EP2969171A1 - Method for treating a catalytic bed reactor - Google Patents

Method for treating a catalytic bed reactor

Info

Publication number
EP2969171A1
EP2969171A1 EP14713532.1A EP14713532A EP2969171A1 EP 2969171 A1 EP2969171 A1 EP 2969171A1 EP 14713532 A EP14713532 A EP 14713532A EP 2969171 A1 EP2969171 A1 EP 2969171A1
Authority
EP
European Patent Office
Prior art keywords
reactor
catalytic
passivation
catalytic bed
passivation step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14713532.1A
Other languages
German (de)
French (fr)
Inventor
Daniel Gary
Raphael Faure
Olivier DEBELLEMANIERE
Angelo Vaccari
Giuseppe Brenna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2969171A1 publication Critical patent/EP2969171A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0035Periodical feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00263Preventing explosion of the chemical mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00265Preventing flame propagation

Definitions

  • the present invention relates to the method of treating a catalytic reactor. 5 Plant productivity is essentially determined by optimizing its design and operating costs.
  • reactor operation is a key point. Many installation incidents are caused by reactors and catalysts.
  • Catalytic materials can suffer greatly from the variation of certain parameters.
  • the increase in temperature can lead to the sintering of catalytic sites and their supports.
  • a change in the composition of the gas stream may result in the presence of "poison elements" may itself cause deactivation of the catalyst.
  • the replacement of a catalyst represents a cost corresponding, on the one hand, to the price of the catalyst itself and, on the other hand, to the penalties applied by the end customer, who does not receive the products required for his own application during the replacement phase. unexpected.
  • Indicators such as temperature measurements may reflect the part of the catalytic bed that is no longer active. In this case, the replacement of the catalyst can be optimized and skimming and replacement of a portion of the catalyst bed can be carried out.
  • a problem that arises is to provide an improved process for treating a catalytic reactor.
  • a solution of the present invention is a method of treating a catalytic reactor comprising a catalytic bed comprising successively:
  • passivation is meant a very superficial oxidation step of the catalytic material.
  • the method according to the invention may have one or more of the following characteristics:
  • the oxidation layer has a thickness of between 0.3 and 10 nm, preferably between 0.3 and 3 nm.
  • the passivation step comprises:
  • the passivation step is carried out at a temperature below 200 ° C, preferably below 100 ° C;
  • the passivation step is carried out at a pressure of less than 10 atm, preferably less than 5 atm;
  • the introduction sub-step leads to the oxidation of the surface of the metal particles present on the catalytic bed.
  • the surface of the particles corresponds to a surface layer of nanometric thickness.
  • the oxidation during the introduction sub-step does not diffuse into the heart of the catalytic bed;
  • monitoring of the temperature of the catalytic bed is carried out
  • the catalytic reactor is a reactor based on copper, nickel, cobalt, iron, molybdenum, chromium ...
  • the catalytic reactor is a reactor used for the synthesis of methanol, the hydrogenation of carbon dioxide, the hydrogenation of carbon monoxide, the methanation reaction, the reforming of methane with steam or CO 2, the reforming of alcohol (methanol, ethanol ...) with steam.
  • inert gas means a gas which is inert with respect to the active sites of the catalytic bed, this gas may be nitrogen or argon.
  • the reactor Before opening the reactor (step b), the reactor is depressurized at atmospheric pressure and cooled to room temperature by a stream of inert gas, preferably nitrogen. Then the catalytic reactor is opened while being swept by said inert gas. However, when opening the air can enter the catalytic reactor, and it is usual to measure 0.5 to 5% oxygen on the surface of the catalyst bed. In the absence of the passivation step carried out according to the invention before the reactor opening step, oxidation of the catalyst with sudden heating would be observed, inducing irreversible deactivation of the catalytic bed. Indeed, the heating will promote the sintering of the metal. Note that the rate of deactivation is dependent on the temperature range and the nature of the metal and its melting point. The deactivation rate also depends on the state of the catalyst microstructure.
  • the passivation step according to the invention makes it possible to keep the proportion of the catalyst considered as being still active during the opening of the catalyst constant.
  • the passivation step is carried out with an inert gas, for example nitrogen, and an oxidant, for example with ⁇ O2 or with CO2. , introduced into the inert gas.
  • the passivation step is carried out at a temperature as low as possible generally at a temperature below 100 ° C, preferably at a temperature below 50 ° C.
  • the amount of oxidant in the inert gas should be as low as possible. Since the oxidation reaction is exothermic, a small amount of oxidant makes it possible to minimize the rise in temperature.
  • the amount of oxidant at the start of the passivation step should be of the order of a few tens of ppm, preferably between 50 and 100 ppm). Ideally, a monitoring of the temperature of the catalytic bed makes it possible to check that no phenomenon of hot spot occurs. The duration of the stage of Passivation depends on the size of the ferrule. If a temperature increase is detected (rise detected between 1 and 5 ° C) due to the oxidation reaction, it is possible to use this measurement of the temperature as an indicator of the progress of the reaction. Also, it is observed during the passivation step, the breakthrough of the heat front at the outlet of the catalytic reactor. Once the breakthrough of the heat front has been observed, the introduction of inert gas is repeated by increasing the amount of oxidant in the flow of inert gas until the composition of the external atmosphere is reached.
  • the passivation step is carried out by means of a stream of nitrogen comprising an oxygen concentration of about 50 ppm at room temperature. room temperature and at atmospheric pressure.
  • the passivation reaction was monitored by temperature control.
  • the breakthrough of the heat front at the outlet of the catalytic reactor is observed.
  • the introduction of inert gas is repeated by increasing the amount of oxidant in the nitrogen stream.
  • the oxygen content in the nitrogen stream is gradually increased from 100 ppm to 1000 ppm. If the temperature of the catalyst bed remains stable in the presence of a nitrogen stream comprising a nitrogen content of 1000 ppm, it can be considered that the passivation step is complete.
  • the catalytic reactor can then be opened after cooling to room temperature without the risk of reoxidation.
  • FIG. 1 represents a first TPR signal obtained by means of a sample which has not undergone the passivation step according to the invention (solid line curve) and a second TPR signal obtained by means of a sample which has undergone Passivation step according to the invention (dotted line curve). It should be noted that the total reduction of the passivated sample is obtained quickly (in less than 30 minutes) and at a low temperature (200 ° C.) while the reduction of the non-passivated sample requires more time (40 minutes) and more energy (400 ° C).
  • the passivation step before opening the catalytic reactor and skimming a part of the bed is relevant for many Cu, Ni, Co, Fe, Cr, Mo metal-based metal catalysts used, for example, in the following processes. :
  • Cu-based catalyst synthesis of methanol, hydrogenation of CO2, hydrogenation of CO; Ni-based catalyst: reforming or pre-reforming reaction, methanation, ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for treating a catalytic reactor comprising a catalytic bed, successively comprising: a) a step of passivation leading to the production of an oxidation layer on the surface of the active sites of the catalytic bed; b) a step of opening the reactor, and c) a step of skimming at least part of the catalytic bed.

Description

PROCEDE DE TRAITEMENT D'UN LIT CATALYTIQUE DANS UN REACTEUR  PROCESS FOR TREATING A CATALYTIC BED IN A REACTOR
La présente invention est relative au procédé de traitement d'un réacteur catalytique. 5 La productivité des installations est essentiellement déterminée par l'optimisation de sa conception et des coûts d'exploitation. The present invention relates to the method of treating a catalytic reactor. 5 Plant productivity is essentially determined by optimizing its design and operating costs.
En règle générale, dans les unités chimiques à l'aide des procédés catalytiques, l'exploitation des réacteurs est un point clé. De nombreux incidents d'installation sont en effet causés par les réacteurs et les catalyseurs. As a general rule, in chemical units using catalytic processes, reactor operation is a key point. Many installation incidents are caused by reactors and catalysts.
0 Les matériaux catalytiques peuvent fortement souffrir de la variation de certains paramètres. A titre d'exemple l'augmentation de la température peut entraîner le frittage de sites catalytiques et de leurs supports. De même une modification de la composition du flux gazeux peut entraîner la présence « d'éléments poisons » pouvant elle-même entraîner une désactivation du catalyseur.Catalytic materials can suffer greatly from the variation of certain parameters. By way of example, the increase in temperature can lead to the sintering of catalytic sites and their supports. Similarly a change in the composition of the gas stream may result in the presence of "poison elements" may itself cause deactivation of the catalyst.
5 Dès que les catalyseurs ne remplissent pas leur fonction, des incidents se produisent et conduisent généralement à des problèmes d'exploitation de l'installation et irrémédiablement l'installation doit être arrêtée pour maintenance. Once the catalysts do not perform their function, incidents occur and generally lead to operating problems of the installation and irremediably the installation must be stopped for maintenance.
Le remplacement d'un catalyseur représente un coût correspondant d'une part au prix du catalyseur lui-même et d'autre part aux sanctions appliquées par le client final, qui ne0 reçoit pas les produits requis pour sa propre application pendant la phase de remplacement imprévue.  The replacement of a catalyst represents a cost corresponding, on the one hand, to the price of the catalyst itself and, on the other hand, to the penalties applied by the end customer, who does not receive the products required for his own application during the replacement phase. unexpected.
Dans certains cas, il est possible d'évaluer quelle fraction du catalyseur doit être remplacée. Des indicateurs tels que des mesures de la température, peuvent refléter la partie du lit catalytique qui n'est plus active. Dans ce cas, le remplacement du catalyseur5 peut être optimisé et on peut procéder à l'écrémage et au remplacement d'une partie du lit catalytique.  In some cases it is possible to evaluate which fraction of the catalyst should be replaced. Indicators such as temperature measurements may reflect the part of the catalytic bed that is no longer active. In this case, the replacement of the catalyst can be optimized and skimming and replacement of a portion of the catalyst bed can be carried out.
Cependant, l'écrémage doit être fait avec soin pour :  However, skimming must be done carefully to:
éviter tout problème tel que la détérioration de la partie du lit catalytique qui est conservée par oxydation violente au contact de l'air et/ou de l'humidité susceptible de0 pénétrer après l'ouverture du réacteur, et pour  avoid any problem such as the deterioration of the part of the catalytic bed which is kept by violent oxidation on contact with the air and / or moisture likely to penetrate after the opening of the reactor, and for
permettre aux opérateurs de travailler en toute sécurité. En effet, les opérateurs peuvent potentiellement être confronté à un réchauffement brutal après ouverture du réacteur catalytique en raison de l'oxydation avec de l'air. Partant de là, un problème qui se pose est fournir un procédé amélioré de traitement d'un réacteur catalytique. enable operators to work safely. Indeed, the operators can potentially be confronted with a sudden warming after opening of the catalytic reactor due to oxidation with air. Starting from this, a problem that arises is to provide an improved process for treating a catalytic reactor.
Une solution de la présente invention est un procédé de traitement d'un réacteur catalytique comprenant un lit catalytique comprenant successivement :  A solution of the present invention is a method of treating a catalytic reactor comprising a catalytic bed comprising successively:
a) une étape de passivation conduisant à la production d'une couche d'oxydation à la surface des sites actifs du lit catalytique ;  a) a passivation step leading to the production of an oxidation layer on the surface of the active sites of the catalytic bed;
b) une étape d'ouverture du réacteur, et  b) a step of opening the reactor, and
c) une étape d'écrémage d'au moins une partie du lit catalytique.  c) a skimming step of at least a portion of the catalyst bed.
Par « passivation », on entend une étape d'oxydation très superficielle du matériau catalytique.  By "passivation" is meant a very superficial oxidation step of the catalytic material.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :  Depending on the case, the method according to the invention may have one or more of the following characteristics:
la couche d'oxydation présente une épaisseur comprise entre 0,3 et 10 nm, préférentiellement entre 0,3 et 3 nm.  the oxidation layer has a thickness of between 0.3 and 10 nm, preferably between 0.3 and 3 nm.
- l'étape de passivation comprend :  the passivation step comprises:
i- une sous-étape d'introduction dans le réacteur catalytique d'un gaz inerte comprenant une quantité d'oxydant comprise entre 50 et 100 ppm  i- a sub-step of introduction into the catalytic reactor of an inert gas comprising an amount of oxidant of between 50 and 100 ppm
ii- la réitération de la sous-étape d'introduction (i) en augmentant la quantité d'oxydant d'un facteur 2 à 10, de préférence 4 à 8 dans le flux de gaz inerte jusqu'à ce que la teneur en oxygène au sein du réacteur soit égale à la teneur en oxygène dans l'atmosphère.  ii- the reiteration of the introduction sub-step (i) by increasing the amount of oxidant by a factor of 2 to 10, preferably 4 to 8 in the flow of inert gas until the oxygen content within the reactor is equal to the oxygen content in the atmosphere.
l'étape de passivation est réalisée à une température inférieure à 200°C, de préférence inférieure à 100°C ;  the passivation step is carried out at a temperature below 200 ° C, preferably below 100 ° C;
l'étape de passivation est réalisée à une pression inférieure à 10 atm, préférentiellement inférieure à 5 atm ;  the passivation step is carried out at a pressure of less than 10 atm, preferably less than 5 atm;
la sous-étape d'introduction conduit à l'oxydation de la surface des particules métalliques présentes sur le lit catalytique. Notons que la surface des particules correspond à une couche surfacique d'épaisseur nanométrique. En effet, l'oxydation lors de la sous- étape d'introduction ne diffuse pas au cœur du lit catalytique ;  the introduction sub-step leads to the oxidation of the surface of the metal particles present on the catalytic bed. Note that the surface of the particles corresponds to a surface layer of nanometric thickness. In fact, the oxidation during the introduction sub-step does not diffuse into the heart of the catalytic bed;
- au cours de l'étape de passivation, une surveillance de la température du lit catalytique est opérée ;  during the passivation step, monitoring of the temperature of the catalytic bed is carried out;
au cours de l'étape de passivation, un front de chaleur est observé et la réitération de la sous-étape d'introduction est effectuée lorsque le front chaleur perce l'orifice de sortie du réacteur catalytique ; le réacteur catalytique est un réacteur à base de cuivre, nickel, cobalt, Fer, Molybdène, Chrome ... during the passivation step, a heat front is observed and the reiteration of the introduction sub-step is performed when the heat front pierces the outlet of the catalytic reactor; the catalytic reactor is a reactor based on copper, nickel, cobalt, iron, molybdenum, chromium ...
le réacteur catalytique est un réacteur utilisé pour la synthèse du méthanol, l'hydrogénation du dioxyde de carbone, l'hydrogénation du monoxyde de carbone, la réaction de methanation, le réformage du méthane à la vapeur ou au C02, le reformage d'alcool (methanol, ethanol...) à la vapeur.  the catalytic reactor is a reactor used for the synthesis of methanol, the hydrogenation of carbon dioxide, the hydrogenation of carbon monoxide, the methanation reaction, the reforming of methane with steam or CO 2, the reforming of alcohol (methanol, ethanol ...) with steam.
Dans le cadre de l'invention, on entend par « gaz inerte » un gaz inerte vis-à-vis des sites actifs du lit catalytique, ce gaz peut être de l'azote voir de l'argon.  In the context of the invention, the term "inert gas" means a gas which is inert with respect to the active sites of the catalytic bed, this gas may be nitrogen or argon.
Avant l'ouverture du réacteur (étape b), le réacteur est dépressurisé à la pression atmosphérique et refroidi à température ambiante par un courant de gaz inerte, de préférence de l'azote. Puis le réacteur catalytique est ouvert tout en étant balayé par ledit gaz inerte. Toutefois, lors de l'ouverture l'air peut entrer dans le réacteur catalytique, et il est habituel de mesurer de 0,5 à 5% d'oxygène à la surface du lit catalytique. En l'absence de l'étape de passivation conduite selon l'invention avant l'étape d'ouverture du réacteur, on observerait une oxydation du catalyseur avec échauffement brutal induisant une désactivation irréversible du lit catalytique. En effet, le chauffage va favoriser le frittage du métal. Notons que la vitesse de désactivation est dépendante de la plage de température et de la nature du métal et de son point de fusion. La vitesse de désactivation dépend aussi de l'état de la microstructure du catalyseur.  Before opening the reactor (step b), the reactor is depressurized at atmospheric pressure and cooled to room temperature by a stream of inert gas, preferably nitrogen. Then the catalytic reactor is opened while being swept by said inert gas. However, when opening the air can enter the catalytic reactor, and it is usual to measure 0.5 to 5% oxygen on the surface of the catalyst bed. In the absence of the passivation step carried out according to the invention before the reactor opening step, oxidation of the catalyst with sudden heating would be observed, inducing irreversible deactivation of the catalytic bed. Indeed, the heating will promote the sintering of the metal. Note that the rate of deactivation is dependent on the temperature range and the nature of the metal and its melting point. The deactivation rate also depends on the state of the catalyst microstructure.
L'étape de passivation selon l'invention permet de maintenir constante la part du catalyseur considérée comme étant encore actif lors de l'ouverture du catalyseur.  The passivation step according to the invention makes it possible to keep the proportion of the catalyst considered as being still active during the opening of the catalyst constant.
La solution proposée par l'invention va à présent être détaillée au moyen de deux procédures données à titre d'exemple.  The solution proposed by the invention will now be detailed by means of two procedures given by way of example.
Selon une première procédure, applicable notamment aux catalyseurs faiblement chargés en métaux (jusque 25% massique), l'étape de passivation est effectuée par un gaz inerte, par exemple de l'azote, et un oxydant, par exemple de Γ02 ou du C02, introduit dans le gaz inerte. L'étape de passivation est effectuée à une température aussi basse que possible en général à une température inférieure à 100°C, de préférence à une température inférieure à 50°C. La quantité d'oxydant dans le gaz inerte doit être aussi faible que possible. La réaction d'oxydation étant exothermique, une faible quantité d'oxydant permet de minimiser l'élévation de température. La quantité d'oxydant au démarrage de l'étape de passivation doit être de l'ordre de quelques dizaines de ppm, de préférence entre 50 et 100 ppm). Idéalement, une surveillance de la température du lit catalytique permet de vérifier qu'aucun phénomène de point chaud ne se produit. La durée de l'étape de passivation dépend de la taille de la virole. Si une augmentation de température est détectée (hausse détectée entre 1 et 5 °C) en raison de la réaction d'oxydation, il est possible d'utiliser cette mesure de la température comme indicateur de la progression de la réaction. Aussi, on observe lors de l'étape de passivation, la percée du front de chaleur à la sortie du réacteur catalytique. Une fois la percée du front de chaleur observée, on réitère l'introduction de gaz inerte en augmentant la quantité d'oxydant dans le flux de gaz inerte jusqu'à ce que la composition de l'atmosphère extérieure soit atteinte. According to a first procedure, applicable in particular to catalysts with a low metal charge (up to 25% by mass), the passivation step is carried out with an inert gas, for example nitrogen, and an oxidant, for example with ΓO2 or with CO2. , introduced into the inert gas. The passivation step is carried out at a temperature as low as possible generally at a temperature below 100 ° C, preferably at a temperature below 50 ° C. The amount of oxidant in the inert gas should be as low as possible. Since the oxidation reaction is exothermic, a small amount of oxidant makes it possible to minimize the rise in temperature. The amount of oxidant at the start of the passivation step should be of the order of a few tens of ppm, preferably between 50 and 100 ppm). Ideally, a monitoring of the temperature of the catalytic bed makes it possible to check that no phenomenon of hot spot occurs. The duration of the stage of Passivation depends on the size of the ferrule. If a temperature increase is detected (rise detected between 1 and 5 ° C) due to the oxidation reaction, it is possible to use this measurement of the temperature as an indicator of the progress of the reaction. Also, it is observed during the passivation step, the breakthrough of the heat front at the outlet of the catalytic reactor. Once the breakthrough of the heat front has been observed, the introduction of inert gas is repeated by increasing the amount of oxidant in the flow of inert gas until the composition of the external atmosphere is reached.
Selon une deuxième procédure applicable spécifiquement aux catalyseurs à base de cuivre et contenant plus de 40% massique de cuivre, l'étape de passivation est réalisée au moyen d'un courant d'azote comprenant une concentration en oxygène d'environ 50 ppm à la température ambiante et à la pression atmosphérique. La réaction de passivation a été surveillée par contrôle de la température. On observe la percée du front de chaleur à la sortie du réacteur catalytique. Une fois la percée du front de chaleur observée, on réitère l'introduction de gaz inerte en augmentant la quantité d'oxydant dans le flux d'azote. La teneur en oxygène dans le flux d'azote est augmentée progressivement de 100 ppm à 1000 ppm. Si la température du lit catalytique reste stable en présence d'un flux d'azote comprenant une teneur en azote de 1000 ppm, on peut considérer que l'étape de passivation est terminée. Le réacteur catalytique peut alors être ouvert après refroidissement à température ambiante sans risque de réoxydation.  According to a second procedure specifically applicable to copper-based catalysts and containing more than 40% by weight of copper, the passivation step is carried out by means of a stream of nitrogen comprising an oxygen concentration of about 50 ppm at room temperature. room temperature and at atmospheric pressure. The passivation reaction was monitored by temperature control. The breakthrough of the heat front at the outlet of the catalytic reactor is observed. Once the breakthrough of the heat front has been observed, the introduction of inert gas is repeated by increasing the amount of oxidant in the nitrogen stream. The oxygen content in the nitrogen stream is gradually increased from 100 ppm to 1000 ppm. If the temperature of the catalyst bed remains stable in the presence of a nitrogen stream comprising a nitrogen content of 1000 ppm, it can be considered that the passivation step is complete. The catalytic reactor can then be opened after cooling to room temperature without the risk of reoxidation.
Un échantillon du lit catalytique a été caractérisé par Réduction Programmée en A sample of the catalytic bed was characterized by programmed reduction in
Température (TPR) et observées par MET (microscopie électronique en transmission) pour conclure sur la pertinence de l'étape de passivation (identification de la présence de la couche d'oxydation à la surface du lit catalytique). La figure 1 représente un premier signal TPR obtenu au moyen d'un échantillon n'ayant pas subi l'étape de passivation selon l'invention (courbe en trait plein) et un deuxième signal TPR obtenu au moyen d'un échantillon ayant subi l'étape de passivation selon l'invention (courbe en trait pointillé). On remarque alors que la réduction totale de l'échantillon passivé est obtenu rapidement (en moins de 30 minutes) et à basse température (200°C) tandis que la réduction de l'échantillon non passivé nécessite plus de temps (40 minutes) et plus d'énergie (400°C). Temperature (TPR) and observed by TEM (transmission electron microscopy) to conclude on the relevance of the passivation step (identification of the presence of the oxidation layer on the surface of the catalytic bed). FIG. 1 represents a first TPR signal obtained by means of a sample which has not undergone the passivation step according to the invention (solid line curve) and a second TPR signal obtained by means of a sample which has undergone Passivation step according to the invention (dotted line curve). It should be noted that the total reduction of the passivated sample is obtained quickly (in less than 30 minutes) and at a low temperature (200 ° C.) while the reduction of the non-passivated sample requires more time (40 minutes) and more energy (400 ° C).
L'étape de passivation avant ouverture du réacteur catalytique et écrémage d'une partie du lit est pertinente pour de nombreux catalyseurs de métaux à base de Cu, Ni, Co, Fe, Cr, Mo ... utilisés par exemple dans les procédés suivants :  The passivation step before opening the catalytic reactor and skimming a part of the bed is relevant for many Cu, Ni, Co, Fe, Cr, Mo metal-based metal catalysts used, for example, in the following processes. :
catalyseur à base de Cu : synthèse du méthanol, hydrogénation du C02, hydrogénation du CO ; catalyseur à base de Ni : réaction de réformage ou de pré-réformage, méthanation, ... Cu-based catalyst: synthesis of methanol, hydrogenation of CO2, hydrogenation of CO; Ni-based catalyst: reforming or pre-reforming reaction, methanation, ...
catalyseur à base de Co, Fe: procédé Fischer-Tropsch.  catalyst based on Co, Fe: Fischer-Tropsch process.

Claims

Revendications claims
1. Procédé de traitement d'un réacteur catalytique comprenant un lit catalytique comprenant successivement : Process for treating a catalytic reactor comprising a catalytic bed comprising successively:
a) une étape de passivation conduisant à la production d'une couche d'oxydation à la surface des sites actifs du lit catalytique ;  a) a passivation step leading to the production of an oxidation layer on the surface of the active sites of the catalytic bed;
b) une étape d'ouverture du réacteur, et  b) a step of opening the reactor, and
c) une étape d'écrémage d'au moins une partie du lit catalytique,  c) a skimming step of at least a portion of the catalytic bed,
avec l'étape de passivation comprenant : with the passivation step comprising:
i- une sous-étape d'introduction dans le réacteur catalytique d'un gaz inerte comprenant une quantité d'oxydant comprise entre 50 et 100 ppm  i- a sub-step of introduction into the catalytic reactor of an inert gas comprising an amount of oxidant of between 50 and 100 ppm
ii- la réitération de la sous-étape d'introduction (i) en augmentant la quantité d'oxydant d'un facteur 2 à 10, de préférence 4 à 8 dans le flux de gaz inerte jusqu'à ce que la teneur en oxygène au sein du réacteur soit égale à la teneur en oxygène dans l'atmosphère.  ii- the reiteration of the introduction sub-step (i) by increasing the amount of oxidant by a factor of 2 to 10, preferably 4 to 8 in the flow of inert gas until the oxygen content within the reactor is equal to the oxygen content in the atmosphere.
2. Procédé selon la revendication 1, caractérisé en ce que la couche d'oxydation présente une épaisseur comprise entre 0.3 et 10 nm, préférentiellement entre 0.3 et 3 nm. 2. Method according to claim 1, characterized in that the oxidation layer has a thickness between 0.3 and 10 nm, preferably between 0.3 and 3 nm.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'étape de passivation est réalisée à une température inférieure à 200°C, de préférence inférieure à 100°C. 3. Method according to one of claims 1 or 2, characterized in that the passivation step is carried out at a temperature below 200 ° C, preferably below 100 ° C.
4. Procédé selon l'une des revendications 1 ou 3, caractérisé en ce que l'étape de passivation est réalisée à une pression inférieure à 10 atm, préférentiellement inférieure à4. Method according to one of claims 1 or 3, characterized in that the passivation step is carried out at a pressure of less than 10 atm, preferably less than 10 atm.
5 atm. 5 atm.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la sous-étape d'introduction conduit à l'oxydation de la surface des particules métalliques présentes sur le lit catalytique. 5. Method according to one of claims 1 to 4, characterized in that the introduction sub-step leads to the oxidation of the surface of the metal particles present on the catalyst bed.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'au cours de l'étape de passivation, une surveillance de la température du lit catalytique est opérée. 6. Method according to one of claims 1 to 5, characterized in that during the passivation step, a monitoring of the temperature of the catalytic bed is operated.
7. Procédé selon la revendicationô, caractérisé en ce qu'au cours de l'étape de passivation, un front de chaleur est observé et la réitération de la sous-étape d'introduction est effectuée lorsque le front chaleur perce l'orifice de sortie du réacteur catalytique. 7. Method according to claimô, characterized in that during the passivation step, a heat front is observed and the reiteration of the introduction sub-step is performed when the heat front pierces the outlet orifice. catalytic reactor.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le réacteur catalytique est un réacteur à base de cuivre, nickel, cobalt, fer, molybdène, ou chrome 8. Method according to one of claims 1 to 7, characterized in that the catalytic reactor is a reactor based on copper, nickel, cobalt, iron, molybdenum, or chromium
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le réacteur catalytique est un réacteur utilisé pour la synthèse du méthanol, l'hydrogénation du dioxyde de carbone, l'hydrogénation du monoxyde de carbone, la réaction de methanation, le réformage du méthane à la vapeur ou au C02, le reformage d'alcool à la vapeur. 9. Process according to one of claims 1 to 8, characterized in that the catalytic reactor is a reactor used for the synthesis of methanol, the hydrogenation of carbon dioxide, the hydrogenation of carbon monoxide, the methanation reaction. , the reforming of methane with steam or CO 2, the reforming of alcohol with steam.
EP14713532.1A 2013-03-14 2014-03-05 Method for treating a catalytic bed reactor Withdrawn EP2969171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352266A FR3003185B1 (en) 2013-03-14 2013-03-14 PROCESS FOR PROCESSING A CATALYTIC REACTOR
PCT/FR2014/050496 WO2014140455A1 (en) 2013-03-14 2014-03-05 Method for treating a catalytic bed reactor

Publications (1)

Publication Number Publication Date
EP2969171A1 true EP2969171A1 (en) 2016-01-20

Family

ID=48570325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14713532.1A Withdrawn EP2969171A1 (en) 2013-03-14 2014-03-05 Method for treating a catalytic bed reactor

Country Status (4)

Country Link
US (1) US9604201B2 (en)
EP (1) EP2969171A1 (en)
FR (1) FR3003185B1 (en)
WO (1) WO2014140455A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106311281B (en) * 2015-07-02 2019-03-19 中国科学院大连化学物理研究所 Hydrogenation of carbon dioxide formate low-carbon alcohol catalyst and its preparation method and application
CN112675921A (en) * 2019-10-18 2021-04-20 中国石油化工股份有限公司 Closed circulation passivation method and passivation system for octenal gas-phase hydrogenation catalyst
CN111729691A (en) * 2020-05-14 2020-10-02 河南晋煤天庆煤化工有限责任公司 Passivation recycling method of methanation nickel-based catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838066A (en) * 1971-10-01 1974-09-24 Standard Oil Co Method for stabilizing pyrophoric materials in a catalyst bed
CA1062641A (en) * 1974-04-25 1979-09-18 Shell Internationale Research Maatschappij B.V. Process for taking a hydrogenation reactor out of operation
US4090980A (en) * 1975-11-20 1978-05-23 Exxon Research & Engineering Co. Method for preparing reduced metal catalyst having metal surface area
GB2193114B (en) * 1986-06-02 1990-07-25 Ici Plc Catalysts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014140455A1 *

Also Published As

Publication number Publication date
FR3003185A1 (en) 2014-09-19
FR3003185B1 (en) 2016-06-03
WO2014140455A1 (en) 2014-09-18
US9604201B2 (en) 2017-03-28
US20160023194A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
Howard et al. Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures
WO2014140455A1 (en) Method for treating a catalytic bed reactor
Peters et al. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production
Menning et al. Regenerating Pt–3d–Pt model electrocatalysts through oxidation–reduction cycles monitored at atmospheric pressure
Hara et al. Hydrogen diffusion coefficient and mobility in palladium as a function of equilibrium pressure evaluated by permeation measurement
Guazzone et al. Gas permeation field tests of composite Pd and Pd–Au membranes in actual coal derived syngas atmosphere
Luo et al. High hydrogen permeability in the Nb-rich Nb–Ti–Ni alloy
Behnamian et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500 C
Yan et al. Development of Nb-Ti-Co alloy for high-performance hydrogen separating membrane
Moscu et al. CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation
FR2888920A1 (en) Hydrocarbon catalytic reforming kiln maintenance procedure uses catalytic tube temperature sensor(s) connected to data acquisition system to determine tube life
Ohtsu et al. Hydrogen permeability degradation of Pd-coated Nb⿿ TiNi alloy caused by its interfacial diffusion
Wang et al. The isothermal kinetics of zinc ferrite reduction with carbon monoxide
Yan et al. Design of hydrogen separatinwg Nb-Ti-Fe membranes with high permeability and low cost
Shi et al. Preferred hydride growth orientation of U− 0.79 wt.% Ti alloy with β+ U2Ti microstructure
Matsumura A basic study of high-temperature hydrogen permeation through bcc Pd–Cu alloy foil
Kim et al. A study on the reaction characteristics of CO2 decomposition using iron oxides
Huang et al. The cleanup of CO in hydrogen for PEMFC applications using Pt, Ru, Co, and Fe in PROX reaction
Dolan et al. Suppression of the critical temperature in binary vanadium hydrides
Santos et al. Hydrogen storage in TiCr1. 2 (FeV) x BCC solid solutions
WO2008084172A2 (en) Method for replacing tubes in a reforming unit
Blanco et al. Study of the thermal stability in air of LaNi5 by DSC, EDX, TEM and XRD combined techniques
Yan et al. Microstructure, hydrogen permeability and ductile-to-brittle transition-hydrogen concentration of (V, Nb)-Ti-Co quaternary alloys
JP6330715B2 (en) Hydrogen gas generation method
Zhu et al. The optimized composition and strong sustainability of hydrogen permeation of Nb30Ti35Co35 eutectic alloy membrane after 5 at% Fe substitution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190228