EP2959128B1 - Turbine à gaz avec commande de composition de carburant - Google Patents

Turbine à gaz avec commande de composition de carburant Download PDF

Info

Publication number
EP2959128B1
EP2959128B1 EP14707119.5A EP14707119A EP2959128B1 EP 2959128 B1 EP2959128 B1 EP 2959128B1 EP 14707119 A EP14707119 A EP 14707119A EP 2959128 B1 EP2959128 B1 EP 2959128B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustor
gas
fuel gas
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14707119.5A
Other languages
German (de)
English (en)
Other versions
EP2959128A1 (fr
Inventor
Stefano Bernero
Frank Graf
Gianfranco Ludovico GUIDATI
Martin Gassner
Felix Guethe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Ansaldo Energia IP UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia IP UK Ltd filed Critical Ansaldo Energia IP UK Ltd
Priority to EP14707119.5A priority Critical patent/EP2959128B1/fr
Publication of EP2959128A1 publication Critical patent/EP2959128A1/fr
Application granted granted Critical
Publication of EP2959128B1 publication Critical patent/EP2959128B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the disclosure refers to a method for operating a gas turbine with active measures to condition the fuel composition as well as such a gas turbine.
  • emission limit values and overall emission permits are becoming more stringent, so that it is required to operate at lower emission values, keep low emissions also at part load operation and during transients, as these also count for cumulative emission limits.
  • State-of-the-art combustion systems are designed to cope with a certain variability in operating conditions, e.g. by adjusting the compressor inlet mass flow or controlling the fuel split among different burners, fuel stages or combustors. However, this is not sufficient to meet the new requirements, especially for already installed engines.
  • Fuel reactivity is given by the composition of the natural gas provided by the supply grid or other gas sources. With new and diverse gas sources being exploited, the fuel composition in the grid is often fluctuating. Often large amounts of inert gases or low concentration of C2+ (i.e. higher hydrocarbons that contain more than one carbon atom per molecule and have a higher reactivity than methane) are present. Therefore often gas with low reactivity has to be used.
  • the object of the present disclosure is to propose a gas turbine and a method for operating a gas turbine, which enables stable, safe, and clean operation over a wide operating range. Further it enables the operation with fuel gas, which has low reactivity.
  • the first fuel distribution system comprises a first fuel gas supply line with a first combustor fuel control valve.
  • the second fuel distribution system comprises a second fuel gas supply line and a first control valve for high reactivity fuel.
  • the second fuel line gas supply line can be connected to the first fuel gas supply line upstream of the first combustor fuel control valve, downstream of first combustor fuel control valve or the second fuel gas supply line can be directly connected to the combustor for fuel injection into the combustors.
  • the total fuel mass flow can be controlled depending on the load demand of the gas turbine plant.
  • the gas turbine controller can be configured to control the ratio of the mass flows of the second fuel gas to the first fuel gas supplied to the first combustor depending on the combustion behavior in the first combustor during operation.
  • the gas turbine controller can additionally or alternatively be configured to control the ratio of the mass flows of the second fuel gas to the first fuel gas supplied to the second combustor depending on the combustion behavior in the second combustor during operation.
  • the first fuel distribution system comprises a first fuel gas supply line with a first combustor fuel control valve and a first fuel gas supply line with a second combustor fuel control valve.
  • the second fuel distribution system comprises a second fuel gas supply line and a first control valve for high reactivity fuel, and a second fuel gas supply line with a second control valve for high reactivity fuel.
  • the second fuel gas supply lines can be connected to the first fuel gas supply lines upstream of the respective combustor fuel control valve, downstream of respective combustor fuel control valve or the second fuel gas supply lines can be directly connected to the combustor for fuel injection into the combustors.
  • the electric power required to generate hydrogen can be supplied by the generator of the gas turbine plant.
  • the electrolyzer can be directly connected to the generator for electric power supply or can be connected to a medium or low voltage power system of the gas turbine plant.
  • the medium and low voltage power systems are typically fed by the generator.
  • the medium voltage system is typically directly feed by the generator while the low voltage system is typically feed via a transformer.
  • a high temperature electrolysis can be used to reduce the electric power consumption of the electrolysis.
  • the heat is supplied via a steam and/or hot water supply pipe from a heat source of the gas turbine plant.
  • a heat source of the gas turbine plant For example steam, preferably low grade steam of a heat recovery steam generator can be used.
  • steam preferably low grade steam of a heat recovery steam generator can be used.
  • the gas turbine is part of a combined cycle power plant with at least one heat recovery steam generator and at least one steam turbine low grade steam of a heat recovery steam generator, steam branched off from the steam turbine or return steam can be used as heat source for the electrolysis.
  • the gas turbine plant can further comprise an oxygen line from the electrolyzer to the compressor, to the air intake or to the combustor for injecting the oxygen produced during the electrolysis of the water.
  • an oxygen line from the electrolyzer to the compressor, to the air intake or to the combustor for injecting the oxygen produced during the electrolysis of the water.
  • the gas turbine plant comprises a hydrogen storage for accumulating and storing at least part of the hydrogen produced by the electrolyzer during a first operating period. At least part of the stored hydrogen can be released and fed to a combustor of the gas turbine during a second operating period to control the combustion behavior.
  • the gas turbine plant comprises an oxygen storage for accumulating and storing at least part of the oxygen produced by the electrolyzer during a first operating period. At least part of the stored oxygen can be released and fed to the compressor or a combustor of the gas turbine during a second operating period to control the combustion behavior by enhancing the combustion.
  • the use of the second fuel gas, respectively storage or release of the hydrogen as second fuel gas and/or of the oxygen to enhance combustion can be determined based on a schedule, which depends for example on the gas turbine load, the position of a variable inlet guide vane or another suitable operating parameter of the gas turbine.
  • control of the ratio of the mass flows of the second fuel gas to the first fuel gas supplied to the first and/or second combustor is described.
  • the same control methods can be applied to the addition of oxygen, i.e. an increase in the ratio of the mass flows of the second fuel gas to the first fuel gas is equivalent to an increase in the admixing of oxygen into the compressor or a combustor.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas supplied to the first and/or second combustor is controlled depending on at least one gas turbine operating parameter.
  • the gas turbine comprises corresponding measurement devices.
  • This can be a measurement device to determine at least one of: the first fuel gas flow, the gas turbine load, a gas turbine operating temperature, the composition of the first fuel gas, the composition of the second fuel gas, the CO emissions, the unburned hydrocarbon content, the NO x emissions, the pulsation, typically within a specific frequency range, or the flame intensity and/or location (i.e. flame monitoring).
  • an electrolyzer can be started within a short time, which enables fast response, e.g. to variations in the gas turbine load requests. If low electricity consumption of electrolysis is targeted, the use of high temperature electrolysis technology allows for supplying part of the required energy in the form of heat, which increases the overall efficiency of the system. This heat can be extracted from the GT exhaust gas or the steam cycle without major impact on the plant since it represents a comparatively small portion of the total amount of transferred heat and low grade steam can be used, which cannot be effectively used in the water steam cycle.
  • the storage system can simply comprise a storage vessel, which is operated at the outlet pressure of the electrolyzer.
  • the electrolyzer can be operated at an elevated pressure. For example at a pressure which is higher than the operating pressure of the gas turbine, or at a pressure which is higher than the maximum operating pressure of the gas turbine. Since the electrolyzer can typically be fed with water (in its liquid form) it can be pressurized, without a need for much compression power.
  • the pressure vessel can be filled with hydrogen (respectively oxygen) at practically the elevated pressure level of the electrolyzer. The hydrogen (respectively oxygen) can be released and directly injected into a combustor of the gas turbine without a need for fuel gas compression from the storage vessel.
  • the storage system comprises a liquefaction system and a liquid fuel storage vessel as well as a regasification system to reduce the required storage volume for storage of hydrogen (respectively oxygen).
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is controlled depending on a parameter indicative of the combustion behavior.
  • This can be one or more of the following parameters: the CO emission, the NO x emission, local overheating and / or flashback risk, combustor pulsations due to flame instability and or lean blow-off, or the minimum load.
  • Flue gas recirculation is a known measure to improve NO x emissions for gas turbines and to increase the CO 2 concentration in the exhaust flow of a gas turbine and to thereby enhance the efficiency of a CO 2 capture plant, which can be installed downstream of the gas turbine.
  • flue gas recirculation i.e. with increased FGR ratio.
  • This method can be used to also enable a wider operation window for flue gas recirculation. Since flue gas recirculation can increase the ignition delay time and can reduce the flame speed due to a change in the intake gas composition the fuel gas with higher reactivity can be used to counteract these effects of flue gas recirculation and therefore can enlarge the operation window for flue gas recirculation.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas can also be controlled depending on the flue gas recirculation ratio, i.e. the ratio of recirculated flue gas mass flow to the total intake mass flow of the gas turbine.
  • the CO emissions can be reduced by increasing the ratio of the mass flows of the second fuel gas to the first fuel gas while keeping the total heat input unchanged.
  • the NO x emissions can be reduced by reducing the ratio of the mass flows of the second fuel gas to the first fuel gas.
  • the operation range can be expanded to lower load (depending on the gas turbine lower load, in which operation is restricted can be for example below 40% or below 30% relative load) by increasing the ratio of the mass flows of the second fuel gas to the first fuel gas and by reducing the total heat input. This enables lower load operation and thereby reduces the minimum fuel consumption. This is especially helpful to reduce operating costs at low load demand of the grid, when the gas turbine is "parked" or in a standby mode.
  • a sequential combustion gas turbine which comprises a compressor, a first combustor, a first turbine, a second combustor and a second turbine, a fuel gas with a ratio of the mass flows of the second fuel gas to the first fuel gas, which is greater than zero that can be added into either only the first combustor or only the second combustor or into both the first combustor, and the second combustor.
  • hydrogen is produced in an electrolyzer and this hydrogen is used as the second fuel gas.
  • the electrolyzer can be powered by electricity produced from a generator of the plant.
  • the hydrogen can also be produced by high temperature electrolysis using electricity produced by a generator of the plant and using heat extracted from the gas turbine plant or a subsequent heat recovery steam generator or water steam cycle driven by steam from the heat recovery steam generator.
  • At least part of the hydrogen produced is stored in a hydrogen storage during a first time period for later use during a second time period with low power demand of an electric grid.
  • a first operating period can for example be a period with relatively high load, e.g. above 60% relative load (part load power relative to the base load power of the plant), or above 70% load. Typically no electrolysis is carried out during base load operation to avoid a reduction in base load net power delivered to the grid.
  • the second operating period can be a period of low power demand, e.g. below 60% relative load and can even be below 30% relative load.
  • oxygen produced during the electrolysis of water is injected into the combustor or upstream of the combustor to enhance the combustion.
  • oxygen By injecting oxygen into the intake gas (or inlet air) of the compressor, into the compressor or directly into the combustor the reactivity of the fuel-oxidant mixture is increased (i.e. the ignition delay time is reduced and the flame speed increased). This leads to a more stable combustion and reduction of CO emissions at low load.
  • Oxygen can be used for operating a gas turbine plant with flue gas recirculation to increase oxygen content in the and therefore allow a higher flue gas recirculation ratio, which reduces the exhaust mass leaving the plant.
  • CO2 capture the CO2 capture unit can be smaller and work more efficiently due to an increased CO2 concentration and thereby reduce the first cost and operating costs for carbon capture.
  • the method is applied to a sequential combustion gas turbine comprising a compressor, a first combustor, a first turbine, a second combustor, and a second turbine.
  • a sequential combustion gas turbine comprising a compressor, a first combustor, a first turbine, a second combustor, and a second turbine.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is controlled for the first combustor depending on the combustion behavior of the first combustor.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is controlled for the second combustor depending on the combustion behavior of the second combustor.
  • a ratio of the mass flows of the second fuel gas to the first fuel gas does not need to be greater than zero at all times, i.e. the second fuel with higher fuel reactivity does not need to be injected into the combustor at all times.
  • the second fuel addition is carried out depending on the composition of the first fuel gas and the gas turbine operation conditions, in particular as a function of gas turbine load.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is greater than zero for the fuel supply to only the first combustor to increase the flame stability at a low load of the first combustor when the second combustor is not in operation.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is greater than zero for the fuel supply to only the second combustor to increase the flame stability at low load of the second combustor and to reduce CO emission due to low operating temperature of the combustor.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas can be kept at zero for the fuel supply to the first combustor.
  • a low load of a combustor is an operation with an operating temperature, which is below the design operating temperature of the combustor. It can for example be more than 20 K or more than 50 K below the absolute base load operating temperature of the combustor.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is greater than zero for the fuel supply to only some burners of a combustor or only some of the fuel nozzles of a burner.
  • These burners or fuel nozzles can operate in a premixed mode but act as a stabilizer for other burners or combustors of the gas turbine like a conventional pilot flame.
  • the ratio of the mass flows of the second fuel gas to the first fuel gas is controlled as a function of at least one of operating parameter of the gas turbine.
  • Suitable control parameters can be the total fuel mass flow injected into the gas turbine, the gas turbine load, the relative gas turbine load, the composition of the first fuel gas, the composition of the second fuel gas. These parameters have a direct influence on the thermal load of the gas turbine and are an indication of the heat release in the combustors.
  • a further suitable control parameter can be a gas turbine operating temperature, such as the turbine inlet temperature, the turbine exit temperature or local temperature indicative of the combustion process. In particular temperatures, which directly or indirectly indicate the flame position, such as a burner or combustor metal temperature or the temperature of a recirculation flow in a combustion chamber can be used to control the mass flow of second fuel fraction.
  • the CO emissions can be used to control the ratio of the mass flows of the second fuel gas to the first fuel gas.
  • UHC unburned hydrocarbon content
  • Any other control signal indicative of an approach to a lean blow off limit or indicative of a flashback risk can also be used to control the ratio of the mass flows of the second fuel gas to the first fuel gas.
  • this can be the combustor pulsations or a flame monitor signal (typically an optical sensor).
  • the gas turbine can include a flue gas recirculation system, in which a part of the flue gas is admixed to the inlet gas of the gas turbine.
  • Fig. 1 shows a gas turbine plant with a single combustor gas turbine for implementing the method according to the disclosure. It comprises a compressor 1, a combustor 4, and a turbine 7. Fuel gas is introduced into the combustor 4, mixed with compressed air 3 which is compressed in the compressor 1, and combusted in the combustor 4. The hot gases 6 are expanded in the subsequent turbine 7, performing work.
  • the gas turbine plant includes a generator 19, which is coupled to a shaft 18 of the gas turbine.
  • a first fuel gas 5 can be controlled by a first combustor control valve 22 and fed to the combustor 4.
  • a second fuel gas 14, which is a fuel gas with high fuel reactivity (i.e. short ignition delay time in the combustor), can be controlled by a first control valve for high reactivity fuel 23 and fed to the combustor 4.
  • the first fuel gas 5 and second fuel gas 14 are mixed and introduced as a first conditioned fuel 9 into the combustor 4.
  • the fuel gas composition of the first fuel gas 5 is detected by a sensor 16.
  • the fuel gas composition of the second fuel gas 14 is detected by another sensor 16.
  • the emissions and the composition of the exhaust gas 13 are detected by a further sensor 16, and the combustion can be monitored by yet another sensor 16.
  • the measured data of the sensors 16 are transmitted to the controller 17 via control lines (indicated as dotted lines). Based on the measured data the controller determines the required ratio of the mass flows of the second fuel gas to the first fuel gas for complete and stable combustion and sends the corresponding control signals to the first combustor control valve 22 and the first control valve for high reactivity fuel 23.
  • controller can use all measurement data available for the normal control of the gas turbine to determine the best ratio of the mass flows of the second fuel gas to the first fuel gas (the corresponding measurements are not shown here).
  • Fig. 2 schematically shows a gas turbine plant with a sequential combustion gas turbine for implementing the method according to the disclosure. It comprises a compressor 1, a first combustor 4, a first turbine 7, a second combustor 15 and a second turbine 12. Typically, it includes a generator 19 which is coupled to a shaft 18 of the gas turbine.
  • Fuel gas is supplied to the first combustor 4, mixed with air which is compressed in the compressor 1, and combusted.
  • the hot gases 6 are partially expanded in the subsequent first turbine 7, performing work.
  • additional fuel is added to the partially expanded gases 8 and combusted in the second combustor 15.
  • the hot gases 11 are expanded in the subsequent second turbine 12, performing work.
  • a first fuel gas 5 can be controlled by a first combustor control valve 22 and fed to the first combustor 4.
  • a second fuel gas 14, which is a fuel gas with high reactivity (i.e. short ignition delay time in the combustor), can be controlled by a first control valve for high reactivity fuel 23 and fed to the first combustor 4.
  • the first fuel gas 5 and second fuel gas 14 are mixed and introduced as a first conditioned fuel 9 into the first combustor 4.
  • the first fuel gas 5 can be controlled by a second combustor control valve 24 and fed to the second combustor 15.
  • the second fuel gas 14, which is a fuel gas with high fuel reactivity, can be controlled by a second control valve for high reactivity fuel 25 and fed to the second combustor 15.
  • the first fuel gas 5 and second fuel gas 14 are mixed and introduced as a second conditioned fuel 10 into the second combustor 15.
  • the fuel gas composition of the first fuel gas 5 is detected by a sensor 16.
  • the fuel gas composition of the second fuel gas 14 is detected by another sensor 16.
  • the emissions and the composition of the exhaust gas 13 are detected by a further sensor 16.
  • the combustion in the first combustion chamber 4 can be monitored by another sensor 16, and the combustion in the second combustion chamber 15 can be monitored by another sensor 16.
  • the measured data of the sensors 16 are transmitted to the controller 17 via control lines (indicated as dotted lines).
  • the controller determines the required ratio of the mass flows of the second fuel gas to the first fuel gas for complete and stable combustion in the first and second combustor 4, 15 and sends the corresponding control signals to the first combustor control valve 22 and the first control valve for high reactivity fuel 23 as well as to the second combustor control valve 24 and the second control valve for high reactivity fuel 25.
  • Fig. 3 schematically shows a second example of a plant with a single combustion gas turbine with a fuel system according to the present disclosure.
  • Fig. 3 is based on Fig. 1 .
  • the example of Fig 3 additionally shows an electrolyzer 20.
  • Water 26 is supplied to the electrolyzer 20 and hydrogen and oxygen 28 are generated in the electrolyzer using electricity generated by the generator 19.
  • a hydrogen storage 21 is arranged downstream of the electrolyzer 20.
  • the hydrogen can be supplied and controlled as second fuel gas 14 by the first control valve for highly reactive fuel gas to the first combustor 4.
  • a line for oxygen 28 can be used to inject the oxygen which is a byproduct of the electrolysis into the combustor 4.
  • An oxygen storage 30 is arranged downstream of the electrolyzer 20.
  • the oxygen 28 can be injected into the compressor intake air.
  • the oxygen 28 is provided at a high pressure level is more efficient to inject it directly into the combustor.
  • Fig. 4 schematically shows a third example of a plant with a single combustion gas turbine with a fuel system according to the present invention. Fig. 4 is based on Fig. 3 .
  • the example of Fig 4 shows a high temperature electrolyzer 20. Hot water/steam 29 is supplied from a heat recovery steam generator 27 which is extracting waste heat from the gas turbine exhaust gases 13. Due to the use of hot water/ steam 29 the electricity consumption of the high temperature electrolyzer 20 can be reduced relative to the electrolyzer 20 of example shown in Fig. 3 .
  • a flue gas recirculation system is indicated with dotted lines as an option.
  • Part of the exhaust gas 13 is branched off into a flue gas recirculation line 32 and admixed to the intake air 2.
  • the recirculated exhaust gas 13 (also called flue gas) is typically branched off after a heat recovery steam generator 27 but can also be branched off directly after the turbine 7.
  • the recirculated flue gas is cooled in an optional flue gas re-cooler 31.
  • the first fuel distribution system comprises a first fuel gas 5 supply line with a combustor fuel control valve 22, 24.
  • the second fuel distribution system comprises a second fuel gas 14 supply line and a control valve for high reactivity fuel 23, 25.
  • the first fuel gas 5 and second fuel gas 14 are mixed to provide a first, respectively a second conditioned fuel 9, 10 for the combustor 4, 15.
  • each fuel flow i.e. the first fuel gas 5 and/or the second fuel gas 14 can also be directly injected into the combustor(s) 4, 15 (not shown).

Claims (13)

  1. Installation de turbine à gaz avec au moins un compresseur (1), une chambre de combustion (4, 15), une turbine (7, 12),
    un système d'alimentation en combustible pour la chambre de combustion (4, 15) avec un premier système de distribution de combustible pour un premier combustible gazeux (5) avec une première réactivité de combustible et un deuxième système de distribution de combustible pour un deuxième combustible gazeux (14) avec une deuxième réactivité de combustible, qui est supérieure à la première réactivité de combustible,
    l'installation de turbine à gaz comprenant un appareil d'électrolyse (20) pour générer de l'hydrogène en tant que deuxième combustible gazeux (14) à partir d'eau (26), et
    un dispositif de commande (17) configuré pour commander le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) fournis à la chambre de combustion (4, 15) en fonction du comportement de combustion de la chambre de combustion (4, 15) en fonctionnement,
    caractérisée en ce qu'elle comprend un tuyau d'alimentation en vapeur et/ou en eau chaude (29) d'une source de chaleur de la turbine à gaz jusqu'à l'appareil d'électrolyse (20) pour une électrolyse à haute température.
  2. Installation de turbine à gaz selon la revendication 1, caractérisée en ce que la turbine à gaz est une turbine à gaz à combustion séquentielle comprenant une première chambre de combustion (4), une première turbine (7), une deuxième chambre de combustion (15) et une deuxième turbine (12), et en ce que
    la turbine à gaz comprend un système d'alimentation en combustible pour la première chambre de combustion (4) avec un premier système de distribution de combustible pour le premier combustible gazeux (5) et un deuxième système de distribution de combustible pour le deuxième combustible gazeux (14) et un système d'alimentation en combustible pour la deuxième chambre de combustion (15) avec un premier système de distribution de combustible pour le premier combustible gazeux (5) et un deuxième système de distribution de combustible pour le deuxième combustible gazeux (14)
    et en ce que le dispositif de commande de turbine à gaz (17) est configuré pour commander le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) fournis à la première chambre de combustion (4) en fonction du comportement de combustion dans la première chambre de combustion (4) en fonctionnement
    et/ou en ce que le dispositif de commande de turbine à gaz (17) est configuré pour commander le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) fournis à la deuxième chambre de combustion (15) en fonction du comportement de combustion dans la deuxième chambre de combustion (15) en fonctionnement.
  3. Installation de turbine à gaz selon l'une des revendications 1 et 2, caractérisée en ce qu'elle comprend une conduite d'oxygène (28) de l'appareil d'électrolyse (20) jusqu'au compresseur (1), jusqu'à l'admission d'air (2) ou jusqu'à la chambre de combustion (4, 15) pour injecter l'oxygène (28) produit pendant l'électrolyse de l'eau (26) pour améliorer la combustion.
  4. Installation de turbine à gaz selon l'une des revendications 1 et 2, caractérisée en ce qu'elle comprend un accumulateur d'hydrogène (21) pour accumuler et stocker au moins une partie de l'hydrogène produit par l'appareil d'électrolyse (20) pendant une première période de fonctionnement et libérer au moins une partie de l'hydrogène stocké pour la fournir à la chambre de combustion (4, 15) pendant une deuxième période de fonctionnement pour commander le comportement de combustion,
    et/ou en ce qu'elle comprend un accumulateur d'oxygène (21) pour accumuler et stocker au moins une partie de l'oxygène (28) produit par l'appareil d'électrolyse (20) pendant une première période de fonctionnement et libérer au moins une partie de l'oxygène stocké (28) pour le fournir au compresseur (1) et/ou à la chambre de combustion (4, 15) pendant une deuxième période de fonctionnement pour commander le comportement de combustion.
  5. Turbine à gaz selon l'une des revendications 1 à 4, caractérisée en ce qu'elle comprend des dispositifs de mesure pour déterminer au moins l'un parmi :
    - la charge de turbine à gaz,
    - une température de fonctionnement de turbine à gaz,
    - la composition du premier combustible gazeux (5),
    - la composition du deuxième combustible gazeux (14),
    - le débit massique du premier combustible gazeux (5),
    - le débit massique du deuxième combustible gazeux (14),
    - les émissions de CO,
    - la teneur en hydrocarbures non brûlés des gaz de combustion,
    - les émissions de NOx,
    - la limite de décharge pauvre,
    - la pulsation dans la chambre de combustion (4, 15),
    - la flamme dans la chambre de combustion (4, 15).
  6. Procédé pour mettre en oeuvre une installation de turbine à gaz avec au moins un compresseur (1), une chambre de combustion (4, 15), une turbine (7, 12), un système de combustible, et un appareil d'électrolyse (20) pour générer de l'hydrogène en tant que deuxième combustible gazeux (14) à partir d'eau (26) et un tuyau d'alimentation en vapeur et/ou en eau chaude (29) d'une source de chaleur de la turbine à gaz jusqu'à l'appareil d'électrolyse (20) pour une électrolyse à haute température,
    dans lequel un premier combustible gazeux (5) avec une première réactivité de combustible et le deuxième combustible gazeux (14) avec une deuxième réactivité de combustible qui est supérieure à la première réactivité de combustible sont injectés dans la chambre de combustion (4), dans lequel le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est commandé en fonction du comportement de combustion de la chambre de combustion (4, 15).
  7. Procédé selon la revendication 6, caractérisé en ce que le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est commandé en fonction de l'un des paramètres indicatifs du comportement de combustion suivants :
    - l'émission de CO
    - l'émission de NOx
    - le risque de surchauffe locale et/ou de retour de flamme
    - les pulsations de combustion,
    et/ou en fonction du débit de recirculation de gaz de combustion.
  8. Procédé selon l'une des revendications 6 et 7, caractérisé en ce que le deuxième combustible gazeux (14) est l'hydrogène produit dans un appareil d'électrolyse par une électrolyse à haute température (20) en utilisant l'électricité produite par une génératrice (19) de l'installation et en utilisant la chaleur extraite de l'installation de turbine à gaz ou d'un générateur de vapeur à récupération de chaleur (27) suivant.
  9. Procédé selon la revendication 8, caractérisé en ce qu'au moins une partie de l'hydrogène produit est stockée dans un accumulateur d'hydrogène (21) pendant une première période de temps pour une utilisation ultérieure pendant une deuxième période de temps et/ou en ce que l'oxygène (28) produit par l'électrolyse de l'eau est injecté dans la chambre de combustion (4, 15) ou en amont de la chambre de combustion (4, 15) pour améliorer la combustion.
  10. Procédé selon l'une des revendications 6 à 9, caractérisé en ce que, dans une turbine à gaz à combustion séquentielle comprenant un compresseur (1), une première chambre de combustion (4), une première turbine (7), une deuxième chambre de combustion (15), et une deuxième turbine (12),
    le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est commandé pour la première chambre de combustion (4) en fonction du comportement de combustion de la première chambre de combustion (4) et/ou
    le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est commandé pour la deuxième chambre de combustion (4) en fonction du comportement de combustion de la deuxième chambre de combustion (15).
  11. Procédé selon la revendication 10, caractérisé en ce que le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est supérieur à zéro pour la fourniture de combustible uniquement à la première chambre de combustion (4) afin d'augmenter la stabilité de la flamme à faible charge lorsque la deuxième chambre de combustion n'est pas en fonctionnement, et/ou
    en ce que le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est supérieur à zéro pour la fourniture de combustible uniquement à la deuxième chambre de combustion (15) afin d'augmenter la stabilité de la flamme à faible charge de la deuxième chambre de combustion (15) pour réduire l'émission de CO due aux faibles températures alors que le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est maintenu à zéro pour la fourniture de combustible à la première chambre de combustion (4).
  12. Procédé selon l'une des revendications 6 à 11, caractérisé en ce que le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est supérieur à zéro pour la fourniture de combustible uniquement aux brûleurs sélectionnés d'une chambre de combustion ou uniquement aux buses de combustible sélectionnées d'un brûleur.
  13. Procédé selon l'une des revendications 6 à 12, caractérisé en ce que le rapport des débits massiques entre le deuxième combustible gazeux (14) et le premier combustible gazeux (5) est commandé en fonction d'au moins l'un parmi :
    le débit massique de combustible gazeux total injecté dans la turbine à gaz,
    la charge de turbine à gaz ou de la charge relative de turbine à gaz,
    la composition du premier combustible gazeux (5),
    la composition du deuxième combustible gazeux (14),
    une température de fonctionnement de turbine à gaz,
    les émissions de CO,
    la teneur en hydrocarbures non brûlés dans le gaz d'échappement (13),
    les émissions de NOx,
    la limite de décharge pauvre d'une chambre de combustion (4, 15),
    la pulsation de chambre de combustion,
    un signal de surveillance de flamme,
    un risque de retour de flamme.
EP14707119.5A 2013-02-19 2014-02-18 Turbine à gaz avec commande de composition de carburant Active EP2959128B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14707119.5A EP2959128B1 (fr) 2013-02-19 2014-02-18 Turbine à gaz avec commande de composition de carburant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13155796.9A EP2767697A1 (fr) 2013-02-19 2013-02-19 Turbine à gaz avec commande de composition de carburant
EP14707119.5A EP2959128B1 (fr) 2013-02-19 2014-02-18 Turbine à gaz avec commande de composition de carburant
PCT/EP2014/053137 WO2014128124A1 (fr) 2013-02-19 2014-02-18 Turbine à gaz avec commande de la composition de combustible

Publications (2)

Publication Number Publication Date
EP2959128A1 EP2959128A1 (fr) 2015-12-30
EP2959128B1 true EP2959128B1 (fr) 2019-01-09

Family

ID=47722148

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13155796.9A Withdrawn EP2767697A1 (fr) 2013-02-19 2013-02-19 Turbine à gaz avec commande de composition de carburant
EP14707119.5A Active EP2959128B1 (fr) 2013-02-19 2014-02-18 Turbine à gaz avec commande de composition de carburant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13155796.9A Withdrawn EP2767697A1 (fr) 2013-02-19 2013-02-19 Turbine à gaz avec commande de composition de carburant

Country Status (4)

Country Link
US (1) US20150337742A1 (fr)
EP (2) EP2767697A1 (fr)
CN (1) CN105339629A (fr)
WO (1) WO2014128124A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476357B2 (en) * 2010-03-15 2016-10-25 HNO Green Fuels, Inc. Method and apparatus for increasing combustion efficiency and reducing particulate matter emissions in jet engines
EP2789915A1 (fr) * 2013-04-10 2014-10-15 Alstom Technology Ltd Procédé de fonctionnement d'une chambre de combustion et chambre de combustion
US20150075170A1 (en) * 2013-09-17 2015-03-19 General Electric Company Method and system for augmenting the detection reliability of secondary flame detectors in a gas turbine
EP2993401B1 (fr) * 2014-09-02 2017-12-06 Ansaldo Energia IP UK Limited Procédé de commande d'une turbine à gaz
US10731569B2 (en) * 2015-10-15 2020-08-04 General Electric Company Systems and methods for injection of bio-diesel into a gas turbine combustor
CN109690053B (zh) * 2016-07-07 2021-04-27 西门子股份公司 用于控制具有多个燃烧区的燃气涡轮发动机中的燃料分配的方法
IT201700020606A1 (it) * 2017-02-23 2018-08-23 Aurelio Pucci Impianto di riscaldamento a elettrolisi.
JP2018204601A (ja) * 2017-05-30 2018-12-27 一般財団法人電力中央研究所 燃料・原料が製造される発電システム
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11852082B2 (en) * 2022-01-05 2023-12-26 General Electric Company Systems and methods for controlling a fuel blend for a gas turbine
GB202201986D0 (en) * 2022-02-15 2022-03-30 Rolls Royce Plc Engine system and method of operating the same
EP4343131A1 (fr) * 2022-09-23 2024-03-27 General Electric Technology GmbH Méthode de fonctionnement d'un système de combustion, système de combustion et moteur à turbine à gaz comprenant le système de combustion

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2088947C (fr) * 1993-02-05 1996-07-16 Daniel A. Warkentin Turbine a gaz alimentee a l'hydrogene
US6326703B1 (en) * 2000-03-01 2001-12-04 John W. Clark Power apparatus
US6357218B1 (en) * 2001-06-20 2002-03-19 General Electric Company Steam generation system and method for gas turbine power augmentation
US6640548B2 (en) * 2001-09-26 2003-11-04 Siemens Westinghouse Power Corporation Apparatus and method for combusting low quality fuel
DE10345566A1 (de) * 2003-09-29 2005-04-28 Alstom Technology Ltd Baden Verfahren zum Betrieb einer Gasturbine sowie Gasturbinenanlage zur Durchführung des Verfahrens
US7036313B1 (en) * 2004-03-31 2006-05-02 Weaver Winstead B Co-generation turbocharged turbine system
US7624564B2 (en) * 2004-07-23 2009-12-01 Power Systems Mfg., Llc Apparatus and method for providing an off-gas to a combustion system
US7188478B2 (en) * 2004-09-13 2007-03-13 General Electric Company Power generation system and method of operating same
US7650744B2 (en) * 2006-03-24 2010-01-26 General Electric Company Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines
US9080513B2 (en) * 2007-10-31 2015-07-14 General Electric Company Method and apparatus for combusting syngas within a combustor
JP5473934B2 (ja) * 2007-11-27 2014-04-16 アルストム テクノロジー リミテッド 水素を多く含む第二の燃料を用いてガスタービン設備を動作させる装置及び方法
US20100175379A1 (en) 2009-01-09 2010-07-15 General Electric Company Pre-mix catalytic partial oxidation fuel reformer for staged and reheat gas turbine systems
US20100300110A1 (en) 2009-05-28 2010-12-02 General Electric Company Gas Turbine Combustion System With In-Line Fuel Reforming And Methods Of Use Thereof
US20110197587A1 (en) * 2010-02-18 2011-08-18 General Electric Company Multi-tube premixing injector
US20140203557A1 (en) * 2013-01-24 2014-07-24 General Electric Company System and Method for Extending Minimum Turn Down Load of Combined Cycle Power Plant

Also Published As

Publication number Publication date
US20150337742A1 (en) 2015-11-26
WO2014128124A1 (fr) 2014-08-28
EP2767697A1 (fr) 2014-08-20
EP2959128A1 (fr) 2015-12-30
CN105339629A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
EP2959128B1 (fr) Turbine à gaz avec commande de composition de carburant
JP6010489B2 (ja) 熱電可変型コジェネレーションシステム
RU2608533C2 (ru) Газотурбинная система, способ изменения выходной мощности газотурбинной системы, способ расширения диапазона регулирования газотурбинной системы, способ и система для повышения эффективности газовой турбины
EP2738371A2 (fr) Système et procédé de fonctionnement d'une turbine à gaz dans un mode de réglage
CN101555835B (zh) 用于控制燃气涡轮发动机的负载点的控制方法及系统
WO2010082360A1 (fr) Moteur
US20130269356A1 (en) Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US20130269360A1 (en) Method and system for controlling a powerplant during low-load operations
US7905082B2 (en) Method and system for increasing Modified Wobbe Index control range
US20100319359A1 (en) System and method for heating turbine fuel in a simple cycle plant
US20140203557A1 (en) System and Method for Extending Minimum Turn Down Load of Combined Cycle Power Plant
US9416686B2 (en) Heat recovery steam generator and power plant
AU2016284752B2 (en) Method and equipment for combustion of ammonia
CN204299705U (zh) 燃气涡轮机排放物控制系统
EP2826979A1 (fr) Système et procédé de commande d'émissions de turbine à gaz
US10072573B2 (en) Power plant including an ejector and steam generating system via turbine extraction
EP3135880B1 (fr) Turbine à gaz avec un agencement à combustion séquentielle et contrôle de composition de carburant
JP2017110650A (ja) タービン抽出による蒸気発生システム
EP2476880A1 (fr) Moteur à turbine à gaz et procédé d'exploitation associé
EP2713026A2 (fr) Procédé et système pour le contrôle des émissions de CO2
EP2578840A2 (fr) Centrale électrique avec système de recirculation de gaz d'échappement
Stathopoulos et al. The ultra-wet cycle for high efficiency, low emission gas turbines
US20170248036A1 (en) System and method for managing heat recovery steam generator inlet temperature
CN109339881B (zh) 一种燃气轮机联合循环机组启动过程no2排放控制系统和方法
JP2014202475A (ja) 触媒燃焼空気加熱システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1087584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014039498

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1087584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014039498

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

26N No opposition filed

Effective date: 20191010

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 11