EP2969157B1 - System und verfahren zum seitenstrommischen - Google Patents

System und verfahren zum seitenstrommischen Download PDF

Info

Publication number
EP2969157B1
EP2969157B1 EP14774106.0A EP14774106A EP2969157B1 EP 2969157 B1 EP2969157 B1 EP 2969157B1 EP 14774106 A EP14774106 A EP 14774106A EP 2969157 B1 EP2969157 B1 EP 2969157B1
Authority
EP
European Patent Office
Prior art keywords
compressor
process fluid
conduit
fluid stream
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14774106.0A
Other languages
English (en)
French (fr)
Other versions
EP2969157A4 (de
EP2969157A1 (de
Inventor
James M. Sorokes
Harry F. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Rand Co
Original Assignee
Dresser Rand Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/202,033 external-priority patent/US10047753B2/en
Application filed by Dresser Rand Co filed Critical Dresser Rand Co
Publication of EP2969157A1 publication Critical patent/EP2969157A1/de
Publication of EP2969157A4 publication Critical patent/EP2969157A4/de
Application granted granted Critical
Publication of EP2969157B1 publication Critical patent/EP2969157B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/06Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/06Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/20Particular dimensions; Small scale or microdevices

Definitions

  • Hydrocarbons including liquefied natural gas (LNG) and ethylene, may be used in a refinery, or other petrochemical setting, as an energy source or source material for various processes.
  • LNG liquefied natural gas
  • ethylene ethylene
  • compressors may be used in the processing of such hydrocarbons.
  • propane and propylene compressors utilized for the processing of LNG and ethylene, respectively are typically beam-style, multi-stage centrifugal compressors.
  • a beam-style, multi-stage centrifugal compressor includes a casing and a plurality of stages disposed therein, each stage including an inlet guide, an impeller, a diffuser, and a return channel that collectively raise the pressure of the gas orworking fluid.
  • a main inlet of the beam-style, multi-stage centrifugal compressor receives the gas flow from an inlet pipe coupled to the main inlet, distributes the flow around the circumference of the casing, and injects the flow into the first inlet guide disposed immediately upstream of the impeller of the first stage.
  • the gas is drawn into the impeller from the first inlet guide and driven (or propelled) to a tip of the impeller, thereby increasing the velocity of the gas.
  • the centrifugal compressor may also include a diaphragm assembly including all of the various components contained within the back half or downstream end of the compressor stage. The diaphragm assembly may form at least in part the gas flow path of the centrifugal compressor.
  • the diaphragm assembly may include a diffuser proximate the tip of the impeller and in fluid communication therewith.
  • the diffuser is configured to convert the velocity of the gas received from the impeller to potential energy in the form of increased static pressure, thereby resulting in the compression of the gas.
  • the diaphragm assembly further includes a return channel in fluid communication with the diffuser and configured to receive the compressed gas from the diffuser and inject the compressed gas into a succeeding compressor stage. Otherwise, the compressed gas is ejected from the gas flow path via a discharge volute or collector that gathers the flow from the final stage and sends it down the discharge pipe.
  • the mixing of the sidestream flow and the working fluid typically occurs in the inlet guide of the respective stage, immediately upstream of the impeller. Improper or insufficient mixing can lead to pressure and temperature stratification (i.e., non-uniform pressure and temperature fields). Such skewed pressure and temperature fields degrade the performance of the downstream stage, causing the operating pressures to fall short of the process requirements.
  • movable geometry such as movable inlet guide vanes or movable diffuser vanes
  • US 2002/170312 A1 discloses a plant for liquefying natural gas.
  • a compressor configured to provide for a working fluid and sidestream flow mix having a substantially uniform temperature and pressure field, and further configured to allow for the facile installation of movable geometry to provide for the tuning of the compressor for varying process requirements.
  • the invention relates to a system and method for mixing and pressurising a plurality of process fluid streams according to the appended claims.
  • the system is provided according to the appended claim 1.
  • This example system may include at least one driver including a drive shaft, the driver configured to provide the drive shaft with rotational energy.
  • the system may also include at least one compressor including a rotary shaft, the rotary shaft being operatively coupled to the drive shaft and configured such that the rotational energy from the drive shaft is transmitted to the rotary shaft.
  • the system may further include a first junction formed from a first plurality of conduits.
  • the first plurality of conduits may include a first conduit fluidly coupled to the at least one compressor, the first conduit forming a first conduit diameter and configured to flow therethrough the process fluid stream.
  • the first plurality of conduits may also include a second conduit fluidly coupled to the first conduit and an external component, the second conduit configured to flow therethrough the at least a portion of the process fluid stream.
  • the first junction may be disposed a first distance at least three times the diameter of the first conduit upstream of the at least one compressor, such that the at least a portion of the process fluid stream is removed from the process fluid stream and fed to the external component via the second conduit.
  • the method may include driving a rotary shaft of at least one compressor via a drive shaft operatively coupled to the rotary shaft, the drive shaft driven by a driver.
  • the method may also include feeding the process fluid stream through a first conduit having a first conduit diameter and being fluidly coupled to the at least one compressor.
  • the method may further include feeding the at least a portion of a process fluid stream through a second conduit coupled to the first conduit at a first junction disposed upstream of the at least one compressor a distance of at least three times the first conduit diameter, thereby removing the at least a portion of a process fluid stream from the process fluid stream.
  • first and second features are formed in direct contact
  • additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
  • exemplary embodiments presented below may be combined in any combination of ways, i . e ., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
  • Figures 1 illustrate exemplary embodiments of a sidestream mixing system 100, 200 configured to efficiently and effectively mix and compress process fluid streams having differing temperatures, pressures, volumetric and/or mass flow rates.
  • the sidestream mixing system 100,200 may be further configured to mix and compress process fluid streams fed into the sidestream mixing system 100, 200 via a plurality of sidestreams.
  • a sidestream mixing system 300, 400 may be configured to efficiently mix and remove at least a portion of a process fluid stream.
  • the process fluid may include, for example, hydrocarbons, including LNG and ethylene; however, those of ordinary skill in the art will appreciate that the sidestream mixing system may process non-hydrocarbon-based process fluids, such as ammonia.
  • the sidestream mixing system 100, 200 may include one or more drivers 102, each driver 102 having a drive shaft 104 and configured to provide the drive shaft 104 with rotational energy.
  • the sidestream mixing system 100 includes a plurality of drivers 102.
  • the sidestream mixing system 200 includes a single driver 102.
  • the driver 102 may be an electric motor, such as a permanent magnet motor having permanent magnets installed on a rotor portion (not shown) and further having a stator portion (not shown).
  • other embodiments may employ other types of electric motors, such as, but not limited to, synchronous, induction, brushed DC motors, etc.
  • the driver 102 may be a hydraulic motor, an internal combustion engine, a gas turbine, or any other device capable of rotatably driving the drive shaft 104, either directly or through a power train.
  • the sidestream mixing system 100 may include a first driver 106 and a second driver 108; however, one of ordinary skill in the art will appreciate that the number of drivers 102 in the sidestream mixing system 100, 200 may vary based on numerous conditions, such as, for example, the type of compressor employed or the number of sidestreams fed into the sidestream mixing system.
  • each driver 102 may be operatively coupled to a plurality of compressors 110.
  • the drive shaft 104 of each driver 102 may be integral with or coupled to a rotary shaft 112 of a respective compressor 110 at each end of the drive shaft 104 in a "double-ended" configuration.
  • each driver 102 drives a respective drive shaft 104, which in turn drives the rotary shafts 112 of the respective coupled compressors 110.
  • each driver 102 is coupled to two compressors 110.
  • the drive shaft 104 of the first driver 106 may have a first end 114 and a second end 116, such that the first end 114 is coupled to the rotary shaft 112 of a first compressor 118 and the second end 116 is coupled to the rotary shaft 112 of a second compressor 120.
  • the second driver 108 may have a first end 122 and a second end 124, such that the first end 122 is coupled to the rotary shaft 112 of a third compressor 126 and the second end 124 is coupled to the rotary shaft 112 of a fourth compressor 128.
  • the drive shaft 104 of the driver 102 is coupled to a plurality of gears 130 configured to transmit the rotational energy of the drive shaft 104 to the rotary shafts 112 of the respective compressors 110.
  • the plurality of gears 130 may include a plurality of spur gears, such that the spur gears include a bull gear 132, a first pinion 134, and a second pinion 136.
  • the bull gear 132 may be fitted on the drive shaft 104 of the driver 102 by press fitting or any other manner known to those in the art, such that the bull gear 132 rotates at the same speed as the drive shaft 104.
  • the first pinion 134 and second pinion 136 may be fitted on the respective rotary shafts 112 of the compressors 110 by press fitting, or any other manner known to those in the art, and configured such that a plurality of teeth (not shown) defined by each of the first and second pinion 134, 136 interconnect with the teeth (not shown) of the bull gear 132, thereby rotating the rotary shafts 112 of the respective compressors 110 at a speed consistent with the gearing ratio between the bull gear 132 and each of the first and second pinions 134, 136.
  • the first pinion 134 and second pinion 136 may have identical diameters or the pinions 134, 136 may have differing diameters, thereby creating different gearing ratios with respect to the bull gear 132 and causing differing rotary speeds of the corresponding rotary shafts 112 of the compressors 110.
  • the first pinion 134 is operatively coupled to the respective rotary shafts 112 of the first compressor 118 and the second compressor 120.
  • the second pinion 136 is operatively coupled to the respective rotary shafts 112 of the third compressor 126 and fourth compressor 128.
  • Embodiments in which the first and second compressors 118,120 may be coupled via a common rotary shaft 112 and embodiments in which the third and fourth compressors 126,128 may be coupled via a common rotary shaft 112 are contemplated herein.
  • each compressor 110 may be a direct-inlet, centrifugal compressor.
  • the direct-inlet or axial-inlet, centrifugal compressor may be, for example, a DATUM® ICS compressor manufactured by the Dresser-Rand Company of Olean, New York.
  • the compressors 110 illustrated in the sidestream mixing system 100 of Figure 1 may be axial-inlet, centrifugal compressors.
  • each compressor 110 may be an integrally-geared compressor.
  • the integrally-geared compressor may be, for example, an integrally-geared compressor from the Legacy ISOPAC and CVC lines of integrally-geared compressors manufactured by the Dresser-Rand Company of Olean, New York.
  • Each integrally-geared compressor may be a single-stage compressor.
  • Each direct-inlet, centrifugal compressor of the sidestream mixing system 100 of Figure 1 may be a single-stage or a multi-stage compressor. Further, one of ordinary skill in the art will appreciate that varying combinations of single-stage compressors and multi-stage compressors may be employed in the sidestream mixing system 100 of Figure 1 . Still yet, the sidestream mixing system 100 may employ either all or substantially all single-stage compressors or all multi-stage compressors. One of ordinary skill in the art will appreciate that the number of stages provided in each compressor 110 may determine the number of compressors 110 required in the system. Correspondingly, embodiments in which a single compressor 110 is operatively coupled to a driver 102 are contemplated herein.
  • the plurality of compressors 110 may be fluidly coupled to each other via a network of piping 138.
  • the piping 138 may be formed from a plurality of pipes, commonly referred to as lines or conduits, configured to fluidly connect the compressors 110 in series.
  • the conduits may be further configured to flow therethrough one or more process fluids forming a process fluid stream having a measurable pressure, temperature, and/or mass flow rate. Accordingly, the conduit construction and sizing, e.g., diameter, may vary based on the process fluid flowing therethrough and the accompanying pressure, temperature, and/or mass flow rate of the process fluid.
  • the piping 138 includes a system inlet 140 configured to provide an initial process fluid stream fed from a first external fluid source (not shown), such as, for example, a process fluid storage tank, to the sidestream mixing system 100, 200.
  • the initial process fluid stream from the first external fluid source may have a first pressure (P 1 ), temperature (T 1 ), mass flow rate (M 1 ), and volumetric flow rate (Q 1 ).
  • the first external fluid source may be fluidly coupled to a first compressor inlet 142 of the first compressor 118 via the system inlet 140.
  • the process fluid may be compressed in one or more stages in the first compressor 118 and discharged via a first compressor outlet 144 of the first compressor 118.
  • the discharged process fluid includes the first mass flow rate (M 1 ), a second pressure (P 2 ), a second volumetric flow rate (Q 2 ), and a second temperature (T 2 ), such that the second pressure (P 2 ) and second temperature (T 2 ) are greater than the first pressure (P 1 ) and temperature (T 1 ); however, because of the increased pressure and temperature, the second volumetric flow rate (Q 2 ) is less than the first volumetric flow rate (Q 1 ).
  • the first compressor outlet 144 may be fluidly coupled to the second compressor 120 via a first conduit 146.
  • the first process fluid stream discharged from the first compressor outlet 142 may be fed through the first conduit 146, which forms a first junction 150 with a second conduit 152 upstream of the second compressor 120.
  • the first junction 150 may be a connection of a plurality of conduits 146,152 in the form of a "T"-junction, wherein the first conduit 146 and the second conduit 152 are fluidly coupled at the first junction 150 and the first conduit 146 further fluidly couples a second compressor inlet 154 of the second compressor 120 to the first junction 150.
  • the first junction may form a "Y"-junction.
  • the second conduit 152 may be fluidly coupled to a second external fluid source (not shown) providing a second process fluid stream having a pressure (Psi), temperature (Tsi), mass flow rate (Msi), and volumetric flow rate (Q S1 ), such that at least the pressure (Psi) may be substantially similar to the second pressure (P 2 ) and, optionally, the temperature (Tsi) may be substantially similar to the temperature (T 2 ) of the first process fluid stream discharged from the first compressor outlet 144.
  • the second process fluid stream may be referred to as a first sidestream.
  • the second external fluid source may be, for example, a pressurized fluid storage tank.
  • the process fluid from the first compressor outlet 144 and the first sidestream may be mixed at the first junction 150 to form a first combined process fluid stream having a second mass flow rate (M 2 ) and a third volumetric flow rate (Q 3 ).
  • the second mass flow rate (M 2 ) may be the summation of the first mass flow rate (M 1 ) and the mass flow rate (Msi)
  • the third volumetric flow rate (Q 3 ) may be the summation of the second volumetric flow rate (Q 2 ) and the volumetric flow rate (Q S1 ).
  • the first combined process fluid stream may be fed to the second compressor inlet 154 via the first conduit 146.
  • the first junction 150 may be formed in the piping 138 at a distance of at least three pipe internal diameters upstream of the second compressor 120. For example, if the internal pipe diameter of the first conduit 146 is about eight inches (20.32 cm), the first junction 150 may be formed at least two feet (0.61 m) from the second compressor inlet 154. By mixing the first sidestream with the first process fluid stream at the first junction 150, the mixing of the process fluids is more efficient, and pressure and temperature stratification to disturb the impeller inlet flow is minimalized or eliminated.
  • the process fluid fed into the second compressor 120 via the first conduit 146 and the second compressor inlet 154 may be compressed in one or more stages and discharged via a second compressor outlet 158.
  • the discharged process fluid referred to as the third process fluid stream includes the second mass flow rate (M 2 ), a third pressure (P 3 ), a fourth volumetric flow rate (Q 4 ), and a third temperature (T 3 ), such that the third pressure (P 3 ) and third temperature (T 3 ) are greater than the second pressure (P 2 ) and temperature (T 2 ); however, because of the increased pressure and temperature, the fourth volumetric flow rate (Q 4 ) is less than the third volumetric flow rate (Q 3 ).
  • the second compressor outlet 158 may be coupled to the third compressor 126 via a third conduit 160.
  • the process fluid discharged from the second compressor outlet 158 may be fed through the third conduit 160 forming a second junction 164 with a fourth conduit 166 upstream of the third compressor 126.
  • the second junction 164 may be a connection of a plurality of conduits 160,166 in the form of a "T"-junction, such that the third conduit 160 and the fourth conduit 166 are fluidly coupled at the second junction 164 and the third conduit 160 further fluidly couples a third compressor inlet 168 of the third compressor 126 to the second junction 164.
  • the first junction may form a "Y"-junction.
  • the fourth conduit 166 may be fluidly coupled to a third external fluid source (not shown) providing a fourth process fluid stream having a pressure (P S2 ), temperature (T S2 ), mass flow rate (M S2 ), and volumetric flow rate (Q S2 ), such that at least the pressure (P S2 ) may be substantially similar to the third pressure (P 3 ) and, optionally, the temperature (T S2 ) may be substantially similar to the temperature (T 3 ) of the third process fluid stream discharged from the second compressor outlet 158.
  • the fourth process fluid stream may be referred to as a second sidestream.
  • the third external fluid source may be, for example, a pressurized fluid storage tank.
  • the process fluid from the second compressor outlet 158 and the second sidestream may be mixed at the second junction 164 to form a second combined process fluid stream having a third mass flow rate (M 3 ) and a fifth volumetric flow rate (Q 5 ).
  • the third mass flow rate (M 3 ) may be the summation of the second mass flow rate (M 2 ) and the mass flow rate (M S2 )
  • the fifth volumetric flow rate (Q 5 ) may be the summation of the fourth volumetric flow rate (Q 4 ) and the volumetric flow rate (Q S2 ).
  • the second combined process fluid stream may be fed to the third compressor inlet 168 via the third conduit 160.
  • the second junction 164 may be formed in the piping 138 at a distance of at least three pipe internal diameters upstream of the third compressor 126. For example, if the internal pipe diameter of the third conduit 160 is about eight inches (20.32 cm), the second junction 164 may be formed at least two feet (0.61 m) from the third compressor inlet 168. By mixing the second sidestream with the third process fluid stream at the second junction 164, the mixing of the process fluids is more efficient, and pressure and temperature stratification to disturb the impeller inlet flow is minimalized or eliminated.
  • the second combined process fluid stream fed into the third compressor 126 via the third conduit 160 and the third compressor inlet 168 may be compressed in one or more stages and discharged via a third compressor outlet 172.
  • the discharged process fluid referred to as a fifth process fluid stream, includes the third mass flow rate (M 3 ), a fourth pressure (P 4 ), a sixth volumetric flow rate (Q 6 ), and a fourth temperature (T 4 ), such that the fourth pressure (P 4 ) and fourth temperature (T 4 ) are greaterthan the third pressure (P 3 ) and temperature (T 3 ); however, because of the increased pressure and temperature, the sixth volumetric flow rate (Q 6 ) is less than the fifth volumetric flow rate (Q 5 ).
  • the third compressor outlet 172 may be coupled to the fourth compressor 128 via a fifth conduit 174.
  • the fifth process fluid stream discharged from the third compressor outlet 172 may be fed through the fifth conduit 174 forming a third junction 178 with a sixth conduit 180 upstream of the fourth compressor 128.
  • the third junction 178 may be a connection of a plurality of conduits 174,180 in the form of a "T"-junction, wherein the fifth conduit 174 and the sixth conduit 180 are fluidly coupled at the third junction 178 and the fifth conduit 174 further fluidly couples a fourth compressor inlet 182 of the fourth compressor 128 to the third junction 178.
  • the third junction may form a "Y"-junction.
  • the sixth conduit 180 may be fluidly coupled to a fourth external fluid source (not shown) providing a sixth process fluid stream having a pressure (P S3 ), temperature (T S3 ), mass flow rate (M S3 ), and volumetric flow rate (Q S3 ), such that at least the pressure (P S3 ) may be substantially similar to the fourth pressure (P 4 ) and, optionally, the temperature (T S3 ) may be substantially similar to the temperature (T 4 ) of the fifth process fluid stream discharged from the third compressor outlet 172.
  • the sixth process fluid stream may be referred to as a third sidestream.
  • the fourth external fluid source may be, for example, a pressurized fluid storage tank.
  • the process fluid from the third compressor outlet 172 and the third sidestream may be mixed at the third junction 178 to form a third combined process fluid stream having a fourth mass flow rate (M 4 ) and a seventh volumetric flow rate (Q 7 ).
  • the fourth mass flow rate (M 4 ) may be the summation of the third mass flow rate (M 3 ) and the mass flow rate (M S3 )
  • the seventh volumetric flow rate (Q 7 ) may be the summation of the sixth volumetric flow rate (Q 6 ) and the volumetric flow rate (Q S3 ).
  • the third combined process fluid stream may be fed to the fourth compressor inlet 182 via the fifth conduit 174.
  • the third junction 178 may be formed in the piping 138 at a distance of at least three pipe internal diameters upstream of the fourth compressor 128. For example, if the internal pipe diameter of the fifth conduit 174 is about eight inches (20.32 cm), the third junction 178 may be formed at least two feet (0.61 m) from the fourth compressor inlet 182. By mixing the third sidestream with the fifth process fluid stream at the third junction 178, the mixing of the process fluids is more efficient, and pressure and temperature stratification to disturb the impeller inlet flow is minimalized or eliminated.
  • the process fluid fed into the fourth compressor 128 via the fifth conduit 174 and the fourth compressor inlet 182 may be compressed in one or more stages and discharged via a fourth compressor outlet 186 having the mass flow rate (M 4 ), a system outlet pressure (P 5 ), temperature (T 5 ), and volumetric flow rate (Q 8 ).
  • the fourth compressor outlet 186 may be coupled to a system outlet 188.
  • the system outlet 188 may be further fluidly coupled to one or more downstream processing components (not shown) configured to further process the exiting process fluid.
  • a system 300, 400 is provided for removing via one or more sidestreams at least a portion of a process fluid.
  • the process fluid removal system 300, 400 may be similar in some respects to the sidestream mixing system 100, 200 described above and therefore may be best understood with reference to the description of Figures 1 and 2 where like numerals designate like components and will not be described again in detail.
  • the piping 138 includes a system inlet 140 configured to provide an initial process fluid stream fed from a first external fluid source (not shown), such as, for example, a process fluid storage tank, to the process fluid removal system 300, 400.
  • the initial process fluid stream from the first external fluid source may have a first pressure (P 1 ), temperature (T 1 ), mass flow rate (M 1 ), and volumetric flow rate (Q 1 ).
  • the first external fluid source may be fluidly coupled to a first compressor inlet 142 of the first compressor 118 via the system inlet 140.
  • the process fluid may be compressed in one or more stages in the first compressor 118 and discharged via a first compressor outlet 144 of the first compressor 118.
  • the discharged process fluid includes the first mass flow rate (M 1 ), a second pressure (P 2 ), a second volumetric flow rate (Q 2 ), and a second temperature (T 2 ), such that the second pressure (P 2 ) and second temperature (T 2 ) are greater than the first pressure (P 1 ) and temperature (T 1 ); however, because of the increased pressure and temperature, the second volumetric flow rate (Q 2 ) is less than the first volumetric flow rate (Q 1 ).
  • the first compressor outlet 144 may be fluidly coupled to the second compressor 120 via a first conduit 146.
  • the first process fluid stream discharged from the first compressor outlet 142 may be fed through the first conduit 146, which forms a first junction 150a with a second conduit 152a upstream of the second compressor 120.
  • the first junction 150a may be a connection of a plurality of conduits 146,152a in the form of a "T"-junction, wherein the first conduit 146 and the second conduit 152a are fluidly coupled at the first junction 150a, and the first conduit 146 further fluidly couples the second compressor inlet 154 of the second compressor 120 to the first junction 150a.
  • the first junction may form a "Y"-junction.
  • the second conduit 152a may be fluidly coupled to a first external process component (not shown) and may provide the first external process component with a portion of the first process fluid stream compressed from the first compressor 118 and having a pressure (Psi), temperature (T S1 ), mass flow rate (M S1 ), and volumetric flow rate (Q S1 ).
  • the portion of the first process fluid stream fed to the first external process component from the first junction 150a may be referred to as the primary sidestream and may be fed to the first external process component via the second conduit 152a.
  • the remaining process fluid stream of the first process fluid stream may have a second mass flow rate (M 2 ) and a third volumetric flow rate (Q 3 ).
  • the second mass flow rate (M 2 ) may be the difference between the first mass flow rate (M 1 ) and the mass flow rate (Msi)
  • the third volumetric flow rate (Q 3 ) may be the difference between the second volumetric flow rate (Q 2 ) and the volumetric flow rate (Q S1 ).
  • the remaining process fluid stream of the first process fluid stream may be fed to the second compressor inlet 154 via the first conduit 146.
  • the first junction 150a may be formed in the piping 138 at least three pipe internal diameters upstream of the second compressor 120.
  • the process fluid fed into the second compressor 120 via the first conduit 146 and the second compressor inlet 154 may be compressed in one or more stages and discharged via a second compressor outlet 158.
  • the discharged process fluid referred to as the third process fluid stream includes the second mass flow rate (M 2 ), a third pressure (P 5 ), a fourth volumetric flow rate (Q 4 ), and a third temperature (T 3 ), such that the third pressure (P 3 ) and third temperature (T 3 ) are greater than the second pressure (P 2 ) and temperature (T 2 ); however, because of the increased pressure and temperature, the fourth volumetric flow rate (Q 4 ) is less than the third volumetric flow rate (Q 3 ).
  • the second compressor outlet 158 may be coupled to the third compressor 126 via a third conduit 160.
  • the process fluid discharged from the second compressor outlet 158 may be fed through the third conduit 160 forming a second junction 164a with a fourth conduit 166a upstream of the third compressor 126.
  • the second junction 164a may be a connection of a plurality of conduits 160,166a in the form of a "T"-junction, wherein the third conduit 160 and the fourth conduit 166a are fluidly coupled at the second junction 164a, and third conduit 160 further fluidly couples the third compressor inlet 168 of the third compressor 126 to the second junction 164a.
  • the second junction 164a may form a "Y"-junction.
  • the fourth conduit 166a may be fluidly coupled to a second external process component (not shown) and may provide the second external process component with a portion of the third process fluid stream compressed from the second compressor 120 and having a pressure (P S2 ), temperature (T S2 ), mass flow rate (M S2 ), and volumetric flow rate (Q S2 ).
  • the portion of the third process fluid stream fed to the second external process component from the second junction 164a may be referred to as the secondary sidestream and may be fed to the second external process component via the fourth conduit 166a.
  • the remaining process fluid stream of the third process fluid stream may have a third mass flow rate (M 3 ) and a fifth volumetric flow rate (Q 5 ).
  • the third mass flow rate (M 3 ) may be the difference between the second mass flow rate (M 2 ) and the mass flow rate (M S2 ), and the fifth volumetric flow rate (Q 5 ) may be the difference between the fourth volumetric flow rate (Q 4 ) and the volumetric flow rate (Q S2 ).
  • the remaining process fluid stream of the third process fluid stream may be fed to the third compressor inlet 168 via the third conduit 160.
  • the second junction 164a may be formed in the piping 138 at a distance of at least three pipe internal diameters upstream of the third compressor 126.
  • the second combined process fluid stream fed into the third compressor 126 via the third conduit 160 and the third compressor inlet 168 may be compressed in one or more stages and discharged via a third compressor outlet 172.
  • the discharged process fluid referred to as a fifth process fluid stream, includes the third mass flow rate (M 3 ), a fourth pressure (P 4 ), a sixth volumetric flow rate (Q 6 ), and a fourth temperature (T 4 ), such that the fourth pressure (P 4 ) and fourth temperature (T 4 ) are greaterthan the third pressure (P 3 ) and temperature (T 3 ); however, because of the increased pressure and temperature, the sixth volumetric flow rate (Q 6 ) is less than the fifth volumetric flow rate (Q 5 ).
  • the third compressor outlet 172 may be coupled to the fourth compressor 128 via a fifth conduit 174.
  • the fifth process fluid stream discharged from the third compressor outlet 172 may be fed through the fifth conduit 174 forming a third junction 178a with a sixth conduit 180a upstream of the fourth compressor 128.
  • the third junction 178a may be a connection of a plurality of conduits 174, 180a in the form of a "T"-junction, wherein the fifth conduit 174 and the sixth conduit 180a are fluidly coupled at the third junction 178a, and the fifth conduit 174 further fluidly couples the fourth compressor inlet 182 of the fourth compressor 128 to the third junction 178a.
  • the third junction 178a may form a "Y"-junction.
  • the sixth conduit 180a may be fluidly coupled to a third external process component (not shown) and may provide the third external process component with a portion of the fifth process fluid stream compressed from the third compressor 126 and having a pressure (P S3 ), temperature (T S3 ), mass flow rate (M S3 ), and volumetric flow rate (Q S3 ).
  • the portion of the fifth process fluid stream fed to the third external process component from the third junction 178a may be referred to as the tertiary sidestream and may be fed to the third external process component via the sixth conduit 180a.
  • the remaining process fluid stream of the fifth process fluid stream may have a fourth mass flow rate (M 4 ) and a seventh volumetric flow rate (Q 7 ).
  • the fourth mass flow rate (M 4 ) may be the difference between the third mass flow rate (M 3 ) and the mass flow rate (M S3 ), and the seventh volumetric flow rate (Q 7 ) may be the difference between the sixth volumetric flow rate (Q 6 ) and the volumetric flow rate (Q S3 ).
  • the remaining process fluid stream of the fifth process fluid stream may be fed to the fourth compressor inlet 182 via the fifth conduit 174.
  • the third junction 178a may be formed in the piping 138 at least three pipe internal diameters upstream of the fourth compressor 128.
  • the process fluid fed into the fourth compressor 128 via the fifth conduit 174 and the fourth compressor inlet 182 may be compressed in one or more stages and discharged via a fourth compressor outlet 186 having the mass flow rate (M 4 ), a system outlet pressure (P 5 ), temperature (T 5 ), and volumetric flow rate (Q 8 ).
  • the fourth compressor outlet 186 may be coupled to a system outlet 188.
  • the system outlet 188 may be further fluidly coupled to one or more downstream processing components (not shown) configured to further process the exiting process fluid.
  • Figure 5 illustrates a flowchart of an exemplary method 500 for mixing and pressurizing a plurality of process fluid streams.
  • the method 500 may include driving a rotary shaft of at least one compressor via a first drive shaft operatively coupled to the rotary shaft, the first drive shaft driven by a first driver, as at 502.
  • the method 500 may also include feeding a first process fluid stream of the plurality of process fluid streams through a first conduit having a first conduit diameter and fluidly coupled to the at least one compressor, as at 504.
  • the method 500 may further include feeding a second process fluid stream of the plurality of process fluid streams through a second conduit coupled to the first conduit at a first junction disposed upstream of the at least one compressor a first distance of at least three times the first conduit diameter, as at 506.
  • the method 500 may also include mixing the first process fluid stream and the second process fluid stream at the first junction, thereby forming a first combined process fluid stream, as at 508.
  • the method 500 may further include feeding the first combined process fluid stream into the at least one compressor, as at 510, and pressurizing the first combined process fluid stream in the at least one compressor, as at 512.
  • Figure 6 illustrates a flowchart of an exemplary method 600 for removing at least a portion of a process fluid stream.
  • the method 600 may include driving a rotary shaft of at least one compressor via a drive shaft operatively coupled to the rotary shaft, the drive shaft driven by a driver, as at 602.
  • the method 600 may also include feeding the process fluid stream through a first conduit having a first conduit diameter and being fluidly coupled to the at least one compressor, as at 604.
  • the method 600 may further include feeding the at least a portion of a process fluid stream through a second conduit coupled to the first conduit at a first junction disposed upstream of the at least one compressor a distance of at least three times the first conduit diameter, thereby removing the at least a portion of the process fluid stream from the process fluid stream, as at 606.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (4)

  1. System (100, 200, 300, 400) zum Mischen und zur Druckbeaufschlagung einer Vielzahl von Prozess-Fluidströmen, umfassend:
    eine erste Antriebsvorrichtung (102, 106), die eine erste Antriebswelle umfasst, wobei die erste Antriebsvorrichtung dafür ausgelegt ist, die erste Antriebswelle mit Rotationsenergie zu versorgen;
    einen ersten Kompressor (118), der dafür ausgelegt ist, einen anfänglichen Prozess-Fluidstrom aus der Vielzahl von Prozess-Fluidströmen mit Druck zu beaufschlagen, und der eine Drehwelle (112) umfasst, wobei die Drehwelle operativ mit der ersten Antriebswelle verbunden ist und so ausgelegt ist, dass die Rotationsenergie von der ersten Antriebswelle auf die Drehwelle übertragen wird;
    einen zweiten Kompressor (120), der eine Drehwelle (112) umfasst; und
    eine erste Verbindungsstelle (150), die aus einer ersten Vielzahl von Rohrleitungen gebildet wird, umfassend:
    eine erste Rohrleitung (146), die fluidisch den ersten Kompressor (118) und den zweiten Kompressor (120) verbindet, wobei die erste Rohrleitung einen ersten Rohrleitungsdurchmesser bildet und dafür ausgelegt ist, durch denselben einen ersten Prozess-Fluidstrom aus der Vielzahl von Prozess-Fluidströmen fließen zu lassen; und
    eine zweite Rohrleitung (152), die fluidisch mit der ersten Rohrleitung und mit dem zweiten Kompressor (120) verbunden ist, wobei die zweite Rohrleitung dafür ausgelegt ist, einen zweiten Prozess-Fluidstrom aus der Vielzahl von Prozess-Fluidströmen durchfließen zu lassen,
    wobei die erste Verbindungsstelle (150) in einem ersten Abstand vom mindestens Dreifachen des ersten Rohrleitungsdurchmessers stromaufwärts vom zweiten Kompressor (120) angeordnet ist, derart dass der erste Prozess-Fluidstrom und der zweite Prozess-Fluidstrom gemischt werden und einen ersten kombinierten Prozess-Fluidstrom bilden, bevor er in den zweiten Kompressor (120) eingeleitet und mit Druck beaufschlagt wird,
    eine zweite Antriebsvorrichtung (108), einen dritten Kompressor (126), der eine Drehwelle (112) umfasst, und einen vierten Kompressor (128), der eine Drehwelle (112) umfasst, wobei:
    die erste Antriebswelle ein erstes Ende (114) einer ersten Antriebswelle und ein zweites Ende (116) einer ersten Antriebswelle umfasst, wobei das erste Ende der ersten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des ersten Kompressors (118) ist und wobei das zweite Ende der ersten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des zweiten Kompressors (120) ist; und
    die zweite Antriebsvorrichtung (108) umfasst eine zweite Antriebswelle, die ein erstes Ende (122) der zweiten Antriebswelle und ein zweites Ende (124) der zweiten Antriebswelle umfasst, wobei das erste Ende der zweiten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des dritten Kompressors (126) ist und das zweite Ende der zweiten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des vierten Kompressors (128) ist,
    eine zweite Verbindungsstelle (164), die aus einer zweiten Vielzahl von Rohrleitungen gebildet wird, umfassend:
    eine dritte Rohrleitung (160), die fluidisch den zweiten Kompressor (120) und den dritten Kompressor (126) verbindet, wobei die dritte Rohrleitung einen dritten Rohrleitungsdurchmesser hat und dafür ausgelegt ist, einen dritten Prozess-Fluidstrom aus der Vielzahl von Prozess-Fluidströmen hindurchfließen zu lassen; und
    eine vierte Rohrleitung (166), die fluidisch mit der dritten Rohrleitung (160) und dem dritten Kompressor (126) verbunden ist, wobei die vierte Rohrleitung dafür ausgelegt ist, einen vierten Prozess-Fluidstrom aus den mehreren Prozess-Fluidströmen durchfließen zu lassen,
    wobei die zweite Verbindungsstelle (164) in einem zweiten Abstand, der mindestens das Dreifache des dritten Rohrleitungsdurchmessers stromaufwärts vom dritten Kompressor (126) angeordnet ist, derart dass der dritte Prozess-Fluidstrom und der vierte Prozess-Fluidstrom gemischt werden und einen zweiten kombinierten Prozess-Fluidstrom bilden, bevor er in den dritten Kompressor (126) eingespeist und mit Druck beaufschlagt wird.
  2. System nach Anspruch 1, ferner umfassend:
    eine dritte Verbindungsstelle (178), die aus einer dritten Vielzahl von Rohrleitungen gebildet wird, umfassend:
    eine fünfte Rohrleitung (174), die fluidisch den dritten Kompressor (126) und den vierten Kompressor (128) verbindet, wobei die fünfte Rohrleitung einen fünften Rohrleitungsdurchmesser hat und dafür ausgelegt ist, einen fünften Prozess-Fluidstrom aus der Vielzahl von Prozess-Fluidströmen durchfließen zu lassen; und
    eine sechste Rohrleitung (180), die fluidisch mit der fünften Rohrleitung (174) und dem vierten Kompressor (128) verbunden ist, wobei die sechste Rohrleitung dafür ausgelegt ist, einen sechstem Prozess-Fluidstrom aus der Vielzahl von Prozess-Fluidströmen durchfließen zu lassen,
    wobei die dritte Verbindungsstelle (178) in einem dritten Abstand angeordnet ist, der mindestens das Dreifache des fünften Rohrleitungsdurchmessers stromaufwärts vom vierten Kompressor (128) ist, derart dass der fünfte Prozess-Fluidstrom und der sechste Prozess-Fluidstrom gemischt werden und einen dritten kombinierten Prozess-Fluidstrom bilden, bevor er in den vierten Kompressor (128) eingespeist und mit Druck beaufschlagt wird.
  3. Verfahren zum Mischen und Druckbeaufschlagen einer Vielzahl von Prozess-Fluidströmen, umfassend:
    Antreiben einer Drehwelle (112) eines ersten Kompressors (118), die dafür ausgelegt ist, einen anfänglichen Prozessfluidstrom aus der Vielzahl von Prozessfluidströmen über eine erste Antriebswelle mit Druck zu beaufschlagen, die operativ mit der Drehwelle verbunden ist, wobei die erste Antriebswelle durch einen ersten Mitnehmer (102, 106) angetrieben wird;
    Antreiben einer Drehwelle (112) eines zweiten Kompressors (120) über die erste Antriebswelle, die operativ mit der Drehwelle verbunden ist;
    Zuführen eines ersten Prozessfluidstroms aus der Vielzahl von Prozessfluidströmen durch eine erste Rohrleitung (146), die einen ersten Rohrleitungsdurchmesser hat und fluidisch den ersten Kompressor (118) und den zweiten Kompressor (120) verbindet;
    Zufuhr eines zweiten Prozessfluidstroms aus der Vielzahl von Prozessfluidströmen durch eine zweite Rohrleitung (152), die mit der ersten Rohrleitung (146) an einer ersten Verbindungsstelle (150) verbunden ist, welche stromaufwärts vom zweiten Kompressor (120) in einem ersten Abstand von mindestens dem Dreifachen des ersten Rohrleitungsmessers angeordnet ist;
    Mischen des ersten Prozessfluidstroms und des zweiten Prozessfluidstroms an der ersten Verbindungsstelle (150), wodurch ein erster kombinierter Prozessfluidstrom gebildet wird;
    Zufuhr des ersten kombinierten Prozessfluidstroms in den zweiten Kompressor (120);
    Druckbeaufschlagung des ersten kombinierten Prozessfluidstroms im zweiten Kompressor (120);
    Bereitstellen eines dritten Kompressors (126) und eines vierten Kompressors (128);
    Antreiben einer Drehwelle (112) des dritten Kompressors (126) über eine zweite Antriebswelle, die integral mit der Drehwelle des dritten Kompressors gebildet ist oder mit derselben verbunden ist, wobei die zweite Antriebswelle von einem zweiten Mitnehmer (108) angetrieben wird;
    Zufuhr eines dritten Prozessfluidstroms aus der Vielzahl von Prozessfluidströmen durch eine dritte Rohrleitung (160), die fluidisch mit dem zweiten Kompressor (120) und dem dritten Kompressor (126) verbunden ist und einen dritten Rohrleitungsdurchmesser hat;
    Zufuhr eines vierten Prozessfluidstroms aus der Vielzahl von Prozessfluidströmen durch eine vierte Rohrleitung (166), die fluidisch mit dem dritten Kompressor (126) verbunden ist und fluidisch mit der dritten Rohrleitung (160) an einer zweiten Verbindungsstelle (164) verbunden ist, die stromaufwärts vom dritten Kompressor (126) in einem zweiten Abstand von mindestens dem Dreifachen des dritten Rohrleitungsdurchmessers angeordnet ist;
    Mischen des dritten Prozessfluidstroms und des vierten Prozessfluidstroms an der zweiten Verbindungsstelle (164), wodurch ein zweiter kombinierter Prozessfluidstrom gebildet wird;
    Zufuhr des zweiten kombinierten Prozessfluidstroms zum dritten Kompressor (126); und
    Druckbeaufschlagung des zweiten kombinierten Prozessfluidstroms im dritten Kompressor (126), wobei
    die erste Antriebswelle ein erstes Ende (114) einer ersten Antriebswelle und ein zweites Ende (116) einer ersten Antriebswelle umfasst, wobei das erste Ende der ersten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des ersten Kompressors (118) ist und wobei das zweite Ende der ersten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des zweiten Kompressors (120) ist; und
    die zweite Antriebswelle ein erstes Ende (122) einer zweiten Antriebswelle und ein zweites Ende (124) einer zweiten Antriebswelle umfasst, wobei das erste Ende der zweiten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des dritten Kompressors (126) ist und wobei das zweite Ende der zweiten Antriebswelle integriert in die oder verbunden mit der Drehwelle (112) des vierten Kompressors (128) ist.
  4. Verfahren nach Anspruch 3, ferner umfassend:
    Antreiben einer Drehwelle (112) des vierten Kompressors (128) über eine zweite Antriebswelle, die integriert in die oder verbunden mit der Drehwelle des vierten Kompressors ist, wobei die zweite Antriebswelle von einem zweiten Mitnehmer (108) angetrieben wird;
    Zufuhr eines fünften Prozessfluidstroms aus der Vielzahl von Prozessfluidströmen durch eine fünfte Rohrleitung (174), die einen fünften Rohrleitungsdurchmesser hat und fluidisch mit dem vierten Kompressor (128) verbunden ist;
    Zufuhr eines sechsten Prozessfluidstroms aus der Vielzahl von Prozessfluidströmen durch eine sechste Rohrleitung (180), die mit der fünften Rohrleitung (174) an einer dritten Verbindungsstelle (178) verbunden ist, welche stromaufwärts vom vierten Kompressor (128) in einem dritten Abstand von mindestens dem Dreifachen des fünften Rohrleitungsdurchmessers angeordnet ist;
    Mischen des fünften Prozessfluidstroms und des sechsten Prozessfluidstroms an der dritten Verbindungsstelle (178), wodurch ein dritter kombinierter Prozessfluidstrom gebildet wird;
    Zufuhr des dritten kombinierten Prozessfluidstroms zum vierten Kompressor (128); und
    Druckbeaufschlagung des dritten kombinierten Prozessfluidstroms im vierten Kompressor (128).
EP14774106.0A 2013-03-14 2014-03-11 System und verfahren zum seitenstrommischen Active EP2969157B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361781383P 2013-03-14 2013-03-14
US14/202,033 US10047753B2 (en) 2014-03-10 2014-03-10 System and method for sidestream mixing
PCT/US2014/023293 WO2014159379A1 (en) 2013-03-14 2014-03-11 System and method for sidestream mixing

Publications (3)

Publication Number Publication Date
EP2969157A1 EP2969157A1 (de) 2016-01-20
EP2969157A4 EP2969157A4 (de) 2016-11-02
EP2969157B1 true EP2969157B1 (de) 2018-12-26

Family

ID=51625156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14774106.0A Active EP2969157B1 (de) 2013-03-14 2014-03-11 System und verfahren zum seitenstrommischen

Country Status (2)

Country Link
EP (1) EP2969157B1 (de)
WO (1) WO2014159379A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600080745A1 (it) * 2016-08-01 2018-02-01 Nuovo Pignone Tecnologie Srl Compressore di refrigerante diviso per la liquefazione di gas naturale

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE788368A (fr) * 1971-09-10 1973-01-02 D M Weatherly Cy Procede et appareil pour la compression en plusieurs etages d'un premier courant de gaz avec l'energie derivee d'un second courant de gaz
JPS5815677Y2 (ja) * 1976-11-04 1983-03-30 石川島播磨重工業株式会社 タ−ボ圧縮機
TW480325B (en) * 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
US7620481B2 (en) * 2007-01-10 2009-11-17 Halliburton Energy Services, Inc. Systems for self-balancing control of mixing and pumping
RU2573065C2 (ru) * 2010-05-21 2016-01-20 Эксонмобил Апстрим Рисерч Компани Устройство параллельного динамического компрессора и способы, относящиеся к нему
WO2012012018A2 (en) * 2010-07-20 2012-01-26 Dresser-Rand Company Combination of expansion and cooling to enhance separation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014159379A1 (en) 2014-10-02
EP2969157A4 (de) 2016-11-02
EP2969157A1 (de) 2016-01-20

Similar Documents

Publication Publication Date Title
AU2010325127B2 (en) Centrifugal wet gas compression or expansion with a slug suppressor and/or atomizer
EP3318743B1 (de) Zwischengekühlte gekühlte kühlungsintegrierte luftkreislaufmaschine
JP5863320B2 (ja) 遠心圧縮機
JP2015137651A (ja) 空気圧縮のためのシステムおよび方法
KR101237972B1 (ko) 압축 장치
US9458863B2 (en) Turbomachine with mixed-flow stage and method
US9109603B2 (en) Multi-stage centrifugal compressors
EP2163746A3 (de) Kopplung von Turboladern für den passiven Vordrall-Gegenlauf
EP3318742B1 (de) Wärmetauscheranordnung mit zwischengekühlter kühlluft
US10087943B2 (en) Flow volume measurement device for turbo compressor, and turbo compressor
WO2014027895A1 (en) Multiphase pressure boosting pump
US10047753B2 (en) System and method for sidestream mixing
CN107288857B (zh) 具有离心式和容积式压缩级组合的集成式齿轮传动压缩机
EP2969157B1 (de) System und verfahren zum seitenstrommischen
US20170356451A1 (en) Copmpression unit for high and low pressure services
US20180209427A1 (en) Lng plant including an axial compressor and a centrifugal compressor
EP2984344B1 (de) System und verfahren zum komprimieren von kohlendioxid
KR101578027B1 (ko) 압축 장치와, 이를 이용한 에너지 절감 시스템
JP6049807B2 (ja) 遠心圧縮機
JPS59589A (ja) 遠心多段ポンプ
WO2013184042A2 (ru) Многоступенчатая турбомашина (варианты)
JP2003161267A (ja) 水素リッチガス圧縮機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20161005

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 5/06 20060101ALI20160928BHEP

Ipc: F25J 1/02 20060101ALI20160928BHEP

Ipc: C10G 31/06 20060101AFI20160928BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DRESSER-RAND COMPANY

Owner name: SOROKES, JAMES M.

Owner name: MILLER, HARRY F.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014038690

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005000000

Ipc: C10G0005060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 31/06 20060101ALI20180709BHEP

Ipc: F25J 1/02 20060101ALI20180709BHEP

Ipc: F25J 1/00 20060101ALI20180709BHEP

Ipc: C10G 5/06 20060101AFI20180709BHEP

INTG Intention to grant announced

Effective date: 20180723

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081403

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014038690

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1081403

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DRESSER-RAND COMPANY, US

Free format text: FORMER OWNER: SOROKES, JAMES M., US

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014038690

Country of ref document: DE

Owner name: SIEMENS ENERGY, INC., ORLANDO, US

Free format text: FORMER OWNERS: DRESSER-RAND COMPANY, OLEAN, N.Y., US; MILLER, HARRY F., ALLEGANY, NY, US; SOROKES, JAMES M., OLEAN, NY, US

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014038690

Country of ref document: DE

Representative=s name: MAIER, DANIEL OLIVER, DIPL.-ING. UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014038690

Country of ref document: DE

Owner name: DRESSER-RAND COMPANY, OLEAN, US

Free format text: FORMER OWNERS: DRESSER-RAND COMPANY, OLEAN, N.Y., US; MILLER, HARRY F., ALLEGANY, NY, US; SOROKES, JAMES M., OLEAN, NY, US

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DRESSER-RAND COMPANY

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014038690

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190311

26N No opposition filed

Effective date: 20190927

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014038690

Country of ref document: DE

Representative=s name: ROTH, THOMAS, DIPL.-PHYS. DR., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014038690

Country of ref document: DE

Owner name: SIEMENS ENERGY, INC., ORLANDO, US

Free format text: FORMER OWNER: DRESSER-RAND COMPANY, OLEAN, N.Y., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 11