EP2975032A1 - Crystalline forms of an antidepressant drug - Google Patents

Crystalline forms of an antidepressant drug Download PDF

Info

Publication number
EP2975032A1
EP2975032A1 EP15177222.5A EP15177222A EP2975032A1 EP 2975032 A1 EP2975032 A1 EP 2975032A1 EP 15177222 A EP15177222 A EP 15177222A EP 2975032 A1 EP2975032 A1 EP 2975032A1
Authority
EP
European Patent Office
Prior art keywords
crystalline form
vortioxetine hydrobromide
vortioxetine
hydrobromide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15177222.5A
Other languages
German (de)
French (fr)
Inventor
Stefano Luca Giaffreda
Marco Curzi
Elena DICHIARANTE
Pietro Allegrini
Renzo GRAZIOSI
Chiara Vladiskovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dipharma Francis SRL
Original Assignee
Dipharma Francis SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53540695&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2975032(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dipharma Francis SRL filed Critical Dipharma Francis SRL
Priority to EP19174923.3A priority Critical patent/EP3564224B1/en
Publication of EP2975032A1 publication Critical patent/EP2975032A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/096Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings

Definitions

  • the present invention relates to the hydrobromide salt of 1-[2-(2,4-dimethylphenylsulphanyl)phenyl]piperazine of formula (I), also known as vortioxetine hydrobromide, in three crystalline forms herein defined as ⁇ , ⁇ and ⁇ , a process for their preparation, and a pharmaceutical composition containing said novel crystalline forms.
  • Another object of the invention is a process for the purification of vortioxetine or a salt thereof comprising the formation of one of the novel crystalline forms of vortioxetine hydrobromide described herein.
  • Vortioxetine namely 1-[2-(2,4-dimethylphenylsulphanyl)phenyl]piperazine, of formula (I), is an atypical antidepressant that exerts a combined SERT-inhibitor, 5-HT 3 antagonist and partial 5-HT 1A agonist action.
  • Vortioxetine is present on the market as hydrobromide salt, under the trademark Brintellix ® .
  • Vortioxetine as such is known from WO 03/029232 (example 1e).
  • WO 2007/144005 also discloses various crystalline forms of vortioxetine and its salts, in particular a crystalline form of vortioxetine base, three crystalline forms of vortioxetine hydrobromide (defined as the alpha, beta and gamma crystalline forms), a hemihydrated crystalline form of vortioxetine hydrobromide, and other crystalline forms of vortioxetine salts (hydrochloride, mesylate, fumarate, maleate, meso-tartrate, L-tartrate, D-tartrate, sulphate, phosphate and nitrate).
  • vortioxetine and its salts in particular a crystalline form of vortioxetine base, three crystalline forms of vortioxetine hydrobromide (defined as the alpha, beta and gamma crystalline forms), a hemihydrated crystalline form of vortioxetine hydrobromide, and other crystalline
  • WO 2007/144005 also clearly specifies that the object of the invention is crystalline forms of the vortioxetine hydrobromide salt, as they have the ideal characteristics for oral pharmaceutical forms, in particular as tablets. Tablets are often preferred by patients and doctors due to their ease of administration and safety of dose.
  • the preferred compounds of WO 2007/144005 are non-solvated crystalline forms which are poorly hygroscopic.
  • solvated crystalline forms of vortioxetine hydrobromide are disclosed in WO 2007/144005 and WO 2010/094285 ; said crystalline forms are solvated forms containing ethyl acetate or isopropanol.
  • said solvated crystalline forms are also unsuitable for use in pharmaceutical formulations, but could possibly be used as intermediates in the preparation of other crystalline forms of vortioxetine hydrobromide, such as the form of vortioxetine hydrobromide present in the commercially available product Brintellix ® .
  • WO 2014/044721 also discloses crystalline forms of vortioxetine hydrobromide, such as anhydrous or hydrated forms (in particular a substantially anhydrous form described as the delta form).
  • the delta crystalline form disclosed in WO 2014/044721 is said to have improved characteristics, in particular compared with the alpha and beta crystalline forms of WO 2007/144005 .
  • the high solubility in water of said delta crystalline form is said to make it more suitable for formulation in the pharmaceutical field, and therefore an alternative crystalline form of vortioxetine hydrobromide to the one present in Brintellix ® .
  • delta crystalline form has not proved to be advantageously usable in the preparation of commercially available vortioxetine hydrobromide.
  • the monohydrate crystalline form of vortioxetine hydrobromide disclosed in WO 2014/044721 , though usable in the preparation of the delta form of vortioxetine hydrobromide disclosed in WO 2014/044721 , is not an intermediate useful to prepare the crystalline form of the commercially available vortioxetine hydrobromide; moreover, said crystalline form does not appear to have particular characteristics of improved solubility or low hygroscopicity which would make it suitable for use in pharmaceutical formulations.
  • crystalline forms ⁇ , ⁇ and ⁇ Disclosed are three crystalline forms of vortioxetine hydrobromide, hereinafter defined as crystalline forms ⁇ , ⁇ and ⁇ , a process for their preparation, a pharmaceutical composition containing at least one of said crystalline forms ⁇ , ⁇ and ⁇ , and a process for the purification of vortioxetine, or a salt thereof, comprising the formation of a crystalline form ⁇ , ⁇ and/or ⁇ as defined herein.
  • Linear solid-state detector Linear solid-state detector (Lynx Eye).
  • Crystalline form ⁇ of vortioxetine hydrobromide was characterised by X-ray powder diffraction (XRPD).
  • XRPD X-ray powder diffraction
  • the FTIR spectrum of crystalline form ⁇ was obtained with ThermoFischer Nicolet FTIR 6700 instrumentation, number of scans per sample: 32, number of background scans: 32, resolution: 4.000 cm -1 , sample gain: 8.0, optical speed: 0.6329, aperture: 100.00, detector: DTGS KBr, beamsplitter: KBr.
  • the DSC pattern of crystalline form ⁇ was obtained with a differential scanning calorimeter (Mettler Toledo DSC 822e), using STARe software, under the following operating conditions: open aluminium capsule, scanning rate 10°C/min, with nitrogen as purge gas.
  • the DSC pattern of crystalline form ⁇ was obtained with a DSC 200 F3 Maia differential scanning calorimeter under the following operating conditions: closed aluminium capsule, scanning rate 10°C/min, with nitrogen as purge gas.
  • Vortioxetine hydrobromide in crystalline form ⁇ is a hydrated form of vortioxetine hydrobromide.
  • Vortioxetine hydrobromide in crystalline form ⁇ is a hydrated, more particularly monohdryate, crystalline form of vortioxetine hydrobromide.
  • Vortioxetine hydrobromide in crystalline form ⁇ is an anhydrous crystalline form of vortioxetine hydrobromide.
  • a first object of the invention is a crystalline form of vortioxetine hydrobromide selected from the group comprising:
  • Vortioxetine hydrobromide in crystalline form ⁇ is further characterised by a DSC pattern as shown in Figure 2 .
  • Vortioxetine hydrobromide in crystalline form ⁇ is further characterised by an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5 .
  • vortioxetine hydrobromide in crystalline form ⁇ is a hydrated form of vortioxetine hydrobromide, wherein the molar ratio between vortioxetine hydrobromide and water typically ranges between about 1:1.2 and 1:2, and is preferably around 1:1.5.
  • vortioxetine hydrobromide in crystalline form ⁇ is a hydrated form of vortioxetine hydrobromide, wherein the molar ratio between vortioxetine hydrobromide and water typically ranges between about 0.8:1.2 and 1.2:0.8, and is preferably around 1:1.
  • vortioxetine hydrobromide in crystalline form ⁇ obtained according to the invention, has a water content comprised between about 0 and 1% w/w, preferably between about 0 and 0.5% w/w and it is therefore a substantially anhydrous crystalline form.
  • the inventors of the present application have found that the polymorph ⁇ of the invention keeps its crystalline form, even in the presence of moisture, as it can be appreciated by the XRPD spectra of Figures 6 and 7 .
  • This characteristic of the polymorph ⁇ of the invention makes it more stable than other already known crystalline forms of Vortioxetine hydrobromide and enables the storage, even for prolonged time periods, of the pharmaceutical formulations incorporating it as active pharmaceutical ingredient.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ⁇ , as defined herein, comprising:
  • the vortioxetine hydrobromide used as starting material can be in any form, whether crystalline or non-crystalline, anhydrous, hydrated or solvated.
  • the term "hydrated” means a form with any degree of hydration.
  • Vortioxetine hydrobromide is typically used in alpha, beta or gamma form, as disclosed in WO 2007/144005 , or in monohydrate form as known from WO 2014/044721 .
  • a solution of vortioxetine hydrobromide is typically formed at a temperature ranging between about 10°C and 35°C, preferably around 20-25°C.
  • a chlorinated solvent according to the present invention can, for example, be selected from the group comprising dichloromethane, chloroform or a mixture of said solvents.
  • the solvent is preferably chloroform.
  • the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 20/1 mg/ml and 7/1 mg/ml, and is more preferably around 10/1 mg/ml.
  • the ratio between vortioxetine hydrobromide and the water added to the solution preferably ranges between about 200/1 mg/ml and 50/1 mg/ml, and is more preferably around 100/1 mg/ml.
  • the mixture can be cooled to a temperature ranging between about -5°C and 15°C, preferably between about -5°C and 5°C, and more preferably around 0°C.
  • Vortioxetine hydrobromide in crystalline form ⁇ can be recovered by concentrating the resulting dispersion by methods known to the skilled person, for instance by filtration and/or centrifugation.
  • a further object of the present invention is therefore the use of vortioxetine hydrobromide in crystalline form ⁇ to prepare vortioxetine hydrobromide in crystalline form ⁇ , as defined above.
  • a object of the present invention is therefore a process for the preparation of vortioxetine hydrobromide in crystalline form ⁇ , comprising drying of crystalline form ⁇ of vortioxetine hydrobromide.
  • Drying typically stove drying, can be performed at a temperature ranging between about 20°C and about 40°C, preferably at about 30°C, typically under vacuum and for a time ranging between about 1 hour and about 8 hours, preferably for about 4 hours.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ⁇ , as defined herein, comprising:
  • the vortioxetine hydrobromide used as starting material can be in any form, whether crystalline or non-crystalline, anhydrous, hydrated or solvated.
  • the term "hydrated” means a form with any degree of hydration.
  • Vortioxetine hydrobromide is typically used in alpha, beta or gamma form, as disclosed in WO 2007/144005 , or in monohydrate form as known from WO 2014/044721 .
  • vortioxetine hydrobromide used as starting material is vortioxetine hydrobromide in monohydrate form.
  • a solution of vortioxetine hydrobromide is typically formed at a temperature ranging between about 10°C and 35°C, preferably around 25-27°C.
  • a chlorinated solvent can be, for example, as previously defined or a mixture of said chlorinated solvents.
  • the chlorinated solvent is preferably chloroform.
  • the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 20/1 mg/ml and 5/1 mg/mL, and is preferably around 10/1 mg/ml.
  • the solvent is typically removed by evaporation, for example using the "Reaction block evaporator” instrumentation supplied by JKem Scientific, set to the temperature of 8°C and fluxing nitrogen on each vial.
  • the chlorinated solvent can be removed in a time ranging between about 1 and about 4 days, preferably in about 3 days.
  • the solvent is typically removed from the solution at a temperature not exceeding 20°C, preferably between about 2 and 15°C, more preferably around 8°C.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ⁇ , as defined herein, comprising:
  • a chlorinated solvent can be a solvent as defined above, preferably chloroform.
  • the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 200/1 mg/ml and 50/1 mg/mL, and is more preferably around 100/1 mg/ml.
  • the ratio between vortioxetine hydrobromide and water preferably ranges between about 2000/1 mg/ml and 500/1 mg/ml, and is more preferably around 1000/1 mg/ml.
  • the solution can be cooled to a temperature ranging between about -15°C and 15°C, preferably between about -5°C and 5°C, and more preferably around 0°C.
  • Vortioxetine hydrobromide in crystalline form ⁇ can be recovered by concentrating the resulting dispersion by methods known to the skilled person, filtration and/or centrifugation.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ⁇ , as defined herein, comprising:
  • the vortioxetine base used as starting material can be any known form of vortioxetine base, either crystalline or non-crystalline, or crude vortioxetine base.
  • the vortioxetine base used as starting material is typically vortioxetine as obtainable according to WO 03/029232 (example 1e) or a vortioxetine base in crystalline form as disclosed in WO 2007/144005 .
  • An organic solvent is typically an organic solvent immiscible with water, such as an aprotic apolar solvent, typically a hydrocarbon selected from hexane, heptane, toluene or xylene, preferably toluene; a chlorinated solvent, such as dichloromethane or chloroform; an ester solvent such as ethyl acetate or isopropyl acetate, an ether solvent, typically tert-butyl methyl ether or tetrahydrofuran; or a ketone, such as methyl ethyl ketone or tert-butyl methyl ketone.
  • An organic solvent immiscible with water is preferably toluene.
  • the ratio between vortioxetine free base and the organic solvent in the organic solution typically ranges between about 1000/1 and 10/1 mg/mL, preferably between 100/1 mg/ml and 20/1 mg/ml, and more preferably around 20/1 mg/ml.
  • the hydrobromic acid used to treat the mixture is, for example, hydrobromic acid in aqueous solution, preferably 48% aqueous hydrobromic acid.
  • the mixture is typically treated with hydrobromic acid by dripping aqueous hydrobromic acid into the mixture in a time ranging between a few minutes and two hours.
  • the vortioxetine hydrobromide in crystalline form ⁇ thus obtained can be recovered by known methods, such as filtration or centrifugation.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ⁇ , as defined herein, comprising drying crystalline form ⁇ of vortioxetine hydrobromide.
  • Drying typically stove drying or air-drying
  • vortioxetine hydrobromide crystalline form ⁇ , ⁇ and/or ⁇ by starting from any form of vortioxetine base, or a pharmaceutically acceptable salt thereof, having a chemical purity equal to or lower than 98.1% calculated as Area % (A%) by HPLC, then vortioxetine base or a salt thereof having a purity exceeding 99.5% can be obtained.
  • a further object of the invention is therefore a process for the purification of vortioxetine or a pharmaceutically acceptable salt thereof, in particular the hydrobromide salt, comprising the formation of vortioxetine hydrobromide in crystalline form ⁇ , ⁇ and/or ⁇ .
  • vortioxetine hydrobromide in crystalline form ⁇ is stable from both the physical and the chemical standpoint.
  • Said crystalline form of vortioxetine hydrobromide, under standard pressure, temperature and humidity conditions, is stable in that it does not chemically degrade and is not converted to other known crystalline forms of vortioxetine hydrobromide.
  • Said crystalline form ⁇ is, in particular, not hygroscopic under standard storage conditions, and is therefore particularly suitable for use in pharmaceutical technology.
  • said crystalline forms ⁇ , ⁇ and/or ⁇ can be advantageously used to prepare another form of commercially available vortioxetine hydrobromide, in particular a crystalline form thereof.
  • a object of the invention is therefore the use of vortioxetine hydrobromide in crystalline form ⁇ , ⁇ and/or ⁇ , as intermediate useful for preparing another form of vortioxetine hydrobromide, in particular a commercially available crystalline form thereof.
  • Another object of the invention is vortioxetine hydrobromide in crystalline form ⁇ , which is particularly stable from the physicochemical standpoint, according to the process described above.
  • the chemical purity of vortioxetine hydrobromide in crystalline form ⁇ , ⁇ and ⁇ obtained by the process according to the invention, evaluated by HPLC analysis as Area % (A%), is equal to or greater than 98%, and preferably equal to or greater than 99.5%.
  • a further object of the invention is a pharmaceutical composition
  • a pharmaceutical composition comprising vortioxetine hydrobromide in at least one of crystalline forms ⁇ , ⁇ or ⁇ as defined above, as active ingredient, and a pharmaceutically acceptable excipient and/or carrier.
  • Said pharmaceutical composition can be prepared in a pharmaceutical form by known methods.
  • the dose of active ingredient present in said composition can be that commonly used in clinical practice for vortioxetine hydrobromide, as reported above.
  • a further object of the invention is vortioxetine hydrobromide in crystalline form ⁇ , ⁇ and/or ⁇ for use as a medicament which is particularly useful in the treatment of depression.
  • a further object of the invention is the use of vortioxetine hydrobromide in crystalline form ⁇ , ⁇ and/or ⁇ to prepare a medicament which is particularly useful in the treatment of depression.
  • a further object of the invention is therefore a method of treating a human being who need an antidepressant drug for the prevention and treatment of depressive states, comprising the administration to said human being of vortioxetine hydrobromide in crystalline form ⁇ , ⁇ and/or ⁇ .
  • Vortioxetine (0.6 g, 1.58.10-3 mol) is dissolved in CHCl 3 (60 ml) in a 100 ml Erlenmeyer flask and filtered through a porous septum. Water (6 ml) is added and the solution is left under stirring for 24 hours at about 0°C, not in an inert atmosphere. During this period the temperature gradually rises, and the solution is concentrated to about half its volume. The solution is concentrated with nitrogen flow to residue, and taken up with 5 ml of water.
  • Crystalline form ⁇ prepared according to Example 1 can be converted to crystalline form ⁇ by maintaining the crystalline solid under vacuum at room temperature for about 14 days or maintaining it in a stove under vacuum for about two hours at the temperature of 40°C.
  • Said crystalline form ⁇ thus obtained presents an XRPD spectrum as shown in Figure 3 , wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ⁇ 0.2° in 2 ⁇ ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%.
  • Said crystalline form also presents an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5 .
  • Vortioxetine hydrobromide (1.5 g, 3.96 ⁇ 10 -3 mol) is dissolved in CHCl 3 (15 ml) in a 50 ml Erlenmeyer flask, and the resulting solution is filtered through a porous septum. The filtered solution is treated with water (1.5 ml), and the biphasic system thus obtained is maintained under stirring for 24 hours at about 0°C. The biphasic system is then maintained at the same temperature and a nitrogen flow is bubbled through the liquid phase until a residue is obtained, which is taken up with water (5 ml). The suspended solid is filtered and air-dried for two hours at room temperature.
  • Said crystalline form ⁇ thus obtained presents an XRPD spectrum as shown in Figure 3 , wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ⁇ 0.2° in 2 ⁇ ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%.
  • Said crystalline form presents an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5 .
  • Vortioxetine hydrobromide (1.0 g, 2.64 mmol, HPLC purity 98.01% calculated as A%) is suspended in toluene (20 ml) under nitrogen in a 100 ml four-necked flask equipped with magnetic stirrer, thermometer and condenser, and water (20 ml) and about 0.5 ml of 30% NaOH are added.
  • the mixture is heated to about 80°C, and the phases are then separated at the same temperature.
  • the organic phase is then treated with water (20 ml), maintaining the temperature at 80°C, and the biphasic system is treated with 48% HBr (0.3 ml).
  • the phases are separated and the organic phase is further extracted hot with water.
  • the combined aqueous phases are treated with 30% NaOH to pH 11, and extracted hot several times with toluene.
  • the combined organic phases are partly concentrated at low pressure to about 16 ml of organic solution, and treated at about 20°C with water (2 ml).
  • the biphasic system is treated with 48% HBr (0.3 ml), and the mixture is maintained under stirring for two hours at about 20°C.
  • Said crystalline form ⁇ thus obtained presents an XRPD spectrum as shown in Figure 3 , wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ⁇ 0.2° in 2 ⁇ ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%.
  • Said crystalline form also presents an FTIR spectrum as shown in Figure 4 , and a DSC pattern as shown in Figure 5 .
  • Vortioxetine hydrobromide in crystalline form ⁇ is stove-dried under vacuum at 40°C for 15 hours.
  • Vortioxetine hydrobromide in crystalline form ⁇ is obtained.
  • Vortioxetine hydrobromide in crystalline form ⁇ is air-dried at 90°C.
  • Vortioxetine hydrobromide in crystalline form ⁇ is obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to novel crystalline forms of vortioxetine hydrobromide, in particular three crystalline forms, a process for their preparation, a pharmaceutical composition containing said novel crystalline forms, and a process for the purification of vortioxetine or a salt thereof, comprising the formation of one or more of the novel crystalline forms of vortioxetine hydrobromide described herein.

Description

    FIELD OF INVENTION
  • The present invention relates to the hydrobromide salt of 1-[2-(2,4-dimethylphenylsulphanyl)phenyl]piperazine of formula (I), also known as vortioxetine hydrobromide, in three crystalline forms herein defined as λ, ω and σ, a process for their preparation, and a pharmaceutical composition containing said novel crystalline forms. Another object of the invention is a process for the purification of vortioxetine or a salt thereof comprising the formation of one of the novel crystalline forms of vortioxetine hydrobromide described herein.
  • PRIOR ART
  • Vortioxetine, namely 1-[2-(2,4-dimethylphenylsulphanyl)phenyl]piperazine, of formula (I), is an atypical antidepressant that exerts a combined SERT-inhibitor, 5-HT3 antagonist and partial 5-HT1A agonist action.
    Figure imgb0001
  • Vortioxetine is present on the market as hydrobromide salt, under the trademark Brintellix®.
  • Vortioxetine as such is known from WO 03/029232 (example 1e).
  • WO 2007/144005 also discloses various crystalline forms of vortioxetine and its salts, in particular a crystalline form of vortioxetine base, three crystalline forms of vortioxetine hydrobromide (defined as the alpha, beta and gamma crystalline forms), a hemihydrated crystalline form of vortioxetine hydrobromide, and other crystalline forms of vortioxetine salts (hydrochloride, mesylate, fumarate, maleate, meso-tartrate, L-tartrate, D-tartrate, sulphate, phosphate and nitrate).
  • WO 2007/144005 also clearly specifies that the object of the invention is crystalline forms of the vortioxetine hydrobromide salt, as they have the ideal characteristics for oral pharmaceutical forms, in particular as tablets. Tablets are often preferred by patients and doctors due to their ease of administration and safety of dose.
  • Moreover, the preferred compounds of WO 2007/144005 are non-solvated crystalline forms which are poorly hygroscopic.
  • In any event, the crystalline forms of vortioxetine hydrobromide gamma and hemihydrate, as described and characterised in WO 2007/144005 , present significant hygroscopicity, and in particular a high tendency to absorb water, under conditions of greater relative humidity than the standard conditions, and are therefore unsuitable for use in pharmaceutical formulations, as also acknowledged by WO2014/044721 at page 2, last paragraph.
  • Other solvated crystalline forms of vortioxetine hydrobromide are disclosed in WO 2007/144005 and WO 2010/094285 ; said crystalline forms are solvated forms containing ethyl acetate or isopropanol. However, it should be noted that as the solvent content in the active ingredients must not exceed specific limits (as expressly regulated by the ICH Guidelines, for example), said solvated crystalline forms are also unsuitable for use in pharmaceutical formulations, but could possibly be used as intermediates in the preparation of other crystalline forms of vortioxetine hydrobromide, such as the form of vortioxetine hydrobromide present in the commercially available product Brintellix®.
  • Finally, WO 2014/044721 also discloses crystalline forms of vortioxetine hydrobromide, such as anhydrous or hydrated forms (in particular a substantially anhydrous form described as the delta form).
  • The delta crystalline form disclosed in WO 2014/044721 is said to have improved characteristics, in particular compared with the alpha and beta crystalline forms of WO 2007/144005 . The high solubility in water of said delta crystalline form is said to make it more suitable for formulation in the pharmaceutical field, and therefore an alternative crystalline form of vortioxetine hydrobromide to the one present in Brintellix®.
  • In any event, said delta crystalline form has not proved to be advantageously usable in the preparation of commercially available vortioxetine hydrobromide.
  • Moreover, the monohydrate crystalline form of vortioxetine hydrobromide, disclosed in WO 2014/044721 , though usable in the preparation of the delta form of vortioxetine hydrobromide disclosed in WO 2014/044721 , is not an intermediate useful to prepare the crystalline form of the commercially available vortioxetine hydrobromide; moreover, said crystalline form does not appear to have particular characteristics of improved solubility or low hygroscopicity which would make it suitable for use in pharmaceutical formulations.
  • There is consequently a need to provide novel crystalline forms of vortioxetine hydrobromide that eliminate the above-mentioned drawbacks and are therefore stable, not hygroscopic, particularly soluble in water and biological fluids, with optimum characteristics for formulation in pharmaceutical technology, and also advantageously usable as intermediates for the preparation of vortioxetine base or a salt thereof, in particular the hydrobromide, and crystalline forms of vortioxetine hydrobromide, in particular its commercially available crystalline form.
  • SUMMARY OF THE INVENTION
  • Disclosed are three crystalline forms of vortioxetine hydrobromide, hereinafter defined as crystalline forms λ, ω and σ, a process for their preparation, a pharmaceutical composition containing at least one of said crystalline forms λ, ω and σ, and a process for the purification of vortioxetine, or a salt thereof, comprising the formation of a crystalline form λ, ω and/or σ as defined herein.
  • BRIEF DESCRIPTION OF FIGURES AND ANALYSIS METHODS
    • Figure 1: XRPD spectrum of vortioxetine hydrobromide in crystalline form λ.
    • Figure 2: DSC pattern of vortioxetine hydrobromide in crystalline form λ.
    • Figure 3: XRPD spectrum of vortioxetine hydrobromide in crystalline form ω.
    • Figure 4: FTIR spectrum of vortioxetine hydrobromide in crystalline form ω.
    • Figure 5: DSC pattern of vortioxetine hydrobromide in crystalline form ω.
    • Figure 6: Comparison of XRPD spectra of a sample of vortioxetine hydrobromide in crystalline form ω, as defined herein, freshly prepared (top line), after the same sample of vortioxetine hydrobromide in crystalline form ω has been kept at low temperature (4°C) for 24 hours (middle line), and after the sample has been kept at room temperature for 24 hours (bottom line).
    • Figure 7: Comparison of XRPD spectra of a sample of vortioxetine hydrobromide in crystalline form ω, as defined herein, freshly prepared (bottom line), and the same sample analysed after 7 days, kept at a temperature of 25°C and 60% relative humidity (RH) (top line).
    • Figure 8: XRPD spectrum of vortioxetine hydrobromide in crystalline form σ.
  • Crystalline forms λ and σ have been characterised by Bruker D8 Advance X-ray powder diffraction (XRPD), Bragg-Brentano geometry, CuKα radiation with wavelength λ = 1.54; scanning with 2θ angle range of 3° to 40°, step size of 0.02° for 0.5 seconds per step. Linear solid-state detector (Lynx Eye).
  • Crystalline form ω of vortioxetine hydrobromide was characterised by X-ray powder diffraction (XRPD). The X-ray powder diffraction (XRPD) spectra shown in figures 3, 6 and 7 were collected with a PANalytical X'Pert PRO automatic powder diffractometer under the following operating conditions: CuKα radiation (λ = 1.54 Å), scanning with a 2θ angle range of 3-40° with a step size of 0.017° for 12.7 sec.
  • The FTIR spectrum of crystalline form ω was obtained with ThermoFischer Nicolet FTIR 6700 instrumentation, number of scans per sample: 32, number of background scans: 32, resolution: 4.000 cm-1, sample gain: 8.0, optical speed: 0.6329, aperture: 100.00, detector: DTGS KBr, beamsplitter: KBr.
  • The DSC pattern of crystalline form λ was obtained with a differential scanning calorimeter (Mettler Toledo DSC 822e), using STARe software, under the following operating conditions: open aluminium capsule, scanning rate 10°C/min, with nitrogen as purge gas.
  • The DSC pattern of crystalline form ω was obtained with a DSC 200 F3 Maia differential scanning calorimeter under the following operating conditions: closed aluminium capsule, scanning rate 10°C/min, with nitrogen as purge gas.
  • The water content of vortioxetine hydrobromide forms λ and ω and σ as defined herein, was calculated by titration using the Karl Fischer technique. Vortioxetine hydrobromide in crystalline form λ, as obtainable according to the present invention, is a hydrated form of vortioxetine hydrobromide.
  • Vortioxetine hydrobromide in crystalline form ω, as defined herein, is a hydrated, more particularly monohdryate, crystalline form of vortioxetine hydrobromide.
  • Vortioxetine hydrobromide in crystalline form σ, as defined herein, is an anhydrous crystalline form of vortioxetine hydrobromide.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A first object of the invention is a crystalline form of vortioxetine hydrobromide selected from the group comprising:
    • vortioxetine hydrobromide in crystalline form, defined herein as λ, having an XRPD spectrum as shown in Figure 1, wherein the most intense peaks are found at about 4.0; 8.0: 12.0; 12.7; 15.7; 16.0; 16.4; 19.0; 20.1; 20.3 ± 0.2° in 2θ;
    • vortioxetine hydrobromide in crystalline form, defined herein as ω, having an XRPD spectrum as shown in Figure 3, wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ± 0.2° in 2θ; and
    • vortioxetine hydrobromide in crystalline form, defined herein as σ, having an XRPD spectrum as shown in Figure 8, wherein the most intense peaks are found at about 3.8, 11.6, 13.0, 14.0, 14.4, 15.5, 18.2, 18.4, 19.2, 20.0, 20.2, 21.0, 21.4, 22.3, 23.4, 23.8, 27.0 and 28.2 ± 0.1° in 2θ.
  • Vortioxetine hydrobromide in crystalline form λ, as defined above, is further characterised by a DSC pattern as shown in Figure 2.
  • Vortioxetine hydrobromide in crystalline form ω is further characterised by an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5.
  • According to water content analysis, vortioxetine hydrobromide in crystalline form λ, obtained according to the invention, is a hydrated form of vortioxetine hydrobromide, wherein the molar ratio between vortioxetine hydrobromide and water typically ranges between about 1:1.2 and 1:2, and is preferably around 1:1.5.
  • According to water content analysis, vortioxetine hydrobromide in crystalline form ω, obtained according to the invention, is a hydrated form of vortioxetine hydrobromide, wherein the molar ratio between vortioxetine hydrobromide and water typically ranges between about 0.8:1.2 and 1.2:0.8, and is preferably around 1:1.
  • According to water content analysis, vortioxetine hydrobromide in crystalline form σ, obtained according to the invention, has a water content comprised between about 0 and 1% w/w, preferably between about 0 and 0.5% w/w and it is therefore a substantially anhydrous crystalline form.
  • Surprisingly, the inventors of the present application have found that the polymorph ω of the invention keeps its crystalline form, even in the presence of moisture, as it can be appreciated by the XRPD spectra of Figures 6 and 7. This characteristic of the polymorph ω of the invention makes it more stable than other already known crystalline forms of Vortioxetine hydrobromide and enables the storage, even for prolonged time periods, of the pharmaceutical formulations incorporating it as active pharmaceutical ingredient.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form λ, as defined herein, comprising:
    • formation of a solution of vortioxetine hydrobromide in a chlorinated solvent;
    • the addition of water to the resulting solution to obtain a biphasic system followed by optional cooling of the mixture to obtain a precipitate;
    • recovery of vortioxetine hydrobromide in crystalline form λ from the resulting dispersion;
    wherein the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution ranges between about 100/1 mg/ml and 5/1 mg/mL, and the ratio between vortioxetine hydrobromide and the water added to the solution ranges between about 1000/1 mg/ml and about 20/1 mg/ml.
  • The vortioxetine hydrobromide used as starting material can be in any form, whether crystalline or non-crystalline, anhydrous, hydrated or solvated. The term "hydrated" means a form with any degree of hydration. Vortioxetine hydrobromide is typically used in alpha, beta or gamma form, as disclosed in WO 2007/144005 , or in monohydrate form as known from WO 2014/044721 .
  • A solution of vortioxetine hydrobromide is typically formed at a temperature ranging between about 10°C and 35°C, preferably around 20-25°C.
  • A chlorinated solvent according to the present invention can, for example, be selected from the group comprising dichloromethane, chloroform or a mixture of said solvents. The solvent is preferably chloroform.
  • The ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 20/1 mg/ml and 7/1 mg/ml, and is more preferably around 10/1 mg/ml.
  • The ratio between vortioxetine hydrobromide and the water added to the solution preferably ranges between about 200/1 mg/ml and 50/1 mg/ml, and is more preferably around 100/1 mg/ml.
  • The mixture can be cooled to a temperature ranging between about -5°C and 15°C, preferably between about -5°C and 5°C, and more preferably around 0°C.
  • Vortioxetine hydrobromide in crystalline form λ can be recovered by concentrating the resulting dispersion by methods known to the skilled person, for instance by filtration and/or centrifugation.
  • The vortioxetine hydrobromide in crystalline form λ thus obtained, besides as an active pharmaceutical ingredient, can be advantageously used to prepare vortioxetine hydrobromide in crystalline form ω.
  • A further object of the present invention is therefore the use of vortioxetine hydrobromide in crystalline form λ to prepare vortioxetine hydrobromide in crystalline form ω, as defined above.
  • A object of the present invention is therefore a process for the preparation of vortioxetine hydrobromide in crystalline form ω, comprising drying of crystalline form λ of vortioxetine hydrobromide.
  • Drying, typically stove drying, can be performed at a temperature ranging between about 20°C and about 40°C, preferably at about 30°C, typically under vacuum and for a time ranging between about 1 hour and about 8 hours, preferably for about 4 hours.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ω, as defined herein, comprising:
    • formation of a solution of vortioxetine hydrobromide in a chlorinated solvent;
    • removal of the solvent from the resulting solution at a temperature not exceeding 20°C and recovery of the vortioxetine hydrobromide in crystalline form ω thus obtained.
  • The vortioxetine hydrobromide used as starting material can be in any form, whether crystalline or non-crystalline, anhydrous, hydrated or solvated. The term "hydrated" means a form with any degree of hydration. Vortioxetine hydrobromide is typically used in alpha, beta or gamma form, as disclosed in WO 2007/144005 , or in monohydrate form as known from WO 2014/044721 .
  • Preferably, vortioxetine hydrobromide used as starting material is vortioxetine hydrobromide in monohydrate form.
  • A solution of vortioxetine hydrobromide is typically formed at a temperature ranging between about 10°C and 35°C, preferably around 25-27°C.
  • A chlorinated solvent can be, for example, as previously defined or a mixture of said chlorinated solvents. The chlorinated solvent is preferably chloroform.
  • The ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 20/1 mg/ml and 5/1 mg/mL, and is preferably around 10/1 mg/ml.
  • The solvent is typically removed by evaporation, for example using the "Reaction block evaporator" instrumentation supplied by JKem Scientific, set to the temperature of 8°C and fluxing nitrogen on each vial.
  • The chlorinated solvent can be removed in a time ranging between about 1 and about 4 days, preferably in about 3 days.
  • The solvent is typically removed from the solution at a temperature not exceeding 20°C, preferably between about 2 and 15°C, more preferably around 8°C.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ω, as defined herein, comprising:
    • formation of a solution of vortioxetine hydrobromide in a chlorinated solvent;
    • the addition of water to the resulting solution to obtain a biphasic system followed by optional cooling to obtain a precipitate;
    • recovery of vortioxetine hydrobromide in crystalline form ω from the resulting dispersion;
    wherein the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution ranges between about 1000/1 and 10/1 mg/mL and the ratio between vortioxetine hydrobromide and the water added to the solution ranges between about 3000/1 and 100/1 mg/mL.
  • A chlorinated solvent can be a solvent as defined above, preferably chloroform.
  • The ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 200/1 mg/ml and 50/1 mg/mL, and is more preferably around 100/1 mg/ml.
  • The ratio between vortioxetine hydrobromide and water preferably ranges between about 2000/1 mg/ml and 500/1 mg/ml, and is more preferably around 1000/1 mg/ml.
  • The solution can be cooled to a temperature ranging between about -15°C and 15°C, preferably between about -5°C and 5°C, and more preferably around 0°C.
  • Vortioxetine hydrobromide in crystalline form ω can be recovered by concentrating the resulting dispersion by methods known to the skilled person, filtration and/or centrifugation.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form ω, as defined herein, comprising:
    • formation of a solution of vortioxetine base in an organic solvent;
    • optional addition of water to the organic solution thus obtained;
    • treatment of the mixture thus obtained with hydrobromic acid to obtain a precipitate;
    • recovery of the vortioxetine hydrobromide in crystalline form ω thus obtained.
  • The vortioxetine base used as starting material can be any known form of vortioxetine base, either crystalline or non-crystalline, or crude vortioxetine base.
  • The vortioxetine base used as starting material is typically vortioxetine as obtainable according to WO 03/029232 (example 1e) or a vortioxetine base in crystalline form as disclosed in WO 2007/144005 .
  • An organic solvent is typically an organic solvent immiscible with water, such as an aprotic apolar solvent, typically a hydrocarbon selected from hexane, heptane, toluene or xylene, preferably toluene; a chlorinated solvent, such as dichloromethane or chloroform; an ester solvent such as ethyl acetate or isopropyl acetate, an ether solvent, typically tert-butyl methyl ether or tetrahydrofuran; or a ketone, such as methyl ethyl ketone or tert-butyl methyl ketone. An organic solvent immiscible with water is preferably toluene.
  • The ratio between vortioxetine free base and the organic solvent in the organic solution typically ranges between about 1000/1 and 10/1 mg/mL, preferably between 100/1 mg/ml and 20/1 mg/ml, and more preferably around 20/1 mg/ml.
  • The hydrobromic acid used to treat the mixture is, for example, hydrobromic acid in aqueous solution, preferably 48% aqueous hydrobromic acid.
  • The mixture is typically treated with hydrobromic acid by dripping aqueous hydrobromic acid into the mixture in a time ranging between a few minutes and two hours.
  • The vortioxetine hydrobromide in crystalline form ω thus obtained can be recovered by known methods, such as filtration or centrifugation.
  • Another object of the present invention is a process for the preparation of vortioxetine hydrobromide in crystalline form σ, as defined herein, comprising drying crystalline form ω of vortioxetine hydrobromide.
  • Drying, typically stove drying or air-drying, can be performed at a temperature ranging between about 20°C and about 100°C, preferably by stove-drying at about 40°C under vacuum or by air-drying at 90°C and for a time ranging between about 1 hour and about 24 hours, typically for about 15 hours.
  • It has also surprisingly been found that forming vortioxetine hydrobromide crystalline form λ, ω and/or σ, by starting from any form of vortioxetine base, or a pharmaceutically acceptable salt thereof, having a chemical purity equal to or lower than 98.1% calculated as Area % (A%) by HPLC, then vortioxetine base or a salt thereof having a purity exceeding 99.5% can be obtained.
  • A further object of the invention is therefore a process for the purification of vortioxetine or a pharmaceutically acceptable salt thereof, in particular the hydrobromide salt, comprising the formation of vortioxetine hydrobromide in crystalline form λ, ω and/or σ.
  • As demonstrated by Figures 6 and 7, vortioxetine hydrobromide in crystalline form ω is stable from both the physical and the chemical standpoint. Said crystalline form of vortioxetine hydrobromide, under standard pressure, temperature and humidity conditions, is stable in that it does not chemically degrade and is not converted to other known crystalline forms of vortioxetine hydrobromide.
  • Said crystalline form ω is, in particular, not hygroscopic under standard storage conditions, and is therefore particularly suitable for use in pharmaceutical technology.
  • It has also surprisingly been found that said crystalline forms λ, ω and/or σ can be advantageously used to prepare another form of commercially available vortioxetine hydrobromide, in particular a crystalline form thereof.
  • A object of the invention is therefore the use of vortioxetine hydrobromide in crystalline form λ, ω and/or σ, as intermediate useful for preparing another form of vortioxetine hydrobromide, in particular a commercially available crystalline form thereof.
  • Another object of the invention is vortioxetine hydrobromide in crystalline form ω, which is particularly stable from the physicochemical standpoint, according to the process described above.
  • The chemical purity of vortioxetine hydrobromide in crystalline form λ, ω and σ obtained by the process according to the invention, evaluated by HPLC analysis as Area % (A%), is equal to or greater than 98%, and preferably equal to or greater than 99.5%.
  • A further object of the invention is a pharmaceutical composition comprising vortioxetine hydrobromide in at least one of crystalline forms λ, ω or σ as defined above, as active ingredient, and a pharmaceutically acceptable excipient and/or carrier.
  • Said pharmaceutical composition can be prepared in a pharmaceutical form by known methods. The dose of active ingredient present in said composition can be that commonly used in clinical practice for vortioxetine hydrobromide, as reported above.
  • A further object of the invention is vortioxetine hydrobromide in crystalline form λ, ω and/or σ for use as a medicament which is particularly useful in the treatment of depression.
  • A further object of the invention is the use of vortioxetine hydrobromide in crystalline form λ, ω and/or σ to prepare a medicament which is particularly useful in the treatment of depression.
  • A further object of the invention is therefore a method of treating a human being who need an antidepressant drug for the prevention and treatment of depressive states, comprising the administration to said human being of vortioxetine hydrobromide in crystalline form λ, ω and/or σ.
  • The following examples further illustrate the invention.
  • Example 1 - Preparation of vortioxetine hydrobromide in crystalline form λ
  • Vortioxetine (0.6 g, 1.58.10-3 mol) is dissolved in CHCl3 (60 ml) in a 100 ml Erlenmeyer flask and filtered through a porous septum. Water (6 ml) is added and the solution is left under stirring for 24 hours at about 0°C, not in an inert atmosphere. During this period the temperature gradually rises, and the solution is concentrated to about half its volume. The solution is concentrated with nitrogen flow to residue, and taken up with 5 ml of water. The suspended solid is filtered and, when analysed with XRPD, as shown in Figure 1, presents the most intense peaks at about 4.0; 8.0: 12.0; 12.7; 15.7; 16.0; 16.4; 19.0; 20.1; 20.3 ± 0.2° in 2θ, with a DSC pattern as shown in Figure 2, thus proving to be a novel hydrate polymorph (KF=7.02%), defined herein as vortioxetine hydrobromide in crystalline form λ.
  • Example 2 - Preparation of vortioxetine hydrobromide in crystalline form ω from crystalline form λ
  • Crystalline form λ, prepared according to Example 1 can be converted to crystalline form ω by maintaining the crystalline solid under vacuum at room temperature for about 14 days or maintaining it in a stove under vacuum for about two hours at the temperature of 40°C. Said crystalline form ω thus obtained presents an XRPD spectrum as shown in Figure 3, wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ± 0.2° in 2θ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%. Said crystalline form also presents an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5.
  • Example 3 - Preparation of vortioxetine hydrobromide in crystalline form ω
  • 30 mg of vortioxetine hydrobromide in monohydrate form is dissolved in 3 mL of chloroform. The solution is maintained under stirring for about an hour at a temperature of about 25°C. The clear solution is filtered through 0.45 µm Whatman filters and left to evaporate at low temperature (8°C) in the "Reaction block evaporator" supplied by JKem Scientific. After three days, a dark yellow crystalline solid is recovered which has an XRPD spectrum as shown in Figure 3, wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ± 0.2° in 2θ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%. Said crystalline form also presents an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5.
  • Example 4 - Preparation of vortioxetine hydrobromide in crystalline form ω
  • Vortioxetine hydrobromide (1.5 g, 3.96·10-3 mol) is dissolved in CHCl3 (15 ml) in a 50 ml Erlenmeyer flask, and the resulting solution is filtered through a porous septum. The filtered solution is treated with water (1.5 ml), and the biphasic system thus obtained is maintained under stirring for 24 hours at about 0°C. The biphasic system is then maintained at the same temperature and a nitrogen flow is bubbled through the liquid phase until a residue is obtained, which is taken up with water (5 ml). The suspended solid is filtered and air-dried for two hours at room temperature.
  • Said crystalline form ω thus obtained presents an XRPD spectrum as shown in Figure 3, wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ± 0.2° in 2θ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%. Said crystalline form presents an FTIR spectrum as shown in Figure 4 and a DSC pattern as shown in Figure 5.
  • Example 5 - Preparation of vortioxetine hydrobromide in crystalline form ω from vortioxetine base
  • Vortioxetine hydrobromide (1.0 g, 2.64 mmol, HPLC purity 98.01% calculated as A%) is suspended in toluene (20 ml) under nitrogen in a 100 ml four-necked flask equipped with magnetic stirrer, thermometer and condenser, and water (20 ml) and about 0.5 ml of 30% NaOH are added. The mixture is heated to about 80°C, and the phases are then separated at the same temperature. The organic phase is then treated with water (20 ml), maintaining the temperature at 80°C, and the biphasic system is treated with 48% HBr (0.3 ml). The phases are separated and the organic phase is further extracted hot with water. The combined aqueous phases are treated with 30% NaOH to pH 11, and extracted hot several times with toluene.
  • The combined organic phases are partly concentrated at low pressure to about 16 ml of organic solution, and treated at about 20°C with water (2 ml). The biphasic system is treated with 48% HBr (0.3 ml), and the mixture is maintained under stirring for two hours at about 20°C. The crystallised solid is filtered, washed with water and stove-dried for 4 hours at 40°C under vacuum. 1.0 g of vortioxetine hydrobromide hydrate form ω, with KF=4.53% and HPLC purity in A% of 99.82, is obtained.
  • Said crystalline form ω thus obtained presents an XRPD spectrum as shown in Figure 3, wherein the most intense peaks are found at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ± 0.2° in 2θ; said crystalline form of vortioxetine hydrobromide presents an HPLC purity calculated as A% of about 99.6%. Said crystalline form also presents an FTIR spectrum as shown in Figure 4, and a DSC pattern as shown in Figure 5.
  • Example 6 - Preparation of vortioxetine hydrobromide in crystalline form σ
  • Vortioxetine hydrobromide in crystalline form ω, as obtained according to example 5, is stove-dried under vacuum at 40°C for 15 hours.
  • Vortioxetine hydrobromide in crystalline form σ is obtained.
  • Said crystalline form σ thus obtained presents an XRPD spectrum as shown in Figure 8, wherein the most intense peaks are found at about 3.8, 11.6, 13.0, 14.0, 14.4, 15.5, 18.2, 18.4, 19.2, 20.0, 20.2, 21.0, 21.4, 22.3, 23.4, 23.8, 27.0 and 28.2 ± 0.1° in 2θ; said crystalline form of vortioxetine hydrobromide presents a KF=0.4% and an HPLC purity calculated as A% of about 99.7%.
  • Example 7 - Preparation of vortioxetine hydrobromide in crystalline form σ
  • Vortioxetine hydrobromide in crystalline form ω, as obtained according to example 5, is air-dried at 90°C.
  • Vortioxetine hydrobromide in crystalline form σ is obtained.
  • Said crystalline form σ thus obtained presents an XRPD spectrum as shown in Figure 8, wherein the most intense peaks are found at about 3.8, 11.6, 13.0, 14.0, 14.4, 15.5, 18.2, 18.4, 19.2, 20.0, 20.2, 21.0, 21.4, 22.3, 23.4, 23.8, 27.0 and 28.2 ± 0.1° in 2θ; said crystalline form of vortioxetine hydrobromide presents a KF=0.4% and an HPLC purity calculated as A% of about 99.7%.

Claims (14)

  1. A crystalline form of vortioxetine hydrobromide selected from the group comprising:
    - vortioxetine hydrobromide in crystalline form, herein defined as λ, having an XRPD spectrum as shown in Figure 1, having the most intense peaks falling at about 4.0; 8.0: 12.0; 12.7; 15.7; 16.0; 16.4; 19.0; 20.1; 20.3 ± 0.2° in 2θ; and
    - vortioxetine hydrobromide in crystalline form, herein defined as ω, having an XRPD spectrum as reported in Figure 3, having the most intense peaks falling at about 3.8; 11.3: 17.5; 18.7; 18.9; 19.7; 20.5; 20.6; 22.6; 23.9; 27.1; 28.4 ± 0.2° in 2θ; and
    - vortioxetine hydrobromide in crystalline form, defined herein as σ, having an XRPD spectrum as shown in Figure 8, wherein the most intense peaks are found at about 3.8, 11.6, 13.0, 14.0, 14.4, 15.5, 18.2, 18.4, 19.2, 20.0, 20.2, 21.0, 21.4, 22.3, 23.4, 23.8, 27.0 and 28.2 ± 0.1° in 2θ.
  2. A crystalline form λ, as defined in claim 1, which shows a DSC pattern as reported in Figure 2; or a crystalline form ω, as defined in claim 1, having an FT-IR spectrum as reported in Figure 4, and a DSC pattern as reported in Figure 5.
  3. A process for preparing vortioxetine hydrobromide in crystalline form λ, as defined in claim 1, comprising:
    • forming a solution of vortioxetine hydrobromide in a chlorinated solvent;
    • adding water to the so obtained solution to obtain a biphasic system, and, if the case, cooling the mixture to obtain a precipitate;
    • recovering vortioxetine hydrobromide in crystalline form λ from the so obtained dispersion;
    wherein the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution ranges between about 100/1 mg/ml and 5/1 mg/mL and the ratio between vortioxetine hydrobromide and the water added to the solution ranges between about 1000/1 mg/ml and about 20/1 mg/ml.
  4. A process for the preparation of vortioxetine hydrobromide in crystalline form ω, as defined in claim 1, comprising drying crystalline form λ of vortioxetine hydrobromide, as defined in claim 1.
  5. Process for the preparation of vortioxetine hydrobromide in crystalline form ω, according to claim 1, comprising:
    • forming a solution of vortioxetine hydrobromide in a chlorinated solvent;
    • removing the solvent from the so obtained solution at a temperature not higher than 20°C and recovering the so obtained vortioxetine hydrobromide in crystalline form ω.
  6. A process for the preparation of vortioxetine hydrobromide in crystalline form ω, as defined in claim 1, comprising:
    • forming a solution of vortioxetine hydrobromide in a chlorinated solvent;
    • adding water to the so obtained solution to obtain a biphasic system and, if the case, cooling to obtain a precipitate;
    • recovering vortioxetine hydrobromide in crystalline form ω from the so obtained dispersion;
    wherein the ratio between vortioxetine hydrobromide and the chlorinated solvent in the starting solution typically ranges between about 1000/1 and 10/1 mg/mL and the ratio between vortioxetine hydrobromide and the water added to the solution ranges between about 3000/1 and 100/1 mg/mL.
  7. A process for the preparation of vortioxetine hydrobromide in crystalline form ω according to claim 1, comprising:
    • forming a solution of vortioxetine base in an organic solvent;
    • optionally adding water to the so obtained organic solution;
    • treating the so obtained mixture with hydrobromic acid to obtain a precipitate;
    • recovering the so obtained vortioxetine hydrobromide in crystalline form ω.
  8. A process for the preparation of vortioxetine hydrobromide in crystalline form σ according to claim 1, comprising drying crystalline form ω of vortioxetine hydrobromide, as defined in claim 1.
  9. A process for the purification of vortioxetine base or a salt thereof, in particular the hydrobromide salt, comprising forming crystalline forms λ, ω and/or σ of vortioxetine hydrobromide, as defined in claim 1 or 2.
  10. Use of vortioxetine hydrobromide in crystalline form λ, ω and/or σ as defined in claims 1-2, as intermediate useful in the preparation of another form of vortioxetine hydrobromide, in particular a commercially available crystalline form.
  11. A pharmaceutical composition comprising vortioxetine hydrobromide in at least one of the crystalline forms λ, ω and/or σ as defined in claims 1-2, as active pharmaceutical ingredient, and a pharmaceutically acceptable excipient and/or carrier.
  12. Vortioxetine hydrobromide in crystalline form λ, ω and/or σ, as defined in claim 1 or 2, for use as a medicament which is particularly useful in the treatment of depression.
  13. Use of vortioxetine hydrobromide in crystalline form λ, ω and/or σ, as defined in claim 1 or 2 to prepare a medicament which is particularly useful in the treatment of depression.
  14. A method of treating a human being who need an antidepressant drug for the prevention and treatment of depressive states, comprising the administration to said human being of vortioxetine hydrobromide in crystalline form λ, ω and/or σ, as defined in claim 1 or 2.
EP15177222.5A 2014-07-18 2015-07-17 Crystalline forms of an antidepressant drug Withdrawn EP2975032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19174923.3A EP3564224B1 (en) 2014-07-18 2015-07-17 Crystalline form of vortioxetine hydrobromide as antidepressant drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI20141319 2014-07-18
ITMI20141657 2014-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP19174923.3A Division EP3564224B1 (en) 2014-07-18 2015-07-17 Crystalline form of vortioxetine hydrobromide as antidepressant drug

Publications (1)

Publication Number Publication Date
EP2975032A1 true EP2975032A1 (en) 2016-01-20

Family

ID=53540695

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19174923.3A Active EP3564224B1 (en) 2014-07-18 2015-07-17 Crystalline form of vortioxetine hydrobromide as antidepressant drug
EP15177222.5A Withdrawn EP2975032A1 (en) 2014-07-18 2015-07-17 Crystalline forms of an antidepressant drug

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19174923.3A Active EP3564224B1 (en) 2014-07-18 2015-07-17 Crystalline form of vortioxetine hydrobromide as antidepressant drug

Country Status (3)

Country Link
US (1) US9687484B2 (en)
EP (2) EP3564224B1 (en)
ES (1) ES2894906T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557867A (en) * 2015-11-18 2018-07-04 Azad Pharmaceutical Ingredients Ag New synthetic path to vortioxetine salts
WO2018197360A1 (en) 2017-04-25 2018-11-01 H. Lundbeck A/S Process for the manufacture of vortioxetine hbr alpha-form
EP3412661A1 (en) 2017-06-08 2018-12-12 Enantia, S.L. Cocrystals of vortioxetine hydrobromide and resorcinol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154016A1 (en) * 2016-03-07 2017-09-14 Msn Laboratories Private Limited Novel crystalline polymorphs of 1-[2-(2,4-dimethyl-phenylsulfanyl)-phenyl]-piperazine hydrobromide and process for preparation thereof
US10519121B2 (en) 2016-12-30 2019-12-31 Apicore Us Llc Process and novel polymorphic form of vortioxetine and its pharmaceutically acceptable salts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029232A1 (en) 2001-10-04 2003-04-10 H. Lundbeck A/S Phenyl-piperazine derivatives as serotonin reuptake inhibitors
WO2007144005A1 (en) 2006-06-16 2007-12-21 H. Lundbeck A/S 1- [2- (2, 4-dimethylphenylsulfanyl) -phenyl] piperazine as a compound with combined serotonin reuptake, 5-ht3 and 5-ht1a activity for the treatment of cognitive impairment
WO2010094285A1 (en) 2009-02-17 2010-08-26 H. Lundbeck A/S Purification of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine
WO2014044721A1 (en) 2012-09-19 2014-03-27 Sandoz Ag Novel crystalline form of vortioxetine hydrobromide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2396079A1 (en) 2000-01-07 2001-07-19 Transform Pharmaceuticals, Inc. High-throughput formation, identification, and analysis of diverse solid-forms
WO2015166379A2 (en) 2014-04-28 2015-11-05 Alembic Pharmaceuticals Limited Novel polymorphic forms of vortioxetine and its pharmaceutically acceptable salts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029232A1 (en) 2001-10-04 2003-04-10 H. Lundbeck A/S Phenyl-piperazine derivatives as serotonin reuptake inhibitors
WO2007144005A1 (en) 2006-06-16 2007-12-21 H. Lundbeck A/S 1- [2- (2, 4-dimethylphenylsulfanyl) -phenyl] piperazine as a compound with combined serotonin reuptake, 5-ht3 and 5-ht1a activity for the treatment of cognitive impairment
WO2010094285A1 (en) 2009-02-17 2010-08-26 H. Lundbeck A/S Purification of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine
WO2014044721A1 (en) 2012-09-19 2014-03-27 Sandoz Ag Novel crystalline form of vortioxetine hydrobromide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557867A (en) * 2015-11-18 2018-07-04 Azad Pharmaceutical Ingredients Ag New synthetic path to vortioxetine salts
WO2018197360A1 (en) 2017-04-25 2018-11-01 H. Lundbeck A/S Process for the manufacture of vortioxetine hbr alpha-form
EP3412661A1 (en) 2017-06-08 2018-12-12 Enantia, S.L. Cocrystals of vortioxetine hydrobromide and resorcinol
WO2018224594A1 (en) 2017-06-08 2018-12-13 Enantia, S.L. Cocrystals of vortioxetine hydrobromide and resorcinol

Also Published As

Publication number Publication date
EP3564224B1 (en) 2021-09-29
EP3564224A3 (en) 2019-11-27
US9687484B2 (en) 2017-06-27
US20160015706A1 (en) 2016-01-21
EP3564224A2 (en) 2019-11-06
ES2894906T3 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
EP3564224B1 (en) Crystalline form of vortioxetine hydrobromide as antidepressant drug
EP2907812B1 (en) Process for the preparation of an amorphous form of dexlansoprazole
IE59901B1 (en) Piperidine derivative, its preparation, and its use as medicament
EP2896609B1 (en) Crystalline fingolimod citrate for the treatment of relapsing-remitting multiple sclerosis
EP2502917A1 (en) Solid state crystalline forms of 4-(2-ethyl-5-fluoro-2,3-dihydro-1H-inden-2-yl)-1H-imidazole
WO2007109799A2 (en) Polymorphs of eszopiclone malate
EP1674463A1 (en) Rabeprazole sodium salt in crystalline hydrate form
WO2014167428A2 (en) Amorphous 4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-n-methylbenzamide
US20130059872A1 (en) Polymorphs of alogliptin benzoate
WO2006030449A1 (en) Crystalline alfuzosin base
EP2393786B1 (en) Novel polymorphs of lopinavir
WO2006090263A1 (en) Stable form i donepezil hydrochloride and process for its preparation and use in pharmaceutical compositions
EP3741744B1 (en) A pharmaceutical intermediate for preparing pimavanserin
WO2011027324A1 (en) Polymorphic forms of atazanavir sulfate
JP2009538904A (en) New crystal form
EP3725774B1 (en) Process for the preparation of a pharmaceutical agent
EP3710425A1 (en) Solid state forms of elafibranor
WO2012123963A2 (en) A process for preparation of iloperidone and amorphous co- precipitate of iloperidone with pharmaceutically acceptable excipient
WO2007022173A2 (en) Crystalline forms fenoldopam mesylate
US8193217B2 (en) Polymorphic form of granisetron hydrochloride and methods of making the same
WO2016127962A1 (en) An amorphous solid form of suvorexant with sulphuric acid
WO2014049609A2 (en) Novel salts of vilazodone
WO2022090138A1 (en) PROCESSES FOR THE PREPARATION OF IVABRADINE HCl POLYMORPHS
EP3210975A1 (en) Cocrystals of lorcaserin
EP2109613A2 (en) Polymorphs of eszopiclone malate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190604