend ledit système de manipulation (3, 4, 5, 65) desdits éléments tubulaires (6), ledit système de manipulation (3, 4, 5, 65) étant un système pour manipuler (3, 4, 5, 65) des éléments tubulaires (6) sur ledit navire (1) selon l'une quelconque des revendications précédentes 1 à 39.
  41. Navire (1) pour transporter et / ou poser lesdits éléments tubulaires (6) caractérisé en ce que ledit navire est sélectionné parmi le groupe constitué de navire de forage, appareil de forage semisubmersible et caractérisé en outre en ce qu'il comprend ledit système de manipulation (3, 4, 5, 65) desdits éléments tubulaires (6), ledit système de manipulation (3, 4, 5, 65) étant un système pour manipuler (3, 4, 5, 65) des éléments tubulaires (6) sur ledit navire (1) selon l'une quelconque des revendications précédentes 1 à 38.
  42. Navire (1) pour transporter et / ou poser lesdits éléments tubulaires (6) caractérisé en ce que ledit navire est un navire de pose de tubes et caractérisé en outre en ce qu'il comprend ledit système de manipulation (3, 4, 5, 65) desdits éléments tubulaires (6) sous la forme de tubes, ledit système de manipulation (3, 4, 5, 65) étant un système pour manipuler (3, 4, 5, 65) des éléments tubulaires (6) sur ledit navire (1) selon l'une quelconque des revendications précédentes 1 à 37.
  43. Méthode pour déplacer des éléments tubulaires (6) sur un navire (1) au moins en correspondance avec une zone de stockage (14) dudit navire (1) ou à partir de ladite zone de stockage (14) vers une zone d'alimentation (2) ou vice versa, ledit déplacement se produisant au moins au moyen d'un dispositif de déplacement (5) comprenant un premier chariot (17) et un deuxième chariot (18), caractérisée en ce que ledit déplacement se produit conformément aux étapes suivantes :
    a) déplacement dudit premier chariot (17) selon au moins une première direction de déplacement (49) qui se développe horizontalement de façon parallèle par rapport à au moins une pile (52) desdits éléments tubulaires (6) en correspondance avec un premier parcours de déplacement qui est défini par au moins un premier guide (19) correspondant ;
    b) déplacement dudit deuxième chariot (17) selon au moins ladite première direction de déplacement (49) en correspondance avec un deuxième parcours de déplacement qui est défini par au moins un premier guide (19) correspondant, ledit deuxième parcours de déplacement se développant de façon parallèle par rapport au dit premier parcours de déplacement dudit premier chariot (17) et ledit deuxième parcours de déplacement étant espacé par rapport audit premier parcours de déplacement d'une distance qui est supérieure à l'extension en longueur desdits éléments tubulaires (6) ;
    c) coordination du déplacement dudit premier chariot (17) et dudit deuxième chariot (18), ladite coordination étant structurée pour déplacer ledit premier chariot (17) vers une première position le long dudit premier parcours de déplacement qui correspond à une première position le long dudit premier parcours qui est une première position selon des coordonnées horizontales où un élément tubulaire spécifique (6) desdits éléments tubulaires (6) à extraire de ladite pile (52) est présent ou qui est une première position selon des coordonnées horizontales où ledit élément tubulaire spécifique (6) desdits éléments tubulaires (6) doit être stocké et ladite coordination étant structurée de manière à déplacer ledit deuxième chariot (18) vers une première position le long dudit deuxième parcours de déplacement qui correspond à une première position le long dudit deuxième parcours qui est une première position selon des coordonnées horizontales en correspondance avec laquelle ledit deuxième chariot (18) est dans une condition d'alignement réciproque avec ledit premier chariot (17) selon une direction d'alignement qui correspond à la direction du développement en longueur dudit élément tubulaire spécifique (6) ;
    k) activation de moyens d'engagement (29, 30) dudit premier chariot (17) de façon à ce que les moyens d'engagement (29, 30) s'engagent avec une première extrémité correspondante (11) dudit élément tubulaire spécifique (6) à extraire de ladite pile (52) ;
    m) activation de moyens d'engagement (29, 30) dudit deuxième chariot (18) de façon à ce que les moyens d'engagement (29, 30) s'engagent avec une deuxième extrémité correspondante (12) dudit élément tubulaire spécifique (6) à extraire de ladite pile (52), ladite deuxième extrémité (12) étant une extrémité opposée par rapport à ladite première extrémité (11) par rapport au développement en longueur dudit élément tubulaire spécifique (6) à extraire de ladite pile (52) ;
    p) déplacement de façon réciproquement coordonnée et synchronisée dudit premier chariot (17) et dudit deuxième chariot (18) dans une condition d'engagement desdits moyens d'engagement (29, 30) avec lesdites première extrémité (11) et deuxième extrémité (12) dudit élément tubulaire spécifique (6) à extraire de ladite pile (52).
  44. Méthode pour déplacer des éléments tubulaires (6) selon la revendication 43 caractérisée en ce qu'elle inclut en outre les étapes suivantes qui sont des étapes suivantes ou contemporaines ou antérieures par rapport à ladite étape c) :
    d) déplacement d'un premier curseur (27) dudit premier chariot (17) selon au moins une deuxième direction de déplacement (50) qui se développe verticalement de façon parallèle par rapport à ladite au moins une pile (52) desdits éléments tubulaires (6) en correspondance avec un troisième parcours de déplacement défini par au moins un premier cadre (26) dudit premier chariot (17), ledit premier cadre (26) actionnant le déplacement dudit premier curseur (27) selon ladite deuxième direction de déplacement (50) ;
    e) déplacement d'un deuxième curseur (27) dudit deuxième chariot (18) selon au moins ladite deuxième direction de déplacement (50) en correspondance avec un quatrième parcours de déplacement défini par au moins un deuxième cadre (26) correspondant dudit deuxième chariot (18), ledit deuxième cadre (26) actionnant le déplacement dudit deuxième curseur (27) selon ladite deuxième direction de déplacement (50);
    f) coordination du mouvement dudit premier curseur (27) dudit premier chariot (17) et dudit deuxième curseur (27) dudit deuxième chariot (18), ladite coordination étant structurée de façon à déplacer ledit premier curseur (27) dudit premier chariot (17) vers une deuxième position le long dudit troisième parcours de déplacement qui correspond à une deuxième position le long dudit troisième parcours qui est une deuxième position selon des coordonnées verticales où ledit élément tubulaire spécifique (6) est présent et ladite coordination étant structurée de manière à déplacer ledit deuxième curseur (27) dudit deuxième chariot (18) vers une deuxième position le long dudit quatrième parcours de mouvement qui correspond à une deuxième position le long dudit quatrième parcours qui est une deuxième position où ledit élément tubulaire spécifique (6) est présent selon un déplacement réciproquement coordonné desdits curseurs (27).
  45. Méthode pour le déplacement d'éléments tubulaires (6) selon la revendication 44 caractérisée en ce qu'elle inclut en outre les étapes suivantes après ladite étape f) :
    g) déplacement d'un premier élément d'élévation (28) qui est placé sur ledit premier curseur (27) dudit premier chariot (17) selon au moins ladite deuxième direction de déplacement (50) ;
    h) déplacement d'un deuxième élément d'élévation (28) qui est placé sur ledit deuxième curseur (27) dudit deuxième chariot (17) selon au moins ladite deuxième direction de déplacement (50) ;
    l) coordination du déplacement dudit premier élément d'élévation (28) dudit premier chariot (17) et dudit deuxième élément d'élévation (28) dudit deuxième chariot (18), ladite coordination étant structurée pour déplacer ledit premier élément d'élévation (28) dudit premier chariot (17) et ledit deuxième élément d'élévation (28) dudit deuxième chariot (18) selon un déplacement réciproquement coordonné vers une position selon des coordonnées verticales en correspondance avec laquelle un dispositif de soulèvement (4) est présent qui est connecté avec ledit dispositif de déplacement (5) pour transférer ledit élément tubulaire spécifique (6) à partir dudit dispositif de déplacement (5) vers ledit dispositif de soulèvement (4) ou vice versa.
EP14709558.2A 2013-03-20 2014-03-11 Système et procédé de manipulation de tubes de colonne montante Active EP2976488B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000037A ITUD20130037A1 (it) 2013-03-20 2013-03-20 "sistema e metodo di movimentazione di elementi tubolari"
PCT/EP2014/000634 WO2014146760A2 (fr) 2013-03-20 2014-03-11 Système et procédé de déplacement d'éléments tubulaires

Publications (2)

Publication Number Publication Date
EP2976488A2 EP2976488A2 (fr) 2016-01-27
EP2976488B1 true EP2976488B1 (fr) 2017-07-26

Family

ID=48366486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14709558.2A Active EP2976488B1 (fr) 2013-03-20 2014-03-11 Système et procédé de manipulation de tubes de colonne montante

Country Status (6)

Country Link
US (1) US20160160587A1 (fr)
EP (1) EP2976488B1 (fr)
KR (1) KR20150143516A (fr)
CN (1) CN105283627A (fr)
IT (1) ITUD20130037A1 (fr)
WO (1) WO2014146760A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20130039A1 (it) * 2013-03-20 2014-09-21 Fincantieri Cantieri Navali It "metodo e sistema di movimentazione di elementi tubolari"
NL2013614B1 (en) * 2014-10-10 2016-10-04 Itrec Bv Subsea wellbore operations vessel.
CN105672913B (zh) * 2016-04-19 2019-05-17 济南光先数控机械有限公司 一种石油修井排管装置
US10450038B2 (en) * 2017-06-27 2019-10-22 Jurong Shipyard Pte Ltd Continuous vertical tubular handling and hoisting buoyant structure
CN108482586B (zh) * 2018-04-12 2020-07-14 南通润邦海洋工程装备有限公司 单桩顶升滑移上船工艺
CN109812258B (zh) * 2019-02-28 2024-03-08 浙江新锐竞科动力科技有限公司 一种钻机控制设备及其控制方法
US11408236B2 (en) 2020-07-06 2022-08-09 Canrig Robotic Technologies As Robotic pipe handler systems
US11643887B2 (en) 2020-07-06 2023-05-09 Canrig Robotic Technologies As Robotic pipe handler systems
US11486209B2 (en) 2020-07-06 2022-11-01 Nabors Drilling Technologies Usa, Inc. Robotic pipe handler systems
NO20230209A1 (en) 2020-09-01 2023-03-02 Canrig Robotic Technologies As Tubular handling system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081084A (en) * 1976-10-04 1978-03-28 Guinn David C Casing handling system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829783A (en) * 1953-07-15 1958-04-08 Exxon Research Engineering Co Device for positioning a section of drill pipe in a drilling derrick
DE1275977B (de) * 1966-08-13 1968-08-29 Mannesmann Ag Vorrichtung zur Herstellung von Aufhauen im Steinkohlenbergbau
FR2114377A5 (fr) * 1971-10-21 1972-06-30 Subsea Equipment Ass Ltd
US3978994A (en) * 1975-07-07 1976-09-07 Lee C. Moore Corporation Pipe rack with pivoted fingers
US3939990A (en) * 1974-06-13 1976-02-24 Global Marine, Inc. Automatic roughneck
US4202653A (en) * 1976-04-30 1980-05-13 Western Gear Corporation Pipe handling apparatus
US4190233A (en) * 1978-06-30 1980-02-26 Godfrey Charles J B Jack
NO156699B (no) * 1980-03-17 Bj-Hughes Inc. Roerhaandteringsapparat.
TW312680B (fr) * 1995-09-08 1997-08-11 Murata Machinery Ltd
US6926488B1 (en) * 1999-09-29 2005-08-09 Global Marine Inc. Horizontal drill pipe racker and delivery system
CA2396333A1 (fr) * 2000-01-13 2001-07-19 Maritime Hydraulics As Nouvelle composition organique semi-solide/solide synergique, processus de fabrication de cette composition
JP2006528082A (ja) * 2003-07-18 2006-12-14 ファナック ロボティクス アメリカ,インコーポレイティド 2つのロボットアームを有するガントリロボットを用いた重厚長大ワークのハンドリング
WO2005068346A1 (fr) * 2004-01-10 2005-07-28 Wolfe Designs Limited Tour de montage
NL1026458C2 (nl) * 2004-06-18 2005-12-20 Itrec Bv Hijskraan en offshorevaartuig.
US20150368993A1 (en) * 2007-11-13 2015-12-24 Advanced Heli-Core Inc. Core Drilling Components and Methods
NO2247494T3 (fr) * 2008-02-15 2018-04-21
CN201190545Y (zh) * 2008-03-05 2009-02-04 张显峰 液压式平移钻杆升降装置
US8845260B2 (en) * 2009-07-29 2014-09-30 Markwater Handling Systems Ltd. Apparatus and method for handling pipe
CN202673199U (zh) * 2012-06-08 2013-01-16 中国石油集团川庆钻探工程有限公司 一种全自动化钻机用井场钻柱平移装置
US9458680B2 (en) * 2013-01-11 2016-10-04 Maersk Drilling A/S Drilling rig
ITUD20130039A1 (it) * 2013-03-20 2014-09-21 Fincantieri Cantieri Navali It "metodo e sistema di movimentazione di elementi tubolari"

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081084A (en) * 1976-10-04 1978-03-28 Guinn David C Casing handling system

Also Published As

Publication number Publication date
US20160160587A1 (en) 2016-06-09
WO2014146760A2 (fr) 2014-09-25
EP2976488A2 (fr) 2016-01-27
WO2014146760A3 (fr) 2015-01-29
CN105283627A (zh) 2016-01-27
ITUD20130037A1 (it) 2014-09-21
KR20150143516A (ko) 2015-12-23

Similar Documents

Publication Publication Date Title
EP2976490B1 (fr) Procédé et système de manipulation de tubes de colonne montante
EP2976489B1 (fr) Système de manipulation de tubes de colonne montante
EP2976488B1 (fr) Système et procédé de manipulation de tubes de colonne montante
US10329841B2 (en) Wellbore drilling with a trolley and a top drive device
CN109591972B (zh) 海上钻探船及方法
US9624739B2 (en) Drilling rig
US10927657B2 (en) Wellbore drilling with a top drive device
CN111491857B (zh) 执行海底井筒相关活动的船和方法
NO333735B1 (no) Et offshore-fartoy eller platform for a utfore undersjoiske operasjoner.
EP3201505B1 (fr) Manipulation d'embout dans un système d'installation de pipeline marin
WO2005042914A1 (fr) Plate-forme de transfert d'un bloc obturateur de puits
WO2017217848A1 (fr) Forage de puits de forage avec un dispositif d'entraînement supérieur
WO2018093253A1 (fr) Système de forage assisté par navire d'accompagnement comprenant un système de câble d'extraction, procédé de transfert de tubulaires à l'aide d'un tel système et procédé d'installation d'un tel système
EP1706578A1 (fr) Plate-forme de transfert d'un bloc obturateur de puits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151020

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 912553

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014012246

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 912553

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171027

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014012246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014012246

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180311

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140311

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240124

Year of fee payment: 11