EP2969431B1 - Clamping assembly for woodworking knife - Google Patents

Clamping assembly for woodworking knife Download PDF

Info

Publication number
EP2969431B1
EP2969431B1 EP14763484.4A EP14763484A EP2969431B1 EP 2969431 B1 EP2969431 B1 EP 2969431B1 EP 14763484 A EP14763484 A EP 14763484A EP 2969431 B1 EP2969431 B1 EP 2969431B1
Authority
EP
European Patent Office
Prior art keywords
clamping
clamping component
fulcrum
knife
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14763484.4A
Other languages
German (de)
French (fr)
Other versions
EP2969431A4 (en
EP2969431A1 (en
Inventor
Ian ZINNIGER
Mathieu J.A. Gouin
Daniel M. Lagrange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andritz Iggesund Tools AB
Original Assignee
Andritz Iggesund Tools AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/839,167 external-priority patent/US10245751B2/en
Application filed by Andritz Iggesund Tools AB filed Critical Andritz Iggesund Tools AB
Priority to SI201431042T priority Critical patent/SI2969431T1/en
Publication of EP2969431A1 publication Critical patent/EP2969431A1/en
Publication of EP2969431A4 publication Critical patent/EP2969431A4/en
Application granted granted Critical
Publication of EP2969431B1 publication Critical patent/EP2969431B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27LREMOVING BARK OR VESTIGES OF BRANCHES; SPLITTING WOOD; MANUFACTURE OF VENEER, WOODEN STICKS, WOOD SHAVINGS, WOOD FIBRES OR WOOD POWDER
    • B27L11/00Manufacture of wood shavings, chips, powder, or the like; Tools therefor
    • B27L11/005Tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27GACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
    • B27G13/00Cutter blocks; Other rotary cutting tools
    • B27G13/08Cutter blocks; Other rotary cutting tools in the shape of disc-like members; Wood-milling cutters
    • B27G13/10Securing the cutters, e.g. by clamping collars

Definitions

  • the present invention relates to a clamping assembly for clamping one or more knife elements, according to the preamble of claim 1.
  • a clamping assembly is known from the document WO2009054768A1 .
  • woodworking machines are in use in the forest industry. Some are designed to convert solid wood into a plurality of wood chips for the production of chemical or mechanical pulp. Others are directed to the transformation of wood into chips, veneer, and/or shavings for the production of waferboard, oriented strand board, plywood, lumber, or other such wood products.
  • Knikworking knives can be mounted in various arrangements within the machine to act as required upon the wood being processed. Typically, this involves the mounting of one or more knives on a body of conical, cylindrical, or disc form that is rotated under mechanical or electrical power to cause the knives to act upon the wood in an appropriate fashion. These machines further comprise the means necessary to orient and manipulate the wood against the action of the rotating knives.
  • the knives may be maintained in a stationary body while the wood is rotated or otherwise maneuvered against the knives so as to achieve the desired cutting action. What is common with the different arrangements is that the knives are secured to some form of foundation body, or base member, which may be either rotating or stationary, and the knives are brought into relative contact with the wood according to the orientation required to achieve the desired end result.
  • the action of the knives against the wood subjects the knives to considerable cutting forces.
  • the machines must therefore be designed so as to secure the woodworking knives to the base member in a manner to withstand these cutting loads. Since the repeated action of the knives against the wood also results in wear, the machines must also be designed so as to allow for the periodic replacement of the knives. Further, since wood can contain foreign material, such as rock or steel which can be present within the wood itself or embedded or frozen to its exterior, the machine must also be designed so as to allow repairs to be effected in the event of damage to the knives, or other associated machine components.
  • This knife clamping apparatus serves as an intermediate device for securing the knives within the machine. It is generally sized and shaped so as to secure the knives against the cutting forces, allow for their efficient replacement as required, and is typically constructed so as to be mounted to the base member in a fashion that allows for its replacement in the event of damage.
  • the clamping assembly must be constructed so that the knives can be retained in their position under the action of the cutting forces. Such cutting forces are typically high in magnitude, extremely episodic, and are usually varied in direction.
  • the clamping assembly must resist deformation, avoid fatigue, and resist breakage when subjected to the stresses associated with these loads.
  • the knife clamping assembly must be constructed so as to be of sufficient rigidity so as to minimize deflections such that the knives are not excessively displaced from their proper position within the machine during operation. This latter requirement is important in most woodworking applications where the knife edge must have an accurate location with respect to the wood being processed or other machine components.
  • the clamping assembly must also be designed so as to allow for the rapid, reliable, and accurate replacement of the knives. Specifically, the apparatus must allow for the knives to be easily removed, the clamping assembly cleaned of any wood debris (flakes, chips, sap, etc.), and replacement knives installed in a repeatable and precise fashion. To achieve this end, the individual components that comprise the clamping assembly should be of a design that permits for a high degree of precision in manufacturing.
  • the design of the clamping assembly must also be such that it is tolerant of the variations that occur under such conditions. This can involve cumbersome working situations where workers need to reach around components of the machine to effectuate a knife change, or limitations in time available between production periods to attend to all aspects of the work in a detailed and thorough fashion.
  • the knife assembly must furthermore exhibit a high degree of fault tolerance so as minor amounts of damage cannot jeopardize the function of the clamping assembly. Such minor damage can easily go unnoticed in a production environment.
  • the knife clamping assembly must furthermore be of a structure that is compatible with the base member.
  • Such bodies with their varied forms, impose various geometrical and functional constraints. Foremost it must be sized and shaped to provide for reliable and stable mounting within the base member. Additionally, it must be affixed in a manner that permits for the replacement of components in the event of damage.
  • knife clamping assemblies used in woodworking machines have been relatively simple devices occupying significant space on the base members in which they mount.
  • the knives used in these assemblies were commonly large planar elements of simple form that were shaped to allow for the repeated sharpening of the cutting edge.
  • These knives which due to their size were typically capable of sustaining a significant portion of the cutting loads, were generally secured in the clamping assembly in a 'sandwich' style arrangement using an actuator of some form. The actuator would cause the clamping components of the assembly to be drawn together or otherwise displaced so as to secure the knives therebetween.
  • Typical with such 'sandwich' style clamping assemblies is that the line of action of the force developed by the actuator intersects with the knife element, often towards its middle section. This often necessitates that the knife be formed to allow for the actuator, commonly a threaded fastener, to pass there through.
  • the advantage of such an arrangement is that the majority, or in many cases all of the clamping force generated by the actuator serves to secure the knife between the clamping components.
  • the clamping assemblies are typically bulky devices consuming significant space on the base member.
  • Blades of the reversible type also pose additional constraints on the clamping assembly in that the clamping components cannot contact the knife in areas adjacent the unexposed cutting edge(s) since these edges can often be damaged from prior use. Already limited due to their smaller size, this further diminishes the support and contact areas that can be employed to maintain the knives in a stable position during operation. Securing such compact knife elements requires that the knives be rigidly clamped with proportionally higher clamping forces than traditional assemblies using larger, regrindable, knife elements.
  • the most common means to secure knives of a size or a shape that cannot be fastened in a 'sandwich' style configuration is to employ a clamping assembly that functions according to the principle of a third order lever.
  • the force developed by the actuator is applied to a clamping component which pivots about a fulcrum formed in the assembly.
  • the line of action of the force developed by the actuator is positioned between the fulcrum and the knife.
  • the clamping pressure achieved on the knife is a function of the distances between the fulcrum position, actuator location, and knife contact point according to the principles of a third order lever.
  • Clamping assemblies that function according to this principle have many advantages. Foremost such an arrangement permits for the line of action of the force generated by the actuator to lie adjacent the knife such that the knife need not be formed to allow the actuator to pass through the knife body itself. This is typically a requirement for securing compact knives, either of disposable, reversible, or regrindable type where the form and size of the knife precludes other clamping means. When properly sized and constructed, clamping assemblies based on this principle can also generate high clamping forces for securing the knives under the action of the cutting forces.
  • the clamping assembly can typically be sized and shaped to provide for adequate rigidity and sufficient space to accommodate actuators that can develop satisfactory clamping forces so as to be able to secure the knives during operation.
  • simple and reliable third order clamping assemblies can be constructed using only two clamping components and a simple mechanical actuator for securing the knife therebetween.
  • the actuator to act upon the clamping component positioned towards the outer periphery of the base member.
  • This 'outer' clamping component is generally more accessible and can be more readily opened and closed by workers to effectuate the replacement of the knives.
  • the remainder of the assembly is affixed to the base member, usually in some form of cavity or 'pocket' sized and shaped for this purpose.
  • the actuator draws the outer clamping component against the knife to secure it within the clamping assembly, which remains stationary with respect to the base member.
  • this outer clamping component often coincides with the topside of the assembly, this arrangement is commonly referred to as 'topside' clamping.
  • the actuator is typically in the form of a threaded fastener such as a screw, a bolt, or a stud and nut combination.
  • Mechanical fasteners of such type are simple, inexpensive, reliable, and can provide significant clamping force in a compact form. In order that the driving features of the fastener be readily accessible, it is most common that these be located on the same face or side of the base member as the outer clamping component. This avoids the need for workers to move to other areas in the machine to access the fasteners when changing knives.
  • third order knife assemblies utilizing a topside clamping configuration and mechanical fasteners are in widespread use in the type of woodworking machines herein described. They are cost effective, versatile, and have proven reliable in service.
  • the clamping pressure achieved on the knife is a function of the force developed by the actuator and the distances between the fulcrum position, actuator location, and contact point between the outer clamping component and the knife.
  • the clamping pressure developed on the knife is directly proportional to the clamping force developed by the actuator. Should the force developed by the actuator be half of that intended by the designer, the clamping pressure developed on the knife shall similarly be at half the desired value.
  • the requirement for compactness and high knife clamping pressures conspire to limit the strength that can be obtained with a third order assembly.
  • the fastener must be of sufficient size to provide the necessary force for securing the knife under the action of the cutting forces, it cannot be of a size or a form that would consume excessive amounts of space within the assembly. This could result in clamping components that are inadequately sized and shaped for acceptable strength to be achieved. While an oversized fastener may ensure that an adequate preload force is developed under all circumstances, it can result in unacceptable stresses within the individual components that comprise the clamping assembly.
  • topside clamped third order clamping assemblies exist. Such designs are often directed at eliminating the aforementioned dependence on adequate preload being developed by the actuator, or to circumvent space limitations on the base member such that high strength arrangements can be achieved.
  • assemblies that have the inner clamping component as the member being actuated.
  • the assembly is affixed and held stationary within a cavity or pocket formed for this purpose on the 'underside' of the base member.
  • the actuator draws the inner clamping component against the knife to secure it in place within the clamping assembly.
  • underside clamping assemblies also frequently work according to the principles of a third order lever.
  • underside clamping arrangements can often make a more effective use of space within the machine.
  • the clamping assemblies can often be made comparatively larger than their topside mounted counterparts while still maintaining good integration with the base member. This permits for stronger and more rigid components to be constructed, and in the case of third order assemblies, a more favourable configuration for the development of high clamping pressures. Since the cutting forces for most of the woodworking machines herein described are generally directed against the knife from the underside, such underside arrangements are also favourable for reasons of strength and stiffness.
  • 'pivot' clamping arrangements that function according to the principles of a first order lever have materialized.
  • the force developed by the actuator is applied to a clamping component which pivots about a fulcrum formed in the assembly.
  • the line of action of the force developed by the actuator is located askew of both the fulcrum and the knife thereby allowing knives of a compact nature to be secured.
  • the fulcrum's location is between the actuator and the contact point on the knife.
  • pivot clamping arrangements allow for favourable first order configurations to be achieved such that a high percentage of the actuator's force can be applied to the knife.
  • the actuator typically a threaded fastener
  • This further allows the individual clamping components that comprise the assembly to be made rigid yielding an assembly of high overall stiffness. Since the line of action of the force developed by the actuator is also askew of the knife, such arrangements are generally well suited for securing knives of a compact nature.
  • An example of such a first order pivot clamping assembly can be found in U.S. Pat. No. 5,996,655 to CAE Machinery Ltd.
  • Pivot style arrangements and underside clamping configurations are also generally of a form that preclude their use in many types of woodworking machines. Generally as a result of their size and shape, they do not integrate well with all forms of base members and cannot be easily retrofitted to existing machines. This precludes their use in many applications for which their advantages would in general be beneficial.
  • Standardized knife clamping assembly designs are advantageous for the producer and consumer alike.
  • the producer benefits from greater economies of scale that allow for production efficiencies.
  • the consumer benefits from reduced component costs and fewer knife assembly components being required in inventory to support more than one type of woodworking machine in the production facility.
  • the above is accomplished by utilizing a novel seating arrangement for at least one of the clamping components whereby the position and orientation of the contact surfaces are distributed over three discrete positions such that increased mechanical advantage results.
  • the preferred form of the clamping assembly is further configured to take advantage of frictional forces to improve the ability of the clamping assembly to withstand loads that arise during use.
  • knife clamping assemblies can be constructed that are favourably sized and shaped such that they can be applied to many different types of woodworking machines. This permits a standardized clamping assembly to be used in many applications while providing for a compact design with high reliability.
  • the preferred form of the invention also provides for a clamping assembly that is easy to use, allowing for the fast and efficient rotation or replacement of knives having worn or damaged edges while permitting the clamping components to be of rigid construction and of simple shape such that they are cost effective to produce.
  • the object of the present invention is to provide a further improved clamping assembly, which in addition to the advantages according to the clamping assemblies as disclosed in CA 2491977 , also is more compact in relation to those clamping assemblies. At least this object is achieved by a clamping assembly according to claim 1.
  • this object is achieved by forming the clamping assembly such that the first clamping component has a larger length in cross section than the second clamping component, such that when positioning the first clamping component abutting against the second clamping component such that the clamping axes of the first and second clamping components are aligned and the bearing surface and the contact surface abut, the fulcrum of the first clamping component is located a distance outside of the second clamping component.
  • the fulcrum of the first clamping component may engage a complementary surface formed in a pocket within a rotatable base member of the woodworking machine.
  • FIG. 1 shows a typical prior art knife clamping assembly constructed according to the principles of a third order lever.
  • an actuator in the form of a screw 10
  • a clamping component 12 which pivots about a fulcrum 14 formed in the assembly.
  • the line of action of the force developed by the screw 10, shown as Fb, is positioned between the fulcrum 14 and the location where the clamping component 12 abuts a knife element 16.
  • the fulcrum 14 is formed of two opposing inclined surfaces that allow the actuated clamping component 12 to be engaged, or interlocked, with the member which it abuts.
  • the two opposing inclined surfaces allow the clamping component 12 to pivot under the action of the force developed by the screw 10 but restrict its movement in a direction parallel to and perpendicular to the line of action of the force developed by the screw 10.
  • clamping component 12 cannot slide in a direction that is orthogonal to the line of action of the screw 10.
  • the force applied to the knife element 16 under the action of the force developed by the screw 10 is a function of the distance between the fulcrum position, screw location, and contact point with the knife element 16. Most specifically, this force is a function of the distance between the line of action of the screw 10 and the fulcrum 14 and the distance between the line of action of the screw 10 and the location where clamping component 12 abuts knife element 16. In Figure 1 , these distances are illustrated as 'D' and 'd' respectively.
  • point V reveals that only the forces developed by the screw 10 and the reaction force developed at the knife element 16, shown as Fk, can act to pivot clamping component 12 about this point. Reaction forces R2 and R3 cannot act to rotate clamping component 12 about this position since their lines of action pass through this location. Accordingly, point V represents the position about which the distance D should be measured to determine the fraction of the force developed by the screw 10 that must be resisted by the knife element 16. This point can therefore be conveniently considered as a 'virtual fulcrum' since it is about this point which the laws of a third order lever apply.
  • FIG. 2 a first embodiment of the prior art application CA 2491977 is shown.
  • a base member 100 forming a rotatable foundation body of a woodworking machine of cylindrical form is shown.
  • base member 100 For ease of reference only a part of base member 100 is illustrated.
  • a clamping assembly according to CA 2491977 as well as according to the present invention may be applied to many different types of woodworking machines with foundation bodies of conical, cylindrical, or disc form and showing base member 100 as a cylindrical segment is by way of example only.
  • base members as described herein may also be stationary as it will be understood that the current invention comprehends stationary base members where the wood is maneuvered in an appropriate fashion to achieve the desired end result.
  • the clamping assembly 104 includes a rear clamping component 106 and a front clamping component 108.
  • the terms rear and front are used to describe their position relative to the direction of movement of the base member 100 with respect to the wood being processed (not shown).
  • Front clamping component 108 is positioned towards the direction of movement of clamping assembly 104 whereas rear clamping component 106 is positioned away from the direction of movement.
  • front and rear are to be read interchangeably with the terms inner and outer since the front clamping component is positioned towards the inside of base member 100 which comprises the rotating cylindrical body.
  • pocket 102 Within pocket 102 is affixed inner clamping component 108 using means (not shown) that result in it being rigidly connected to base member 100.
  • Forming part of pocket 102 is a bottom support face 103 and a rear support face 105 for abutting the corresponding contact surfaces on inner clamping component 108.
  • Located between support faces 103 and 105 is a radiused corner 107 present for stress reduction reasons.
  • a chamfer 109 is provided on inner clamping component 108 between the two orthogonal surfaces abutting base member 100.
  • Clamping assembly 104 further includes an actuator for actuating outer clamping component 106.
  • the actuator is a threaded fastener in the form of a screw 110 with a head 118, which most preferably is located within a recess 122 formed in the outer surface 120 of outer clamping component 106.
  • the screw 110 passes through openings 112 and 114 in outer clamping component 106 and inner clamping component 108 respectively and is threaded into threads 116 formed in base member 100. While a threaded screw 110 is shown as the actuator, it will be understood that this embodiment as well as the present invention comprehends other clamping means, such as hydraulic mechanisms, electro mechanical actuators and the like.
  • a compact knife element 124 Secured within the clamping assembly 104 is a compact knife element 124 which is illustrated as a 'reversible' (or indexable) type having two opposed cutting edges.
  • the knife element 124 is shown clamped between the outer clamping component 106 and the inner clamping component 108 generally at one end.
  • a fulcrum 126 is located at the other end of the clamping assembly 104 .
  • the fulcrum 126 forms a point about which outer clamping component 106 can pivot which along with the knife abutting portion 125, form discrete positions for supporting outer clamping component 106 under the action of the screw 110.
  • the screw 110 is positioned between the fulcrum 126 and knife element 124.
  • bearing surface 130 comprises a third discrete position about which contact with adjoining members occurs. It will be noted that these contact points are positioned at separate spaced apart locations on outer clamping component 106 with each having specific functions as will be explained in greater detail below.
  • outer clamping component 106 is, at either end, free to slide relative to inner clamping component 108 when a clamping force is applied along clamping axis 128. This natural tendency to slide is resisted by the presence of the bearing surface 130 abutting opposing contact surface 132 on inner clamping component 108. Because of the presence of bearing surface 130 and the opposing contact surface 132 on inner clamping component 108, instead of sliding, a further reaction force arises, which is shown as R3.
  • fulcrum 126 is not formed to engage or interlock the inner clamping component 108. While shaped to allow outer clamping component 106 to pivot, the substantially planar surface comprising the fulcrum 126 is not formed to positively resist forces acting along its face. Due to the shape and orientation of fulcrum 126 relative to the clamping axis 128, fulcrum 126 cannot balance the reaction forces that develop against outer clamping component 106. Most specifically, the component of the clamping force Fb and reaction force Fk directed along the surface of fulcrum 126 must be resisted elsewhere if a state of equilibrium is to be achieved.
  • fulcrum 126 can be considered as 'unbalanced' since it lacks the ability to counteract the reaction forces that develop on outer clamping component 106 under the action of the screw 10, or equally, under an externally applied force directed against the knife element 10 that acts in this direction.
  • inner clamping component 108 and knife element 124 show that these elements also lack the ability for the knife abutting end of outer clamping component 106 to counteract forces directed along fulcrum 126. Accordingly, the component of the clamping force along this face, or any external loads that are applied to the knife element 124 that act in this direction, must be resisted elsewhere in the assembly.
  • this is accomplished by utilizing a separate bearing surface suitably sized, shaped, oriented, and positioned to resist loads that cannot be borne elsewhere.
  • this bearing surface is strategically positioned to increase the mechanical advantage achieved with the clamping assembly.
  • point V represents the location where the only forces that can act to pivot outer clamping component 106 about this point are the clamping force Fb and reaction force Fk developed at the knife abutting portion 125 contacting knife element 124. Reaction forces R2 and R3 cannot act to rotate outer clamping component 106 about this position since their lines of action pass through this location.
  • a static force analysis conducted about this point reveals that the fraction of the clamping force applied against knife element 124 by the outer clamping component 106 is dictated by the distances D and d in accordance with the principles of a third order lever.
  • Location V can therefore be considered as a 'virtual fulcrum' about which outer clamping component 106 does not physically rotate, but about which the fraction of the clamping force applied to knife element 124 can be determined in accordance with the laws of a third order lever.
  • the clamping assembly can be analogized as being a modified third order lever arrangement.
  • the current preferred clamping assembly utilizes a fulcrum 126 that is purposely formed such that the reaction force R2 developed at the fulcrum 126 does not cause the outer clamping component 106 to achieve a state of equilibrium. While the outer clamping component 106 pivots about the fulcrum 126 in an analogous fashion to the prior art device shown in Figure 1 , an additional reaction force is required for the forces to be balanced.
  • this is achieved in part by positioning the bearing surface 130 away from the fulcrum 126 in a direction parallel to clamping axis 128 on the knife abutting portion side of the fulcrum 126.
  • a dividing plane which, (1) is perpendicular to the clamping axis 128, and (2) passes through the fulcrum 126, the plane has two sides, with the knife abutting portion 125 being on one side of the plane (i.e. on the knife abutting portion side of the plane).
  • the bearing surface 130 is positioned away from the fulcrum 126 on the same side of the plane as the knife abutting portion 125.
  • the surface 130 is positioned in the direction of outer surface 120 of outer clamping component 106. This is towards the 'outside' periphery of the clamping assembly 104, as shown in Figure 2 .
  • the clamping force Fk developed by the outer clamping component 106 abutting against knife element 124 will increase as distance D is made larger.
  • the virtual fulcrum V is positioned at a distance D that is greater than is achieved when the fulcrum is formed and oriented such that the reaction forces are balanced at the physical fulcrum itself. Accordingly, increased mechanical advantage results that is above and beyond that which is attainable with traditional third order configurations such as with the prior art device shown in Figure 1 .
  • FIG 3 a variation on the first embodiment of the clamping assembly according to CA 2491977 is shown.
  • the elements and structure are analogous to those shown in Figure 2 , except that the angle ⁇ formed between the clamping axis 128 and the substantially planar surface forming fulcrum 126 is 40 degrees rather than 30 degrees. Since the operation and workings of this embodiment is otherwise generally the same as that of Figure 2 , it will not be described in any more detail herein.
  • the angle ⁇ formed between clamping axis 128 and the substantially planar surface comprising fulcrum 126 develops mechanical advantage.
  • the fulcrum 126 By forming the fulcrum 126 as a substantially planar surface oriented at an angle with respect to clamping axis 128, the line of action of the reaction force R2 can be directed away from clamping axis 128.
  • the virtual fulcrum V will be located farther askew of clamping axis 128 as angle ⁇ is increased. If angle ⁇ is too small, too little mechanical advantage will be achieved to make it worthwhile. It is therefore preferred to make the angle ⁇ at least twenty degrees, with even more advantage being achieved with an angle of thirty degrees or more.
  • this embodiment as well as the present invention is not limited to any specific minimum angle, although angles below twenty degrees are less preferred and angles below 10 degrees are much less preferred.
  • FIG. 4 a further embodiment of a clamping assembly according to CA 2491977 is shown.
  • a base member 200 also illustrated as a portion of a rotatable cylindrical body including a pocket 202 in which a clamping assembly 204 is located.
  • Clamping assembly 204 includes an outer clamping component 206 and an inner clamping component 208, which as with the previous embodiments, is indicative of the position of the components relative to the axis of rotation of base member 200.
  • outer clamping component 206 is located towards the periphery of the pocket away from the point about which base member 200 rotates coinciding with the 'top' of knife clamping assembly 204.
  • inner clamping component 208 is seated against a bottom support face 203 and a back support face 205.
  • a screw 209 is provided for rigidly affixing inner clamping component 208 into the pocket 202 of base member 200.
  • Clamping assembly 204 further includes a means for actuating outer clamping component 206, which like in the previous embodiments, is in the form of a screw 210.
  • the screw 210 passes through openings 212 and 214 in outer clamping component 206 and inner clamping component 208 respectively and is threaded into threads 216 formed in base member 200.
  • a head 218 comprising the driving features of the screw 210 is placed within a recess 222 formed in the outer surface 220 of the outer clamping component 206. Locating the head 218 within the recess 222 such that it does not protrude beyond the periphery of outer surface 220 is preferred since it can be free of any potential contact with the wood being processed or other machine elements during operation.
  • Knife element 224 Secured within clamping assembly 204 is a knife element 224 in the form of a compact cutting blade of a reversible, double edged design. Knife element 224 is shown clamped between the outer clamping component 206 and the inner clamping component 208 generally at one end. While a cutting blade of compact form is illustrated, the current prior art clamping assembly as well as the present invention comprehends knife elements of other forms and sizes where the knife element is held clamped by the actuated clamping component at a location that is askew of the clamping axis.
  • a fulcrum 226 is located about which outer clamping component 204 pivots under the action of the screw 210.
  • the screw 210 is positioned between the fulcrum 226 and the knife element 224.
  • outer clamping component 206 Also present on outer clamping component 206 is a bearing surface 230 on the outer clamping component 206 for abutting an opposing contact surface 232.
  • the opposing contact surface 232 is not located on the inner clamping component 208, but instead is located on one of the rear faces of pocket 202 formed in base member 200.
  • the opposing contact surface 232 is formed on base member 200, it will be understood that the current embodiment comprehends contact surface 232 being formed on other components located intermediate base member 200 and outer clamping component 206 in which bearing surface 230 may abut.
  • the head 218 By rotating the screw 210, the head 218 can be brought to bear against, or displaced away from, outer clamping component 206 such that a clamping force is developed or diminished depending on whether the screw is being tightened or loosened.
  • this force is illustrated as Fb and is shown to act along a clamping axis 228 that is coincident with the axis of the screw 210.
  • outer clamping component 206 can be moved between an open position and a closed position for the installation or replacement of knife element 224 as required. While a threaded fastener in the form of a screw is shown, it will be understood that the clamping assembly according to CA 2491977 as well as the present invention comprehends other clamping means, such as hydraulic or pneumatic mechanisms and the like, that apply an appropriate clamping force along the clamping axis by engaging the actuated clamping component.
  • a clamping force Fb to outer clamping component 206 is resisted at both ends by a reaction force developed against the knife element 224 shown as Fk and a reaction force developed against the fulcrum 226, shown as R2.
  • Fk reaction force developed against the knife element 224
  • R2 reaction force developed against the fulcrum 226, shown as R2.
  • these forces are shown acting normal to the features that comprise the contact surfaces and passing through their approximate centers of pressure. Due to the geometry, if there were no bearing surface 230 abutting opposing contact surface 232, the force of the screw 210 would cause the outer clamping component 206 to move rearward, specifically deeper into the pocket 202.
  • the projections of the lines of force R2 and R3 intersect at a point 'V', which is again described as a virtual fulcrum.
  • the virtual fulcrum V is located outside of the clamping components, at a distance 'D' from clamping axis 228.
  • the distance between the reaction force Fk developed at the knife element 224 and the clamping axis 228 is again shown as 'd'.
  • the bearing surface 230 is positioned on base member 200 at a location and orientation that result in a very favourable position for the virtual fulcrum V. Most specifically, the position of the virtual fulcrum V is located farther askew of the clamping axis than in the previous embodiments. This provides for increased mechanical advantage so as under the action of a given clamping force Fb, a greater reaction force Fk is developed against knife element 224 such that greater external cutting forces can be borne by knife element 224 during operation.
  • the bearing surface and the fulcrum are formed as substantially planar surfaces positioned at two separate spaced apart locations.
  • the fulcrum is inclined with respect to the clamping axis and is positioned as far askew of the clamping axis as is practicable.
  • the bearing surface is oriented such that it does not bear any portion of the clamping force. It is positioned as distant of the fulcrum as possible in a direction opposite, specifically in a direction parallel to the clamping axis and to the same side as the knife abutting portion 125.
  • the bearing surface is further orientated such that a line normal to the bearing surface intersects a line normal to the fulcrum at a location farther askew the clamping axis than the fulcrum. It will be understood that the direction of the lines normal to the surfaces are to be taken as outward opposite to the direction in which reaction forces through these surfaces can act.
  • the inclination of the fulcrum should be maximized and the angle formed between the substantially planar surfaces comprising the fulcrum and bearing surface should be minimized.
  • this latter angle is 70 degrees and 60 degrees respectively.
  • the angle formed between the substantially planar surfaces comprising the fulcrum and bearing surface has been further reduced by inclining the bearing surface with respect to the clamping axis.
  • the angle achieved is approximately 35 degrees.
  • the location of the virtual fulcrums V for each of the embodiments is shown in each of the figures. As previously explained, these locations correspond to those that occur in the absence of friction. As is evident in the drawings, the locations of the virtual fulcrums lie outside of the knife assembly entirely and are farther askew of the knife element than is the position where the actuated clamping component pivots in the assembly.
  • An additional and important advantage of a clamping assembly according to CA 2491977 as well as the present invention is that utilizing three discrete contact positions as herein described makes for a favourable use of friction. Specifically, friction at the bearing surface and fulcrum with the corresponding surfaces with which they abut increases the overall load bearing capabilities of the assembly. This advantage is not present with knife assemblies that function according to the principles of a third order lever where the actuated clamping component pivots about a traditional balanced fulcrum formed in the assembly.
  • a further benefit of the invention can be achieved by positioning the bearing surface on the actuated clamping component such that the reaction force R3 is at a location 'forward' of the fulcrum, specifically at a point that is less askew of the knife abutting portion 125 than the location about which the actuated clamping component pivots.
  • this location should be as close to the knife abutting portion 125 as possible and as distant from the pivot location as is achievable.
  • the embodiments of Figure 2 and Figure 3 illustrate such a configuration where the bearing surface has been located askew of the clamping axis in a direction towards the knife abutting portion 125.
  • the advantage in this specific arrangement is that it results in a construction that provides for higher stiffness and strength of the clamping assembly.
  • the combination of three discrete contact positions according to these embodiments as well as the present invention with the further idea of positioning the bearing surface forward of the unbalanced fulcrum results in an arrangement where the actuated clamping component can be 'interlocked' with the remainder of the assembly.
  • This interlocking configuration results in a rigid connection between the actuated clamping component and the remainder of the clamping assembly. Under the action of the cutting loads, the displacements of the actuated clamping component are thereby minimized such that the overall stiffness of the knife clamping assembly is increased.
  • the overall stiffness of the assembly can be made high.
  • the rigidity of the actuator typically lower than the individual clamping components, is less important in the overall stiffness characteristics of the assembly. This ensures that the knife element is not excessively displaced from its intended location within the machine when subjected to external loads.
  • the outer (or 'top') member of the clamping assembly can be the member actuated, it is possible to achieve a high ease of use all while achieving adequate mechanical strength and reliability. Further, the increased mechanical advantage afforded by the concept allows for the size or the quantity of actuators to be minimized.
  • the present concept allows for favourable shapes to be achieved for the knife clamping assembly such that a single standardized design can be utilized in many types of woodworking machines. Further, these embodiments as well as the present invention affords versatility in that a common compact design can be integrated with foundation bodies of various forms such that the knife assembly can be retrofitted to many existing or new devices.
  • the first clamping component has a larger length in cross section than the second clamping component such that when positioning the first clamping component against the second clamping component such the the clamping axes of the first and second clamping components are aligned and the bearing surface and the contact surface abut, the fulcrum of the first clamping component is located a distance outside of the second clamping component.
  • the second clamping component has a cross sectional length, as measured in parallel to the largest cross sectional length of the first clamping component, which preferably is maximum 80%, more preferred maximum 70% and most preferred maximum 65% of the largest cross sectional length of the first clamping component.
  • a base member 300 (corresponding to the base member previously described) is provided.
  • the base member 300 may be a rotating disk or drum in a wood chipper or woodworking machine, or may be a separate mounting body that is separately secured to the disk or drum of the wood working machine by bolts (not shown) as would be understood by those skilled in the art.
  • Base member 300 has two pockets or recesses 301, 302 formed therein for respectively receiving or engaging the components of a clamping assembly 304.
  • the clamping assembly 304 includes a rear or outer, first clamping component 306 and a front or inner, second clamping component 308.
  • the inner clamping component 308 is connected to the base member 300 in any convenient manner, such as for example by bolts which are not seen in this sectional view.
  • the pocket 302 includes a bottom support surface 303, a rear support surface 305 with a radiused corner 307.
  • the inner clamp 308 has a peripheral surface in cross section including surface portions 303' and 305' which are complementary to and engage surfaces 303 and 305 when the inner clamp is seated in pocket 302.
  • the pocket 302 is formed such that outer clamping component 306 is free of any contact with any of the surfaces of pocket 302.
  • the recess or pocket 301 is formed such that its rear surface 301' is free of any contact with the back surface 306' of clamping component 306 to form a gap therebetween.
  • Clamping assembly 304 further includes an actuator, threaded fastener or screw 310 having a head 318 for actuating the clamping component 306.
  • the screw head 318 is preferably located in a recess 322 formed in the outer surface 320 of the outer clamping component 306.
  • the shank of the screw passes through openings 312 and 314 in the outer clamping component 306 and inner clamping component 308, respectively, and is threaded into a thread bore 316 formed in base member 300.
  • other clamping means than screws may be used.
  • a knife 324 is illustrated as clamped between the outer clamping component 306 and the inner component 308 at one end of the assembly 304.
  • the outer clamping component includes a surface portion defining a fulcrum 326.
  • the fulcrum engages a complementary surface 326' formed in pocket 301. This allows the clamping component 308 to be formed with a smaller width, i.e. cross sectional length, than in the prior embodiments.
  • the fulcrum surface 326 forms a point about which the outer clamping component 306 can pivot.
  • the fulcrum surface 326, along with the knife abutting portion 325 on the other end of clamping component 306 form discrete positions for supporting the outer clamp component under the action of screw 310, which is positioned between the fulcrum 326 and knife 324.
  • the outer clamping component 306 includes a bearing surface 330 and the inner clamping component 308 includes an opposing complementary contact surface 332 which abuts bearing surface 330 when the assembly is actuated upon tightening of screw 310.
  • this assembly also provides three contact points for the outer clamp component at spaced apart locations on the same side of the clamping component.
  • this embodiment of the invention operates in the same way as the previously described devices.
  • a clamping force is developed along a line of action parallel to or aligned with the axis of the screw. That clamping force is resisted at both ends of clamping component 306 by a reaction force Fk (See Figure 2 ) against the knife element and a reaction force R2 ( Figure 2 ) at the fulcrum 326.
  • Fk See Figure 2
  • R2 Figure 2
  • the surfaces 303 and 305 of pocket 302 form an acute angle to each other and the corresponding surfaces of the clamping component are similarly angled to each.
  • the surface 303 extends transversely and at an angle to the clamping force axis.
  • the surface 305 (and the corresponding surface 305' of component 308) is parallel to that axis.
  • the engagement of surface 305 and the adjacent surface of component 308 serves to properly seat component 308 relative to clamping component 306 and also serves to resist rotation of clamping component 308 in response to clamping force and external loads placed on the knives 324 during wood cutting or chipping.
  • a main advantage with a clamping assembly according to the invention is that it can be made more compact in relation to prior art clamping assemblies. This has to effect that the pocket in the base member for accommodating the clamping assembly can be made smaller, which in its turn yields the base member an increased strength and/or allows to arrange a larger number of knives on a given base member. A larger number of knives allows to run the woodworking machine at a higher speed with increased production rate as a consequence. Also, a more compact clamping assembly will reduce the material content in each clamping assembly, which in its turn will reduce the operating cost since clamping assemblies of this kind are wearing parts, which have to be replaced regularly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Cutting Devices (AREA)

Description

  • This application claims priority from the continuation-in-part application US 2013/0214076, filed on March 15, 2013 , in which is disclosed novel embodiments according to Figs. 5-7, which are made the subject matter of the invention in this application.
  • Field of the Invention
  • The present invention relates to a clamping assembly for clamping one or more knife elements, according to the preamble of claim 1. Such a clamping assembly is known from the document WO2009054768A1 .
  • Background of the invention
  • Many forms of woodworking machines are in use in the forest industry. Some are designed to convert solid wood into a plurality of wood chips for the production of chemical or mechanical pulp. Others are directed to the transformation of wood into chips, veneer, and/or shavings for the production of waferboard, oriented strand board, plywood, lumber, or other such wood products.
  • Common to such machines is the presence of woodworking knives. The knives can be mounted in various arrangements within the machine to act as required upon the wood being processed. Typically, this involves the mounting of one or more knives on a body of conical, cylindrical, or disc form that is rotated under mechanical or electrical power to cause the knives to act upon the wood in an appropriate fashion. These machines further comprise the means necessary to orient and manipulate the wood against the action of the rotating knives.
  • With some machines, more than one rotating body may be required to transform the wood in the manner desired. Additionally, with some machine designs, the knives may be maintained in a stationary body while the wood is rotated or otherwise maneuvered against the knives so as to achieve the desired cutting action. What is common with the different arrangements is that the knives are secured to some form of foundation body, or base member, which may be either rotating or stationary, and the knives are brought into relative contact with the wood according to the orientation required to achieve the desired end result.
  • Common to the aforementioned is that the action of the knives against the wood subjects the knives to considerable cutting forces. The machines must therefore be designed so as to secure the woodworking knives to the base member in a manner to withstand these cutting loads. Since the repeated action of the knives against the wood also results in wear, the machines must also be designed so as to allow for the periodic replacement of the knives. Further, since wood can contain foreign material, such as rock or steel which can be present within the wood itself or embedded or frozen to its exterior, the machine must also be designed so as to allow repairs to be effected in the event of damage to the knives, or other associated machine components.
  • The most typical means utilized to accomplish the above is to mount the knives in a knife clamping apparatus affixed to the base member. This knife clamping apparatus, often referred to as a knife clamping 'assembly', serves as an intermediate device for securing the knives within the machine. It is generally sized and shaped so as to secure the knives against the cutting forces, allow for their efficient replacement as required, and is typically constructed so as to be mounted to the base member in a fashion that allows for its replacement in the event of damage.
  • The demands on the clamping assembly are not trivial. Foremost, the clamping assembly must be constructed so that the knives can be retained in their position under the action of the cutting forces. Such cutting forces are typically high in magnitude, extremely episodic, and are usually varied in direction. The clamping assembly must resist deformation, avoid fatigue, and resist breakage when subjected to the stresses associated with these loads. Additionally, the knife clamping assembly must be constructed so as to be of sufficient rigidity so as to minimize deflections such that the knives are not excessively displaced from their proper position within the machine during operation. This latter requirement is important in most woodworking applications where the knife edge must have an accurate location with respect to the wood being processed or other machine components.
  • The clamping assembly must also be designed so as to allow for the rapid, reliable, and accurate replacement of the knives. Specifically, the apparatus must allow for the knives to be easily removed, the clamping assembly cleaned of any wood debris (flakes, chips, sap, etc.), and replacement knives installed in a repeatable and precise fashion. To achieve this end, the individual components that comprise the clamping assembly should be of a design that permits for a high degree of precision in manufacturing.
  • Reliability is also of prime importance. In particular, the means employed to clamp and unclamp the knives must be such that a predictable and acceptable mechanical joint is obtained under all circumstances. These means typically comprise some form of actuator of a mechanical or hydraulic nature that can allow the assembly to be opened and closed in a controlled and predictable fashion in order that the knives are properly secured at all times. This actuator, with which the workers must interact to accomplish the changes, should be readily accessible and easy to use.
  • Since woodworking machines of the type herein described typically operate in a production environment, the design of the clamping assembly must also be such that it is tolerant of the variations that occur under such conditions. This can involve cumbersome working situations where workers need to reach around components of the machine to effectuate a knife change, or limitations in time available between production periods to attend to all aspects of the work in a detailed and thorough fashion. The knife assembly must furthermore exhibit a high degree of fault tolerance so as minor amounts of damage cannot jeopardize the function of the clamping assembly. Such minor damage can easily go unnoticed in a production environment.
  • To achieve proper integration with the remainder of the machine, the knife clamping assembly must furthermore be of a structure that is compatible with the base member. Such bodies, with their varied forms, impose various geometrical and functional constraints. Foremost it must be sized and shaped to provide for reliable and stable mounting within the base member. Additionally, it must be affixed in a manner that permits for the replacement of components in the event of damage.
  • The requirements of many modern day machines impose additional demands on the knife clamping assembly. Many such machines are by necessity of function compact in nature. The need to operate at evermore increasing production speeds for cost competitiveness has resulted in machine designs with increasingly higher knife counts, and accordingly, limited amounts of space available for the knives and knife clamping assembly on the base member. Accordingly, knife clamping assemblies, as well as the knives they clamp, must be evermore compact to achieve these goals.
  • Traditionally, knife clamping assemblies used in woodworking machines have been relatively simple devices occupying significant space on the base members in which they mount. The knives used in these assemblies were commonly large planar elements of simple form that were shaped to allow for the repeated sharpening of the cutting edge. These knives, which due to their size were typically capable of sustaining a significant portion of the cutting loads, were generally secured in the clamping assembly in a 'sandwich' style arrangement using an actuator of some form. The actuator would cause the clamping components of the assembly to be drawn together or otherwise displaced so as to secure the knives therebetween.
  • Typical with such 'sandwich' style clamping assemblies is that the line of action of the force developed by the actuator intersects with the knife element, often towards its middle section. This often necessitates that the knife be formed to allow for the actuator, commonly a threaded fastener, to pass there through. The advantage of such an arrangement is that the majority, or in many cases all of the clamping force generated by the actuator serves to secure the knife between the clamping components. However as a result of the rather large size of the knife elements themselves, the clamping assemblies are typically bulky devices consuming significant space on the base member.
  • The advent of so called 'disposable' knives, often of a 'reversible' (or multiple edged) type, has placed increased demands on the clamping assembly. These knives, typically manufactured from higher quality materials, must be small and lightweight for cost effectiveness. Their compact nature precludes them from being primary load bearing elements and renders them significantly more difficult to secure within the clamping assembly.
  • Blades of the reversible type also pose additional constraints on the clamping assembly in that the clamping components cannot contact the knife in areas adjacent the unexposed cutting edge(s) since these edges can often be damaged from prior use. Already limited due to their smaller size, this further diminishes the support and contact areas that can be employed to maintain the knives in a stable position during operation. Securing such compact knife elements requires that the knives be rigidly clamped with proportionally higher clamping forces than traditional assemblies using larger, regrindable, knife elements.
  • The most common means to secure knives of a size or a shape that cannot be fastened in a 'sandwich' style configuration is to employ a clamping assembly that functions according to the principle of a third order lever. With this arrangement, the force developed by the actuator is applied to a clamping component which pivots about a fulcrum formed in the assembly. The line of action of the force developed by the actuator is positioned between the fulcrum and the knife. The clamping pressure achieved on the knife is a function of the distances between the fulcrum position, actuator location, and knife contact point according to the principles of a third order lever.
  • Clamping assemblies that function according to this principle have many advantages. Foremost such an arrangement permits for the line of action of the force generated by the actuator to lie adjacent the knife such that the knife need not be formed to allow the actuator to pass through the knife body itself. This is typically a requirement for securing compact knives, either of disposable, reversible, or regrindable type where the form and size of the knife precludes other clamping means. When properly sized and constructed, clamping assemblies based on this principle can also generate high clamping forces for securing the knives under the action of the cutting forces. Limited only by the space available within the base member, the clamping assembly can typically be sized and shaped to provide for adequate rigidity and sufficient space to accommodate actuators that can develop satisfactory clamping forces so as to be able to secure the knives during operation. Further, simple and reliable third order clamping assemblies can be constructed using only two clamping components and a simple mechanical actuator for securing the knife therebetween.
  • With such clamping assemblies, the most common configuration is for the actuator to act upon the clamping component positioned towards the outer periphery of the base member. This 'outer' clamping component is generally more accessible and can be more readily opened and closed by workers to effectuate the replacement of the knives. With this arrangement, the remainder of the assembly is affixed to the base member, usually in some form of cavity or 'pocket' sized and shaped for this purpose. The actuator draws the outer clamping component against the knife to secure it within the clamping assembly, which remains stationary with respect to the base member. As this outer clamping component often coincides with the topside of the assembly, this arrangement is commonly referred to as 'topside' clamping.
  • With the majority of clamping assemblies, the actuator is typically in the form of a threaded fastener such as a screw, a bolt, or a stud and nut combination. Mechanical fasteners of such type are simple, inexpensive, reliable, and can provide significant clamping force in a compact form. In order that the driving features of the fastener be readily accessible, it is most common that these be located on the same face or side of the base member as the outer clamping component. This avoids the need for workers to move to other areas in the machine to access the fasteners when changing knives.
  • The most common arrangement when using mechanical fasteners for the actuator is to have the fastener pass through the outer clamping member and into other assembly components below, or directly into the base member. When tightened, the fastener is gradually drawn against the outer clamping component to develop the contact force necessary to secure the knives in place. To effectuate a knife change, workers tighten or loosen the fastener as required to either release or secure the knives in the assembly.
  • As a result of their simplicity and ease of use, third order knife assemblies utilizing a topside clamping configuration and mechanical fasteners are in widespread use in the type of woodworking machines herein described. They are cost effective, versatile, and have proven reliable in service.
  • However they are not without problems. According to the principles of a third order lever, the clamping pressure achieved on the knife is a function of the force developed by the actuator and the distances between the fulcrum position, actuator location, and contact point between the outer clamping component and the knife. For a given configuration, the clamping pressure developed on the knife is directly proportional to the clamping force developed by the actuator. Should the force developed by the actuator be half of that intended by the designer, the clamping pressure developed on the knife shall similarly be at half the desired value.
  • Such is often the situation when mechanical fasteners are employed as the actuator. While simple and mechanically reliable, the force developed by the fastener is often difficult to predict and control with accuracy. Such factors as the variation in the fastener's tightening force (torque) and unpredictable nature of friction between contact surfaces result in a wide range of force developed by the fastener.
  • Further, because of the need for knife assemblies to be of a compact form to integrate properly with the foundation bodies, it is not always possible to achieve a third order configuration that is favourable for the development of high clamping pressures. To do this requires that the fulcrum be positioned far away from the actuator and the knife. With many base members, space constraints limit the placement of the fulcrum. This means that the size of the clamping force, and thereby the ability to carry external cutting loads, is dictated by the capabilities of the actuator, which is often variable and difficult to control as noted above.
  • In general, the requirement for compactness and high knife clamping pressures conspire to limit the strength that can be obtained with a third order assembly. While the fastener must be of sufficient size to provide the necessary force for securing the knife under the action of the cutting forces, it cannot be of a size or a form that would consume excessive amounts of space within the assembly. This could result in clamping components that are inadequately sized and shaped for acceptable strength to be achieved. While an oversized fastener may ensure that an adequate preload force is developed under all circumstances, it can result in unacceptable stresses within the individual components that comprise the clamping assembly.
  • To maximize component strength, most third order clamping assemblies securing knives of a compact nature employ smaller high strength fasteners. These fasteners consume less space in the assembly and allow for proportionally stronger clamping components. However achieving adequate function is dependent on the fasteners being tightened to comparatively high values relative to the fastener size. Further, these smaller fasteners lack rigidity which results in a clamping assembly of lower stiffness such that the displacement of the knife edge under the action of the cutting forces can be problematic.
  • Given that the reliability of most topside clamped third order assemblies is dependent on adequate preload being developed in the fastener, and in particular those using smaller high strength fasteners, it is typically necessary to ensure that factors that influence the clamping force developed by the bolt are controlled in the field. This often mandates that the fasteners be tightened to precise values using specialized equipment, and that the lubrication, cleanliness, and general condition of the fasteners be scrutinized. In the absence of such measures, inadequate bolt preload can compromise the function of the clamping assembly. This can lead to the knives being improperly secured in service.
  • Alternatives to topside clamped third order clamping assemblies exist. Such designs are often directed at eliminating the aforementioned dependence on adequate preload being developed by the actuator, or to circumvent space limitations on the base member such that high strength arrangements can be achieved.
  • For example, it is sometimes advantageous to construct assemblies that have the inner clamping component as the member being actuated. With this arrangement, the assembly is affixed and held stationary within a cavity or pocket formed for this purpose on the 'underside' of the base member. The actuator draws the inner clamping component against the knife to secure it in place within the clamping assembly. As with topside clamping arrangements, such underside clamping assemblies also frequently work according to the principles of a third order lever.
  • One of the main advantages of underside clamping arrangements is that they can often make a more effective use of space within the machine. The clamping assemblies can often be made comparatively larger than their topside mounted counterparts while still maintaining good integration with the base member. This permits for stronger and more rigid components to be constructed, and in the case of third order assemblies, a more favourable configuration for the development of high clamping pressures. Since the cutting forces for most of the woodworking machines herein described are generally directed against the knife from the underside, such underside arrangements are also favourable for reasons of strength and stiffness.
  • Of late, 'pivot' clamping arrangements that function according to the principles of a first order lever have materialized. With such configurations, the force developed by the actuator is applied to a clamping component which pivots about a fulcrum formed in the assembly. As per the principles of a first order lever, the line of action of the force developed by the actuator is located askew of both the fulcrum and the knife thereby allowing knives of a compact nature to be secured. However, unlike third order levers, the fulcrum's location is between the actuator and the contact point on the knife. When in use, the actuator pivots the clamping component about the fulcrum to secure the knife in place.
  • Such pivot clamping arrangements allow for favourable first order configurations to be achieved such that a high percentage of the actuator's force can be applied to the knife. This permits the actuator, typically a threaded fastener, to be made smaller or fewer in number while achieving the high preload force desired. This further allows the individual clamping components that comprise the assembly to be made rigid yielding an assembly of high overall stiffness. Since the line of action of the force developed by the actuator is also askew of the knife, such arrangements are generally well suited for securing knives of a compact nature. An example of such a first order pivot clamping assembly can be found in U.S. Pat. No. 5,996,655 to CAE Machinery Ltd.
  • While the aforementioned alternatives offer advantages in the form of stronger more rigid clamping assemblies that are less susceptible to inadequate preload being developed by the actuator, they suffer from some notable disadvantages as well. In general, such assemblies do not exhibit the same high ease of use as simple third order clamping assemblies constructed from two clamping components. As a result of reduced accessibility or added complexity, it can be more difficult for workers to make a knife change, in particular to clean the assembly of any wood debris. Such material, if left in place, could compromise the function and reliability of the assembly.
  • Pivot style arrangements and underside clamping configurations are also generally of a form that preclude their use in many types of woodworking machines. Generally as a result of their size and shape, they do not integrate well with all forms of base members and cannot be easily retrofitted to existing machines. This precludes their use in many applications for which their advantages would in general be beneficial.
  • Further, the drive for cost competitiveness has also pushed manufacturers to adopt more standardized knife assembly designs that can be applied to a broad spectrum of woodworking machines. Standardized knife clamping assembly designs are advantageous for the producer and consumer alike. The producer benefits from greater economies of scale that allow for production efficiencies. The consumer benefits from reduced component costs and fewer knife assembly components being required in inventory to support more than one type of woodworking machine in the production facility.
  • In CA 2491977 , which is the priority application for the continuation-in-part application US 2013/0214076 from which the present application claims priority, is disclosed three embodiments of an improved 'top' clamping assembly for the clamping of compact knives, according to Figs. 2-4, which overcomes one or more of the aforementioned problems. This clamping assembly is of a form that it can be readily adapted to many types of wood working machines. Further it is preferably of high strength to allow for knife elements of a compact nature to be rigidly secured to the base member at all times. It is preferably of simple design so that the components and actuator that comprise its structure are of reliable construction and are cost effective to produce. Further, it preferably provides for high ease of use such that replacement of the knives can be accomplished swiftly, reliably, and in a safe manner.
  • The above is accomplished by utilizing a novel seating arrangement for at least one of the clamping components whereby the position and orientation of the contact surfaces are distributed over three discrete positions such that increased mechanical advantage results. The preferred form of the clamping assembly is further configured to take advantage of frictional forces to improve the ability of the clamping assembly to withstand loads that arise during use.
  • By forming clamping components according to CA 2491977 , knife clamping assemblies can be constructed that are favourably sized and shaped such that they can be applied to many different types of woodworking machines. This permits a standardized clamping assembly to be used in many applications while providing for a compact design with high reliability. The preferred form of the invention also provides for a clamping assembly that is easy to use, allowing for the fast and efficient rotation or replacement of knives having worn or damaged edges while permitting the clamping components to be of rigid construction and of simple shape such that they are cost effective to produce. However, it is still desirable to provide a clamping assembly that has an even more compact design than the clamping assembly according to CA 2491977 .
  • For better understanding of the invention according to the present application, the clamping assembly according to CA 2491977 will hereinafter be described in detail with reference to Figs. 2-4 under the heading "Detailed description of prior art clamping assemblies"
  • Summary of the invention
  • The object of the present invention is to provide a further improved clamping assembly, which in addition to the advantages according to the clamping assemblies as disclosed in CA 2491977 , also is more compact in relation to those clamping assemblies. At least this object is achieved by a clamping assembly according to claim 1.
  • Accordingly, this object is achieved by forming the clamping assembly such that the first clamping component has a larger length in cross section than the second clamping component, such that when positioning the first clamping component abutting against the second clamping component such that the clamping axes of the first and second clamping components are aligned and the bearing surface and the contact surface abut, the fulcrum of the first clamping component is located a distance outside of the second clamping component. In this way the fulcrum of the first clamping component may engage a complementary surface formed in a pocket within a rotatable base member of the woodworking machine. This allows designing the overall pocket for the clamping assembly within the base member with a smaller size which in its turn makes it possible to e.g. arrange more clamping assemblies, and hence also more knife elements, within a given base member and/or to maintain a high strength of the base member.
  • Brief description of the drawings
  • Reference will now be made, by way of example only, to embodiments of the invention as depicted in the attached drawings, in which:
    • Figure 1 is a view of a typical prior art clamping assembly;
    • Figure 2 is a view of a first embodiment of a prior art clamping assembly according to CA 2491977 ;
    • Figure 3 is a variation of the embodiment of Figure 2;
    • Figure 4 is a second embodiment of a prior art clamping assembly according to CA 2491977 ;
    • Figure 5 is a sectional view similar to Figures 2-4 but of an embodiment according to the present invention;
    • Figure 6 is a first variant of the embodiment of Figure 5; and
    • Figure 7 is a second variant of the embodiment of Figure 5.
    Detailed description of prior art embodiments
  • Firstly, in order to facilitate the understanding of the present invention, four prior art embodiments will hereinafter be described with reference to Figs. 1-4.
  • Figure 1 shows a typical prior art knife clamping assembly constructed according to the principles of a third order lever. With this arrangement, the force developed by an actuator, in the form of a screw 10, is applied to a clamping component 12 which pivots about a fulcrum 14 formed in the assembly. The line of action of the force developed by the screw 10, shown as Fb, is positioned between the fulcrum 14 and the location where the clamping component 12 abuts a knife element 16.
  • As can be seen in Figure 1, the fulcrum 14 is formed of two opposing inclined surfaces that allow the actuated clamping component 12 to be engaged, or interlocked, with the member which it abuts. The two opposing inclined surfaces allow the clamping component 12 to pivot under the action of the force developed by the screw 10 but restrict its movement in a direction parallel to and perpendicular to the line of action of the force developed by the screw 10. As a result of the shape of the fulcrum 14, clamping component 12 cannot slide in a direction that is orthogonal to the line of action of the screw 10.
  • As per the principles of a third order lever, the force applied to the knife element 16 under the action of the force developed by the screw 10 is a function of the distance between the fulcrum position, screw location, and contact point with the knife element 16. Most specifically, this force is a function of the distance between the line of action of the screw 10 and the fulcrum 14 and the distance between the line of action of the screw 10 and the location where clamping component 12 abuts knife element 16. In Figure 1, these distances are illustrated as 'D' and 'd' respectively.
  • Key to understanding the present invention is the point at the fulcrum 14 about which the distance D is determined. In order to establish the fraction of the force developed by the screw 10 that is applied to the knife element 16, it is necessary to examine the forces developed at the fulcrum 16. While with most third order arrangements this point will coincide closely with the physical location in which the actuated clamping component pivots, analysis of the present invention will show that this not necessarily be so.
  • Shown in Figure 1 are the two reaction forces, R2 and R3, developed at each of the opposing inclined surfaces which comprise the fulcrum 14 under the action of the force Fb developed by the screw 10. For the sake of simplifying the analysis, friction is not considered and the reaction forces R2 and R3 are considered to pass through the centre of these surfaces which would coincide with the approximate centre of pressure. Although this simplified approach is taken in the interest of clarity, the present arguments apply equally to the situation where friction is considered as a later discussion will show.
  • Considering the case of no friction, the line of action of forces R2 and R3 developed at the fulcrum 14 will be normal to the surfaces and will be directed to resist the force developed by the screw 10. Turning to Figure 1, it can be seen that the line of action of these reaction forces R2 and R3 intersect at a point in space that is intermediate the opposed inclined surfaces comprising the fulcrum 14. This point is identified in the figure as 'V'.
  • Examination of point V reveals that only the forces developed by the screw 10 and the reaction force developed at the knife element 16, shown as Fk, can act to pivot clamping component 12 about this point. Reaction forces R2 and R3 cannot act to rotate clamping component 12 about this position since their lines of action pass through this location. Accordingly, point V represents the position about which the distance D should be measured to determine the fraction of the force developed by the screw 10 that must be resisted by the knife element 16. This point can therefore be conveniently considered as a 'virtual fulcrum' since it is about this point which the laws of a third order lever apply.
  • Although prior art clamping assemblies functioning according to the principles of a third order lever exist having varied shapes and forms, the fraction of the force developed by the actuator that is applied to the knife element is dictated by how far askew the virtual fulcrum is positioned from the actuator. The greater the distance the virtual fulcrum is located from the line of action of the force developed by the actuator, the greater the fraction of the actuator's force that will be applied to the knife element. This defines the mechanical advantage of the clamping assembly. Greater mechanical advantage results as the distance the virtual fulcrum is located askew of the line of action of the force developed by the actuator is increased.
  • Turning to Figure 2, a first embodiment of the prior art application CA 2491977 is shown. A base member 100 forming a rotatable foundation body of a woodworking machine of cylindrical form is shown. For ease of reference only a part of base member 100 is illustrated. It will be understood that a clamping assembly according to CA 2491977 as well as according to the present invention may be applied to many different types of woodworking machines with foundation bodies of conical, cylindrical, or disc form and showing base member 100 as a cylindrical segment is by way of example only. Further, base members as described herein may also be stationary as it will be understood that the current invention comprehends stationary base members where the wood is maneuvered in an appropriate fashion to achieve the desired end result.
  • Within base member 100 is formed a pocket 102 into which a clamping assembly 104 is inserted. The clamping assembly 104 includes a rear clamping component 106 and a front clamping component 108. In this specification, the terms rear and front are used to describe their position relative to the direction of movement of the base member 100 with respect to the wood being processed (not shown). Front clamping component 108 is positioned towards the direction of movement of clamping assembly 104 whereas rear clamping component 106 is positioned away from the direction of movement. In this specification the terms front and rear are to be read interchangeably with the terms inner and outer since the front clamping component is positioned towards the inside of base member 100 which comprises the rotating cylindrical body.
  • Within pocket 102 is affixed inner clamping component 108 using means (not shown) that result in it being rigidly connected to base member 100. Forming part of pocket 102 is a bottom support face 103 and a rear support face 105 for abutting the corresponding contact surfaces on inner clamping component 108. Located between support faces 103 and 105 is a radiused corner 107 present for stress reduction reasons. To permit the inner clamping component to achieve flush engagement with support surfaces 103 and 105, a chamfer 109 is provided on inner clamping component 108 between the two orthogonal surfaces abutting base member 100. Although abutting inner clamping component 108, it will be noted that pocket 102 is formed such that outer clamping component 106 is free of contact with any of the faces of pocket 102 such that a gap 140 is present between base member 100 and outer clamping component 106.
  • Clamping assembly 104 further includes an actuator for actuating outer clamping component 106. In this embodiment, the actuator is a threaded fastener in the form of a screw 110 with a head 118, which most preferably is located within a recess 122 formed in the outer surface 120 of outer clamping component 106. The screw 110 passes through openings 112 and 114 in outer clamping component 106 and inner clamping component 108 respectively and is threaded into threads 116 formed in base member 100. While a threaded screw 110 is shown as the actuator, it will be understood that this embodiment as well as the present invention comprehends other clamping means, such as hydraulic mechanisms, electro mechanical actuators and the like.
  • Secured within the clamping assembly 104 is a compact knife element 124 which is illustrated as a 'reversible' (or indexable) type having two opposed cutting edges. The knife element 124 is shown clamped between the outer clamping component 106 and the inner clamping component 108 generally at one end. At the other end of the clamping assembly 104 a fulcrum 126 is located. The fulcrum 126 forms a point about which outer clamping component 106 can pivot which along with the knife abutting portion 125, form discrete positions for supporting outer clamping component 106 under the action of the screw 110. Reflecting a third order lever arrangement, the screw 110 is positioned between the fulcrum 126 and knife element 124.
  • Also present within the assembly are a bearing surface 130 on outer clamping component 106 and an opposing contact surface 132 on inner clamping component 108 about which bearing surface 130 abuts. Along with fulcrum 124 and the knife abutting portion 125 of outer clamping component 106, bearing surface 130 comprises a third discrete position about which contact with adjoining members occurs. It will be noted that these contact points are positioned at separate spaced apart locations on outer clamping component 106 with each having specific functions as will be explained in greater detail below.
  • When tightened, the head 118 of screw 110 is gradually drawn against outer clamping component 106 such that a clamping force is developed. This force, shown as Fb in Figure 2, is directed against outer clamping component 106 along a line of action that is parallel with the axis of the screw. This axis, indicated at 128 and defined as the clamping axis, coincides with the line of action of the clamping force developed by the actuator.
  • During tightening, the clamping force Fb developed by the screw 110 is resisted at both ends of outer clamping component 106 by a reaction force developed against the knife element 124, shown as Fk, and a reaction force developed against the fulcrum 126, shown as R2. Reaction force Fk acts to secure knife element 124 against inner clamping component 108 which is secured within pocket 102 of base member 100. It will be noted that bearing surface 130, formed as a substantially planar surface oriented mainly parallel to clamping axis 128, cannot offer any resistance to clamping force Fb.
  • Due to the geometry, if there were no bearing surface 130 abutting opposing contact surface 132 on inner clamping component 108, the force of the screw 110 would cause the outer clamping component 106 to move rearward, specifically deeper into the pocket 102. This is due to the fact that the contact surface comprising the fulcrum 126 is substantially planar and is inclined relative the direction in which the clamping force Fb is applied. This inclination, indicated by the angle θ formed between the line of action of reaction force R2 and the direction in which clamping force Fb is applied, is approximately 30 degrees in this embodiment.
  • Although the knife abutting end 125 is contoured such that it engages knife element 124 at its backside, the front side of knife element 124 is shaped such that it does not engage inner clamping component 108 in a fashion that would positively restrict its movement. In this manner, outer clamping component 106 is, at either end, free to slide relative to inner clamping component 108 when a clamping force is applied along clamping axis 128. This natural tendency to slide is resisted by the presence of the bearing surface 130 abutting opposing contact surface 132 on inner clamping component 108. Because of the presence of bearing surface 130 and the opposing contact surface 132 on inner clamping component 108, instead of sliding, a further reaction force arises, which is shown as R3.
  • Unlike the prior art assembly illustrated in Figure 1, it will be noted that fulcrum 126 is not formed to engage or interlock the inner clamping component 108. While shaped to allow outer clamping component 106 to pivot, the substantially planar surface comprising the fulcrum 126 is not formed to positively resist forces acting along its face. Due to the shape and orientation of fulcrum 126 relative to the clamping axis 128, fulcrum 126 cannot balance the reaction forces that develop against outer clamping component 106. Most specifically, the component of the clamping force Fb and reaction force Fk directed along the surface of fulcrum 126 must be resisted elsewhere if a state of equilibrium is to be achieved.
  • Accordingly, fulcrum 126 can be considered as 'unbalanced' since it lacks the ability to counteract the reaction forces that develop on outer clamping component 106 under the action of the screw 10, or equally, under an externally applied force directed against the knife element 10 that acts in this direction. This contrasts with the 'balanced' arrangement of the prior art device of Figure 1 that occurs when the pivot point is formed as two opposed inclined surfaces or other alternate forms that result in the actuated clamping component remaining stable in the clamping assembly under the action of the clamping force or any externally applied loads.
  • Returning to Figure 2, examination of the structure of inner clamping component 108 and knife element 124 shows that these elements also lack the ability for the knife abutting end of outer clamping component 106 to counteract forces directed along fulcrum 126. Accordingly, the component of the clamping force along this face, or any external loads that are applied to the knife element 124 that act in this direction, must be resisted elsewhere in the assembly.
  • Preferably this is accomplished by utilizing a separate bearing surface suitably sized, shaped, oriented, and positioned to resist loads that cannot be borne elsewhere. Most importantly, this bearing surface is strategically positioned to increase the mechanical advantage achieved with the clamping assembly. By appropriately sizing, shaping, positioning and orienting the bearing surface on the actuated clamping component such that it cooperates with a separate fulcrum that has similarly been appropriately sized, shaped, oriented, and positioned, increased mechanical advantage can be obtained as will be explained below.
  • That the projections of the lines of action of force R2 and force R3 intersect at a point V outside of clamping component 106. The lines of action are once again illustrated as being normal to the contact features acting through their approximate centre of pressure as would be the case where friction is absent. Again, while this is done for the purposes of simplification, the present arguments apply equally to the situation where friction is present as a later analysis will demonstrate.
  • As can be seen in Figure 2, the location of the point V lies outside of the outer clamping component 106 at a distance farther askew of clamping axis 128 than is located the fulcrum 126. As was the case for the prior art device illustrated in Figure 1, this distance is shown in Figure 2 as 'D'. Similarly, the distance between the reaction force Fk on knife element 124 and clamping axis 128, is shown as 'd'.
  • It will be noted that point V represents the location where the only forces that can act to pivot outer clamping component 106 about this point are the clamping force Fb and reaction force Fk developed at the knife abutting portion 125 contacting knife element 124. Reaction forces R2 and R3 cannot act to rotate outer clamping component 106 about this position since their lines of action pass through this location.
  • A static force analysis conducted about this point reveals that the fraction of the clamping force applied against knife element 124 by the outer clamping component 106 is dictated by the distances D and d in accordance with the principles of a third order lever. Location V can therefore be considered as a 'virtual fulcrum' about which outer clamping component 106 does not physically rotate, but about which the fraction of the clamping force applied to knife element 124 can be determined in accordance with the laws of a third order lever.
  • Accordingly, the clamping assembly can be analogized as being a modified third order lever arrangement. However unlike traditional clamping assemblies working according to this principle, the current preferred clamping assembly utilizes a fulcrum 126 that is purposely formed such that the reaction force R2 developed at the fulcrum 126 does not cause the outer clamping component 106 to achieve a state of equilibrium. While the outer clamping component 106 pivots about the fulcrum 126 in an analogous fashion to the prior art device shown in Figure 1, an additional reaction force is required for the forces to be balanced. This is accomplished by having bearing surface 130 oriented and positioned with respect to fulcrum 126 such that the reaction force R3 in combination with reaction force R2 yield an effective or virtual fulcrum location V that is farther askew of the knives 124 than is the fulcrum 126 itself. Preferably, this is achieved in part by positioning the bearing surface 130 away from the fulcrum 126 in a direction parallel to clamping axis 128 on the knife abutting portion side of the fulcrum 126. In other words, if a dividing plane is defined which, (1) is perpendicular to the clamping axis 128, and (2) passes through the fulcrum 126, the plane has two sides, with the knife abutting portion 125 being on one side of the plane (i.e. on the knife abutting portion side of the plane). The bearing surface 130 is positioned away from the fulcrum 126 on the same side of the plane as the knife abutting portion 125. In the embodiment of Figures 2 and 3, the surface 130 is positioned in the direction of outer surface 120 of outer clamping component 106. This is towards the 'outside' periphery of the clamping assembly 104, as shown in Figure 2.
  • As per the principles of a third order lever, for a given distance d, the clamping force Fk developed by the outer clamping component 106 abutting against knife element 124 will increase as distance D is made larger. With the current invention, the virtual fulcrum V is positioned at a distance D that is greater than is achieved when the fulcrum is formed and oriented such that the reaction forces are balanced at the physical fulcrum itself. Accordingly, increased mechanical advantage results that is above and beyond that which is attainable with traditional third order configurations such as with the prior art device shown in Figure 1.
  • Turning to Figure 3, a variation on the first embodiment of the clamping assembly according to CA 2491977 is shown. In this embodiment the elements and structure are analogous to those shown in Figure 2, except that the angle θ formed between the clamping axis 128 and the substantially planar surface forming fulcrum 126 is 40 degrees rather than 30 degrees. Since the operation and workings of this embodiment is otherwise generally the same as that of Figure 2, it will not be described in any more detail herein.
  • Comparing the embodiments of Figures 2 and 3, it will be noted that the orientation and position of the fulcrum 126 in Figure 3 is such that the line of action of reaction force R2 results in the position of the virtual fulcrum 'V' being located farther askew of clamping axis 128. This provides for increased mechanical advantage over the embodiment of Figure 2 since the distance D is larger. Accordingly, under the action of a given clamping force Fb, a greater reaction force Fk is developed at the knife abutting end 125 for securing knife element 124 against inner clamping component 108.
  • It can now be understood how the angle θ formed between clamping axis 128 and the substantially planar surface comprising fulcrum 126 develops mechanical advantage. By forming the fulcrum 126 as a substantially planar surface oriented at an angle with respect to clamping axis 128, the line of action of the reaction force R2 can be directed away from clamping axis 128. For a given placement and orientation of bearing surface 130, the virtual fulcrum V will be located farther askew of clamping axis 128 as angle θ is increased. If angle θ is too small, too little mechanical advantage will be achieved to make it worthwhile. It is therefore preferred to make the angle θ at least twenty degrees, with even more advantage being achieved with an angle of thirty degrees or more. However, this embodiment as well as the present invention is not limited to any specific minimum angle, although angles below twenty degrees are less preferred and angles below 10 degrees are much less preferred.
  • Turning now to Figure 4 a further embodiment of a clamping assembly according to CA 2491977 is shown. In this embodiment there is a portion of a base member 200, also illustrated as a portion of a rotatable cylindrical body including a pocket 202 in which a clamping assembly 204 is located. Clamping assembly 204 includes an outer clamping component 206 and an inner clamping component 208, which as with the previous embodiments, is indicative of the position of the components relative to the axis of rotation of base member 200. Specifically outer clamping component 206 is located towards the periphery of the pocket away from the point about which base member 200 rotates coinciding with the 'top' of knife clamping assembly 204.
  • Within pocket 202, inner clamping component 208 is seated against a bottom support face 203 and a back support face 205. A screw 209 is provided for rigidly affixing inner clamping component 208 into the pocket 202 of base member 200.
  • Clamping assembly 204 further includes a means for actuating outer clamping component 206, which like in the previous embodiments, is in the form of a screw 210. The screw 210 passes through openings 212 and 214 in outer clamping component 206 and inner clamping component 208 respectively and is threaded into threads 216 formed in base member 200. A head 218 comprising the driving features of the screw 210 is placed within a recess 222 formed in the outer surface 220 of the outer clamping component 206. Locating the head 218 within the recess 222 such that it does not protrude beyond the periphery of outer surface 220 is preferred since it can be free of any potential contact with the wood being processed or other machine elements during operation.
  • Secured within clamping assembly 204 is a knife element 224 in the form of a compact cutting blade of a reversible, double edged design. Knife element 224 is shown clamped between the outer clamping component 206 and the inner clamping component 208 generally at one end. While a cutting blade of compact form is illustrated, the current prior art clamping assembly as well as the present invention comprehends knife elements of other forms and sizes where the knife element is held clamped by the actuated clamping component at a location that is askew of the clamping axis.
  • At the other end of outer clamping component 206, a fulcrum 226 is located about which outer clamping component 204 pivots under the action of the screw 210. As with the previous embodiments, the screw 210 is positioned between the fulcrum 226 and the knife element 224.
  • Also present on outer clamping component 206 is a bearing surface 230 on the outer clamping component 206 for abutting an opposing contact surface 232. Unlike the previous embodiments the opposing contact surface 232 is not located on the inner clamping component 208, but instead is located on one of the rear faces of pocket 202 formed in base member 200. Although the opposing contact surface 232 is formed on base member 200, it will be understood that the current embodiment comprehends contact surface 232 being formed on other components located intermediate base member 200 and outer clamping component 206 in which bearing surface 230 may abut.
  • By rotating the screw 210, the head 218 can be brought to bear against, or displaced away from, outer clamping component 206 such that a clamping force is developed or diminished depending on whether the screw is being tightened or loosened. In Figure 4 this force is illustrated as Fb and is shown to act along a clamping axis 228 that is coincident with the axis of the screw 210.
  • By tightening or loosening screw 210 outer clamping component 206 can be moved between an open position and a closed position for the installation or replacement of knife element 224 as required. While a threaded fastener in the form of a screw is shown, it will be understood that the clamping assembly according to CA 2491977 as well as the present invention comprehends other clamping means, such as hydraulic or pneumatic mechanisms and the like, that apply an appropriate clamping force along the clamping axis by engaging the actuated clamping component.
  • In a fashion analogous to the previous embodiments, the application of a clamping force Fb to outer clamping component 206 is resisted at both ends by a reaction force developed against the knife element 224 shown as Fk and a reaction force developed against the fulcrum 226, shown as R2. As for the previous embodiments, these forces are shown acting normal to the features that comprise the contact surfaces and passing through their approximate centers of pressure. Due to the geometry, if there were no bearing surface 230 abutting opposing contact surface 232, the force of the screw 210 would cause the outer clamping component 206 to move rearward, specifically deeper into the pocket 202. This is due to the inclination of substantially planar surface comprising the fulcrum 226 relative to the direction in which clamping force Fb is applied and the fact that the inner and outer clamping components 206 and 208, and knife element 224, are formed such that outer clamping component 208 can slide at both ends, namely, at the fulcrum 226 and at the end comprising the knife abutting portion 125. This inclination, indicated in Figure 4 by the angle θ formed between the clamping axis 228 and line of action of reaction force F2, is about 35 degrees.
  • With the clamping assembly according to CA 2491944 as well as the present invention this natural tendency to slide is resisted by the presence of bearing surface 230 abutting the opposing contact surface 232 on the base member 200. Because of the presence of the bearing surface 230 and opposing contact surface 232, instead of sliding, in this embodiment as well as in the present invention a further reaction force arises at this position, which is shown as R3. Reaction force R3 acting at bearing surface 230 allows the outer clamping component to achieve a state of equilibrium. While a single bearing surface in the form of a substantially planar surface has been described for the embodiments, it will be understood that the clamping assembly according to CA 2491977 as well as the present invention comprehends other forms of bearing surfaces. Further, the present invention also comprehends the use of more than one bearing surface such as two adjacent coplanar surfaces or multiple parallel planar surfaces slightly offset one with respect to another.
  • As shown in Figure 4, the projections of the lines of force R2 and R3 intersect at a point 'V', which is again described as a virtual fulcrum. As with the previous embodiments, it will be noted that the virtual fulcrum V is located outside of the clamping components, at a distance 'D' from clamping axis 228. The distance between the reaction force Fk developed at the knife element 224 and the clamping axis 228 is again shown as 'd'.
  • The function of this embodiment is analogous to those shown in Figures 2 and 3. However in this embodiment, the bearing surface 230 is positioned on base member 200 at a location and orientation that result in a very favourable position for the virtual fulcrum V. Most specifically, the position of the virtual fulcrum V is located farther askew of the clamping axis than in the previous embodiments. This provides for increased mechanical advantage so as under the action of a given clamping force Fb, a greater reaction force Fk is developed against knife element 224 such that greater external cutting forces can be borne by knife element 224 during operation.
  • An advantage of the clamping assembly according to CA 2491977 as well as the invention can now be understood. By utilizing three discrete contact positions on the actuated clamping component, and appropriately forming, orienting, and positioning the contact surfaces relative to the axis about which the clamping force is developed, favourable mechanical advantage can result. This is accomplished by separating the contact surfaces not abutting the knife element into two discrete positions that are formed and oriented so that lines of force that develop through these locations intersect at a point as far askew of the knife element as possible. For a given distance between the actuator and the knife abutting portion 225, increasing the distance between this point and the knife element will result in a greater portion of the force developed by the actuator being applied to the knife element.
  • For the embodiments shown, this is achieved by forming the bearing surface and the fulcrum as substantially planar surfaces positioned at two separate spaced apart locations. The fulcrum is inclined with respect to the clamping axis and is positioned as far askew of the clamping axis as is practicable. To develop mechanical advantage, the bearing surface is oriented such that it does not bear any portion of the clamping force. It is positioned as distant of the fulcrum as possible in a direction opposite, specifically in a direction parallel to the clamping axis and to the same side as the knife abutting portion 125. The bearing surface is further orientated such that a line normal to the bearing surface intersects a line normal to the fulcrum at a location farther askew the clamping axis than the fulcrum. It will be understood that the direction of the lines normal to the surfaces are to be taken as outward opposite to the direction in which reaction forces through these surfaces can act.
  • To maximize the mechanical advantage that will result, the inclination of the fulcrum should be maximized and the angle formed between the substantially planar surfaces comprising the fulcrum and bearing surface should be minimized. For the embodiments of Figures 2 and 3, this latter angle is 70 degrees and 60 degrees respectively. With the embodiment of Figure 4, the angle formed between the substantially planar surfaces comprising the fulcrum and bearing surface has been further reduced by inclining the bearing surface with respect to the clamping axis. For the embodiment of Figure 4, the angle achieved is approximately 35 degrees.
  • For the embodiments described herein, the mechanics of the arrangement have been explained using the concept of a 'virtual fulcrum'. This allows for a direct comparison with prior art assemblies constructed according to the principles of a third order lever with which the current embodiment as well as the invention has now shown to improve. As has been explained, through an appropriate choice of form, position and orientation for the two discrete contact positions through which reaction forces R2 and R3 act, it is possible to locate the virtual fulcrum outside of the actuated clamping component at a position farther askew of the knife element than could be achieved with a traditional balanced fulcrum formed within the clamping assembly. This allows the clamping components comprising the assembly to be made more compact and of higher strength than with a third order lever arrangement pivoting about a traditional balanced fulcrum.
  • The location of the virtual fulcrums V for each of the embodiments is shown in each of the figures. As previously explained, these locations correspond to those that occur in the absence of friction. As is evident in the drawings, the locations of the virtual fulcrums lie outside of the knife assembly entirely and are farther askew of the knife element than is the position where the actuated clamping component pivots in the assembly.
  • An additional and important advantage of a clamping assembly according to CA 2491977 as well as the present invention is that utilizing three discrete contact positions as herein described makes for a favourable use of friction. Specifically, friction at the bearing surface and fulcrum with the corresponding surfaces with which they abut increases the overall load bearing capabilities of the assembly. This advantage is not present with knife assemblies that function according to the principles of a third order lever where the actuated clamping component pivots about a traditional balanced fulcrum formed in the assembly.
  • The advantageous use of friction can best be understood by examining the impact of friction on the location of the virtual fulcrum. Under the action of an external load directed against the knife element, displacements within the components result in the actuated clamping component pivoting about the unbalanced fulcrum formed in the assembly. Movement at the fulcrum and bearing surface is resisted by friction such that the lines of action of the reaction forces R2 and R3 are shifted to lie in a direction shown in the figures as R2' and R3'. Accordingly this displaces the virtual fulcrum farther askew of the clamping axis resulting in increased in mechanical advantage and the ability for the knife assembly to carry higher external loads for a given actuator clamping force. The attached figures illustrate the effect of friction on displacing the virtual fulcrum farther askew of the knife under the action of an external load. In Figures 2 and 3, the 'displaced' virtual fulcrums are shown as V'. However with the embodiment of Figure 4, it will be noted that the location of the displaced virtual fulcrum is such that the distance D becomes significantly large such that almost infinite mechanical advantage results.
  • A further benefit of the invention can be achieved by positioning the bearing surface on the actuated clamping component such that the reaction force R3 is at a location 'forward' of the fulcrum, specifically at a point that is less askew of the knife abutting portion 125 than the location about which the actuated clamping component pivots. Preferably, this location should be as close to the knife abutting portion 125 as possible and as distant from the pivot location as is achievable. The embodiments of Figure 2 and Figure 3 illustrate such a configuration where the bearing surface has been located askew of the clamping axis in a direction towards the knife abutting portion 125.
  • The advantage in this specific arrangement is that it results in a construction that provides for higher stiffness and strength of the clamping assembly. The combination of three discrete contact positions according to these embodiments as well as the present invention with the further idea of positioning the bearing surface forward of the unbalanced fulcrum results in an arrangement where the actuated clamping component can be 'interlocked' with the remainder of the assembly. This interlocking configuration results in a rigid connection between the actuated clamping component and the remainder of the clamping assembly. Under the action of the cutting loads, the displacements of the actuated clamping component are thereby minimized such that the overall stiffness of the knife clamping assembly is increased. This addresses a limitation typical of traditional third order clamping assemblies where the rigidity of the actuator, usually low relative to the remainder of the components, results in a clamping assembly of low stiffness. This offers the further advantage that the actuator is subject to a much smaller portion of the external cutting loads.
  • As can now be understood, by forming the actuated clamping component to use three discrete contact positions according to these embodiments as well as the present invention, it is possible to construct a knife clamping assembly with such favourable characteristics as:
  • High strength. Utilizing three discrete contact positions as herein described results in increased mechanical advantage relative to prior art third order configurations. A greater portion of the clamping force developed by the actuator is applied to the knife element.
  • Compactness. Because the current assembly affords increased mechanical advantage, the clamping assembly can be made more compact than traditional third order designs.
  • Rigidity. By using three discrete contact positions for the actuated clamping component, the overall stiffness of the assembly can be made high. The rigidity of the actuator, typically lower than the individual clamping components, is less important in the overall stiffness characteristics of the assembly. This ensures that the knife element is not excessively displaced from its intended location within the machine when subjected to external loads.
  • High reliability. The combination of increased mechanical advantage and a favourable use of friction yield a high external load carrying capability for a given actuator clamping force. This allows the knife assembly to function acceptably over a wide range of actuator preloads.
  • High ease of use. Since the outer (or 'top') member of the clamping assembly can be the member actuated, it is possible to achieve a high ease of use all while achieving adequate mechanical strength and reliability. Further, the increased mechanical advantage afforded by the concept allows for the size or the quantity of actuators to be minimized.
  • Simplicity. The three discrete contact positions as herein described allows for simple and cost effective knife clamping assemblies to be constructed from just two components.
  • Standardization. The present concept allows for favourable shapes to be achieved for the knife clamping assembly such that a single standardized design can be utilized in many types of woodworking machines. Further, these embodiments as well as the present invention affords versatility in that a common compact design can be integrated with foundation bodies of various forms such that the knife assembly can be retrofitted to many existing or new devices.
  • Detailed description of embodiments of the invention
  • An embodiment of the invention in three different variants will hereinafter be described with reference to the Figs. 5-7. These variants have basically the same advantages and functions in a corresponding way as the prior art clamping assemblies described and illustrated in relation to the Figs. 2-4. However, they are also somewhat more compact than the previously described embodiments. This is accomplished, in part, by making the inner or lower, second clamping component smaller than in the prior embodiments and having the fulcrum surface of the upper or outer, first clamping component engage a surface on the base member. Accordingly, the first clamping component has a larger length in cross section than the second clamping component such that when positioning the first clamping component against the second clamping component such the the clamping axes of the first and second clamping components are aligned and the bearing surface and the contact surface abut, the fulcrum of the first clamping component is located a distance outside of the second clamping component. More precisely, the second clamping component has a cross sectional length, as measured in parallel to the largest cross sectional length of the first clamping component, which preferably is maximum 80%, more preferred maximum 70% and most preferred maximum 65% of the largest cross sectional length of the first clamping component.
  • More specifically, with reference first to Fig. 5, a base member 300 (corresponding to the base member previously described) is provided. The base member 300 may be a rotating disk or drum in a wood chipper or woodworking machine, or may be a separate mounting body that is separately secured to the disk or drum of the wood working machine by bolts (not shown) as would be understood by those skilled in the art.
  • Base member 300 has two pockets or recesses 301, 302 formed therein for respectively receiving or engaging the components of a clamping assembly 304. The clamping assembly 304 includes a rear or outer, first clamping component 306 and a front or inner, second clamping component 308.
  • The inner clamping component 308 is connected to the base member 300 in any convenient manner, such as for example by bolts which are not seen in this sectional view. The pocket 302 includes a bottom support surface 303, a rear support surface 305 with a radiused corner 307. The inner clamp 308 has a peripheral surface in cross section including surface portions 303' and 305' which are complementary to and engage surfaces 303 and 305 when the inner clamp is seated in pocket 302. As in the above embodiments the pocket 302 is formed such that outer clamping component 306 is free of any contact with any of the surfaces of pocket 302. Likewise, the recess or pocket 301 is formed such that its rear surface 301' is free of any contact with the back surface 306' of clamping component 306 to form a gap therebetween.
  • Clamping assembly 304 further includes an actuator, threaded fastener or screw 310 having a head 318 for actuating the clamping component 306. The screw head 318 is preferably located in a recess 322 formed in the outer surface 320 of the outer clamping component 306. The shank of the screw passes through openings 312 and 314 in the outer clamping component 306 and inner clamping component 308, respectively, and is threaded into a thread bore 316 formed in base member 300. As described above other clamping means than screws may be used.
  • A knife 324 is illustrated as clamped between the outer clamping component 306 and the inner component 308 at one end of the assembly 304. As in the prior embodiment the outer clamping component includes a surface portion defining a fulcrum 326. In this embodiment however the fulcrum engages a complementary surface 326' formed in pocket 301. This allows the clamping component 308 to be formed with a smaller width, i.e. cross sectional length, than in the prior embodiments.
  • The fulcrum surface 326 forms a point about which the outer clamping component 306 can pivot. The fulcrum surface 326, along with the knife abutting portion 325 on the other end of clamping component 306 form discrete positions for supporting the outer clamp component under the action of screw 310, which is positioned between the fulcrum 326 and knife 324.
  • As in the prior embodiments the outer clamping component 306 includes a bearing surface 330 and the inner clamping component 308 includes an opposing complementary contact surface 332 which abuts bearing surface 330 when the assembly is actuated upon tightening of screw 310. Thus this assembly also provides three contact points for the outer clamp component at spaced apart locations on the same side of the clamping component.
  • Mechanically this embodiment of the invention operates in the same way as the previously described devices. Thus when the screw 310 is tightened against clamping component 306 a clamping force is developed along a line of action parallel to or aligned with the axis of the screw. That clamping force is resisted at both ends of clamping component 306 by a reaction force Fk (See Figure 2) against the knife element and a reaction force R2 (Figure 2) at the fulcrum 326. As before, bearing surface 330 and contact surface 332 do not offer resistance to the clamping force.
  • As also described before, in the absence of the bearing and contact surfaces and the geometry of the knife and clamping components the outer clamping component would be free to slide relative to the inner clamping component when the clamping force is applied. This is resisted by presence of bearing surface 330 abutting contact surface 332 on inner clamping component 308. The latter is, of course, seated against the pocket surfaces 303 and 305 and cannot slide in the pocket. Therefore instead of clamping component 306 sliding a further reaction force R3 (Figure 2) arises. As a result the reaction force R3 in combination with reaction force R2 yield an effective or virtual fulcrum that is further askew of the knives 124 than is the fulcrum 126 and increased mechanical advantage results.
  • The surfaces 303 and 305 of pocket 302 form an acute angle to each other and the corresponding surfaces of the clamping component are similarly angled to each. In each embodiment the surface 303 extends transversely and at an angle to the clamping force axis. In the embodiment of Figure 5 the surface 305 (and the corresponding surface 305' of component 308) is parallel to that axis. The engagement of surface 305 and the adjacent surface of component 308 serves to properly seat component 308 relative to clamping component 306 and also serves to resist rotation of clamping component 308 in response to clamping force and external loads placed on the knives 324 during wood cutting or chipping.
  • It has been found that additional resistance to rotation of component 308 in pocket 302 can be achieved by inclining the surface 305 (and the corresponding surface 305' of component 308) at an acute angle ∝ to the axis 320 of the clamping force as shown in Figure 6. Figure 7 illustrates a slightly larger angle ∝.
  • A main advantage with a clamping assembly according to the invention is that it can be made more compact in relation to prior art clamping assemblies. This has to effect that the pocket in the base member for accommodating the clamping assembly can be made smaller, which in its turn yields the base member an increased strength and/or allows to arrange a larger number of knives on a given base member. A larger number of knives allows to run the woodworking machine at a higher speed with increased production rate as a consequence. Also, a more compact clamping assembly will reduce the material content in each clamping assembly, which in its turn will reduce the operating cost since clamping assemblies of this kind are wearing parts, which have to be replaced regularly.
  • While preferred embodiments of the invention have been described above, it will be understood by those skilled in the art that many variations and alterations are possible without departing from the broad scope of the invention as described and drawn. For example, while a single mechanical fastener in the form of a screw is shown as the actuator in the preferred embodiments, it will be understood that clamping assemblies comprising one or more fasteners is comprehended by the invention. Similarly, while a single knife element has been described, the current invention comprehends the clamping of multiple knife elements in a single assembly. Also, a clamping assembly according to the invention can be utilized to clamp knives of almost any shape and not only a knife shaped as illustrated herein. Additionally, while the preferred embodiments show the outer clamping component as the actuated component, the invention comprehends clamping assemblies where the inner clamping component is actuated and the outer clamping component is affixed to the base member.

Claims (10)

  1. A clamping assembly for clamping one or more knife elements (324) onto a woodworking machine, said clamping assembly (304) including:
    a first clamping component (306) having, as seen in cross section, two ends and opposite sides and being sized and shaped to have at least three discrete contact positions, said discrete contact positions comprising a first surface portion defining a fulcrum (326) located generally at one end of the first clamping component, a second surface defining a first knife abutting portion (325) located generally at the other end of the first clamping component for abutting said one or more knife elements, and a third surface portion defining a bearing surface (330) located on said first clamping component separate from said fulcrum and between the fulcrum and the knife abutting portion; said first surface defining said fulcrum and said first knife abutting portion being located on the same side of said first clamping component;
    a second clamping component (308) including a surface defining a second knife abutting portion for engaging a surface on said one or more knives that is opposite the surface thereof engaged by the first knife abutting portion of the first clamping component to clamp said one or more knives between the clamping components; and a substantially planar contact surface (332) located to engage the bearing surface of said first clamping component;
    an actuator (310) for applying a clamping force to clamp said first clamping component towards the second clamping component, along clamping axes (328) extending through both the first and the second clamping components and located intermediate of said knife abutting portion and said fulcrum of the first clamping component;
    said fulcrum of the first clamping component being formed as a substantially planar surface, wherein a line normal to said fulcrum is at an acute angle to said clamping axis;
    said bearing surface of the first clamping component and said contact surface of the second clamping component being formed as substantially planar surfaces being substantially parallel to the clamping axes and such that a line normal to said bearing surface and said contact surface intersects said line normal to said fulcrum at a location farther askew of said clamping axes than said fulcrum;
    characterized in that the first clamping component (306) has a larger length in cross section than the second clamping component (308), such that when positioning the first clamping component against the second clamping component such that the clamping axes (328) of the first and second clamping components are aligned and the bearing surface (330) and the contact surface (332) abut, the fulcrum (326) of the first clamping component is located a distance outside of the second clamping component.
  2. The clamping assembly according to claim 1, wherein the second clamping component has a cross sectional length, as measured in parallel to the largest cross sectional length of the first clamping component, which is maximum 80% of the largest cross sectional length of the first clamping component.
  3. The clamping assembly according to claim 1, wherein the second clamping component has a cross sectional length, as measured in parallel to the largest cross sectional length of the first clamping component, which is maximum 70% of the largest cross sectional length of the first clamping component.
  4. The clamping assembly according to claim 1, wherein the second clamping component has a cross sectional length, as measured in parallel to the largest cross sectional length of the first clamping component, which is maximum 65% of the largest cross sectional length of the first clamping component.
  5. The clamping assembly according to any of the preceding claims, wherein said angle θ is at least 20 degrees.
  6. The clamping assembly according to any of the claims 1-4, wherein said angle θ is at least 30 degrees.
  7. The clamping assembly according to any of the preceding claims, wherein said contact surface is located on the second clamping component.
  8. The clamping assembly according to any of the preceding claims, wherein said contact surface and said bearing surface are parallel to the clamping axis.
  9. The clamping assembly according to any of the preceding claims including a base member having a recess formed therein that is generally complementary to a portion of the peripheral surface of the second clamping component, wherein the recess in the base member and a portion of the peripheral surface of the second clamping component seated in the recess each have first seating surfaces, which are parallel to and engage each other and form an acute angle transverse to the clamping axis.
  10. The clamping assembly according to claim 9, wherein the recess in the base member and a portion of the second clamping component seated in the recess each have second seating surfaces, which are parallel to and engage each other at an acute angle to said first seating surfaces.
EP14763484.4A 2013-03-15 2014-03-17 Clamping assembly for woodworking knife Active EP2969431B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201431042T SI2969431T1 (en) 2013-03-15 2014-03-17 Clamping assembly for woodworking knife

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/839,167 US10245751B2 (en) 2005-01-07 2013-03-15 Clamping assembly for woodworking knife
PCT/SE2014/050331 WO2014142744A1 (en) 2013-03-15 2014-03-17 Clamping assembly for woodworking knife

Publications (3)

Publication Number Publication Date
EP2969431A1 EP2969431A1 (en) 2016-01-20
EP2969431A4 EP2969431A4 (en) 2016-12-28
EP2969431B1 true EP2969431B1 (en) 2018-11-07

Family

ID=51537204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14763484.4A Active EP2969431B1 (en) 2013-03-15 2014-03-17 Clamping assembly for woodworking knife

Country Status (3)

Country Link
EP (1) EP2969431B1 (en)
SI (1) SI2969431T1 (en)
WO (1) WO2014142744A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054768A1 (en) * 2007-10-24 2009-04-30 Iggesund Tools Ab A chipper knife, assembly and mounting method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI760799A (en) * 1975-04-03 1976-10-04 Ver Edelstahlwerke Ag
SE504431C2 (en) * 1994-06-29 1997-02-10 Iggesund Tools Ab Knife device
US5996655A (en) * 1997-12-11 1999-12-07 Cae Machinery Ltd. Pivoting knife clamp
FI20025006A0 (en) * 2002-02-15 2002-02-15 Rummakko Oy Chain steel assembly
US7836923B2 (en) * 2002-10-25 2010-11-23 Key Knife, Inc. Ring slicer with easily removable knife and knife assembly
CA2531612C (en) * 2005-01-07 2014-05-13 Iggesund Tools Ab Clamping assembly for woodworking knife

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054768A1 (en) * 2007-10-24 2009-04-30 Iggesund Tools Ab A chipper knife, assembly and mounting method thereof

Also Published As

Publication number Publication date
EP2969431A4 (en) 2016-12-28
EP2969431A1 (en) 2016-01-20
WO2014142744A1 (en) 2014-09-18
SI2969431T1 (en) 2019-03-29

Similar Documents

Publication Publication Date Title
EP1833647B1 (en) Clamping assembly for woodworking knife
US8167013B2 (en) Locking element for use with a knife clamping assembly
CN103212752B (en) Drilling cutter
CN1743112A (en) Milling tool, especially thread milling cutter
JP2018527208A (en) Tool body and turning tool for grooving
US20090252441A1 (en) Hydrostatic profile rail guide
EP2219809B1 (en) Cutting tool
US10245751B2 (en) Clamping assembly for woodworking knife
US9770768B2 (en) Rotary cutting tool with anti-rotation feature
EP2969431B1 (en) Clamping assembly for woodworking knife
EP2981362B1 (en) Adjustable cutting knife
CA2531612C (en) Clamping assembly for woodworking knife
US4744703A (en) Rotary cutter for slotting or cut-off
CN102649247A (en) Processing apparatus with feeler roller
JP6292714B2 (en) Adjustment screw, operation tool and cutting tool
CA2859222C (en) Cutter head assembly for a knife planer
KR20110010379U (en) Steel cutter
CA2777555C (en) Clamping apparatus for wood chipper
US20070104545A1 (en) Tool for machining workpieces by chip removal
JP3227397U (en) Firmly assembled cutter retention assembly
JP7020245B2 (en) Cutting edge position adjustment mechanism and milling tool
WO2009066974A1 (en) Guillotine knife assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20161128

RIC1 Information provided on ipc code assigned before grant

Ipc: B27G 13/10 20060101AFI20161122BHEP

Ipc: B27L 11/00 20060101ALI20161122BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1061520

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014035599

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E016767

Country of ref document: EE

Effective date: 20190129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 29897

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014035599

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1061520

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240215

Year of fee payment: 11

Ref country code: EE

Payment date: 20240320

Year of fee payment: 11

Ref country code: DE

Payment date: 20240216

Year of fee payment: 11

Ref country code: CZ

Payment date: 20240307

Year of fee payment: 11

Ref country code: GB

Payment date: 20240215

Year of fee payment: 11

Ref country code: SK

Payment date: 20240312

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240307

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240215

Year of fee payment: 11