EP2970142B1 - Functionalized ionic liquids and their applications - Google Patents
Functionalized ionic liquids and their applications Download PDFInfo
- Publication number
- EP2970142B1 EP2970142B1 EP14764516.2A EP14764516A EP2970142B1 EP 2970142 B1 EP2970142 B1 EP 2970142B1 EP 14764516 A EP14764516 A EP 14764516A EP 2970142 B1 EP2970142 B1 EP 2970142B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ionic liquids
- ionic liquid
- fabric
- formula
- tbap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002608 ionic liquid Substances 0.000 title claims description 255
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 232
- 239000004744 fabric Substances 0.000 claims description 165
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 120
- 239000003063 flame retardant Substances 0.000 claims description 76
- 239000001569 carbon dioxide Substances 0.000 claims description 66
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 59
- 238000000576 coating method Methods 0.000 claims description 55
- 239000003792 electrolyte Substances 0.000 claims description 44
- 239000011248 coating agent Substances 0.000 claims description 43
- 239000002904 solvent Substances 0.000 claims description 41
- 150000001450 anions Chemical class 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 26
- 150000001414 amino alcohols Chemical class 0.000 claims description 23
- 239000000654 additive Substances 0.000 claims description 22
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 20
- 230000000996 additive effect Effects 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000004753 textile Substances 0.000 claims description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 17
- 229910001416 lithium ion Inorganic materials 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 15
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 6
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 229910052740 iodine Inorganic materials 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 description 63
- -1 Cleaning Substances 0.000 description 52
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 49
- 239000004202 carbamide Substances 0.000 description 49
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 42
- 229920000742 Cotton Polymers 0.000 description 42
- 239000000126 substance Substances 0.000 description 42
- 238000006243 chemical reaction Methods 0.000 description 39
- 150000001412 amines Chemical class 0.000 description 37
- 238000012360 testing method Methods 0.000 description 37
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 29
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 28
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 26
- 238000000354 decomposition reaction Methods 0.000 description 26
- 239000000203 mixture Substances 0.000 description 26
- 239000000243 solution Substances 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 125000001246 bromo group Chemical group Br* 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 22
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 22
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- ARRNBPCNZJXHRJ-UHFFFAOYSA-M hydron;tetrabutylazanium;phosphate Chemical compound OP(O)([O-])=O.CCCC[N+](CCCC)(CCCC)CCCC ARRNBPCNZJXHRJ-UHFFFAOYSA-M 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 125000003277 amino group Chemical group 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 17
- 229920001778 nylon Polymers 0.000 description 17
- 238000002411 thermogravimetry Methods 0.000 description 17
- 239000004677 Nylon Substances 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 238000007706 flame test Methods 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 239000000178 monomer Substances 0.000 description 11
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 10
- 230000006399 behavior Effects 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 10
- 239000004971 Cross linker Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 125000003158 alcohol group Chemical group 0.000 description 8
- 229920002678 cellulose Polymers 0.000 description 8
- 239000001913 cellulose Substances 0.000 description 8
- 239000008199 coating composition Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- ZHXAZZQXWJJBHA-UHFFFAOYSA-N triphenylbismuthane Chemical compound C1=CC=CC=C1[Bi](C=1C=CC=CC=1)C1=CC=CC=C1 ZHXAZZQXWJJBHA-UHFFFAOYSA-N 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 7
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 7
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 7
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 7
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 229920000877 Melamine resin Polymers 0.000 description 7
- 238000005481 NMR spectroscopy Methods 0.000 description 7
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- MCTWTZJPVLRJOU-UHFFFAOYSA-O 1-methylimidazole Chemical compound CN1C=C[NH+]=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-O 0.000 description 6
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 6
- YTVQIZRDLKWECQ-UHFFFAOYSA-N 2-benzoylcyclohexan-1-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCC1=O YTVQIZRDLKWECQ-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002274 desiccant Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000005431 greenhouse gas Substances 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 description 5
- JCERKCRUSDOWLT-UHFFFAOYSA-N 1-bromopropan-1-ol Chemical compound CCC(O)Br JCERKCRUSDOWLT-UHFFFAOYSA-N 0.000 description 4
- HRJJDZBAPHIIRK-UHFFFAOYSA-N 2-(3-bromopropyl)-1-methyl-1H-imidazol-1-ium bromide Chemical compound [Br-].C[n+]1cc[nH]c1CCCBr HRJJDZBAPHIIRK-UHFFFAOYSA-N 0.000 description 4
- PQIYSSSTRHVOBW-UHFFFAOYSA-N 3-bromopropan-1-amine;hydron;bromide Chemical compound Br.NCCCBr PQIYSSSTRHVOBW-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 4
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 150000003335 secondary amines Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- KJAMZCVTJDTESW-UHFFFAOYSA-N tiracizine Chemical compound C1CC2=CC=CC=C2N(C(=O)CN(C)C)C2=CC(NC(=O)OCC)=CC=C21 KJAMZCVTJDTESW-UHFFFAOYSA-N 0.000 description 4
- VEFLKXRACNJHOV-UHFFFAOYSA-N 1,3-dibromopropane Chemical compound BrCCCBr VEFLKXRACNJHOV-UHFFFAOYSA-N 0.000 description 3
- JBXAYKWVRCTFJD-UHFFFAOYSA-N 1-but-3-enyl-3-methyl-1,2-dihydroimidazol-1-ium bromide Chemical compound [Br-].CN1C[NH+](CCC=C)C=C1 JBXAYKWVRCTFJD-UHFFFAOYSA-N 0.000 description 3
- ZEYUSQVGRCPBPG-UHFFFAOYSA-N 4,5-dihydroxy-1,3-bis(hydroxymethyl)imidazolidin-2-one Chemical compound OCN1C(O)C(O)N(CO)C1=O ZEYUSQVGRCPBPG-UHFFFAOYSA-N 0.000 description 3
- KKAGDBJDENCVAO-UHFFFAOYSA-N 4-(3-bromopropyl)-1,2-dimethyl-1H-imidazol-1-ium bromide Chemical compound [Br-].C[NH+]1C=C(CCCBr)N=C1C KKAGDBJDENCVAO-UHFFFAOYSA-N 0.000 description 3
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 3
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229920005822 acrylic binder Polymers 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229940006460 bromide ion Drugs 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- PMCPUPRECKXGEW-UHFFFAOYSA-N diethyl phosphate;2-ethyl-1-methyl-1h-imidazol-1-ium Chemical compound CCC1=NC=C[NH+]1C.CCOP([O-])(=O)OCC PMCPUPRECKXGEW-UHFFFAOYSA-N 0.000 description 3
- LGOMHTZVDRXOIH-UHFFFAOYSA-M diethyl phosphate;tetrabutylphosphanium Chemical compound CCOP([O-])(=O)OCC.CCCC[P+](CCCC)(CCCC)CCCC LGOMHTZVDRXOIH-UHFFFAOYSA-M 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- 150000004693 imidazolium salts Chemical class 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000001757 thermogravimetry curve Methods 0.000 description 3
- ATWLRNODAYAMQS-UHFFFAOYSA-N 1,1-dibromopropane Chemical compound CCC(Br)Br ATWLRNODAYAMQS-UHFFFAOYSA-N 0.000 description 2
- OHBKNWDVVSUTRV-UHFFFAOYSA-N 1-(prop-2-enoylamino)propane-2-sulfonic acid Chemical compound OS(=O)(=O)C(C)CNC(=O)C=C OHBKNWDVVSUTRV-UHFFFAOYSA-N 0.000 description 2
- XXJGBENTLXFVFI-UHFFFAOYSA-N 1-amino-methylene Chemical compound N[CH2] XXJGBENTLXFVFI-UHFFFAOYSA-N 0.000 description 2
- WIFUNINKLKCJBV-UHFFFAOYSA-M 1-aminobutyl-dibutyl-propylphosphanium bromide Chemical compound [Br-].CCCC[P+](CCC)(CCCC)C(N)CCC WIFUNINKLKCJBV-UHFFFAOYSA-M 0.000 description 2
- OOKUTCYPKPJYFV-UHFFFAOYSA-N 1-methyl-1h-imidazol-1-ium;bromide Chemical compound [Br-].CN1C=C[NH+]=C1 OOKUTCYPKPJYFV-UHFFFAOYSA-N 0.000 description 2
- KLFDZFIZKMEUGI-UHFFFAOYSA-M 1-methyl-3-prop-2-enylimidazol-1-ium;bromide Chemical compound [Br-].C[N+]=1C=CN(CC=C)C=1 KLFDZFIZKMEUGI-UHFFFAOYSA-M 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- PTHDBHDZSMGHKF-UHFFFAOYSA-N 2-piperidin-2-ylethanol Chemical compound OCCC1CCCCN1 PTHDBHDZSMGHKF-UHFFFAOYSA-N 0.000 description 2
- RQFUZUMFPRMVDX-UHFFFAOYSA-N 3-Bromo-1-propanol Chemical compound OCCCBr RQFUZUMFPRMVDX-UHFFFAOYSA-N 0.000 description 2
- BTLUHCQMKXUJSQ-UHFFFAOYSA-M 3-bromopropyl(tributyl)phosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCBr BTLUHCQMKXUJSQ-UHFFFAOYSA-M 0.000 description 2
- BRPVJPQPAJDJIT-UHFFFAOYSA-N 5-(3-bromopropyl)-2-methyl-1H-imidazole Chemical compound CC1=NC(CCCBr)=CN1 BRPVJPQPAJDJIT-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- DVBHKIJGVDXRFS-UHFFFAOYSA-N C(CCC)OP(=O)(OCCCC)[O-].C(CCC)C(CC[PH2+]N)(CCCC)CCCC Chemical compound C(CCC)OP(=O)(OCCCC)[O-].C(CCC)C(CC[PH2+]N)(CCCC)CCCC DVBHKIJGVDXRFS-UHFFFAOYSA-N 0.000 description 2
- 0 C*C1CCCC1 Chemical compound C*C1CCCC1 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- BWRKZSZYNYJOKP-UHFFFAOYSA-M [Br-].CCCC[P+](CCC)(CCCC)C(O)CCC Chemical compound [Br-].CCCC[P+](CCC)(CCCC)C(O)CCC BWRKZSZYNYJOKP-UHFFFAOYSA-M 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- AHBGZZLGFBYJJB-UHFFFAOYSA-N amino(3,3-dibutylheptyl)phosphanium acetate Chemical compound C(C)(=O)[O-].C(CCC)C(CC[PH2+]N)(CCCC)CCCC AHBGZZLGFBYJJB-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 150000003842 bromide salts Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001912 cyanamides Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- WVJOGYWFVNTSAU-UHFFFAOYSA-N dimethylol ethylene urea Chemical compound OCN1CCN(CO)C1=O WVJOGYWFVNTSAU-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 150000002357 guanidines Chemical class 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 150000007974 melamines Chemical class 0.000 description 2
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000005677 organic carbonates Chemical class 0.000 description 2
- 238000006053 organic reaction Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- 238000004375 physisorption Methods 0.000 description 2
- PRAYXGYYVXRDDW-UHFFFAOYSA-N piperidin-2-ylmethanol Chemical compound OCC1CCCCN1 PRAYXGYYVXRDDW-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 230000009919 sequestration Effects 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000007655 standard test method Methods 0.000 description 2
- 239000004032 superbase Substances 0.000 description 2
- 150000007525 superbases Chemical class 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229940086542 triethylamine Drugs 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- JAUFPVINVSWFEL-UHFFFAOYSA-N 1,1-dimethylimidazol-1-ium Chemical compound C[N+]1(C)C=CN=C1 JAUFPVINVSWFEL-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- CZGWTJKCWJYXIY-UHFFFAOYSA-N 1-(4-bromobutyl)imidazole;hydrobromide Chemical compound Br.BrCCCCN1C=CN=C1 CZGWTJKCWJYXIY-UHFFFAOYSA-N 0.000 description 1
- WPHIMOZSRUCGGU-UHFFFAOYSA-N 1-butyl-3-methylimidazol-3-ium;nitrate Chemical compound [O-][N+]([O-])=O.CCCCN1C=C[N+](C)=C1 WPHIMOZSRUCGGU-UHFFFAOYSA-N 0.000 description 1
- VRFOKYHDLYBVAL-UHFFFAOYSA-M 1-ethyl-3-methylimidazol-3-ium;ethyl sulfate Chemical compound CCOS([O-])(=O)=O.CCN1C=C[N+](C)=C1 VRFOKYHDLYBVAL-UHFFFAOYSA-M 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-O 2,3-dimethylimidazolium ion Chemical group CC1=[NH+]C=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-O 0.000 description 1
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N 2-ethyl-1h-imidazole Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- UMXZFNYZWGQZAF-UHFFFAOYSA-O 2-hexyl-3-methyl-1h-imidazol-3-ium Chemical compound CCCCCCC=1NC=C[N+]=1C UMXZFNYZWGQZAF-UHFFFAOYSA-O 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- DOJHVDKDOZXBMY-UHFFFAOYSA-N 3-(3-methyl-1h-imidazol-3-ium-2-yl)propan-1-amine;bromide Chemical compound [Br-].C[N+]=1C=CNC=1CCCN DOJHVDKDOZXBMY-UHFFFAOYSA-N 0.000 description 1
- PGAKWGNQWJEZPM-UHFFFAOYSA-N 3-(3-methyl-1h-imidazol-3-ium-2-yl)propan-1-ol;bromide Chemical compound [Br-].C[NH+]1C=CN=C1CCCO PGAKWGNQWJEZPM-UHFFFAOYSA-N 0.000 description 1
- HNUISXZTZKSZKI-UHFFFAOYSA-N 3-bromopropyl(tributyl)phosphanium Chemical class CCCC[P+](CCCC)(CCCC)CCCBr HNUISXZTZKSZKI-UHFFFAOYSA-N 0.000 description 1
- LQFMFEQCLGVNEH-UHFFFAOYSA-N 3-bromopropylphosphane Chemical class PCCCBr LQFMFEQCLGVNEH-UHFFFAOYSA-N 0.000 description 1
- WCSQBLTYIAUEHB-UHFFFAOYSA-N 3-hydroxypropylphosphanium;bromide Chemical compound [Br-].OCCC[PH3+] WCSQBLTYIAUEHB-UHFFFAOYSA-N 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- IVLICPVPXWEGCA-UHFFFAOYSA-N 3-quinuclidinol Chemical compound C1C[C@@H]2C(O)C[N@]1CC2 IVLICPVPXWEGCA-UHFFFAOYSA-N 0.000 description 1
- KQMUWBSMKSLOCU-UHFFFAOYSA-N 4-(1-methyl-1H-imidazol-1-ium-2-yl)butan-1-ol chloride Chemical compound [Cl-].C[n+]1cc[nH]c1CCCCO KQMUWBSMKSLOCU-UHFFFAOYSA-N 0.000 description 1
- ZOUOFZZYDQXQKW-UHFFFAOYSA-N 4-(1H-imidazol-3-ium-3-yl)butan-1-amine bromide Chemical compound [Br-].NCCCC[n+]1cc[nH]c1 ZOUOFZZYDQXQKW-UHFFFAOYSA-N 0.000 description 1
- KEYLJUQDGCSSFN-UHFFFAOYSA-N 4-(1h-imidazol-3-ium-3-yl)butan-1-ol;bromide Chemical compound [Br-].OCCCC[N+]=1C=CNC=1 KEYLJUQDGCSSFN-UHFFFAOYSA-N 0.000 description 1
- WAKBNLBOSTUCOV-UHFFFAOYSA-N 4-(3-bromopropyl)-1,2-dimethylimidazole Chemical compound CC1=NC(CCCBr)=CN1C WAKBNLBOSTUCOV-UHFFFAOYSA-N 0.000 description 1
- BBHJTCADCKZYSO-UHFFFAOYSA-N 4-(4-ethylcyclohexyl)benzonitrile Chemical compound C1CC(CC)CCC1C1=CC=C(C#N)C=C1 BBHJTCADCKZYSO-UHFFFAOYSA-N 0.000 description 1
- DMAYBPBPEUFIHJ-UHFFFAOYSA-N 4-bromobut-1-ene Chemical compound BrCCC=C DMAYBPBPEUFIHJ-UHFFFAOYSA-N 0.000 description 1
- HXHGULXINZUGJX-UHFFFAOYSA-N 4-chlorobutanol Chemical compound OCCCCCl HXHGULXINZUGJX-UHFFFAOYSA-N 0.000 description 1
- LMFCFWCVHWMMKA-UHFFFAOYSA-O 5-methyl-3-propyl-1H-imidazol-3-ium-2-amine Chemical compound CC=1NC(=[N+](C=1)CCC)N LMFCFWCVHWMMKA-UHFFFAOYSA-O 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- JYNQKCFJPQEXSL-UHFFFAOYSA-N CCC(C(C)C)N Chemical compound CCC(C(C)C)N JYNQKCFJPQEXSL-UHFFFAOYSA-N 0.000 description 1
- QRWZOHXVVKVSIU-UHFFFAOYSA-N CCCC[P+](CCCC)(CCCC)CCCN(C)CCO Chemical compound CCCC[P+](CCCC)(CCCC)CCCN(C)CCO QRWZOHXVVKVSIU-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000579895 Chlorostilbon Species 0.000 description 1
- 241000522213 Dichilus lebeckioides Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- XKYZZPOBNDZQPX-UHFFFAOYSA-N [Br-].C(CCC)C(CC[PH2+]N)(CCCC)CCCC Chemical compound [Br-].C(CCC)C(CC[PH2+]N)(CCCC)CCCC XKYZZPOBNDZQPX-UHFFFAOYSA-N 0.000 description 1
- GUCFIJILAUWHLT-UHFFFAOYSA-N [Br-].C(CCC)C(CC[PH2+]O)(CCCC)CCCC Chemical compound [Br-].C(CCC)C(CC[PH2+]O)(CCCC)CCCC GUCFIJILAUWHLT-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- RCNFOZUBFOFJKZ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-hexyl-3-methylimidazol-3-ium Chemical compound CCCCCC[N+]=1C=CN(C)C=1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F RCNFOZUBFOFJKZ-UHFFFAOYSA-N 0.000 description 1
- KQUZAKBTVDUFQS-UHFFFAOYSA-O bis(trifluoromethylsulfonyl)azanide;2-hexyl-3-methyl-1h-imidazol-3-ium Chemical compound CCCCCCC=1NC=C[N+]=1C.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F KQUZAKBTVDUFQS-UHFFFAOYSA-O 0.000 description 1
- UQWLFOMXECTXNQ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F UQWLFOMXECTXNQ-UHFFFAOYSA-N 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 229910052876 emerald Inorganic materials 0.000 description 1
- 239000010976 emerald Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 231100000584 environmental toxicity Toxicity 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012757 flame retardant agent Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- PLRZRBGXVIBTIM-UHFFFAOYSA-N hydroxy(methyl)phosphanium;chloride Chemical compound [Cl-].C[PH2+]O PLRZRBGXVIBTIM-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012900 molecular simulation Methods 0.000 description 1
- MJVUDZGNBKFOBF-UHFFFAOYSA-N n-nitronitramide Chemical compound [O-][N+](=O)N[N+]([O-])=O MJVUDZGNBKFOBF-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- VUNPWIPIOOMCPT-UHFFFAOYSA-N piperidin-3-ylmethanol Chemical compound OCC1CCCNC1 VUNPWIPIOOMCPT-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 229910001495 sodium tetrafluoroborate Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical class [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 description 1
- FAUOSXUSCVJWAY-UHFFFAOYSA-N tetrakis(hydroxymethyl)phosphanium Chemical compound OC[P+](CO)(CO)CO FAUOSXUSCVJWAY-UHFFFAOYSA-N 0.000 description 1
- YIEDHPBKGZGLIK-UHFFFAOYSA-L tetrakis(hydroxymethyl)phosphanium;sulfate Chemical compound [O-]S([O-])(=O)=O.OC[P+](CO)(CO)CO.OC[P+](CO)(CO)CO YIEDHPBKGZGLIK-UHFFFAOYSA-L 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 231100000133 toxic exposure Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- PYVOHVLEZJMINC-UHFFFAOYSA-N trihexyl(tetradecyl)phosphanium Chemical compound CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC PYVOHVLEZJMINC-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/58—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/61—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/11—Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/282—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/325—Amines
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/35—Heterocyclic compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/35—Heterocyclic compounds
- D06M13/352—Heterocyclic compounds having five-membered heterocyclic rings
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/46—Compounds containing quaternary nitrogen atoms
- D06M13/47—Compounds containing quaternary nitrogen atoms derived from heterocyclic compounds
- D06M13/473—Compounds containing quaternary nitrogen atoms derived from heterocyclic compounds having five-membered heterocyclic rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/30—Flame or heat resistance, fire retardancy properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2631—Coating or impregnation provides heat or fire protection
- Y10T442/2664—Boron containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2631—Coating or impregnation provides heat or fire protection
- Y10T442/2672—Phosphorus containing
- Y10T442/268—Phosphorus and nitrogen containing compound
Definitions
- the chemistry of cation and the anion determines the physical and chemical properties of an ionic liquid. Therefore, it is possible to achieve specific physical property by choosing the proper combination of a cation and an anion. For example, the viscosities can be adjusted over a wide range of less than 50 cP to greater than 10,000 cP.
- FR material based on tetrakis(hydroxymethyl)phosphonium cation is the most widely sold commercial FR treatment product to date.
- US 4,750,911 (Hansen et al. ) describe the fire retardation of nylon/cotton fabrics with a flame-retardant cyclic phosphonate ester and tetrakis-(hydroxymethyl)phosphonium sulfate, usually simultaneously, then cured. It is generally agreed that ammonium and phosphonium salts have superior FR properties.
- Ionic liquid based desiccant systems are capable of both humidity control and chloride removal.
- Ionic liquids are non-volatile liquids as well as efficient desiccants.
- the ionic liquids can be functionalized to remove chloride ions from the environment.
- IL's ionic liquids
- advantages that include negligible vapor pressure, higher thermal stability and lower heat capacity.
- alkanolamines they have fast capture kinetics and low viscosity.
- functionalized-IL's to be investigated as potential replacement solvents for aqueous amine scrubbing systems.
- the TPEP-coated cotton fabric was coated with a layer of AMPS (30%) monomer and MBAm (3%) cross linker. Then the fabric was air dried for 4 days before the vertical flame testing. Cotton fabric coated with TPEP/AMPS-MBAm was subjected to vertical flame testing. The coated fabric exhibited a less vigorous flame than the uncoated control fabric. After-flame time and char length was also significantly reduced and no afterglow was observed.
- Amino propyl tributyl phosphonium bromide here after referred as 'TBAP-Br' or as 'Formula 23' was synthesized by reacting tributyl phosphine with 3-bromopropylamine hydrobromide (Example 28, not of the invention).
- TBAP-Br was tested both by itself and with urea in the FR coating formulation on NYCO fabric.
- the combination of TBAP-Br and urea produced excellent results, with an average char length of 11.1 cm (4.37 inches), and an average char yield of 93.1%.
- Pure TBAP-Br produced good data as well, with averages of 13.1 cm (5.16 inch) char length and 91.9% char yield.
- the vertical flame test data are provided in Table 8. The data indicate that amino functionalized phosphonium ionic liquids are suitable as FR coating materials.
- Tetrabutyl phosphonium bromide which has chemical structure similar to TBOP and TBAP were tested to evaluate how critical is presence of the hydroxyl or amino group in the phosphonium ionic liquid for imparting FR property to the fabric.
- Tetrabutyl phosphonium bromide and Tetrabutyl phosphonium bromide mixed with urea solutions produced average char lengths of 21 cm (8.2 inches) and 18 cm (7.1 inches) respectively. These values are quite high relative to results of TBAP-Br and [TBOP-Br]+Urea vertical flame test results, and three of the six samples tested did char completely.
- DMDHEU Dimethylol dihydroxyethyleneurea
- DMEU Dimethylol ethyleneurea
- DMEU Dimethylol ethyleneurea
- Ionic liquids consist of charged species with high ionic conductivity.
- the static charge accumulated on the fabric surface can be rapidly dissipated by conducting ions.
- Antistatic property of the TBOP-Br/Urea treated fabrics were tested using the Federal Test Method Standard 191A Method 5931 'Determination of electrostatic decay of fabrics'. According to this method the amount of time it takes for static to dissipate from a fabric strip was measured.
- the 3 cm x 13 cm (3" x 5") test samples were preconditioned at 20% relative humidity at 24oC. 5000 V was applied to the test fabric for a period of 20 seconds. The voltage behavior of the test sample as a function of decay time was recorded.
- the instrument was calibrated for temperature using the curie points of nickel and iron and calibrated for weight with the precision weight set provided by TA Instruments.
- the ionic liquid represented by the Formula 17 exhibited a larger amount of loss near 280 degree C compared to the ionic liquid represented by the Formula 14. This can be attributed to the loss of N-methyl group. Otherwise, the two materials show similar decomposition profiles and both are completely reduced to a black char by 488 degree C.
- the ionic liquids reported here show relatively lower stability than the unfunctionalized ILs reported in the literature [ Z. Zhang, and R.G.
- TBAP-Acetate exhibited lowest char length of 10 cm (4.1 in.). This could be attributed to lower molecular weight of acetate anion and rationalized as follows: With the equivalent coating weight increase ( ⁇ 35%) in all the TBAP ionic liquids, the concentration of TBAP cation is maximum in the case of TBAP-acetate. Because the TBAP cation is the major contributor to the flame retardant property, TBAP-Acetate exhibits the best FR property among the TBAP ionic liquids tested.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Paints Or Removers (AREA)
Description
- This disclosure relates to synthesis of new ionic liquids containing amine and alcohol groups and their applications.
- This disclosure provides details about the synthesis of new type of ionic liquids functionalized with primary, secondary or tertiary amine groups along with hydroxyl groups in the sample molecule.
- This disclosure provides details on the application amine and hydroxyl functionalized ionic liquid in carbon dioxide absorption.
- This disclosure provides details on the application amine and hydroxyl functionalized ionic liquid in flame resistant articles.
- In this section, we discuss several aspects of related work, including background and conventional technologies.
- Ionic liquids by definition are salts that have melting points below 100 degree C. Interest in ionic liquids has grown markedly in recent years because of their potential applications in a wide range of fields including, Electroplating, Lubricant, Antistatic coating, Cleaning, Powder coating, Fire resistant treatment, Electrolytes in supercapacitors, fuel cells, lithium ion batteries, and lithium batteries, separations techniques such as Liquid-liquid extraction, Treatment of nuclear waste, Desulfurization of Diesel, Metal extraction, Gas purification and Membranes, solvents or reaction medium in Organic reactions, Acid catalysis, Immobilization catalyst in Synthesis of nanoparticles, in biotechnology applications such as Biomass conversion, Protein purification and Enzymatic reactions, Matrices of mass spectroscopy, and Chromatography and solvents for carbon dioxide capture, sulfur dioxide capture and hydrogen sulfide capture.
-
US2012129240 A1 teaches buffer compounds comprises amine-quaternary ammonium compounds for use in water treatment and sanitation, in agents to control corrosion, in fertilizer mixtures for agriculture, in medicinal formulations and personal care products, in foods and beverages, in fermentation and brewing, in paints and coatings, and in human or animal drugs. - Ionic liquids are mainly composed of organic cations, such as alkylammonium, alkylphosphonium, alkylsulfonium, 1,3-dialkylimidazolium, alkyltriazolium, alkylpyridinium, etc. and mononuclear anions, such as BF4, PF6, CF3SO3, (CF3SO2)2N, methide, CF3CO2. Some ionic liquids containing non-fluoroanions, such as nitrate, perchlorate, alkyl sulfate and alkyl oligoether sulfate, dinitramide, amino acid anions. A variety of organic anions, have also been synthesized and studied. The chemical structure of the typical cations and anions comprised by ionic liquids are provided in Figure 1
- The chemistry of cation and the anion determines the physical and chemical properties of an ionic liquid. Therefore, it is possible to achieve specific physical property by choosing the proper combination of a cation and an anion. For example, the viscosities can be adjusted over a wide range of less than 50 cP to greater than 10,000 cP.
- There are two types of ionic liquids currently pursued in research field (1) Room temperature ionic liquids (RTILs), and (2) Task-specific or functionalized ionic liquids. High-pressure phase behavior of carbon dioxide with a variety of ionic liquids was first reported back in 2001 by Blanchard et al. Their study included ionic liquids,1-n-butyl-3-methylimidazolium hexafluorophosphate, 1-n-octyl-3-methylimidazolium hexafluorophosphate, 1-n-octyl-3-methylimidazolium tetrafluoroborate, 1-n-butyl-3-methylimidazolium nitrate, 1-ethyl-3-methylimidazolium ethyl sulfate, and N-butylpyridinium tetrafluoroborate. The researchers observed that a large quantity of carbon dioxide could be dissolved in the ionic liquid phase.
- This research group also latter showed that ionic liquids with the bis(trifluoromethylsulfonyl) imide anion had the largest affinity for carbon dioxide regardless of whether the cation was imidazolium, pyrrolidinium, or tetraalkylammonium. These results suggest that the nature of the anion has the most significant influence on the carbon dioxide solubility. The solubility of carbon dioxide in a series of imidazolium-based room-temperature ionic liquids has been determined by Baltus et al.
- With the aim of finding ionic liquids that improve carbon dioxide solubility and to understand how to design carbon dioxide-philic ionic liquids, Muldoon et al. studied the low- and high-pressure measurements of carbon dioxide solubility in a range of ionic liquids possessing structures likely to increase the solubility of carbon dioxide. They examined the carbon dioxide solubility in a number of ionic liquids with systematic increases in fluorination. They also found that the anion plays a key role in determining carbon dioxide solubility in ionic liquids in agreement with other research reports.
- Thus the literature reports indicate that fluoride containing anions bis[trifluoromethyl sulfonyl] amide and tris (trifluoro methyl sulfonyl) methide [methide] are most suitable as anions in the new ionic liquids for carbon dioxide capture.
- The viscosity of common room temperature ionic liquids is quite high. For example, 1-n-butyl-3-methylimidazolium tetrafluoroborate (79.5 cP) is found to be 40 times more viscous as compared to 30 percent monoethanolamine solution at the same temperature (33 Cp). In order to meet the viscosity constraints, ionic liquids can be mixed with some common organic solvents or water. However, inclusion of such liquids will accompany their own drawbacks as well or this may be accomplished at the expense of decrease in gas capture ability. For example, addition of polyethylene glycol to an ionic liquid decreased the carbon dioxide solubility.
- Without wishing to bind by any theory, based on the above discussion following conclusions can be arrived: (a) Room temperature ionic liquids themselves have shown adequate level of carbon dioxide solubility and (b) Mixing chemically absorbing species such amines, alcohols and amino alcohols with ionic liquids can shift the equilibrium towards higher carbon dioxide absorption even at low carbon dioxide partial pressures Chemical structural features crucial for carbon dioxide absorption
- There are over 1018 ionic liquids available for exploration. It is not practical to synthesize every one of these compounds and select the best ionic liquid for carbon dioxide absorption. Therefore, ionic liquids containing cations in which amino and alcohol functional groups present in the same molecule was judiciously selected. The rationale behind this selection of these functional groups is discussed below.
- The state-of-the-art technology for carbon dioxide capture is reversible chemical absorption into an aqueous amine solution. The capacity of an aqueous amine solution to chemically absorb carbon dioxide is a function of the route by which carbon dioxide reacts with the amine. There are two chemical routes generally considered for chemical absorption of carbon dioxide by amines.
- Route 1 (carbamate formation - Amine : carbon dioxide = 2:1)
Amines can react with carbon dioxide to form a carbamic acid (R2NCOOH).
CARBON DIOXIDE + R2NH ---> R2NCOOH (carbamic acid)
- Depending upon its acidity, it may then give up a proton to a second amine molecule forming a carbamate (R2NCO2 -).
R2NCOOH ---> R2NCO- + H+A
second amine molecule may be consumed by the proton liberated from carbamic acid forming carbamate.
R2NH + H+ ---> R2NH2 +
- Therefore for every carbon dioxide molecule, two amine molecules are used up. (2:1 ratio). Kinetically and thermodynamically this reaction pathway is generally favored for primary and secondary amines.
Route 2 (proton accepting base - Amine : CARBON DIOXIDE = 1:1) - A second reaction route for carbon dioxide absorption is carbon dioxide hydration to form bicarbonate. In this pathway an amine molecule simply acts as a proton accepting base for the hydration of carbon dioxide. The overall stoichiometry for this second pathway is
carbon dioxide + water ---> HCO3 - + H+
R3N + H+ ---> R3NH+
- According to the route 2, one mole of amine is consumed per mole of carbon dioxide, so in terms of absorption capacity it is more efficient. For tertiary and some sterically hindered primary and secondary amines this is the only pathway contributing to absorption. However, this pathway is generally less favorable kinetically than carbamate formation.
- If the carbamic acid formed is a weak acid (higher pKa value) the extent of dissociation to form carbamate is low. Then the route 1 approaches a 1:1 carbon dioxide: amine molar stoichiometry because the carbamate does not deprotonate and consumes a second amine molecule. What type of amines can have higher carbon dioxide absorption capacity? (1:1 carbon dioxide :amine ratio). This question was answered by Puxty et al. (Environ Sci. Technol., 43, 6427-6433 (2009)).
- Puxty et al. have studied the carbon dioxide absorption capacity of 76 different amines. Among these, seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting excellent absorption capacities. Following discussion is based on the publication by Puxty et al.
- According to Puxty et al. the most interesting result is that all of these amines share a common structural feature, a hydroxyl group within 2 or 3 carbons of the amine functionality. While it is unclear what the role of this structural feature is, the distance of the hydroxyl functionality from the amine and the structural features around it appears crucial. For example, 2-piperidineethanol and 2-piperidinemethanol achieved capacities of near 1, whereas 3-piperidinemethanol only achieved a capacity of 0.8. This indicates that the proximity of the hydroxyl group and its freedom to move are important.
- According to Puxty et al. one possibility is that a hydroxyl group the appropriate distance from the amine functionality, and with the appropriate structural features surrounding it, is able to form a stable intramolecular hydrogen bond with the nitrogen to form a five or six member ring structure. Intramolecular hydrogen bond formation between amine and hydroxyl groups may decrease the amine pKa, for primary and secondary amines it may also destabilize carbamate formation and push the absorption toward the more stoichiometrically efficient route 2.
- Therefore ionic liquids consisting of cations with hydroxyl groups at 2 or 3 carbon from amino groups have been synthesized.
- Flame retardants for textile application have been reviewed by Weil and Levchik. They have provided historical details as well as current FR treatments of textile fabrics. Some of the common FR treatments to fabrics are summarized below based on this review article. Most common FR treatment of cotton fabrics is based on ammonium pyrophosphates. They impart self-extinguishing property to cotton fabrics. Borax is another common flame retardant agent used on fabrics. These treatments are temporary due to their solubility in water.
- Polymers containing 35-45% bromine, poly(pentabromobenzyl acrylate) are used as a durable FR treatment on cotton and polyester fabrics. The FR property also can be improved by the addition of antimony oxide.
- In recent years, halogen-free, low smoke, and fume flame-retardant composites are becoming of increasing importance, because halogen-type flame retardants can cause problems, such as toxicity, corrosion, and smoke. This has promoted the development of halogen-free, flame-retardant materials. Prior efforts have shown that metal hydroxides are nontoxic and smoke-suppressing additives with a high decomposition temperature in flame-retardant polymeric materials.
- The FR material based on tetrakis(hydroxymethyl)phosphonium cation is the most widely sold commercial FR treatment product to date.
US 4,750,911 (Hansen et al. ) describe the fire retardation of nylon/cotton fabrics with a flame-retardant cyclic phosphonate ester and tetrakis-(hydroxymethyl)phosphonium sulfate, usually simultaneously, then cured. It is generally agreed that ammonium and phosphonium salts have superior FR properties. - The above described FR treatments of fabrics are either non-durable or inefficient. Ionic liquids have excellent thermal stability and fire resistant properties. They are commercially available and also can be synthesized easily in an industrial scale.
- The burning process consists of heating from an external source, decomposition of fabric, combustion of flammable chemicals released from the burning fabric, and propagation of flame.
- Burn process starts from an external source of fire. When sufficient heat is applied the fabric starts decomposing. The pyrolysis of fabric (cellulose) results in the release of Levoglucosan and its volatile combustible fragments such as alcohols, aldehydes, ketones, and hydrocarbons. These flammable chemicals burn and propagate the flame and generate more heat. This process perpetuates until the fabric is completely consumed by fire. Part of the decomposition products from the fabric also produce a carbonized residue (char) that does not burn readily. The decomposition of cellulose can be expressed by the following equation:
- A flame retardant alters (catalyzes) the decomposition path of cellulose so that the amount of flammable chemicals is reduced and the amount of char formed is increased.
- The ammonium and phosphonium flame retardants generally lower the decomposition temperature of cellulose and promote dehydration of the cellulose during thermal stress. Phosphorus-containing compounds increase the amount of carbon by redirecting chemical reactions involved in the decomposition. As more carbon is produced, the yields of volatile and flammable aldehydes and ketones are reduced. Ammonium based flame retardants also function through a similar mechanism.
- In general, nylon fabrics have low flammability than cotton fabrics. Typical low weight nylon fabric melts and drips away, when exposed to flame and stops the propagation of flame.
- Nylon Cotton (NYCO) fabrics are made using a 50% nylon/50% cotton blend and provide combat utility uniforms with excellent comfort and durability. However, NYCO fabrics have no flame resistant (FR) properties. Therefore for flame retardant fabrics one has to rely on expensive specialty fibers. Instead of using expensive fabrics, it will be economical to impart FR property on the NYCO fabric by treating them with flame resistant materials/coatings. The FR treatment should not deteriorate the fabric strength and should not add stiffness and significant weight to the fabric.
- Ionic liquids containing ammonium and phosphonium cations exhibit exceptional flame resistant properties. In addition, they are non-flammable, high temperature stable (>250 degree C), non-volatile liquids and amenable to coating on textile fabrics. Unlike conventional FR chemicals, ionic liquids are generally colorless and do not interfere with the other properties of the military fabrics such as camouflage. Along with flame resistant property ionic liquids also have added advantage of multi-functional capabilities such as antistatic, conductive and antimicrobial properties. In spite of these excellent multifunctional properties, ionic liquids are not widely used in fabric treatment due to the lack of detailed studies on the ionic liquid coatings on textiles.
- Amino and hydroxy functional groups in the ionic liquid molecules can interact with the textile fabrics and can strongly bind to the fabric. This will increase the durability of the ionic liquids treated fabrics for several washings
- Even though, energy storage capacity of lithium ion-batteries is superior to other rechargeable battery chemistries, safety issues related with the lithium-ion batteries are the major hindrance for their application as high power batteries. The low boiling organic solvents used as the electrolytes are the main cause of the safety concerns. These solvents have a flash point around 30°C and could easily catch fire if vented from a hot battery. Moreover, the electrolytes decompose on contact with the charged active materials, both anodes and cathodes. At the end of the charging as well as at high temperatures, the cathode dissolves which accelerates the electrolyte decomposition. When a cell is heated above 130°C, exothermic chemical reactions between the electrolyte and electrodes trigger thermal run away reactions which are a serious safety hazard. Hence, high power lithium-ion batteries are developed with various external safety devices like current limiting devices, fuses, circuit breakers etc. These devices increase the cost and complexity of the battery module and also consume substantial power.
- Considering these safety hazards, development of non-flammable, low volatile, thermally as well as electrochemically stable lithium battery electrolytes are essential for the use of high power lithium batteries in aviation. In this context, "ionic liquids" (ILs) which are liquids at room temperature composed of ions as the electrolytes for high power lithium batteries look extremely attractive. Pyrrolidinium based room temperature ionic liquids have been widely investigated as electrolytes in lithium batteries because of their low viscosities and reasonable conductivities. These ionic liquids are 'non-flammable' chemicals but are not 'flame-retardants'. Uncontrolled thermal reactions in high-energy density lithium batteries may lead to fire and pyrrolidinium based ionic liquids cannot withstand these extreme conditions. This scenario undercuts the original reason for employing ionic liquids as electrolytes even by compromising on their low conductivity compared to organic carbonate based electrolytes. Therefore, alternate ionic liquids need to be developed which exhibit high ionic conductivity and non-flammability and are capable of quenching the fire in case of short circuits, local heating and or in abuse conditions such as overcharging.
- Ionic liquids as desiccants and chloride removal system- Corrosion is a critical problem for the aircrafts. It costs Department of Defense over $10 billion year just in maintenance of equipment's and installations. Corrosion is not only a cost issue, but it also impacts our troop's readiness, safety and their performance. The effect of corrosion felt by the Air Force most because aircraft structures are mostly made of metal. Corrosion is usually battled with special alloys and a variety of corrosion protection coatings. However, there is no 'silver bullet' available to completely eliminate the corrosion problem. The corrosion issue can be alleviated if the environmental factors that hasten the corrosion of metal alloys can be addressed properly. Two important factors that affect metals in an aircraft are humidity and chloride content in the atmosphere. Currently humidity level in an aircraft is controlled with the help of dehumidifiers. However, chloride deposition on the aircraft parts requires special attention. Because, desiccants used in the humidity control system are not effective against chloride accumulation. Therefore, new efficient desiccants that not only dehumidify the environment but also remove chloride ions from air are needed.
- Ionic liquid based desiccant systems are capable of both humidity control and chloride removal. Ionic liquids are non-volatile liquids as well as efficient desiccants. The ionic liquids can be functionalized to remove chloride ions from the environment. It will be readily understood by the skilled artisan that numerous alterations may be made to the examples and instructions given herein. These and other objects and features of present invention will be made apparent from the following examples. The following examples as described are not intended to be construed as limiting the scope of the present invention.
-
- (a) R1 and R2 are each independently H, or a C1 to C12 straight-chain alkyl group or branched alkyl group or aryl group,
- (b) m is an integer 1 to 6,
- (c) X is -N(R3)-(CH2)q-OH, wherein R3 is H or C1 to C6 straight-chain or branched alkyl group and q is an integer from 2 to 4, and
- (d) A- is an anion selected from the group consisting of [BF4]-, [PF6]-, [CH3CO2]-, [HSO4]-, [CF3SO3]-, [(CF3SO2)2N]-, [(CF3SO2)3C]-, [SO4]2-, Cl-, Br-, I-, [N(CN)2]-, [(PO4)(C4H9)2]-, [(PO4)(C2H5)2]-, [(PO4)(C6H5)2]-, [CH3CH2OSO3]-, [CH3OCO2]- and amino acid.
- Disclosure provides a fire retardant coating for textile fabrics. The fire retardant has the ionic liquid of Formula 1. Disclosure provides a solvent for carbon dioxide capture. The solvent includes the ionic liquid of Formula 1. Disclosure provides an electrolyte in a lithium ion battery. The electrolyte includes the ionic liquid of Formula 1. Disclosure provides a flame retardant additive to an electrolyte in a lithium ion battery. The flame retardant additive includes the ionic liquid of Formula 1. Disclosure provides an electrolyte in a metal air battery. The electrolyte includes the ionic liquid of Formula 1. Disclosure provides a flame retardant additive to an electrolyte in a metal air battery. The flame retardant additive includes the ionic liquid of Formula 1.
-
- Disclosure provides a fire retardant coating for textile fabrics. The fire retardant includes the ionic liquid of Formula 22. Disclosure provides a solvent for carbon dioxide capture. The solvent includes the ionic liquid of Formula 22. Disclosure provides an electrolyte in a lithium ion battery. The electrolyte includes the ionic liquid of Formula 22. Disclosure provides a flame retardant additive to an electrolyte in a lithium ion battery. The flame retardant additive includes the ionic liquid of Formula 22. Disclosure provides an electrolyte in a metal air battery. The electrolyte includes the ionic liquid of Formula 22. Disclosure provides a flame retardant additive to an electrolyte in a metal air battery. The flame retardant additive includes the ionic liquid of Formula 22.
- Disclosure provides a method of preparing the ionic liquid of Formula 1. The method includes refluxing the compound having Formula 4 with an amino alcohol and potassium carbonate in the presence of a solvent to obtain the ionic liquid of Formula 1. Formula 4 is represented by the following structure
- (a) R1 and R2 are each independently H, or a C1 to C12 straight-chain alkyl group or branched alkyl group or aryl group,
- (b) m is an integer 1 to 6,
- (c) Z is Cl, Br, I,
- (d) A- is Cl-, Br-, I-.
- The above objectives and advantages of the disclosed teachings will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
- Figure 1. Chemical structure of typical cations and anions of ionic liquid.
- Figure 2. Chemical structure of representative ionic liquids containing amino alcohol functional groups.
- Figure 3. Proton nmr spectrum of Formula 8
- Figure 4. Proton nmr spectrum of Formula 9
- Figure 5. Proton nmr spectrum of Formula 10, the product from the reaction between bromopropyl-methyl imidazole and N-methyl ethanolamine.
- Figure 6. C-13 NMR spectrum of Formula 10
- Figure 7. Proton nmr spectrum of Formula 11 (Bromopropyl-dimethyl imidazolium bromide)
- Figure 8. Proton NMR spectrum of Formula 12
- Figure 9. C-13 NMR spectrum of Formula 12. NMR resonance peaks from acetonitrile solvent is marked in the Figure.
- Figure 10. Proton nmr spectrum of Formula 13
- Figure 11. Proton nmr spectrum of Formula 14
- Figure 12. Proton nmr spectrum of Formula 15
- Figure 13. Proton nmr spectrum of Formula 16
- Figure 14. Proton nmr spectrum of Formula 17
- Figure 15. Thermogravimetric analysis (TGA) plot of formula 7 under the flow of nitrogen and 20% oxygen
- Figure 16. CO2 absorption by amino alcohol funtionalized ionic liquids in comparison with hexyl methyl imidazolium bis(trifluoromethyl sulfonyl)imide ionic liquid (C6mimNTf2)
- Figure 17. Overlay plot of TGA data of uncoated-NYCO fabirc and TBOP coated NYCO fabric
- Figure 18. Proton NMR spectrum of TBAP-DBP ionic liquid
- Figure 19. P-31 NMR spectrum of TBAP-DBP ionic liquid
- Figure 20. Vertical flame test data of TBAP-DBP based flame retardants as a function of urea addition
- Figure 21. Comparison of flame retardant property as function of anions
- Figure 22. Pictures of the flammability of dimethylcarbonate (DMC) and fire-quenching effect of the phosphonium ionic liquid, TBAP-Br.
- It is an object of the present disclosure to provide amino alcohol functionalized ionic liquid compounds, compositions together with methods for their synthesis and their use.
- It is an object of the present disclosure to provide an ionic liquid with structural moiety consisting of a hydroxyl group or hydroxyl groups within 2 or 3 carbons of the amine functional group.
-
- (a) R1 and R2 are each independently H, or a C1 to C12 straight-chain alkyl group or branched alkyl group or aryl group,
- (b) m is an integer 1 to 6,
- (c) X is -N(R3)-(CH2)q-OH where R3 is H or C1 to C6 straight-chain or branched alkyl group and q is an integer from 2 to 4, and
- (d) A- is an anion selected from the group consisting of [BF4]-, [PF6]-, [CH3CO2]-, [HSO4]-, [CF3SO3]-, [(CF3SO2)2N]-, [(CF3SO2)3C]-, [SO4]2-, Cl-, Br-, I-, [N(CN)2]-, [(PO4)(C4H9)2]-, [(PO4)(C2H5)2]-, [(PO4)(C6H5)2]-, [CH3CH2OSO3]-, [CH3OCO2]- and amino acid.
- Disclosure provides a fire retardant coating for textile fabrics. The fire retardant has the ionic liquid of Formula 1. Disclosure provides a solvent for carbon dioxide capture. The solvent includes the ionic liquid of Formula 1. Disclosure provides an electrolyte in a lithium ion battery. The electrolyte includes the ionic liquid of Formula 1. Disclosure provides a flame retardant additive to an electrolyte in a lithium ion battery. The flame retardant additive includes the ionic liquid of Formula 1. Disclosure provides an electrolyte in a metal air battery. The electrolyte includes the ionic liquid of Formula 1. Disclosure provides a flame retardant additive to an electrolyte in a metal air battery. The flame retardant additive includes the ionic liquid of Formula 1.
-
- It is an object of the present disclosure to provide a solvent composition containing a mixture of amine functionalized ionic liquids with alcohol functionalized ionic liquids.
- It is an object of the present disclosure to use functionalized ionic liquids as solvents for carbon dioxide capture.
- It is an object of the present disclosure to use functionalized ionic liquids as fire retardant coating on articles including textile fabrics.
- It is an object of the present disclosure to use functionalized ionic liquids as desiccants to remove moisture and chloride and other corrosive chemicals.
- It is an object of the present disclosure to use functionalized ionic liquids as solvents in organic reactions.
- It is an object of the present disclosure to use functionalized ionic liquids as electrolyte in metal batteries including lithium ion batteries, and metal air batteries.
- It is an object of the present disclosure to use functionalized ionic liquids as additive to electrolyte in metal batteries including lithium ion batteries, and metal air batteries.
- It is an object of the present disclosure to use functionalized ionic liquids as a medium for electrodeposition of metal coating including nickel and cobalt coatings.
- It is an object of the present disclosure to use functionalized ionic liquids as a solvent or medium for coating powders.
- It is an object of the present disclosure to use functionalized ionic liquids as a solvent or medium for preparing nano powders including nano metal powders and nanometal oxide powders.
- It is an object of the present disclosure to use functionalized ionic liquids as a scrubbing material for desulfurization.
- Disclosure provides a fire retardant coating for textile fabrics. The fire retardant includes the ionic liquid of Formula 22. Disclosure provides a solvent for carbon dioxide capture. The solvent includes the ionic liquid of Formula 22. Disclosure provides an electrolyte in a lithium ion battery. The electrolyte includes the ionic liquid of Formula 22. Disclosure provides a flame retardant additive to an electrolyte in a lithium ion battery. The flame retardant additive includes the ionic liquid of Formula 22. Disclosure provides an electrolyte in a metal air battery. The electrolyte includes the ionic liquid of Formula 22. Disclosure provides a flame retardant additive to an electrolyte in a metal air battery. The flame retardant additive includes the ionic liquid of Formula 22.
-
- (a) R1 and R2 are each independently H, or a C1 to C12 straight-chain alkyl group or branched alkyl group or aryl group
- (b) m is an integer 1 to 6
- (c) Z is Cl, Br, I
- (d) A- is Cl-, Br-, I-.
- There is increasing concern for the reduction of CO2 emissions from flue and fuel gas operations because these emissions have resulted in global climate change and a significant increase in global warming due to the "greenhouse gas (GHG) effect". Approximately 83% of the GHG emissions in the U.S. are produced from combustion and nonfuel uses of fossil fuels. One approach that holds great promise for reducing GHG emissions is carbon capture and sequestration (CCS). Under this concept, CO2 would be captured from large point sources, such as power plants, and injected into geologic formations. This approach would lock up (sequester) the CO2 for thousands of years. DOE's Carbon Sequestration Program that is managed by the National Energy Technology Laboratory (NETL), is pursuing various technological approaches aimed at reducing GHG emissions.
- Aqueous amine absorption is the state-of-the-art technology that is used to separate and capture CO2 from flue gas streams produced by existing coal-fired electric generating power plants. However, the use of amines for CO2 absorption has some disadvantages, including (i) high energy requirement for solvent regeneration, (ii) their high vapor pressure and subsequent mass loss through evaporation, (iii) degradation of the solvent and associated plant corrosion, and (iv) significant capital and operating costs. On the other hand, solvent regeneration is easier and less energy intensive with physical adsorption of CO2. Physical absorption has generally lower absorption capacity when compared to chemical absorption under low CO2 partial pressures.
- The concept of using ionic liquids (IL's) as potential alternatives to aqueous alkanolamines for CO2 capture has recently gained considerable interest. IL's have advantages that include negligible vapor pressure, higher thermal stability and lower heat capacity. In addition, like alkanolamines they have fast capture kinetics and low viscosity. In order to take advantage of the useful properties of IL's for post-combustion CO2 capture, functionalized-IL's to be investigated as potential replacement solvents for aqueous amine scrubbing systems.
- This disclosure provides routes for synthesizing amino-alcohol functionalized ionic liquids and evaluated their CO2 capture capacity and regeneration capability. The amino-alcohol functionalized ionic liquids exhibited 20X higher CO2 capture capacity compared to unfunctionalized IL's at low pressures (1 bar). The IL's also demonstrated high thermal stability both in nitrogen and in air. CO2 can be thermally desorbed by heating the IL's to 80-120 degreeC at 1 bar CO2 pressure without significant degradation. The cost and energy performance calculations clearly demonstrated that the IL's disclosed here could be competitive with an amine process if the target parameters such as CO2 capture capacity, viscosity, heat capacity, and cost of the IL are achieved.
- The selection of a suitable solvent is vital for the economic viability of the CO2-capture process. The main selection criteria are high solubility of carbon dioxide and, equally important, high absorption selectivity of carbon dioxide over nitrogen. Furthermore, low energy desorption is highly desirable, as it reduces the necessary regeneration temperature and pressure difference. In order to prevent the loss of solvent, a low vapor pressure and high thermal stability as well as long-term stability are beneficial. The cost and environmental toxicity of the solvents have to be considered along with the evaporative loss and chemical degradation characteristics of IL's.
- Carbon dioxide absorption data showed that mixing of amino and hydroxy functionlized ionic liquids exhibit higher carbon dioxide absorption. Therefore, synthesizing new ionic liquids containing both hydroxyl and amino groups in a single ionic liquid molecule will result in a better carbon dioxide capturing solvent.
- In this disclosure ionic liquids incorporating structural features, that is, hydroxyl group within 2 carbons of the amine functionality, have been synthesized and their CO2 absorption capacity was measured. A maximum of mol CO2/mol IL ratio of 0.4 was obtained. It was observed that subtle changes in the chemical structure could affect the CO2 absorption capacity. For example, by replacing methyl imidazolium with dimethyl imidazolium moiety, the CO2 absorption capacity of IL's increased by -50%.
- A simple and versatile two step path way was developed for synthesizing ionic liquids containing cations with both alcohol and amino functional groups. In the first step bromoalkyl precursor compound of alkyl imidazole or alkyl phosphine was synthesized. For example, methyl imidazole was reacted with 1,3 dibromopropane to from bromopropyl methyl imidazolium bromide as represented in the scheme below:
- This synthesis process was very versatile in that bromoalkyl imidazolium and bromoalkyl phosphonium precursors can be reacted with any type of alkanol amine compounds to form the corresponding amino alcohol functionalized ionic liquids. For example, reaction with N-methyl ethanolamine is provided below:
- The above synthesis process is simple to scale up. This process can be extended to other types of amino alcohols without any drastic modifications in the reaction conditions. The bromo anions were ion-exchanged with various anions listed in Figure 1 to form the corresponding ionic liquids.
- The chemical structure of typical ionic liquids containing cations with amine and alcohol functional groups are provided in Figure 2.
- In order to determine the thermal stability of the functionalized imidazolium ionic liquids synthesized in the thermogravimetric analysis (TGA) was conducted. The purge atmosphere was either nitrogen or air at 100 ml/min and 10°C/min to 600°C. Typical TGA data under nitrogen and air (20% Oxygen) are provided in Figure 15. It is important to note that the amino alcohol groups are stable up to 280 °C. This stability cannot be achieved by the physical mixing of monoethanol amine (MEA) with an unfunctionalized ionic liquid. Both the curves almost overlap indicating that the disclosed ionic liquids are stable in nitrogen as well as in air up to 280 °C.
- CO2 absorption setup was designed and built in-house to measure the amount of CO2 absorbed by the various IL samples of this disclosure. The ionic liquid samples (about 3 g) were loaded in the isochoric cell and degassed at 80 °C and 3 mbar vacuum for a period of 12-18 h. After cooling the sample to 25 °C, CO2 gas was introduced into the isochoric cell. The desired pressure was set at between 0-8 bar. The sample was stirred during the absorption experiment. The weight increase due to CO2 absorption was measured at various exposure times and pressures and plotted in Figure 16. The total absorption duration was 18 h for all the samples tested. Even after exposing for 18h, the equilibrium may not have been reached with these ionic liquids due to the slow reaction kinetics and the high viscosity of the solvent. In Figure 16, CO2 absorption data of functionalized IL's (chemisorption) and 1-hexyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide (C6mimNTf2) (physisorption) are compared.
- Upon CO2 absorption of the viscosity of all of these ILs has increased. But the increase in viscosity is marginal compared to the anion functionalized ionic liquids reported by Brennecke et al. For example, Amine-Functionalized Anion-Tethered IL's based on trihexyl(tetradecyl) phosphonium systems exhibited a viscosity increase of 48-240 folds compared <2 fold increase in the amino alcohol functionalized cation ion-tethered systems disclosed here. These results indicate that anion-functionalized IL's exhibit more effect viscosity upon CO2 absorption than cation-functionalized IL's. The viscosities of cation-functionalized IL's disclosed here can be decreased by selecting appropriate anions.
- Ionic liquid represented by the formula 17 was down selected for investigating the stability of CO2 absorption during the recycling of IL. CO2 absorption was carried out at 40 °C for 12 h under 0.15 bar CO2 pressure, and desorption was performed at 80-120 °C under 1 bar CO2 pressure for 30 minutes. These are the typical conditions used in the industrial CO2 scrubber. The absorption capacity of IL remained stable during 15 cycles (100 plus or minus 2 %) indicting that the CO2 absorption is reversible.
- Most of the studies on NTf2 anion-based IL's were focused on CO2 capture by physisorption mechanism. Based on molecular simulations, it has been suggested that the anions surround the amino groups in the IL's and shield them from reacting with CO2. The bulky NTf2 can be substituted with smaller anions such as BF4 or PF6 or amino acid anions which may not hinder the reaction between amino-alcohol groups and CO2 molecules. BF4 anion containing amino functionalized IL also known to exhibit higher CO2 absorption capacity.
- The following is the summary of the CO2 absorption data observed:
- 1. Amino-alcohol functionalized ionic liquids show higher CO2 absorption capacity (20X) than the unfunctionalized IL's (C6mimNTf2) at low CO2 pressures (1 bar).
- 2. The absorption of CO2 by ionic liquids represented by the chemical formulae 14, 15, 16 and 17, even at low CO2 pressures (<1 bar), indicates that CO2 is absorbed via a chemisorption mechanism.
- 3. Dimethyl imidazolium IL's exhibit 2X higher absorption capacity compared to monomethyl imidazolium IL's. This shows even minor modifications in the chemical structure can strongly influence the CO2 absorption property of the IL's.
- 4. Anions form strong hydrogen bonds with amino groups and organize around the amino-alcohol groups. So, high reactivity and absorption capacity can be achieved by using a different anion which is not hindering the interaction between CO2 molecule and amino-alcohol groups.
- 5. High viscosity of the functionalized IL's before and after CO2 capture is one of the major hurdles in implementing these IL's in the post combustion CO2 capture process. Viscosity of functionalized IL's decreases with the reduction in the number of protons in the amino group (NH2(10,000 cP) >NH (4435 cP) >N-CH3 (407 cP)). Substitution of N-C2H5 or N-aliphatic ring for N-H group can help in reducing the viscosity of the IL without decreasing the CO2 absorption.
- 6. Dilution of functionalized IL's with low viscosity IL solvent is a viable alternative method to alleviate the viscosity problem.
- 7. The absorption capacity of IL remained stable over 15 cycles of CO2 absorption/desorption indicating reversibility of functionalized IL's.
- This disclosure provided the several ionic liquids based on imidazolium cations and phosphonium cation. Interestingly these ionic liquids exhibited flame retardant (referred in this disclosure as "FR") properties. These ionic liquids are coated onto textile fabrics including but not limited to cotton, nylon, nylon:cotton (50:50) (here onwards refered as NYCO"), polyester, polyethylene, polypropylene, polyurethane, for imparting flame retardancy to the fabrics. Durable FR coating can be formed by chemically reacting or physically containing on the surface of the fabric [T.A. Perenich, Protective Clothing: Use of Flame-Retardant Textile Finishes, Ch. 7, Protective Clothing Systems and Materials, Ed. By M. Raheel, Marcel Dekker, (1994)].
- These coatings are not removed during repeated washings of at least 1 times preferably up to at least about 25 washings. The FR coatings are typically applied by pad-dry-cure process from the formulations containing FR chemical (ionic liquid in this case) and finishing chemicals such as cross-linking agents.
- The FR coating formulation were applied on to the fabric by the following two approaches: (a) Applying directly onto the textile fabric or by using a binder including but not limited to melamine, urea, acrylate, polyurethane, epoxy, polysiloxane, and silane based binders. Simple ionic liquids based on imidazolium or phosphonium cations with appropriate binders were added to the FR coating formulation for better cross-linking of the ionic liquids to fabrics. (b) Second approach was to strongly bind ionic liquids to fabric is using insitu-polymerization to strongly bind around the fibers of the fabric. For insitu-polymerzation, monomers such as Acrylamido-2-propane-sulfonic acid (AMPS) with cross-linker N,N'-Methylene bisacrylamide (MBAm) were mixed with ionic liquids in the coating formulation.
- Two ionic liquids tetrabutyl phosphonium diethyl phosphate (TPEP) and Ethyl methyl imidazolium diethyl phosphate (EIP) were purchased from IoLiTec Inc., Tuscaloosa, AL. Acrylamido-2-propane-sulfonic acid (AMPS), cross-linker N,N'-Methylene bisacrylamide (MBAm), Tributyl phosphine, Triethyl amine (TEA), and 1-bromo propanol were purchased from Sigma Aldrich, Saint Louis, MO. Solvents such as acetonitrile, ether, and methanol were purchased from Pharmo Aaper, Belmont, NC. 419W style cotton fabric was purchased from Test Fabrics, West Pittston, PA. Rip-stop weave Nylon 50: Cotton 50 fabrics were supplied by the Brittany Dyeing and Printing Corporation, New Bedford, MA.
- Flame resistance of two ionic liquids tetrabutyl phosphonium diethyl phosphate (TPEP) and Ethyl methyl imidazolium diethyl phosphate (EIP) coated 419W cotton fabrics were measured according to standard test method ASTM 6413-08. The uncoated cotton control fabric was completely consumed by the fire during the test. The ionic liquids TPEP and EIP coated cotton fabrics formed char during flame testing. But it also exhibited higher char length. Their char yield and char length were very high as shown in Table 3 provided in the example 19. The ionic liquids themselves are non-flammable materials but when coated onto cotton fabric they did not protect the fabric from fire. Mixing these two ionic liquids with urea also resulted in poor char yield (less than 42 percent).
- In order to improve the flame retardant property, the TPEP-coated cotton fabric was coated with a layer of AMPS (30%) monomer and MBAm (3%) cross linker. Then the fabric was air dried for 4 days before the vertical flame testing. Cotton fabric coated with TPEP/AMPS-MBAm was subjected to vertical flame testing. The coated fabric exhibited a less vigorous flame than the uncoated control fabric. After-flame time and char length was also significantly reduced and no afterglow was observed.
- The various compositions of AMPS/MBAm polymer coatings gave a clear indication of how effective the coating becomes with different ratios of the monomer and cross linking agent. The lowest char length and highest char yield were observed for the samples coated with a 30% AMPS/6% MBAm solution, with ammonium persulfate (APS) to catalyze polymerization (Table 4). Because of the dynamic nature of the flame test, these two metrics (char length and char yield) must be examined together in order to determine performance level of a given coating. This specific solution composition excels in both areas, indicating its suitability as a FR coating on cotton fabrics.
- With the ideal AMPS/MBAm composition determined, the combination of AMPS polymer with an ionic liquid was tested. Results (Table 5) indicated that while layer by layer deposition of polymer and ionic liquid coatings produce better properties than combining the two in one solution, the final coatings are not as effective as the polymer solution on its own. This can be attributed, perhaps, to the ionic liquid interfering with the formation of a polymeric network, thus reducing its ability resist flame. The presence of the ionic liquid does provide a smoother and more flexible fabric after coating, but performance was not satisfactory for these coatings.
- Disclosure provides a flame retardant fabric product having a fabric, a flame retardant ionic liquid represented by Formula 3, and a binder. About 1% to about 60% by weight of the flame retardant fabric product is made up of the flame retardant ionic liquid. The fabric can be Cotton, Cellulose, Rayon, Nylon, Polyester, Polyurethane Polyamide, and Aramid.
- Disclosure provides a method of preparing the flame retardant fabric. The method includes coating the fabric with the flame retardant ionic liquid represented by Formula 3 and the binder to obtain a coated fabric. The coated fabric is cured at a temperature of about 20 degree C to about 300 degree C for about 1 minute to about 12 hours to obtain the flame retardant fabric.
- 50 Nylon 50 Cotton Universal ripstop fabric class 6 MIL-DTL-44436B pure finish (NYCO) fabric was coated with AMPS. The AMPS FR formulation optimized for cotton fabric was used in coating NYCO fabric. Vertical flame test was conducted on AMPS-coated NYCO fabric. AMPS-coated NYCO fabrics performed poorly under vertical flame testing. This result was unexpected because AMPS coated cotton fabrics exhibited excellent flame retardant behavior. Probably AMPS has less interaction with Nylon fibers compared to cotton fibers.
-
- TBOP, when combined with urea, demonstrated excellent flame retardant property on a NYCO fabric. Vertical flame test results are provided in Table 6. Although TBOP by itself did not function well as a flame retardant coating, the combination of this liquid and urea gave results better than TPEP and EIP ionic liquids. The interaction of TBOP and urea is most likely similar to the tetrakis hydroxyl methyl phosphonium chloride salt (THPC) (commercially available under the trade name, Pyrosan®), due their similar chemical structures.
- When paired with other fabric binders such as Knittex®from Huntsman, the fabric performed similarly on vertical flame testing. A combination of Titanium (IV) oxide and TEOS added to the TBOP/urea mixture provided results similar to those of pure TBOP/urea, although the fabric had a white tint from the TiO2 powder.
- Thermogravimetric analysis (TGA) can be helpful in deducing the decomposition mechanism of flame retardant coated fabric. Therefore, the thermal degradation behaviors of uncoated NYCO (control) and TBOP/Urea coated NYCO fabrics were analyzed using TGA. High thermal stability of TBOP ionic liquid is clearly demonstrated by the TGA curve provided in Figure 15. The initial decomposition temperature of TBOP is about 290 degreeC. Thermal decomposition of NYCO fabric in air occurs in two stages. The first stage decomposing temperature of uncoated-NYCO fabric is 342 degreeC corresponds to the decomposition of cotton in the NYCO fabric. This decomposition temperature is shifted to 311 degreeC by the phosphonium catalyzed decomposition of cotton. This behavior is similar to the behavior of THPC flame retardant material. But the initial decomposition temperature of THPC is around 184 degreeC compared to 311 degreeC for TBOP indicating the relatively higher thermal stability of TBOP. The second stage weight loss is centered around 446 degreeC is due to the decomposition of Nylon material in the NYCO fabric. This decomposition temperature is also decreased in the TBOP-Br/Urea coated NYCO fabric. This indicates that hydroxyl or amine funtionalized phosphonium ionic liquids interact with both cotton and nylon fibers of the NYCO fabric. Therefore, hydroxyl or amine functionalized phosphonium ionic liquids can be used as FR coating on both 100 percent cotton fabric and 100 percent nylon fabric. The residue from sample TBOP-Br/Urea coated fabric was a rigid black solid with the original sample form and fabric weave patterns visible. The residue from uncoated NYCO fabric was a fluffy white solid. These observations clearly demonstrate the efficient char formation in the case of phosphonium ionic liquid coated samples supporting the observations made during the vertical flame testing.
- Amino propyl tributyl phosphonium bromide, here after referred as 'TBAP-Br' or as 'Formula 23' was synthesized by reacting tributyl phosphine with 3-bromopropylamine hydrobromide (Example 28, not of the invention). TBAP-Br was tested both by itself and with urea in the FR coating formulation on NYCO fabric. The combination of TBAP-Br and urea produced excellent results, with an average char length of 11.1 cm (4.37 inches), and an average char yield of 93.1%. Pure TBAP-Br produced good data as well, with averages of 13.1 cm (5.16 inch) char length and 91.9% char yield. The vertical flame test data are provided in Table 8. The data indicate that amino functionalized phosphonium ionic liquids are suitable as FR coating materials.
- It is a well-known fact that there exists a phosphorus-nitrogen (P-N) synergistic action in the flame retardancy of cellulosic fibers. Addition of nitrogen containing compounds, such as urea, cyanamides, dicyandiamide, guanidine salts, and melamine compounds to phosphorus compounds increase their flame retardancy, even though the nitrogen containing compounds themselves do not exhibit FR property. In TBAP-Br both P and N present in the same molecule. In this way TBAP-Br is analogous to [TBOP-Br + Urea] formulation. The presence of the amino group on TBAP-Br already gives it a potential edge over TBOP-Br because it may not require additional nitrogen additives. Without wishing to be bound by theory, it is thought that the mechanism of P-N synergistic action is acting on the FR property of TBAP-Br and TBOP-Br ionic liquids.
- In order to further established the use of hydroxyl or amino functional groups on the ionic liquids, a compound (Tetrabutyl phosphonium bromide) which has chemical structure similar to TBOP and TBAP were tested to evaluate how critical is presence of the hydroxyl or amino group in the phosphonium ionic liquid for imparting FR property to the fabric. The Tetrabutyl phosphonium bromide and Tetrabutyl phosphonium bromide mixed with urea solutions produced average char lengths of 21 cm (8.2 inches) and 18 cm (7.1 inches) respectively. These values are quite high relative to results of TBAP-Br and [TBOP-Br]+Urea vertical flame test results, and three of the six samples tested did char completely. Char yield values were 64.6 percent for Tetrabutyl phosphonium bromide and 75.2 percent for Tetrabutyl phosphonium bromide mixed with urea, both significantly lower than the percentages achieved with TBAP-Br which was greater than 90percent. This data establish that presence of hydroxyl or amino functional groups is important for flame retardant performance of the phosphonium ionic liquids.
- Reviews of commonly used flame retardants have shown that halogen containing coatings may have environmental or other health risks associated with them. Bromine compounds, in particular, are under a great deal of scrutiny, with risks of bio accumulated toxic exposure during processing [R. Horrocks, Flame retardant challenges for textiles and fibers: New chemistry versus innovatory solutions, Polymer Degredation and Stability, 96, 377-392 (2011)]. TBAP and TBOP both have a bromide as the anion, but it can be replaced by a number of safer alternatives as provided in Figure 1, each with a unique contribution to the compound's properties. Three common anions were exchanged with the bromide ion on TBAP-Br to demonstrate the possibility of producing bromine-free flame retardant ionic liquids based on TBAP cation.
- Tributyl-propyl amino phosphonium dibutylphosphate (TBAP-DBP)
- Tributyl-propyl amino phosphonium acetate (TBAP-Acetate)
- The vertical flame test data of acetate anion is compared with other anions of TBAP in Figure 21. All the TBAP-based ionic liquids tested exhibited excellent flame retardant properties with the average char length <11 cm (4.5 in.) indicating that the major influence on flame retardant property is due to TBAP cation. Among various TBAP-based ionic liquids tested, TBAP-Acetate exhibited lowest char length of 10 cm (4.1 in.). This could be attributed to lower molecular weight of acetate anion and rationalized as follows: With the equivalent coating weight increase (∼ 35%) in all the TBAP ionic liquids, the concentration of TBAP cation is maximum in the case of TBAP-acetate. Because the TBAP cation is the major contributor to the flame retardant property, TBAP-Acetate exhibits the best FR property among the TBAP ionic liquids tested.
- The durability of the FR coating is one of the most important aspects of the application. However, while effective binding systems for cotton fabrics are common, the low reactivity of nylon has made imparting a durable FR coating to NYCO fabrics a difficult task. Binding agents for fabrics can consist of polymers such as polyurethane, polyvinyl chloride, polyacrylate, or use nitrogen containing compounds including but not limited to melamine and urea to link coating molecules to the fabric and create a network that does not wash off easily. There are two possible methods of adhering the ionic liquid to the fabric. The first is a reaction mechanism that bonds the ionic liquid molecule to the fabric directly, either by some type of activation or the presence of a catalyst. The second possible route is to react ionic liquid with another compound or set of compounds that then bonds to the fabric. A polymeric network of FR compound interlaced within a binding material is a common method for imparting a durable coating to fabrics.
- Samples were washed thoroughly with cold water by hand, rinsing the fabric completely to ensure that any washable coating was removed. The AATCC outlines the procedure for commercial washing [Standard Laboratory Practice for Home Laundering Fabrics Prior to Flammability Testing to Differentiate Between durable and Non-Durable Finishes, AATCC Monograph, M7, (1991)].
- Dimethylol dihydroxyethyleneurea (DMDHEU) and Dimethylol ethyleneurea (DMEU) are two common finishing agents that can be used as binders. However, they are primarily used with cellulosic fabrics. A commercial product Knittex® 7636 (primary ingredient DMDHEU) was tested with a TBAP-Br coating of the NYCO fabric, but less than 20% of the coating applied was retained after just one wash.
- In order to determine the potential utility of a binding agent, product samples were tested initially with a solution containing only the binder. If a high amount of the binder coating (>85%) was retained after washing, it was then tested with ionic liquid systems. Lubrizol produces a variety of finishing applications for textiles, and three products from the company were tested: PrintRite® 595, an acrylic binder, Vycar® 580X182, a PVC dispersion, and Sancure® 20025F, a polyurethane mixture. Two other acrylic binders from Huntsman Chemical were also tested: Dicrylan® AC-01 and Dicrylan® TA-GP. Finally, a binding system composed of a melamine-formaldehyde finishing agent and a urea based cross linker from Emerald Performance Materials were tested. The components are Aerotex® resins, entitled M3, 3730, and 3030.
- Varying the amount of the binder often resulted in different retention values, most likely due to compounds' ability to interact with the fabric in the presence of water. If a given composition of binder was not durable, alternate compositions were tested until a successful composition was found or the material was deemed unusable as a binding agent.
- The acrylic binders (PrintRite/Dicrylans) provided some retention of the coating, with PrintRite adhering best to the fabric. However, the lack of nitrogen in the compound makes it difficult to impart complete FR properties to the fabric. Sancure showed very high retention by itself, but formed a separate phase when placed into solution with TBAP-Br. Its inability to mix in water with TBAP compounds made it unusable for further tests. Polyurethanes react well with hydroxyl groups, which are abundant on the NYCO fabric. The best binding system for amine and hydroxyl funtionalized phosphoinium -based ionic liquids determined to be melamine based binder products including but not limited to Aerotex M3 resins available from Lubrizol along with cross linkers including but not limited to acrylates, aerotex 3030 and aerotex 3730.
- In general, textile fabrics are electric insulators with surface resistance in the range of 1013 Ω to 106 Ω [P.J. Žilinskas, T. Lozovski, V. Jankauskas, J. Jurksus, Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux, MATERIALS SCIENCE (MEDŽIAGOTYRA) 19, 201 (2013)]. Surfaces with high electrical resistance are susceptible for electrostatic charging. An accumulated electric charge has the ability to generate and retain an electrostatic field of significant magnitude. This electric field can be detected as a surface voltage that can be measured. Thus the surface voltage can be a measure of the electrostatic properties of the test fabric.
- Ionic liquids consist of charged species with high ionic conductivity. The static charge accumulated on the fabric surface can be rapidly dissipated by conducting ions. Antistatic property of the TBOP-Br/Urea treated fabrics were tested using the Federal Test Method Standard 191A Method 5931 'Determination of electrostatic decay of fabrics'. According to this method the amount of time it takes for static to dissipate from a fabric strip was measured. The 3 cm x 13 cm (3" x 5") test samples were preconditioned at 20% relative humidity at 24ºC. 5000 V was applied to the test fabric for a period of 20 seconds. The voltage behavior of the test sample as a function of decay time was recorded. The time for the charge to decay from the maximum voltage level to 50% of the maximum voltage attained was measured from the voltage decay plot. The decay time for the uncoated and TBOP/Urea coated fabrics were provided in Table 6. The electric charge applied on to the TBOP/Urea coated fabric was rapidly removed compared to uncoated NYCO fabric.
- It will be readily understood by the skilled artisan that numerous alterations may be made to the examples and instructions given herein. These and other objects and features of present invention will be made apparent from the following examples. The following examples as described are not intended to be construed as limiting the scope of the present invention.
- Methyl imidazole (0.063 mol, 5 mL) was mixed with 3-bromopropanol (0.095 mol, 13.2g) in a round bottom (RB) flask. The mixture was heated to 80 degreeC with a reflux condenser. The reaction continued for 24h. After the reaction, the top layer was decanted off. The product was washed with diethyl ether (5 mL 3X) and dried under vacuum at 80 degreeC for 2 days and analyzed with proton nuclear magnetic resonance spectroscopy (NMR). Proton NMR Data: 8.866 (s, 1H, aromatic), 7.609 (s,1H, aromatic), 7.547 (s,1H, aromatic), 4.377 (t, 2H), 3.976 (s, 3H-Ring CH3), 3.675 (t, 2H, -N-CH2), 3.592 (t,2H, -CH2-OH), 2.172 (m, 2H)
- 15 mL of 4-cholorobutanol (1.5 mol) was mixed with 7.98 mL of 1-methyl imidazole and stirred at 80 degC with reflux condenser. The reaction was continued for 24h then cooled to room temperature. The excess unreacted 4-cholorbutanol was removed by washing with diethyl ether (5 mL, 3X). Then the sample was dried at 80ºC under reduced pressure. Proton NMR Data: 8.856 (s, 1H, aromatic), 7.606 (s,1H, aromatic), 7.583 (s,1H, aromatic), 4.364 (t, 2H), 4.364 (2H -CH2-OH), 4.032 (s, 3H-Ring CH3), 3.703 (t, 2H, -N-CH2), 2.034 (t,2H, -CH2-OH), 1.676 (m, 2H). Corresponding compounds with ethyl imidazole also prepared with 3- bromopropanol and 4-chlorobutanol.
- 102 g of 3-bromopropylamine hydrobromide (0.456 mol) was dissolved in dry ethanol. To this solution 1-methylimidazole (36.4 mL, 0.456 mol) was added. The mixture was stirred for 24h at 80 degC. White solid was formed was recrystallized from ethanol. Proton NMR Data: 8.842 (s, 1H, aromatic), 7.580 (s,1H, aromatic), 7.505 (s,1H, aromatic), 4.378 (t, 2H), 3.932 (s, 3H-Ring CH3), 3.103 (t, 2H, -N-CH2), 2.320 (t,2H, -CH2-OH), 2.074 (t, 2H)
- Ionic liquids containing anions other than bromide ion can be prepared by ion-exchaning the bromocompound with alkali salts of other anions. For example, ionic liquids with Bis(trifluoromethyl sulfonyl) imide anion can be prepared by ion-exchanging the bromide compound with Lithium Bis(trifluoromethyl sulfonyl) imide (LiNTf2). 11.28 g of LiNTf2 was dissolved in 50 mL acetone. Then 5 g of [hydrxypropyl-methyl imidazolium]bromide was added to the Bis (trifluoromethylsulfonyl) imide anion solution and stirred in a 200 mL round bottom flask for 24h. Then 200 mL of deionized water was added to dissolve LiBr. Hydrophobic ionic liquid layer settled at the bottom. The solution was decanted to isolate the ionic liquid compound with NTf2 anion. Similarly, amino compound also ion-exchanged with LiNTf2 to form the corresponding ionic liquid. Amine- and hydroxyl groups containing ionic liquids when mixed with each other consistently showed higher carbon dioxide absorption capacity compared to the correponding compounds alone.
The following examples are focused on preparing new ionic liquids in which both amino and alcohol groups will be present in the same molecule. Interestingly recent research reports showed that mixing super bases with alcohol containing ionic liquids were found to be effective for equimolar carbon dioxide capture under ambient pressures [C. Wang, H. Luo, X. Luo, H. Li, and S. Dai, Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems, Green Chem. 12, 2019-2023 (2010)]. However, this systems seems to have low recyclability. -
- In a typical reaction, 3 g of aminopropyl-methyl imidazolium bromide was dissolved in ethanol. 6.9g potassium carbonate and 4.14g of bromopropyl alcohol were added to this solution and reacted at 50 degreeC for 12h. After the reaction the solvent was removed by rotoevaporation. The solid was extracted with ether to remove unreacted bromopropyl alcohol. The proton nmr of the product is provided in Figure 3. The proton nmr distinctly different from the starting material showing that the reaction has proceeded to completion. However, proton correspond to C-2 in the imidazolium ring was not observed in the nmr spectrum. This reaction was repeated several times with various conditions including different solvent, temperatures, and molar ratio of the reactants. In all the variations that we tried the resulting product was similar and did not show C-2 hydrogen. Since, the expected product was not obtained, we tried an alternative approach to synthesize amino-alcohol groups containing imidazolium compounds.
- In the alternative method bromoalkyl imidazolium compound was first synthesized. Then this intermediate compound was reacted with various alkanol amine compounds to form the corresponding ionic liquids as bromide salts. The reaction scheme for the synthesis of bromopropyl-methyl imidazolium bromide is provided below:
- In a typical reaction, 28.5 g (0.134 mol) of 1-methyl imidazole was taken with 55 g (0.201 mol) of 1,3-dibromopropane (1:1.5 ratio) in acetonitrile solvent. The mixture was heated to 50 degC. In 3-5 min of addition of methyl imidazole to dibromopropane, a cloudy solution was formed. The internal temperature was raised to 70 degC during the further addition of imidazole. The addition of methyl imidazole in acetronitrile was controlled such that the reaction mixture temperature remains constant around 55 degC. After completion of the addition of methyl imidazole the reaction mixture was cooled to room temperature. The reaction mixture was rotoevaporated to remove the solvent. Then the white solid formed was washed with diethyl ether to remove the excess dibromopropane. The dried product contained both monomer and dimers. The required monomer product compound 4 was separated by dissolving in acetonitrile. The proton nmr of the monomer compound bromopropyl methyl imidazolium bromide is provided in Figure 7. The reaction was conducted at various temperatures between 40 to 55 degree C. The monomer yield in the final product was increased with increase in temperature. Further, diluting the reactants in acetonitrile also helped in increasing the monomer yield. Proton NMR Data in D2O: chemical shift 8.82 (s, 1H), 7.55 (d, 1H), 7.47 (d, 1H), 4.41 (t, 2H), 3.92 (s, 3H), 3.47 (t, 2H), 2.44 (2H).
- Bromoalkyl methyl imidazolium bromide can be reacted with a variety of aminoalkanol compounds forming the corresponding ionic liquid. For example, ionic liquid represented by the Formula 10 was synthesized by reacting bromopropyl methyl imidazolium bromide (Formula 9) with N-methyl ethanolamine in the presence of potassium carbonate is provided below.
- In a typical reaction, 6 g (0.02 mol) of bromopropyl-methyl imidazole, 1.58 g (0.02 mol) of N-methyl ethanolamine and 5.83 g of potassium carbonate 0.04mol) were mixed in 30 mL of acetonitrile and heated at 65 degC for 1h. After the reaction the solid was filtered off and washed with acetonitrile. The filtrate was rotoevaporated to remove the solvent. Then extracted with tetrahydrofuran (THF) in which N-methyl amino ethanol is soluble. Then the sample is dried under high vacuum. The proton NMR spectrum of the dried product is provided in Figure 5.
NMR Data: proton NMR in D2O Chemical shift 7.52 (d, 1H), 7.47 (d, 1H), 4.23 (t, 2H), 3.89 (s, 3H), 3.69 (t, 2H), 2.58 (t, 2H), 2.51 (t, 2H), 2.25(s, 3H), 2.08 (m, 2H). This structure was further supported by C-13 NMR spectrum of the ionic liquid represented by the Formula 10 provided in Figure 6. C-13 NMR Data: 122.7 (CH), 121.3 (CH), 57.5 (CH3), 56.8 (CH2), 52.5 (CH2), 46.7 (CH2) 40.2 (CH3), 34.5 (CH3), 25.2 (CH2) -
- To a solution of 1,3-dibromopropane (126.02 g, 0.6242 mol) in 150 mL of acetonitrile a solution of 1,2 dimethyl imidazole (30 g, 0.3121 mol) was added drop wise at 80 degree C. The addition was completed in about 2h. Then the reaction mixture was left to stir at 75 degree C overnight. After completion of the reaction, the solvent was removed by rotoevaporation under reduced pressure. White dry solid formed was treated with diethyl ether in small batches. Ether extraction was carried out for 3 times. Then the powder was dried to remove ether. Then the dried powder was stirred with acetonitrile at room temperature to isolate monomer bromopropyl compound. The undissolved dimer was separated by filtration. The filtrate was rotoevaporated to remove the solvent and dried under high vacuum. Yield 20g. The proton NMR of the showed highly pure monomer compound. NMR Data: Proton NMR in D2O Chemical shift 7.41 (d, 1H), 7.35 (d, 1H), 4.31 (t, 2H), 3.78 (s, 3H), 3.48 (t, 2H), 2.63 (s, 3H), 2.38 (m, 2H).
- 3-Bromopropyl-1,2 dimethyl imidazolium bromide compound was reacted with a number of alkanol amines, alkyl amines, cyclic amines, aliphatic cyclic amino alcohols and compounds such as 2-amino-2-methyl-1,3-propanediol, 2-piperidineethanol, 2-piperidinemethanol, diisopropanol amine, 3-quinuclidinol, N,N-dimethylethanolamine, and 3-piperidino-1,2-propandiol and sterically hindered amines to form a variety of ionic liquids containing both alcohol groups and amino groups. N-methyl ethanolamine, monoethanol amine and diethanolamine derivatives of the compound represented by the chemical Formula 11 were synthesized high yield in the presence of potassium carbonate. A typical reaction scheme of Formula 11 with N-methyl ethanol amine is provided below.
- The proton and C-13 NMR spectra of the ionic liquid represented by the chemical Formula 12 are provided in Figures 8 and 9, respectively.
Proton NMR Data: Proton NMR in D2O chemical shift 7.35 (d, 1H), 7.30 (d, 1H), 4.12 (t, 2H), 3.74 (s, 3H), 3.67 (t, 2H), 2.57 (s, 3H), 2.48 (m, 2H), 2.25 (2, 3H), 1.99 (m, 2H). C-13 NMR Data:143.4 (C), 121.5 (CH), 119.9 (CH), 57.8 (CH2), 57.1 (CH2), 52.6 (CH2), 45.5 (CH), 40.9(CH3), 34.3(CH3), 25.4(CH2), 8.8 (CH3) -
- Proton NMR spectrum of the ionic liquid represented by the Formula 13 is provided in Figure 10.
The reaction progress was demonstrated by the shift in the NMR resonance peaks for CH2-Br at 3.477 ppm shifted to CH2-N at 3.678 ppm. This clearly demonstrated the alkylation of amino groups with the bromopropyl-1,2 dimethyl imidazole. - The compounds containing both amino and alcohol groups were ion-exchanged with Bis(trifluoromethylsulfonyl) imide anion to form the corresponding ionic liquids shown in Figure 2. Proton NMR of the Bis(trifluoromethylsulfonyl) imide anion exchanged amino alcohol funtionalized imidazolium ionic liquids are provided in Figures 11 to Figure 14. Similarly by ion exchanging with NaBF4 resulted in corresponding ionic liquids. Other anions listed in the Figure 1 can also be exchanged similar to Bis(trifluoromethyl sulfonyl) imide anion and BF4 anion to form the corresponding ionic liquids.
- In order to determine the thermal stability of the functionalized ionic liquids synthesized thermogravimetric analysis (TGA) was conducted. The decomposition temperature of ionic liquids will provide data on the thermal stability of ionic liquids. The TGA was run on a TA Instruments TGA2950 (TA Instruments P/N 952250.502 S/N HA2950-R516) at Edison Analytical Laboratories, Inc., Latham, NY. The purge atmosphere was nitrogen at 100 ml/min. The temperature program was a ramp at 10 degree C per minute to 600 degree C. The sample was in a platinum pan. Data collection used Thermal Advantage software v.1.1A S/N C1102272 and the analysis used Universal Analysis v. 3.4C build 3.4.0.10. The instrument was calibrated for temperature using the curie points of nickel and iron and calibrated for weight with the precision weight set provided by TA Instruments. The ionic liquid represented by the Formula 17 exhibited a larger amount of loss near 280 degree C compared to the ionic liquid represented by the Formula 14. This can be attributed to the loss of N-methyl group. Otherwise, the two materials show similar decomposition profiles and both are completely reduced to a black char by 488 degree C.
The ionic liquids reported here show relatively lower stability than the unfunctionalized ILs reported in the literature [Z. Zhang, and R.G. Reddy, Thermal Stability of Ionic Liquids, TMS Annual Meeting held on February 17-21, 2002 http://www.bama.ua.edu/∼zhang002/ research/ slideshow6.pdf]. The amino alcohol functionalized ionic liquids are stable up to 280 degree C which is sufficiently high enough for carbon dioxide capture from flue gases and other applications. Further, it is interesting to note that the amino alcohol groups are stable up to 280 degree C, which is not possible to achieve by the physical mixing of amino alcohols or amines with an unfunctionalized ionic liquids or other solvents [D. Camper, J. Bara, D.L. Gin, R. Noble, Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2, Ind. Eng. Chem. Res. 47, 8496-8498 (2008)). The TGA of functionalized ionic liquid represented by the chemical Formula 17 under flowing air (20% oxygen) and nitrogen and air are provided in Figure 15. Both the curves almost overlap indicating that MMI's ionic liquids are stable in nitrogen as well as in air up to 280 degree C. - The ionic liquid samples (about 3 g) were loaded in the isochoric cell and degassed at 80 degree C and 3 mbar vacuum for a period of 12-18 h. After cooling the sample to 25 degree C, carbon dioxide gas was introduced into the isochoric cell. The pressure was set at desired pressure between 1-8 bar. The sample was stirred during the absorption experiment. The weight increase due to carbon dioxide absorption was measured at various exposure times. The absorption duration was kept at 18h for all the samples uniformly. In Figure 16, carbon dioxide absorption of functionalized ionic liquids and unfuntionalized ionic liquid hexyl methyl imidazolium Bis(trifluoromethylsulfonyl) imide (C6mimNTf2) are compared. Anions strongly organize around the amino groups forming strong hydrogen bonds. So, it may be possible to achieve high reactivity by using a different anion. Replacing H with CH3 group liberates amino group from the clutches of hydrogen bonding and helps in increasing the reactivity and absorption of carbon dioxide. Further, the amount of carbon dioxide absorption is drastically increased by the introduction of hydroxyl groups in the proximity of the amino group. The carbon dioxide absorption of C6mimNTf2 unfunctionalized ionic liquid is probably attributed to physical mechanisms, while chemical and physical mechanisms are involved in the carbon dioxide absorption of the amino alcohol functionalized ionic liquids. There are two stages of absorption observed for functionalized ionic liquids. There exists a plateau above 2 bar and below 6 bar pressure indicating the presence of these two mechanisms in the functionalized ionic liquids. Enhanced carbon dioxide absorption observed for functionalized ionic liquids at pressures below 2 bar indicates that the chemical reaction mechanism is acting in the carbon dioxide absorption. The viscosity of the ionic liquids increased with increase in the protons NH2 greater than NH greater than N-CH3. Use of N-C2H5 or N-C3H7 or N-C4H9 or N-aliphatic ring will help in further reducing the viscosity without compromising on the carbon dioxide absorption.
-
Viscosity of Functionalized Ionic Liquids are provided in the Table 1. Compound Viscosity (cP) Pristine Sample After Carbon dioxide absorption Formula 14 1608 2510 Formula 15 684 766 Formula 16 4435 4565 Formula 17 407 952 Methyl amino propyl imidazolium NTf2 10,408 - Butyl amino propyl imidazolium NTf2 4396 - Methyl hydroxy propyl imidazolium NTf2 179 - Butyl hydroxy propyl imidzolium NTf2 158 - Hexadecyl methyl imidazolium NTf2 69 - - Flame retardant (FR) application of containing amino and alcohol group functionalized imidazolium ionic liquids were tested by coating them onto cotton fabrics. For example, [3-hydroxypropyl-1-methyl imidazolium] bromide [OHpmim]Br which was prepared using the method described in the Example 1 was coated on to cotton fabric. The flame retardant property of the coated fabric was evaluated using vertical flame testing. The fire is immediately extinguished when the flame was removed while the uncoated fabric turned into ashes in 20 seconds.
Example 16, 17 and 18 are comparative examples supporting this disclosure that the amino and alcohol groups are critical for the superior FR property of the ionic liquids. -
- Methyl imidazole (2.06 g) was mixed with 4-bromobut-1-ene. (4g) in a round bottom (RB) flask. The mixture was stirred at 40ºC for overnight. After the reaction, the product was washed with diethyl ether (5 mL 3X) and dried under high vacuum. 1-But-3-enyl-3-methyl-1H-imidazolium bromide was obtained as a clear viscous yellow colored liquid. The dried sample was analyzed with proton nuclear magnetic resonance spectroscopy (NMR). Proton NMR Data: (DMSO-D6): chemical shift [ppm] = 2.72 (2H, 2'-H), 4.11 (s, 3H, NCH3), 4.48 (t, 2H, 1'-H), 5.09-5.11 (m, 1H, 4'-Ha), 5.81 (m, 1H, 3'-H),7.62 (s, 1H, 4-H, 4-H/5-H), 7.65(s, 1H, 4-H, 4-H/5-H), 10.19 (s, 1H, 2-H).
-
- In a typical reaction, 20 g of allyl bromide was added in drop wise to 13.4 g of methyl imidazole in a RB flask. The temperature of the reaction mixture was kept below 10 degree C using an ice bath. After the completion of addition of allyl bromide the mixture was stirred at room temperature for 12 hours. The final product was obtained as a reddish brown liquid after washing with diethyl ether and the volatiles were removed by high vacuum evaporation at room temperature. Proton NMR Data: (DMSO-D6): chemical shift [ppm] = 9.27 (s, 1H, NCHN), 7.78 (s, 2H, NCHCHN), 6.05 (m, 1H, NCH2CH@CH2), 5.32 (dd, 1H, NCH2CH@ CHHtrans), 5.29 (dd, 1H, NCH2CHCHcis), 4.90 (d, 3JHH = 5.8 Hz, 2H, NCH2CH@ CH2), 3.84 (s, 3H, NCH3)
- 50 Nylon 50 Cotton Universal ripstop fabric class 6 MIL-DTL-44436B pure finish (NYCO) fabric samples were coated with aqueous solutions of 1-But-3-enyl-3-methyl-1H-imidazolium bromide and 1-allyl-3-methyl imidazolium bromide and cured at 70 degree C for 10 minutes. Vertical flame testing data for ionic liquids based on methyl imidazolium bromide containing Carbon-Carbon double bonds are provided in Table 2. None of these ionic liquids with terminal double bond performed well under vertical flame testing. The after flame times were very high with low char yield (less than 20 percent) as provided in Table 2.
Table 2. Vertical flame testing data of allyl and butenyl methyl-imidazolium bromide ionic liquids Coating Composition in water Avg. Weight Increase of fabric Avg. Char Length (in) Avg. After Flame Time (s) Char Yield 50% Allyl-methyl-imidazolium 34.6% N/A 43.5 13.5% 20% 1-Allyl-3-imadazolium/30% AMPS/5% MBAm/1% APS 45.8% N/A 42.5 5.9% 50% Allyl-methyl-imidazolium/12.5% Urea 40.7% N/A 43 19.9% - This is a comparative example. Flame resistance of two ionic liquids tetrabutyl phosphonium diethyl phosphate (TPEP) and Ethyl methyl imidazolium diethyl phosphate (EIP) coated 419W cotton fabrics were measured according to standard test method ASTM 6413-08. The specimens with dimensions 3 cm x 30 cm (3" x 12") were used in this test. The specimen was maintained in a static, draft-free, vertical position. The test specimen was exposed to a flame height of 38 mm (1.5 inches) for 12 seconds. After the 12-second period, the after-flame and after-glow times were determined. The char length was measured after cooling the sample. The ionic liquid coated fabrics were charred and stopped the flame propagation immediately after the removal of the flame. Vertical flame testing of TPEP and EIP based FR formulations are provided in Table 3.
Table 3. Vertical flame testing of commercial ionic liquids TPEP and EIP Coating Solution Fabric type Avg. Weight Increase Avg. After Flame Time (s) Avg. Char Yield % TPEP/13.6% Al(NO3)3 (1) Cotton 29.7% 4.3 26.7 0% TPEP/10% EIP (2) Cotton 28.1% 1.5 41.4 0% TPEP (3) Cotton 22.5% 6 10.5 25 % EIP (4) Cotton 28.3% 3.5 15.5 25% TPEP/6.7% Urea (NYCO) NYCO 24.3% 38.7 41.1 - The ionic liquid (TPEP and EIP) coated fabrics formed char during flame testing. But they also exhibited higher char length. In order to improve the flame retardant property, the TPEP-coated cotton fabric was coated with a layer of AMPS (30%) monomer and MBAm (3%) cross linker. Then the fabric was air dried for 4 days before the vertical flame testing. Cotton fabric coated with TPEP/AMPS-MBAm was subjected to vertical flame testing. The coated fabric exhibited a less vigorous flame than the uncoated control fabric. After-flame time and char length was also significantly reduced and no afterglow was observed. The vertical flame test data were provided in Table 20.
Table 4. Vertical flame testing of AMPS coated cotton fabrics Coating Solution Avg. Weight Increase Avg. Char Length (in) Avg. Char Yield (%) 20% AMPS/3% MBAm/1% APS 15.8% - 38% 20% AMPS/6% MBAm/1% APS 18.4% 9.3 63.9% 20% AMPS/9% MBAm/1% APS 20.6% 10.1 57.6% 30% AMPS/3% MBAm/1% APS 25.1% 9.1 67.6% 30% AMPS/6% MBAm/1% APS 26.6% 5.9 90.5% 30% AMPS/9% MBAm/1% APS 30% 7.1 83.9% -
Table 5. Vertical flame testing of AMPS/TPEP coated cotton fabrics Coating Solution Avg. Weight Increase Avg. Char Length (cm) Avg. Char Yield 20% AMPS/4% MBAm/20% TPEP/1% APS 43.3% 24 87.7% Alternating layers: 20% TPEP and 30% AMPS/6% MBAm/1% APS, 2 layers each 48.6% 23.4 88.1% Alternating layers: 20% TPEP and 20% AMPS/4% MBAm/1% APS, 2 layers each 51.4% 24.5 82.2% Alternating layers: 45% TPEP and 30% AMPS/6% MBAm/1% APS, 2 layers each 47% 20.9 85.5% - This is not an example of the invention. Hydroxy propyl tributyl phosphonium bromide, [Bu3Pr[OH]]PBr also referred as 'TBOP-Br' or 'Formula 22" in this disclosure was synthesized by reacting tributyl phosphine, [Bu3P] with bromo propanol. 1-Bromo propanol and tributyl phosphine was mixed in a round-bottomed flask at 60-100 °C with constant stirring for 12-24h. The reaction product was washed with diethyl ether and completely dried under vacuum at 80 degree C.
-
-
- Bromopropyl tributyl phosphonium salt (Formula 21) was reacted with a variety of amino alcohols to form the corresponding bromide salts. For example, Bromopropyl tributyl phosphonium bromide was reacted with N-methyl ethanolamine in the presence of potassium carbonate as provided in the reaction scheme below:
- In a typical reaction, 0.02 mol of bromopropyl tributyl phosphonium bromide, 0.02 mol of N-methyl ethanolamine and 0.04 mol of potassium carbonate were mixed in 100 mL of acetonitrile and heated at 65 degree C for 12 hours. After the reaction the product was filtered off and washed with acetonitrile. The filtrate was rotoevaporated to remove the solvent. Then extracted with tetrahydrofuran (THF) in which N-methyl amino ethanol is soluble. Then the sample is dried under high vacuum.
- Thermogravimetric analysis (TGA) can be helpful in deducing the decomposition mechanism of flame retardant coated fabric. Therefore, the thermal degradation behaviors of uncoated NYCO (control) and TBOP-Br/Urea coated NYCO fabrics were analyzed using TGA. TGA curves were obtained using a TA Instruments TGA2950. The purge atmosphere was air at 100 ml/min. The temperature program was a ramp at 20 degree C per minute to 600 degree C with a 15 minute hold. The sample was in a disposable aluminum liner in a platinum pan for weight with the precision weight set provided by TA Instruments. High thermal stability of TBOP-Br ionic liquid was clearly demonstrated by the TGA curve provided in Figure 17. The initial decomposition temperature of TBOP is about 290 degree C. Thermal decomposition of NYCO fabric in air occurs in two stages according to the TGA data provided in Figure 17. The first stage decomposing temperature of uncoated-NYCO fabric is 342 degree C corresponds to the decomposition of cotton in the NYCO fabric. This decomposition temperature is shifted to 311 degree C by the phosphonium catalyzed decomposition of cotton. This behavior is similar to the behavior of Tetrakis(hydroxymethyl) phosphonium chloride (THPC) flame retardant material. But the initial decomposition temperature of THPC is around 184 degree C compared to 311 degreeC for TBOP-Br indicating the relatively higher thermal stability of TBOP-Br. The second stage weight loss is centered around 446 degreeC is due to the decomposition of Nylon material in the NYCO fabric. This decomposition temperature is also decreased in the TBOP/Urea coated NYCO fabric. The residue from sample TBOP-Br/Urea coated fabric was a rigid black solid with the original sample form and fabric weave patterns visible. The residue from uncoated NYCO fabric was a fluffy white solid. These observations clearly demonstrated the efficient char formation in the case of phosphonium ionic liquid coated samples supporting the observations made during the vertical flame testing.
- Ionic liquids consist of charged species with high ionic conductivity. The static charge accumulated on the fabric surface can be rapidly dissipated by conducting ions. Antistatic property of the TBOP-Br/Urea treated fabrics were tested using the Federal Test Method Standard 191A Method 5931 'Determination of electrostatic decay of fabrics'. According to this method the amount of time it takes for static to dissipate from a fabric strip was measured. The 3 cm x 13 cm (3" x 5") test samples were preconditioned at 20% relative humidity at 24ºC. 5000 V was applied to the test fabric for a period of 20 seconds. The voltage behavior of the test sample as a function of decay time was recorded. The time for the charge to decay from the maximum voltage level to 50% of the maximum voltage attained was measured from the voltage decay plot. The decay time for the uncoated and TBOP/Urea coated fabrics were provided in Table 6.
Table 6. Antistatic property of TBOP-Br/Urea coated NYCO samples SampleType Electrical Charge Decay Time (s) Uncoated NYCO TBOP coated NYCO Warp 7.8 1.2 Fill 9.0 1.2 - The antistatic property of the ionic liquid coated fabric was clearly demonstrated in the data provided in the Table 6. The electric charge applied on to the TBOP-Br/Urea coated fabric was rapidly removed compared to uncoated NYCO fabric.
-
Table 7. Vertical flame testing data of TBOP-Br ionic liquid Coating Composition on NYCO fabric Avg. Weight Increase Avg. Char Length (inch) Avg. After Flame Time (seconds) 50% TBOP-Br 35.1% - 36.3 50% TBOP-Br/4.5% Urea 38.2% 4.3 2.5 - This is not an example of the invention. Amino propyl tributyl phosphonium bromide, [Bu3Pr[NH2]]PBr also referred as 'TBAP-Br' or 'Formula 23" was synthesized by reacting tributyl phosphine, [Bu3P] with 3-bromopropylamine hydrobromide. 3-bromopropylamine hydrobromide and 1-methyl imidazole was mixed with acetonitrile in a round-bottomed flask at 80 °C with constant stirring for 12-24h. The reaction product was washed with hexane to remove unreacted reactants and completely dried under vacuum at 80 degree C.
- Proton NMR (CDCl3) Data: chemical shift 0.93 (t, 9H; CH3), 1.47-1.63 (m, 12H; CH¬2), 2.25-2.39 (M, 8H; PCH2), 2.9 (m, 2H, CH2NH2), 3.35 ppm (t, 2H, CH2NH2); P-31 NMR DATA: chemical shift =34 ppm corresponding to phosphonium salt
- TBAP-Br was coated onto NYCO fabric with and without mixing with urea. The combination of TBAP-Br and urea produced excellent results, with an average char length of 11.1 cm (4.37 inches), and an average char yield of 93.1%. Pure TBAP-Br produced good data as well, with averages of 13.1 cm (5.16 inch) char length and 91.9% char yield. The vertical flame test data are provided in Table 8. Phosphorus-Nitrogen synergism
It is a well-known fact that there exists a phosphorus-nitrogen (P-N) synergistic action in the flame retardancy of cellulosic fibers. Addition of nitrogen containing compounds, such as urea, cyanamides, dicyandiamide, guanidine salts, and melamine compounds to phosphorus compounds increase their flame retardancy, even though they themselves do not exhibit FR property. In TBAP both P and N present in the same molecule. In this way TBAP is analogous to [TBOP + Urea] formulation.Table 8. Vertical flame test data of TBAP and TBAP/Urea coated NYCO fabrics Coating Composition in water Avg. Weight Increase Avg. Char Length (in) Avg. After Flame Time (s) Char Yield 50% TBAP-Br Formula 23 39.3% 5.16 2.0 91.9% 50% TBAP-Br/7.0% Urea on NYCO 38.2% 4.37 2.0 93.1% - TBAP with a dibutyl phosphate (DBP) anion was prepared by dissolving equimolar amounts of TBAP-Br and DBP in methanol, followed by the addition of an equimolar amount of potassium hydroxide. The mixture was stirred for 12 hours and the resulting in TBAP-DBP ionic liquid and a potassium bromide salt. The methanolic solution was filtered and evaporated under vacuum, to separate the TBAP-DBP ionic liquid. The ion-exchange reaction can represented as follows:
- Proton NMR and C-13 NMR spectra of TBAP-DBP ionic liquid were provided in Figure 18 and 19 respectviely.
- Since TBAP-DBP has two P-moieties, it was necessary to adjust the TBAP-DBP/Urea ratio in the FR coating to achieve best FR performance. The TBAP-DBP/Urea molar ratio was varied between 4:1 to 2:5 and the vertical flame test data are provided in Figure 20 and Table 9. Lowest char length (10 cm (4.1 inch)) and best char yield (91%) were observed with 1:2 TBAP-DBP/Urea molar ratio. These data clearly demonstrate the action of 'Phosphorus-Nitrogen synergism' on the flame retardant property of phosphonium based chemicals with the optimum P:N ratio of 2:3.
Table 1. Vertical Flame Testing Data of TBAP-DBP Coating Composition in water Avg. Weight Increase Avg. After Flame Time (s) Char Yield 50% TBAP-DBP/1.5% Urea 36.7% 1.0 89.0% 50% TBAP-DBP/2.1% Urea 37.3% 2.0 85.6% 50% TBAP-DBP/3.1% Urea 32.3% 2.0 85.0% 50% TBAP-DBP/5.5% Urea 34.7% 2.7 87.8% 50% TBAP-DBP/9.5% Urea 39.9% 0.7 90.6% 50% TBAP-DBP/12.8% Urea 38.0% 1.0 90.6% 50% TBAP-DBP/16% Urea 36.4% 4.7 83.7% - Bromide anion was replaced with the acetate anion (CH3COO-) by dissolving equimolar amounts of TBAP-Br and potassium acetate in methanol. The exchange occurred while stirring for 24 hours, and the final product of TBAP-Acetate was isolated through vacuum drying and washing with acetonitrile. Potassium salts provide an efficient means of bromide ion exchange as the KBr product is easily separated from the product by filtration due to its insolubility in acetonitrile.
- The vertical flame test data of acetate anion is compared with other anions of TBAP in Figure 21. All the TBAP-based ionic liquids tested exhibited excellent flame retardant properties with the average char length < 11 cm (4.5 in.) indicating that the major influence on flame retardant property is due to TBAP cation.
- Among various TBAP-based ionic liquids tested, TBAP-Acetate exhibited lowest char length of 10 cm (4.1 in.). This could be attributed to lower molecular weight of acetate anion and rationalized as follows: With the equivalent coating weight increase (∼ 35%) in all the TBAP ionic liquids, the concentration of TBAP cation is maximum in the case of TBAP-acetate. Because the TBAP cation is the major contributor to the flame retardant property, TBAP-Acetate exhibits the best FR property among the TBAP ionic liquids tested.
- The flammability of organic carbonate electrolyte (DMC) and fire quenching action of amino-functionalized phosphonium ionic liquid was demonstrated in Figure 22. When DMC was flashed with a propane gas burner it immediately catches fire and is completely consumed by the flame. In contrast, TBAP-Br as well as TBAP-Br/DMC mixtures when torched with propane gas burners quenches the fire in less than 10 seconds demonstrating the flame retardant property of the phosphonium based ionic liquids. The flame retardant phosphonium ionic liquids can be applied as electrolytes or electrolyte additives in lithium ion batteries.
- Melamine-Formaldehyde Condensate resins including but limited to Aerotex resins M3 were mixed with cross-linkers including but not limited to Aerotex 3730 tested with TBAP/TBOP material for FR properties and coating durability. A typical preparation of durable FR Coated NYCO fabric involved the following steps. FR coating solutions were prepared by mixing 30 g of TBAP-Br, 4.5 grams of Aerotex M3 and 9 grams of Aerotex 3730 in 60 mL of water. The solution was stirred until clear, and then 0.6g ammonium chloride was added. Fabric samples were placed in cans along with the coating solution and agitated in a launderometer for 45 minutes at room temperature. The wetted samples were then run through a padder at 5 psi and cured at 150°C for two minutes in an oven. Two of each set of samples were flame tested unwashed to determine initial FR performance, and subsequent samples were washed with cold water and then flame tested to evaluate durability of the coating. Vertical flame testing data as a function of binder and cross-linker concentration keeping the TBAP-Br concentration constant is provided in Table 10.
Table 10. Vertical flame testing as function of Melamine-Formaldehyde Condensate and crosslinking agent concentration Melamine-Formaldehyde Condensate Crosslinker Unwashed Char Length (in.) Washed Char Length (in.) 7.5 15 7.75 9 8 12 7 8.5 8.5 17 5.75 8 8 10.7 7.25 8.5
Claims (9)
- An ionic liquid represented by the structure of the following Formula 1:(a) R1 and R2 are each independently H, or a C1 to C12 straight-chain alkyl group or branched alkyl group or aryl group,(b) m is an integer 1 to 6,(c) X is -N(R3)-(CH2)q-OH, wherein R3 is H or C1 to C6 straight-chain or branched alkyl group and q is an integer from 2 to 4, and(d) A- is an anion selected from the group consisting of [BF4]-, [PF6]-, [CH3CO2]-, [HSO4]-, [CF3SO3]-, [(CF3SO2)2N]-, [(CF3SO2)3C]-, [SO4]2-, Cl-, Br-, I-, [N(CN)2]-, [(PO4)(C4H9)2]-, [(PO4)(C2H5)2]-, [(PO4)(C6H5)2]-, [CH3CH2OSO3]-, [CH3OCO2]- and amino acid.
- A fire retardant coating for textile fabrics comprising the ionic liquid of claim 1 or claim 2.
- A solvent for carbon dioxide capture comprising the ionic liquid of claim 1 or claim 2.
- An electrolyte in a lithium ion battery comprising the ionic liquid of claim 1 or claim 2.
- A flame retardant additive to an electrolyte in a lithium ion battery comprising the ionic liquid of claim 1 or claim 2.
- An electrolyte in a metal air battery comprising the ionic liquid of claim 1 or claim 2.
- A flame retardant additive to an electrolyte in a metal air battery comprising the ionic liquid of any one of claim 1 or claim 2.
- A method of preparing the ionic liquid represented by the Formula 1 of claim 1, the method comprising
refluxing a compound comprising Formula 4 with an amino alcohol and potassium carbonate in the presence of a solvent, wherein Formula 4 comprises the following structure(a) R1 and R2 are each independently H, or a C1 to C12 straight-chain alkyl group or branched alkyl group or aryl group,(b) m is an integer 1 to 6,(c) Z is CI, Br, I,(d) A- is Cl-, Br-, I-, and, whereby the ionic liquid of Formula 1 is obtained.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361787788P | 2013-03-15 | 2013-03-15 | |
PCT/US2014/028973 WO2014144523A2 (en) | 2013-03-15 | 2014-03-14 | Functionalized ionic liquids and their applacations |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2970142A2 EP2970142A2 (en) | 2016-01-20 |
EP2970142A4 EP2970142A4 (en) | 2017-03-01 |
EP2970142B1 true EP2970142B1 (en) | 2019-06-19 |
Family
ID=51538335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14764516.2A Active EP2970142B1 (en) | 2013-03-15 | 2014-03-14 | Functionalized ionic liquids and their applications |
Country Status (5)
Country | Link |
---|---|
US (2) | US20140287640A1 (en) |
EP (1) | EP2970142B1 (en) |
AU (1) | AU2014229001A1 (en) |
CA (1) | CA2907221A1 (en) |
WO (1) | WO2014144523A2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6685039B2 (en) * | 2015-08-26 | 2020-04-22 | 国立大学法人東北大学 | Compound, ionic liquid, platinum group element extractant, platinum group element extraction method |
US11121422B2 (en) * | 2016-08-16 | 2021-09-14 | Toyota Motor Europe | Fluorinated ionic liquids with high oxygen solubility for metal-air batteries |
CN106997959B (en) * | 2017-04-20 | 2020-07-07 | 广东电网有限责任公司电力科学研究院 | Additive, non-aqueous electrolyte and lithium ion battery |
US11133523B2 (en) * | 2017-07-28 | 2021-09-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Aqueous electrolytes with protonic ionic liquid and batteries using the electrolyte |
EP4086306B1 (en) * | 2017-11-28 | 2024-02-28 | Corning Research & Development Corporation | Cable component including a halogen-free flame retardant composition |
JP7085139B2 (en) * | 2018-12-18 | 2022-06-16 | トヨタ自動車株式会社 | Electrolyte for lithium secondary battery and lithium secondary battery |
CN110252256B (en) * | 2019-06-28 | 2021-11-05 | 河北科技大学 | Magnetic ionic liquid, application thereof, modified activated carbon and preparation method thereof |
CN112216871B (en) * | 2019-07-10 | 2022-04-15 | 比亚迪股份有限公司 | Lithium ion battery electrolyte, preparation method thereof, lithium ion battery and battery module |
CN110743619B (en) * | 2019-09-30 | 2022-04-19 | 浙江工业大学 | Supported ionic liquid catalyst and preparation method and application thereof |
CN111151295B (en) * | 2019-12-31 | 2021-12-21 | 华南理工大学 | Surface modified composite carbon material for oxidative desulfurization and preparation method thereof |
BR102020027071A2 (en) | 2020-12-30 | 2022-07-12 | Petróleo Brasileiro S.A. - Petrobras | SYNTHESIS PROCESS OF ZWITTERIONIC BASES, ZWITTERIONIC BASES, CO2 CAPTURE PROCESS AND USE |
CN114006044A (en) * | 2021-10-25 | 2022-02-01 | 惠州亿纬锂能股份有限公司 | High-voltage electrolyte and application thereof |
CN113991201B (en) * | 2021-10-27 | 2024-01-30 | 远景动力技术(江苏)有限公司 | Gas adsorption diaphragm, preparation method thereof and lithium ion battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120129240A1 (en) * | 2010-11-24 | 2012-05-24 | Haymore Barry L | Buffer compounds |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3836587A (en) * | 1969-11-17 | 1974-09-17 | American Cyanamid Co | Organo phosphonium salts |
US4750911A (en) | 1986-09-26 | 1988-06-14 | Burlington Industries, Inc. | Flame-resistant nylon/cotton fabrics |
DE19605509A1 (en) * | 1996-02-15 | 1997-08-21 | Basf Ag | Use of quaternized imidazoles as non-ferrous metal corrosion inhibitors and antifreeze concentrates and coolant compositions containing them |
FR2788521B1 (en) * | 1999-01-19 | 2001-02-16 | Oreal | NOVEL CATIONIC OXIDATION BASES, THEIR USE FOR OXIDATION DYEING OF KERATINIC FIBERS, TINCTORIAL COMPOSITIONS AND DYEING METHODS |
US7472915B2 (en) * | 2005-07-14 | 2009-01-06 | Quebec Inc./Syrkoss | Speed control device |
EP1820537A1 (en) * | 2006-02-18 | 2007-08-22 | Wella Aktiengesellschaft | Agents for coloring keratin fibers |
US10717929B2 (en) * | 2009-08-11 | 2020-07-21 | Ionic Flame Retardant Inc. | Ionic liquid flame retardants |
US8946442B2 (en) * | 2009-12-21 | 2015-02-03 | E I Du Pont De Nemours And Company | Foamed ionic compounds |
-
2014
- 2014-03-14 US US14/213,428 patent/US20140287640A1/en not_active Abandoned
- 2014-03-14 AU AU2014229001A patent/AU2014229001A1/en not_active Abandoned
- 2014-03-14 EP EP14764516.2A patent/EP2970142B1/en active Active
- 2014-03-14 WO PCT/US2014/028973 patent/WO2014144523A2/en active Application Filing
- 2014-03-14 CA CA2907221A patent/CA2907221A1/en not_active Abandoned
-
2017
- 2017-02-27 US US15/444,192 patent/US9871270B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120129240A1 (en) * | 2010-11-24 | 2012-05-24 | Haymore Barry L | Buffer compounds |
Also Published As
Publication number | Publication date |
---|---|
US20140287640A1 (en) | 2014-09-25 |
WO2014144523A2 (en) | 2014-09-18 |
EP2970142A2 (en) | 2016-01-20 |
CA2907221A1 (en) | 2014-09-18 |
US9871270B2 (en) | 2018-01-16 |
WO2014144523A3 (en) | 2014-12-24 |
EP2970142A4 (en) | 2017-03-01 |
US20170170518A1 (en) | 2017-06-15 |
AU2014229001A1 (en) | 2015-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2970142B1 (en) | Functionalized ionic liquids and their applications | |
Mayer-Gall et al. | Permanent flame retardant finishing of textiles by allyl-functionalized polyphosphazenes | |
Pethsangave et al. | Deep eutectic solvent functionalized graphene composite as an extremely high potency flame retardant | |
Fei et al. | Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems | |
CN104837850B (en) | The substituted silane of nitrile-and electrolyte composition and the electrochemical appliance comprising them | |
Nguyen et al. | Development of an environmentally friendly halogen‐free phosphorus–nitrogen bond flame retardant for cotton fabrics | |
Dagger et al. | Comparative performance evaluation of flame retardant additives for lithium ion batteries–I. Safety, chemical and electrochemical stabilities | |
EP2274291B1 (en) | Reactive ionic liquids | |
KR102185154B1 (en) | Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability | |
US20110039467A1 (en) | Ionic liquid flame retardants | |
CN103265577B (en) | Preparation method of novel flame retardant for cotton | |
Nguyen et al. | Synthesis and characterization of a novel phosphorus–nitrogen‐containing flame retardant and its application for textile | |
CN105348326A (en) | N-P flameresistant material and preparation method thereof and application in textiles | |
CN102924749B (en) | Ionic liquid-type phosphate fire retardant and preparation method thereof | |
CN102082296B (en) | Electrolyte of flame-retarded lithium ion battery | |
CN110483578A (en) | A kind of response type phosphor nitrogen combustion inhibitor and preparation method thereof | |
CN105801867B (en) | A kind of expansion type flame retardant and preparation method thereof based on biomass structure | |
CN105801624A (en) | Intumescent flame retardant containing phosphorus, nitrogen and sulfur and preparation method of intumescent flame retardant | |
CN103094615A (en) | Lithium ion battery and electrolyte solution thereof | |
Kim et al. | Durable flame‐retardant treatment of polyethylene terephthalate (PET) and PET/cotton blend using dichlorotribromophenyl phosphate as new flame retardant for polyester | |
CN111233934B (en) | Flame retardant, preparation method and application thereof | |
CA2771409C (en) | Ionic liquid flame retardants | |
Chang et al. | The comparison of phosphorus-nitrogen and sulfur-phosphorus-nitrogen on the anti-flammability and thermal degradation of cotton fabrics | |
Chang et al. | Antiflammable properties of capable phosphorus− nitrogen-containing triazine derivatives on cotton | |
CN103012848A (en) | Halogen-free intumescent flame retardant and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151015 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D06M 13/325 20060101ALI20161003BHEP Ipc: C07D 233/58 20060101AFI20161003BHEP Ipc: H01M 12/02 20060101ALI20161003BHEP Ipc: C07F 9/11 20060101ALI20161003BHEP Ipc: C07F 9/54 20060101ALI20161003BHEP Ipc: D06M 13/35 20060101ALI20161003BHEP Ipc: D06M 13/352 20060101ALI20161003BHEP Ipc: H01M 10/0525 20100101ALI20161003BHEP Ipc: H01M 10/0566 20100101ALI20161003BHEP Ipc: D06M 13/282 20060101ALI20161003BHEP Ipc: H01M 10/0567 20100101ALI20161003BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170131 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07F 9/11 20060101ALI20170125BHEP Ipc: H01M 12/02 20060101ALI20170125BHEP Ipc: C07D 233/58 20060101AFI20170125BHEP Ipc: D06M 13/282 20060101ALI20170125BHEP Ipc: H01M 10/0525 20100101ALI20170125BHEP Ipc: D06M 13/352 20060101ALI20170125BHEP Ipc: D06M 13/325 20060101ALI20170125BHEP Ipc: D06M 13/35 20060101ALI20170125BHEP Ipc: C07F 9/54 20060101ALI20170125BHEP Ipc: H01M 10/0567 20100101ALI20170125BHEP Ipc: H01M 10/0566 20100101ALI20170125BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170918 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014048679 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C07D0233610000 Ipc: C07D0233580000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D06M 13/282 20060101ALI20180704BHEP Ipc: C07D 233/61 20060101ALI20180704BHEP Ipc: H01M 10/0566 20100101ALI20180704BHEP Ipc: C07D 233/58 20060101AFI20180704BHEP Ipc: D06M 13/352 20060101ALI20180704BHEP Ipc: D06M 13/325 20060101ALI20180704BHEP Ipc: D06M 13/35 20060101ALI20180704BHEP Ipc: C07F 9/11 20060101ALI20180704BHEP Ipc: H01M 10/0567 20100101ALI20180704BHEP Ipc: H01M 12/02 20060101ALI20180704BHEP Ipc: C07F 9/54 20060101ALI20180704BHEP Ipc: H01M 10/0525 20100101ALI20180704BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180914 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014048679 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1145332 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190920 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1145332 Country of ref document: AT Kind code of ref document: T Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191021 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191019 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014048679 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200314 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240221 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240221 Year of fee payment: 11 |