EP2956656B1 - Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine - Google Patents

Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine Download PDF

Info

Publication number
EP2956656B1
EP2956656B1 EP14705834.1A EP14705834A EP2956656B1 EP 2956656 B1 EP2956656 B1 EP 2956656B1 EP 14705834 A EP14705834 A EP 14705834A EP 2956656 B1 EP2956656 B1 EP 2956656B1
Authority
EP
European Patent Office
Prior art keywords
temperature
internal combustion
combustion engine
heat exchanger
liquid coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14705834.1A
Other languages
German (de)
French (fr)
Other versions
EP2956656A1 (en
Inventor
Laurence HOUZE
Manuela Hennequin
Pascal Emery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2956656A1 publication Critical patent/EP2956656A1/en
Application granted granted Critical
Publication of EP2956656B1 publication Critical patent/EP2956656B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Definitions

  • the present invention generally relates to the field of recirculation of burnt gases from the exhaust to the inlet of an internal combustion engine.
  • It relates more particularly to a control method of a control valve of a flow of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine.
  • Such a cooling circuit then comprises a heat exchanger, said cooler EGR, which is crossed, on the one hand, by the recirculation gas, and, on the other hand, by a cooling liquid.
  • the cooling circuit also comprises a bistable valve, located downstream of the EGR cooler, which is controlled in the open or closed position depending on the measured temperature of the recirculation gases.
  • the opening of the bistable valve generates a large and brutal cooling of the recirculation gases, in particular when the internal combustion engine has not yet reached its optimum operating temperature.
  • the closure of the bistable valve also prevents any circulation of coolant in the EGR cooler, which can lead to a failure of cooling of the recirculation gases and a release into the atmosphere of a large amount of soot particles and dusts. 'hydrocarbon.
  • the coolant blocked in the EGR cooler may reach its boiling point and cause damage to the EGR cooler.
  • the present invention proposes a method for controlling the more reliable control valve.
  • step b) the ambient temperature is measured, a target coolant temperature is deduced therefrom and the control setpoint is developed as a function of the temperature of the measured coolant and the target temperature.
  • control valve is controlled between a greater number of positions, which allows a better regulation of the flow of coolant and avoids any problem of boiling or sudden temperature change.
  • This better regulation also considerably reduces the fouling of the cooling circuit, especially when starting the engine or when the ambient temperature is low.
  • control of the control valve as a function of the temperature of the coolant ensures a more precise regulation of the temperature of the recirculation gases.
  • the invention also proposes a cooling circuit as defined in the introduction which comprises a control unit of said control valve, which is adapted to implement a control method as defined above.
  • the invention further provides an internal combustion engine as defined in the introduction which comprises a cooling circuit as defined above, the heat exchanger of which is positioned on said recirculation line.
  • upstream and downstream will be used in the direction of the flow of gases from the point of collection of fresh air into the atmosphere to the exit of the flue gases in the atmosphere. atmosphere.
  • FIG 1 schematically shows an internal combustion engine 1 of a motor vehicle, which comprises a motor unit 10 provided with a crankshaft and four pistons (not shown) housed in four cylinders 11.
  • This engine is here compression ignition ( Diesel). It could also be spark ignition (gasoline).
  • the internal combustion engine 1 Upstream of the cylinders 11, the internal combustion engine 1 comprises an intake line 20 which takes fresh air into the atmosphere and which opens into an air distributor 25 arranged to distribute the air to each of the four cylinders 11 of the engine block 10.
  • This intake line 20 comprises, in the direction of flow of fresh air, an air filter 21 which filters the fresh air taken from the atmosphere, a compressor 22 which compresses the air. fresh air filtered by the air filter 21, a main air cooler 23 which cools this compressed fresh air, and an inlet valve 24 which regulates the flow of fresh air into the air distributor 25 .
  • the internal combustion engine 1 At the outlet of the cylinders 11, the internal combustion engine 1 comprises an exhaust line 80 which extends from an exhaust manifold 81 in which the gases which have been previously burned into the cylinders 11 are discharged, to a silencer exhaust 87 to relax the burnt gases before they are discharged into the atmosphere. It also comprises, in the flow direction of the flue gas, a turbine 82, and a catalytic converter 83 for treating burnt gases.
  • the turbine 82 is rotated by the flow of burnt gas leaving the exhaust manifold 81, and it drives the compressor 22 into rotation, thanks to mechanical coupling means such as a simple transmission shaft.
  • the catalytic converter 83 is here a three-way catalyst which contains an oxidation catalyst 84, a particulate filter 85 and a nitrogen oxide trap 86.
  • the internal combustion engine 1 also comprises a high-pressure flue gas recirculation line, from the exhaust line 80 to the intake line 20.
  • This recirculation line is commonly called the EGR-HP line 40, in accordance with FIG. to the English acronym of "Exhaust Gas Recirculation - High Pressure”. It originates in the exhaust line 80, between the exhaust manifold 81 and the turbine 82, and it opens into the intake line 20, between the inlet valve 24 and the air distributor 25.
  • This line EGR-HP 40 makes it possible to take a part of the flue gases circulating in the exhaust line 80, called recirculation gases or EGR gas, for reinjecting it into the cylinders 11 in order to reduce the polluting emissions of the engine, and in particular emissions of nitrogen oxides, soot and hydrocarbon particles.
  • This EGR-HP line 40 comprises an EGR-HP valve 41 for regulating the flow of EGR gas opening into the air distributor 25.
  • this EGR-HP line could be supplemented or replaced by a low-pressure flue gas recirculation line, commonly known as EGR-LP line according to the English acronym of "Exhaust Gas Recirculation - Low Pressure" ".
  • EGR-LP line would then be born in the exhaust line, at the exit of the catalytic converter, and lead into the intake line, between the air filter and the compressor.
  • the internal combustion engine 1 also comprises a fuel injection line 60 in the cylinders 11.
  • This injection line 60 comprises an injection pump 62 arranged to collect the fuel in a reservoir 61 to bring it under pressure in a distribution rail 63 which opens into the cylinders 11 via four injectors 64.
  • the internal combustion engine 1 further comprises a primary cooling circuit (not shown), which in particular passes through the engine block 10 and the main air cooler 23 and in which circulates a cooling liquid.
  • a primary cooling circuit (not shown), which in particular passes through the engine block 10 and the main air cooler 23 and in which circulates a cooling liquid.
  • the internal combustion engine 1 also comprises a secondary cooling circuit 30, which could possibly be confused with the primary cooling circuit, and which comprises a heat exchanger 31 provided for cooling the EGR gases flowing in the line EGR-HP 40 (or alternatively, in line EGR-LP), so as to best reduce the temperature of the gases in the air distributor 25 to provide the internal combustion engine 1 better performance.
  • a secondary cooling circuit 30 which could possibly be confused with the primary cooling circuit, and which comprises a heat exchanger 31 provided for cooling the EGR gases flowing in the line EGR-HP 40 (or alternatively, in line EGR-LP), so as to best reduce the temperature of the gases in the air distributor 25 to provide the internal combustion engine 1 better performance.
  • the heat exchanger 31, here called EGR cooler 31, is positioned on the line EGR-HP 40 to cool the EGR gas.
  • the EGR cooler 31 more specifically comprises a main pipe 31A through which the EGR gas flows, and a secondary pipe 31 B through which circulates a cooling liquid.
  • the main line 31A is connected, on one side, to the exhaust line 80 via an upstream line 42 of the EGR-HP line 40, and, on the other hand, to the EGR-HP valve 41 via a downstream duct. 43 of the line EGR-HP 40.
  • the secondary pipe 31 B is connected to the remainder of the secondary cooling circuit 30, on one side, by an upstream pipe 33, and on the other by a downstream pipe 34.
  • the secondary cooling circuit 30 further comprises a control valve 35 of the coolant flow.
  • This control valve 35 is here arranged on the upstream duct 33 of the secondary cooling circuit 30. In a variant, it could of course be arranged elsewhere, for example on the downstream duct.
  • the control valve 35 is here a butterfly flap, but it could of course be otherwise.
  • the circulation of the coolant in this secondary cooling circuit 30 is provided by a pressurizing pump (not shown).
  • the coolant used here is a mixture of water and glycol.
  • a computer 100 comprising a processor (CPU), a random access memory (RAM), a read-only memory (ROM), analog-digital converters (A / D) and input and output interfaces.
  • CPU central processing unit
  • RAM random access memory
  • ROM read-only memory
  • a / D analog-digital converters
  • the computer 100 is adapted to receive different sensors input signals relating to engine operation and climatic conditions.
  • a first temperature probe 101 is especially provided, which makes it possible to measure the instantaneous temperature T.sub.o of the coolant circulating in the secondary cooling circuit 30.
  • this first temperature probe 101 is located in the downstream duct 34.
  • a second temperature probe 102 is also provided for measuring the ambient temperature Ta, that is, the temperature outside the vehicle equipped with the internal combustion engine 1.
  • the first temperature probe will therefore be positioned at a distance from the EGR cooler 31, preferably at 10 cm from the latter, so that the measurements are not disturbed by the EGR cooler 31.
  • the first temperature sensor is located inside the EGR cooler itself.
  • the load C (also called “engine load”) corresponds to the ratio of the work supplied by the engine to the maximum work that could develop this engine at a given speed. It is usually approximated using a variable called effective average pressure SME.
  • the R speed corresponds to the speed of rotation of the crankshaft, expressed in revolutions per minute.
  • the computer 100 is adapted to generate, for each operating condition of the engine, output signals.
  • the computer 100 is adapted to transmit these output signals to the various components of the engine, in particular to the control valve 35.
  • the computer 100 initializes and then controls the starter and the fuel injectors 64 for them to start the internal combustion engine 1.
  • the fresh air taken from the atmosphere through the intake line 20 is filtered by the air filter 21, compressed by the compressor 22, cooled by the main air cooler 23, and then burned in the cylinders 11.
  • the burnt gases are expanded in the turbine 82, treated and filtered in the catalytic converter 83, then relaxed again in the exhaust silencer 84 before being released into the atmosphere.
  • the computer 100 for this purpose controls the control valve 35 of the coolant flow circulating in the secondary cooling circuit 30, so that these EGR gases are cooled to the desired temperature.
  • this control valve 35 is controlled in extreme closed position (the time that the temperature of the EGR gas increases) before being gradually opened.
  • the coolant flow circulating in the secondary cooling circuit 30 is regulated as a function of the temperature T 0 of the coolant (and not as a function of the temperature of the EGR gases), which in particular avoids any risk of boiling or sudden change in coolant temperature, benefiting the longevity of the EGR cooler 31.
  • control valve 35 may have at least five stable positions. It can of course be expected that it can have more than 10 stable positions.
  • control valve 35 can take an infinity of stable positions.
  • control method of the control valve 35 will be implemented as shown on the flowchart of the figure 3 .
  • the computer 100 implements the following algorithm.
  • the computer 100 first checks whether a stopping of the internal combustion engine 1 is required (operation 73).
  • the computer 100 controls the stopping of the coolant pressurizing pump (operation 74) and the stopping of the injection of fuel into the cylinders 11 (operation 75).
  • the computer 100 acquires the temperature To of the coolant downstream of the cooler EGR 31 (operation 76) as well as the ambient temperature Ta (operation 77).
  • the calculator 100 then calculates a target temperature Tc of coolant as a function of at least ambient temperature Ta measured (operation 78). This target temperature Tc corresponds to the optimum temperature coolant, resulting in reduced fouling of the EGR-HP 40 line.
  • this target temperature Tc is carried out using a mathematical formula or a map stored in the read-only memory (ROM) of the computer 100 (this map corresponding, at each ambient temperature Ta, a target temperature Tc ).
  • this target temperature Tc for example the instantaneous load C of the internal combustion engine 1 and / or the instantaneous R speed of the internal combustion engine 1, and / or the injected fuel flow rate. in the cylinders 11.
  • the computer 100 compares the measured coolant temperature To with the calculated target temperature Tc (operation 79).
  • control valve 35 is controlled at the opening (operation 84), so as to increase the flow of coolant circulating in the EGR cooler 31.
  • the regulation valve 35 is controlled at closing (operation 82), so as to reduce the flow rate of coolant circulating in the EGR cooler 31.
  • This control setpoint C1 is then transmitted to the control valve 35, which opens or closes accordingly (operations 82 or 84).
  • valve for regulating the coolant flow otherwise, especially when the temperature probe is located in the EGR cooler or downstream of the EGR cooler.
  • the flow rate and the temperature of the EGR gases can be measured or calculated as a function of engine speed and torque.

Description

DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTIONTECHNICAL FIELD TO WHICH THE INVENTION REFERS

La présente invention concerne de manière générale le domaine de la recirculation des gaz brûlés depuis l'échappement vers l'admission d'un moteur à combustion interne.The present invention generally relates to the field of recirculation of burnt gases from the exhaust to the inlet of an internal combustion engine.

Elle concerne plus particulièrement un procédé de pilotage d'une vanne de régulation d'un débit de liquide de refroidissement circulant dans un circuit de refroidissement d'une ligne de recirculation d'un moteur à combustion interne.It relates more particularly to a control method of a control valve of a flow of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine.

Elle concerne également un circuit de refroidissement des gaz brûlés circulant dans une ligne de recirculation d'un moteur à combustion interne comprenant :

  • un échangeur thermique,
  • deux conduits de circulation de liquide de refroidissement raccordés respectivement en entrée et en sortie dudit échangeur thermique, et
  • une vanne de régulation d'un débit de liquide de refroidissement, qui est agencée sur l'un desdits conduits de circulation.
It also relates to a flue gas cooling circuit circulating in a recirculation line of an internal combustion engine comprising:
  • a heat exchanger,
  • two coolant circulation ducts connected respectively at the inlet and at the outlet of said heat exchanger, and
  • a control valve for a coolant flow, which is arranged on one of said circulation ducts.

Elle concerne en outre un moteur à combustion interne comprenant :

  • un bloc-moteur qui définit intérieurement des cylindres,
  • une ligne d'admission de gaz d'admission dans lesdits cylindres,
  • une ligne d'échappement des gaz brûlés hors desdits cylindres,
  • une ligne de recirculation des gaz brûlés, qui prend naissance dans ladite ligne d'échappement et qui débouche dans ladite ligne d'admission.
It further relates to an internal combustion engine comprising:
  • an engine block that internally defines cylinders,
  • an inlet gas intake line in said cylinders,
  • an exhaust line of the burned gases out of said cylinders,
  • a flue gas recirculation line, which originates in said exhaust line and which opens into said intake line.

ARRIERE-PLAN TECHNOLOGIQUEBACKGROUND

Les moteurs à combustion interne du type précité utilisent comme gaz d'admission un mélange d'air frais et de gaz brûlés. Ces gaz brûlés sont prélevés dans la ligne d'échappement, directement en aval du collecteur d'échappement du moteur à combustion interne, et sont introduits dans la ligne d'admission d'air frais, directement en amont du répartiteur d'air du moteur à combustion interne. Ils sont communément appelés gaz de recirculation ou gaz EGR (acronyme anglais de « Exaust Gaz Recirculation »).Internal combustion engines of the aforementioned type use as an intake gas a mixture of fresh air and flue gas. These burnt gases are taken from the exhaust line directly downstream of the exhaust manifold of the internal combustion engine and are introduced into the fresh air intake line directly upstream of the engine air distributor. internal combustion. They are commonly referred to as recirculating gases or EGR gas (acronym for "Exaust Gas Recirculation").

Ces gaz de recirculation sont chargés de particules de suie et d'hydrocarbure en suspension lorsque ces gaz sont chauds.These recirculating gases are charged with soot particles and hydrocarbon suspended when these gases are hot.

Il est connu de refroidir ces gaz de recirculation par un circuit de refroidissement avant leur introduction dans la ligne d'admission d'air, de manière à assurer au moteur à combustion interne de meilleures performances.It is known to cool these recirculation gases by a cooling circuit before their introduction into the air intake line, so as to ensure the internal combustion engine better performance.

Un tel circuit de refroidissement comprend alors un échangeur thermique, dit refroidisseur EGR, qui est traversé, d'une part, par les gaz de recirculation, et, d'autre part, par un liquide de refroidissement. Le circuit de refroidissement comporte également une vanne bistable, située en aval du refroidisseur EGR, qui est pilotée en position ouverte ou fermée en fonction de la température mesurée des gaz de recirculation.Such a cooling circuit then comprises a heat exchanger, said cooler EGR, which is crossed, on the one hand, by the recirculation gas, and, on the other hand, by a cooling liquid. The cooling circuit also comprises a bistable valve, located downstream of the EGR cooler, which is controlled in the open or closed position depending on the measured temperature of the recirculation gases.

L'ouverture de la vanne bistable génère un refroidissement important et brutal des gaz de recirculation, en particulier lorsque le moteur à combustion interne n'a pas encore atteint sa température optimale de fonctionnement.The opening of the bistable valve generates a large and brutal cooling of the recirculation gases, in particular when the internal combustion engine has not yet reached its optimum operating temperature.

Ce refroidissement brutal des gaz de recirculation expose le refroidisseur EGR à un dépôt important de particules de suie et d'hydrocarbure, ce qui provoque un encrassement rapide de ce refroidisseur EGR et réduit ses performances.This sudden cooling of the recirculation gases exposes the EGR cooler to a large deposit of soot and hydrocarbon particles, which causes rapid fouling of this EGR cooler and reduces its performance.

La fermeture de la vanne bistable interdit par ailleurs toute circulation de liquide de refroidissement dans le refroidisseur EGR, ce qui peut entraîner un défaut de refroidissement des gaz de recirculation et un rejet dans l'atmosphère d'une quantité importante de particules de suie et d'hydrocarbure.The closure of the bistable valve also prevents any circulation of coolant in the EGR cooler, which can lead to a failure of cooling of the recirculation gases and a release into the atmosphere of a large amount of soot particles and dusts. 'hydrocarbon.

En outre, dans cette configuration, le liquide de refroidissement bloqué dans le refroidisseur EGR risque d'atteindre sa température d'ébullition et d'occasionner une détérioration du refroidisseur EGR.In addition, in this configuration, the coolant blocked in the EGR cooler may reach its boiling point and cause damage to the EGR cooler.

Un procédé similaire de pilotage d'une vanne de régulation est connu du DE102009028932 A1 .A similar method of controlling a control valve is known from DE102009028932 A1 .

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

Afin de remédier à l'inconvénient précité de l'état de la technique, la présente invention propose un procédé de pilotage de la vanne de régulation plus fiable.In order to overcome the aforementioned drawback of the state of the art, the present invention proposes a method for controlling the more reliable control valve.

Plus particulièrement, on propose selon l'invention un procédé de pilotage d'une vanne de régulation d'un débit de liquide de refroidissement circulant dans un circuit de refroidissement d'une ligne de recirculation d'un moteur à combustion interne, qui comprend des étapes consistant à :

  1. a) acquérir la température dudit liquide de refroidissement,
  2. b) déterminer, en fonction de la température acquise à l'étape a), une consigne de pilotage de ladite vanne de régulation dans une position stable choisie parmi au moins trois positions stables, et
  3. c) piloter la vanne de régulation selon la consigne de pilotage déterminée à l'étape b).
More particularly, there is provided according to the invention a method for controlling a control valve for a flow rate of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine, which comprises steps of:
  1. a) acquiring the temperature of said coolant,
  2. b) determining, as a function of the temperature acquired in step a), a control setpoint for said control valve in a stable position chosen from at least three stable positions, and
  3. c) control the control valve according to the control setpoint determined in step b).

Selon l'invention, à l'étape b), on mesure la température ambiante, on en déduit une température cible de liquide de refroidissement et on élabore la consigne de pilotage en fonction de la température du liquide de refroidissement mesurée et de la température cible.According to the invention, in step b), the ambient temperature is measured, a target coolant temperature is deduced therefrom and the control setpoint is developed as a function of the temperature of the measured coolant and the target temperature. .

Ainsi, grâce à l'invention, la vanne de régulation est pilotée entre un plus grand nombre de positions, ce qui permet une meilleure régulation du débit de liquide de refroidissement et évite tout problème d'ébullition ou de changement de température brusque.Thus, thanks to the invention, the control valve is controlled between a greater number of positions, which allows a better regulation of the flow of coolant and avoids any problem of boiling or sudden temperature change.

Cette meilleure régulation réduit par ailleurs considérablement l'encrassement du circuit de refroidissement, notamment au démarrage du moteur ou lorsque la température ambiante est faible.This better regulation also considerably reduces the fouling of the cooling circuit, especially when starting the engine or when the ambient temperature is low.

Enfin, le pilotage de la vanne de régulation en fonction de la température du liquide de refroidissement assure une régulation plus précise de la température des gaz de recirculation.Finally, the control of the control valve as a function of the temperature of the coolant ensures a more precise regulation of the temperature of the recirculation gases.

D'autres caractéristiques non limitatives et avantageuses du procédé de pilotage conforme à l'invention sont les suivantes :

  • le circuit de refroidissement comportant un échangeur thermique positionné sur la ligne de recirculation, à l'étape a), on mesure la température du liquide de refroidissement dans ledit échangeur thermique ;
  • le circuit de refroidissement comportant un échangeur thermique positionné sur la ligne de recirculation, à l'étape a), on mesure la température du liquide de refroidissement à distance dudit échangeur thermique ;
  • à l'étape a), on mesure la température du liquide de refroidissement en aval dudit échangeur thermique ;
  • à l'étape b), on estime une valeur de température du liquide de refroidissement en amont dudit échangeur thermique en fonction de la température mesurée de liquide de refroidissement, d'un débit de gaz brûlés dans ladite ligne de recirculation et d'une température de gaz brûlés dans ladite ligne de recirculation;
  • la charge (C) instantanée du moteur à combustion interne (1) et/ou le régime (R) instantané du moteur à combustion interne (1), et/ou le débit de carburant injecté dans des cylindres (11) du moteur à combustion interne (1) sont utilisés pour calculer la température cible (Tc).
Other non-limiting and advantageous features of the control method according to the invention are the following:
  • the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the cooling liquid is measured in said heat exchanger;
  • the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the cooling liquid is measured at a distance from said heat exchanger;
  • in step a), the temperature of the coolant is measured downstream of said heat exchanger;
  • in step b), a coolant temperature value is estimated upstream of said heat exchanger as a function of the measured coolant temperature, a flue gas flow rate in said recirculation line and a temperature burnt gas in said recirculation line;
  • the instantaneous load (C) of the internal combustion engine (1) and / or the instantaneous speed (R) of the internal combustion engine (1), and / or the flow rate of fuel injected into cylinders (11) of the combustion engine internal (1) are used to calculate the target temperature (Tc).

L'invention propose également un circuit de refroidissement tel que défini dans l'introduction qui comprend une unité de pilotage de ladite vanne de régulation, qui est adaptée à mettre en oeuvre un procédé de pilotage tel que définit précédemment.The invention also proposes a cooling circuit as defined in the introduction which comprises a control unit of said control valve, which is adapted to implement a control method as defined above.

L'invention propose en outre un moteur à combustion interne tel que défini dans l'introduction qui comprend un circuit de refroidissement tel que défini précédemment, dont l'échangeur thermique est positionné sur ladite ligne de recirculation.The invention further provides an internal combustion engine as defined in the introduction which comprises a cooling circuit as defined above, the heat exchanger of which is positioned on said recirculation line.

DESCRIPTION DETAILLEE D'UN EXEMPLE DE REALISATIONDETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT

La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.The following description with reference to the accompanying drawings, given as non-limiting examples, will make it clear what the invention consists of and how it can be achieved.

Sur les dessins annexés :

  • la figure 1 est une vue schématique d'un moteur à combustion interne selon l'invention ;
  • la figure 2 est une vue schématique d'une partie du circuit de refroidissement secondaire selon un premier mode de réalisation du moteur à combustion interne de la figure 1 ;
  • la figure 3 est un chronogramme illustrant les étapes de mise en oeuvre du procédé de pilotage de la vanne de régulation du circuit de refroidissement secondaire de la figure 2.
In the accompanying drawings:
  • the figure 1 is a schematic view of an internal combustion engine according to the invention;
  • the figure 2 is a schematic view of a portion of the secondary cooling circuit according to a first embodiment of the internal combustion engine of the figure 1 ;
  • the figure 3 is a timing diagram illustrating the steps of implementation of the control method of the control valve of the secondary cooling circuit of the figure 2 .

Dans la description, les termes « amont » et « aval » seront utilisés suivant le sens de l'écoulement des gaz, depuis le point de prélèvement de l'air frais dans l'atmosphère jusqu'à la sortie des gaz brûlés dans l'atmosphère.In the description, the terms "upstream" and "downstream" will be used in the direction of the flow of gases from the point of collection of fresh air into the atmosphere to the exit of the flue gases in the atmosphere. atmosphere.

Sur la figure 1, on a représenté schématiquement un moteur à combustion interne 1 de véhicule automobile, qui comprend un bloc-moteur 10 pourvu d'un vilebrequin et de quatre pistons (non représentés) logés dans quatre cylindres 11. Ce moteur est ici à allumage par compression (Diesel). Il pourrait également être à allumage commandé (Essence).On the figure 1 schematically shows an internal combustion engine 1 of a motor vehicle, which comprises a motor unit 10 provided with a crankshaft and four pistons (not shown) housed in four cylinders 11. This engine is here compression ignition ( Diesel). It could also be spark ignition (gasoline).

En amont des cylindres 11, le moteur à combustion interne 1 comporte une ligne d'admission 20 qui prélève l'air frais dans l'atmosphère et qui débouche dans un répartiteur d'air 25 agencé pour répartir l'air vers chacun des quatre cylindres 11 du bloc-moteur 10. Cette ligne d'admission 20 comporte, dans le sens d'écoulement de l'air frais, un filtre à air 21 qui filtre l'air frais prélevé dans l'atmosphère, un compresseur 22 qui comprime l'air frais filtré par le filtre à air 21, un refroidisseur d'air principal 23 qui refroidit cet air frais comprimé, et une vanne d'admission 24 qui permet de réguler le débit d'air frais débouchant dans le répartiteur d'air 25.Upstream of the cylinders 11, the internal combustion engine 1 comprises an intake line 20 which takes fresh air into the atmosphere and which opens into an air distributor 25 arranged to distribute the air to each of the four cylinders 11 of the engine block 10. This intake line 20 comprises, in the direction of flow of fresh air, an air filter 21 which filters the fresh air taken from the atmosphere, a compressor 22 which compresses the air. fresh air filtered by the air filter 21, a main air cooler 23 which cools this compressed fresh air, and an inlet valve 24 which regulates the flow of fresh air into the air distributor 25 .

En sortie des cylindres 11, le moteur à combustion interne 1 comporte une ligne d'échappement 80 qui s'étend depuis un collecteur d'échappement 81 dans lequel débouchent les gaz qui ont été préalablement brûlés dans les cylindres 11, jusqu'à un silencieux d'échappement 87 permettant de détendre les gaz brûlés avant qu'ils ne soient évacués dans l'atmosphère. Elle comporte par ailleurs, dans le sens d'écoulement des gaz brûlés, une turbine 82, et un pot catalytique 83 de traitement des gaz brûlés.At the outlet of the cylinders 11, the internal combustion engine 1 comprises an exhaust line 80 which extends from an exhaust manifold 81 in which the gases which have been previously burned into the cylinders 11 are discharged, to a silencer exhaust 87 to relax the burnt gases before they are discharged into the atmosphere. It also comprises, in the flow direction of the flue gas, a turbine 82, and a catalytic converter 83 for treating burnt gases.

La turbine 82 est entraînée en rotation par le flux de gaz brûlés sortant du collecteur d'échappement 81, et elle permet d'entraîner le compresseur 22 en rotation, grâce à des moyens de couplage mécanique tels qu'un simple arbre de transmission.The turbine 82 is rotated by the flow of burnt gas leaving the exhaust manifold 81, and it drives the compressor 22 into rotation, thanks to mechanical coupling means such as a simple transmission shaft.

Le pot catalytique 83 est quant à lui ici un catalyseur trois voies qui renferme un catalyseur d'oxydation 84, un filtre à particules 85 et un piège à oxydes d'azote 86.The catalytic converter 83 is here a three-way catalyst which contains an oxidation catalyst 84, a particulate filter 85 and a nitrogen oxide trap 86.

Ici, le moteur à combustion interne 1 comporte également une ligne de recirculation des gaz brûlés à haute pression, depuis la ligne d'échappement 80 vers la ligne d'admission 20. Cette ligne de recirculation est communément appelée ligne EGR-HP 40, conformément à l'acronyme anglo-saxon de « Exhaust Gaz Recirculation - High Pressure ». Elle prend naissance dans la ligne d'échappement 80, entre le collecteur d'échappement 81 et la turbine 82, et elle débouche dans la ligne d'admission 20, entre la vanne d'admission 24 et le répartiteur d'air 25.Here, the internal combustion engine 1 also comprises a high-pressure flue gas recirculation line, from the exhaust line 80 to the intake line 20. This recirculation line is commonly called the EGR-HP line 40, in accordance with FIG. to the English acronym of "Exhaust Gas Recirculation - High Pressure". It originates in the exhaust line 80, between the exhaust manifold 81 and the turbine 82, and it opens into the intake line 20, between the inlet valve 24 and the air distributor 25.

Cette ligne EGR-HP 40 permet de prélever une partie des gaz brûlés circulant dans la ligne d'échappement 80, appelés gaz de recirculation ou gaz EGR, pour la réinjecter dans les cylindres 11 afin de réduire les émissions polluantes du moteur, et en particulier les émissions d'oxydes d'azote, de suie et de particules d'hydrocarbure.This line EGR-HP 40 makes it possible to take a part of the flue gases circulating in the exhaust line 80, called recirculation gases or EGR gas, for reinjecting it into the cylinders 11 in order to reduce the polluting emissions of the engine, and in particular emissions of nitrogen oxides, soot and hydrocarbon particles.

Cette ligne EGR-HP 40 comporte une vanne EGR-HP 41 pour réguler le débit de gaz EGR débouchant dans le répartiteur d'air 25.This EGR-HP line 40 comprises an EGR-HP valve 41 for regulating the flow of EGR gas opening into the air distributor 25.

En complément ou en variante, cette ligne EGR-HP pourrait être complétée ou remplacée par une ligne de recirculation des gaz brûlés à basse pression, communément appelée ligne EGR-LP conformément à l'acronyme anglo-saxon de « Exhaust Gaz Recirculation - Low Pressure ». Cette ligne EGR-LP prendrait alors naissance dans la ligne d'échappement, à la sortie du pot catalytique, et déboucherait dans la ligne d'admission, entre le filtre à air et le compresseur.In addition or alternatively, this EGR-HP line could be supplemented or replaced by a low-pressure flue gas recirculation line, commonly known as EGR-LP line according to the English acronym of "Exhaust Gas Recirculation - Low Pressure" ". This line EGR-LP would then be born in the exhaust line, at the exit of the catalytic converter, and lead into the intake line, between the air filter and the compressor.

Le moteur à combustion interne 1 comporte par ailleurs une ligne d'injection 60 de carburant dans les cylindres 11. Cette ligne d'injection 60 comporte une pompe d'injection 62 agencée pour prélever le carburant dans un réservoir 61 afin de l'amener sous pression dans un rail de distribution 63 qui débouche dans les cylindres 11 via quatre injecteurs 64.The internal combustion engine 1 also comprises a fuel injection line 60 in the cylinders 11. This injection line 60 comprises an injection pump 62 arranged to collect the fuel in a reservoir 61 to bring it under pressure in a distribution rail 63 which opens into the cylinders 11 via four injectors 64.

Le moteur à combustion interne 1 comporte en outre un circuit de refroidissement primaire (non représenté), qui traverse notamment le bloc-moteur 10 et le refroidisseur d'air principal 23 et dans lequel circule un liquide de refroidissement.The internal combustion engine 1 further comprises a primary cooling circuit (not shown), which in particular passes through the engine block 10 and the main air cooler 23 and in which circulates a cooling liquid.

Le moteur à combustion interne 1 comporte également un circuit de refroidissement secondaire 30, qui pourrait éventuellement être confondu avec le circuit de refroidissement primaire, et qui comporte un échangeur thermique 31 prévu pour refroidir les gaz EGR circulant dans la ligne EGR-HP 40 (ou, en variante, dans la ligne EGR-LP), de manière à réduire au mieux la température des gaz dans le répartiteur d'air 25 afin d'assurer au moteur à combustion interne 1 de meilleures performances.The internal combustion engine 1 also comprises a secondary cooling circuit 30, which could possibly be confused with the primary cooling circuit, and which comprises a heat exchanger 31 provided for cooling the EGR gases flowing in the line EGR-HP 40 (or alternatively, in line EGR-LP), so as to best reduce the temperature of the gases in the air distributor 25 to provide the internal combustion engine 1 better performance.

Comme le montrent la figure 2, l'échangeur thermique 31, ici appelé refroidisseur EGR 31, est positionné sur la ligne EGR-HP 40 pour refroidir les gaz EGR.As shown by figure 2 , the heat exchanger 31, here called EGR cooler 31, is positioned on the line EGR-HP 40 to cool the EGR gas.

Le refroidisseur EGR 31 comprend plus précisément une canalisation principale 31A au travers de laquelle circulent les gaz EGR, et une canalisation secondaire 31 B au travers de laquelle circule un liquide de refroidissement.The EGR cooler 31 more specifically comprises a main pipe 31A through which the EGR gas flows, and a secondary pipe 31 B through which circulates a cooling liquid.

La canalisation principale 31A est connectée, d'un côté, à la ligne d'échappement 80 via un conduit amont 42 de la ligne EGR-HP 40, et, de l'autre, à la vanne EGR-HP 41 via un conduit aval 43 de la ligne EGR-HP 40.The main line 31A is connected, on one side, to the exhaust line 80 via an upstream line 42 of the EGR-HP line 40, and, on the other hand, to the EGR-HP valve 41 via a downstream duct. 43 of the line EGR-HP 40.

La canalisation secondaire 31 B est quant à elle connectée au reste du circuit de refroidissement secondaire 30, d'un côté, par un conduit amont 33, et, de l'autre, par un conduit aval 34.The secondary pipe 31 B is connected to the remainder of the secondary cooling circuit 30, on one side, by an upstream pipe 33, and on the other by a downstream pipe 34.

Le circuit de refroidissement secondaire 30 comprend par ailleurs une vanne de régulation 35 du débit de liquide de refroidissement.The secondary cooling circuit 30 further comprises a control valve 35 of the coolant flow.

Cette vanne de régulation 35 est ici agencée sur le conduit amont 33 du circuit de refroidissement secondaire 30. En variante, elle pourrait bien entendu être agencée ailleurs, par exemple sur le conduit aval.This control valve 35 is here arranged on the upstream duct 33 of the secondary cooling circuit 30. In a variant, it could of course be arranged elsewhere, for example on the downstream duct.

La vanne de régulation 35 est adaptée à être pilotée dans l'une ou l'autre d'au moins trois positions stables, dont :

  • une position extrême de fermeture dans laquelle elle obture totalement le conduit amont 33, de sorte que le débit du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est nul,
  • une position extrême d'ouverture dans laquelle elle libère totalement le conduit amont 33, de sorte que le débit du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est maximal, et
  • au moins une position intermédiaire dans laquelle elle obture partiellement le conduit amont 33, de sorte que le débit du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est non nul et est strictement inférieur au débit maximal.
The control valve 35 is adapted to be driven in one or the other of at least three stable positions, of which:
  • an extreme closing position in which it completely closes the upstream duct 33, so that the flow rate of the cooling liquid circulating in the secondary cooling circuit 30 is zero,
  • an extreme opening position in which it completely releases the upstream duct 33, so that the flow rate of the coolant circulating in the secondary cooling circuit 30 is maximum, and
  • at least one intermediate position in which it partially closes the upstream duct 33, so that the flow rate of the cooling liquid flowing in the secondary cooling circuit 30 is non-zero and is strictly less than the maximum flow rate.

La vanne de régulation 35 est ici un volet papillon, mais il pourrait bien entendu en être autrement.The control valve 35 is here a butterfly flap, but it could of course be otherwise.

Classiquement, la circulation du liquide de refroidissement dans ce circuit de refroidissement secondaire 30 est assurée par une pompe de mise en pression (non représentée). Le liquide de refroidissement utilisé ici est un mélange d'eau et de glycol.Conventionally, the circulation of the coolant in this secondary cooling circuit 30 is provided by a pressurizing pump (not shown). The coolant used here is a mixture of water and glycol.

Comme le montre la figure 1, pour piloter les différents organes du moteur à combustion interne 1, il est prévu un calculateur 100 comportant un processeur (CPU), une mémoire vive (RAM), une mémoire morte (ROM), des convertisseurs analogiques-numériques (A/D) et des interfaces d'entrée et de sortie.As shown in figure 1 to control the various members of the internal combustion engine 1, there is provided a computer 100 comprising a processor (CPU), a random access memory (RAM), a read-only memory (ROM), analog-digital converters (A / D) and input and output interfaces.

Grâce à ses interfaces d'entrée, le calculateur 100 est adapté à recevoir de différents capteurs des signaux d'entrée relatifs au fonctionnement du moteur et aux conditions climatiques.Thanks to its input interfaces, the computer 100 is adapted to receive different sensors input signals relating to engine operation and climatic conditions.

Parmi ces capteurs, il est notamment prévu une première sonde de température 101 qui permet de mesurer la température To instantanée du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30.Among these sensors, a first temperature probe 101 is especially provided, which makes it possible to measure the instantaneous temperature T.sub.o of the coolant circulating in the secondary cooling circuit 30.

Dans le mode de réalisation du moteur à combustion interne 1 représenté sur la figure 2, cette première sonde de température 101 est située dans le conduit aval 34. Dans ce mode de réalisation, il est par ailleurs prévu une seconde sonde de température 102 pour mesurer la température ambiante Ta, c'est-à-dire la température à l'extérieur du véhicule équipé du moteur à combustion interne 1.In the embodiment of the internal combustion engine 1 shown in FIG. figure 2 this first temperature probe 101 is located in the downstream duct 34. In this embodiment, a second temperature probe 102 is also provided for measuring the ambient temperature Ta, that is, the temperature outside the vehicle equipped with the internal combustion engine 1.

Dans ce mode de réalisation, la première sonde de température sera donc positionnée à distance du refroidisseur EGR 31, de préférence à 10cm de celui-ci, de manière à ce que les mesures ne soient pas perturbées par le refroidisseur EGR 31.In this embodiment, the first temperature probe will therefore be positioned at a distance from the EGR cooler 31, preferably at 10 cm from the latter, so that the measurements are not disturbed by the EGR cooler 31.

Selon une variante non représentée, on pourrait toutefois prévoir que la première sonde de température soit située à l'intérieur du refroidisseur EGR lui-même.According to a variant not shown, it could however be provided that the first temperature sensor is located inside the EGR cooler itself.

Grâce à ces sondes de température et à différents autres capteurs, le calculateur 100 mémorise ainsi en continu dans sa mémoire vive :

  • la charge C instantanée du moteur à combustion interne 1,
  • le régime R instantané du moteur à combustion interne 1,
  • la température To du liquide de refroidissement,
  • la température ambiante Ta (dans le premier mode de réalisation), et
  • le débit de carburant injecté dans les cylindres 11.
Thanks to these temperature probes and to various other sensors, the computer 100 thus stores continuously in its random access memory:
  • the instantaneous charge C of the internal combustion engine 1,
  • the instantaneous R speed of the internal combustion engine 1,
  • the temperature To of the coolant,
  • the ambient temperature Ta (in the first embodiment), and
  • the fuel flow injected into the cylinders 11.

La charge C (également appelée « charge-moteur ») correspond au rapport du travail fourni par le moteur sur le travail maximal que pourrait développer ce moteur à un régime donné. Elle est généralement approximée à l'aide d'une variable appelée pression moyenne effective PME.The load C (also called "engine load") corresponds to the ratio of the work supplied by the engine to the maximum work that could develop this engine at a given speed. It is usually approximated using a variable called effective average pressure SME.

Le régime R correspond à la vitesse de rotation du vilebrequin, exprimée en tours par minute.The R speed corresponds to the speed of rotation of the crankshaft, expressed in revolutions per minute.

Grâce à une cartographie prédéterminée sur banc d'essais et mémorisée dans sa mémoire morte (ROM), le calculateur 100 est adapté à générer, pour chaque condition de fonctionnement du moteur, des signaux de sortie.Thanks to a predetermined mapping on test bench and stored in its read-only memory (ROM), the computer 100 is adapted to generate, for each operating condition of the engine, output signals.

Enfin, grâce à ses interfaces de sortie, le calculateur 100 est adapté à transmettre ces signaux de sortie aux différents organes du moteur, notamment à la vanne de régulation 35.Finally, thanks to its output interfaces, the computer 100 is adapted to transmit these output signals to the various components of the engine, in particular to the control valve 35.

Classiquement, lorsque le conducteur du véhicule automobile met le contact, le calculateur 100 s'initialise puis commande le démarreur et les injecteurs de carburant 64 pour que ceux-ci démarrent le moteur à combustion interne 1.Conventionally, when the driver of the motor vehicle puts the ignition, the computer 100 initializes and then controls the starter and the fuel injectors 64 for them to start the internal combustion engine 1.

Lorsque le moteur est démarré, l'air frais prélevé dans l'atmosphère par la ligne d'admission 20 est filtré par le filtre à air 21, comprimé par le compresseur 22, refroidi par le refroidisseur d'air principal 23, puis brûlé dans les cylindres 11.When the engine is started, the fresh air taken from the atmosphere through the intake line 20 is filtered by the air filter 21, compressed by the compressor 22, cooled by the main air cooler 23, and then burned in the cylinders 11.

A leur sortie des cylindres 11, les gaz brûlés sont détendus dans la turbine 82, traités et filtrés dans le pot catalytique 83, puis détendus à nouveau dans le silencieux d'échappement 84 avant d'être rejetés dans l'atmosphère.At their outlet from the cylinders 11, the burnt gases are expanded in the turbine 82, treated and filtered in the catalytic converter 83, then relaxed again in the exhaust silencer 84 before being released into the atmosphere.

Une partie de ces gaz brûlés est toutefois prélevée par la ligne EGR-HP 40 pour être réinjectée dans la ligne d'admission 20. Ces gaz EGR sont alors préalablement refroidis dans le refroidisseur EGR 31.Part of these flue gas is, however, taken by the line EGR-HP 40 to be reinjected into the inlet line 20. These EGR gases are then previously cooled in the EGR cooler 31.

Le calculateur 100 pilote à cet effet la vanne de régulation 35 du débit de liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30, de manière que ces gaz EGR soient refroidis à la température souhaitée.The computer 100 for this purpose controls the control valve 35 of the coolant flow circulating in the secondary cooling circuit 30, so that these EGR gases are cooled to the desired temperature.

Ainsi, par exemple, au démarrage du moteur, lorsque la température ambiante Ta est faible, cette vanne de régulation 35 est pilotée en position extrême de fermeture (le temps que la température des gaz EGR augmente) avant d'être progressivement ouverte.Thus, for example, when the engine starts, when the ambient temperature Ta is low, this control valve 35 is controlled in extreme closed position (the time that the temperature of the EGR gas increases) before being gradually opened.

Selon une caractéristique particulièrement avantageuse de l'invention, le calculateur 100 est adapté à mettre en oeuvre un procédé de pilotage de la vanne de régulation 35 qui comprend les trois étapes suivantes :

  1. a) acquérir la température To du liquide de refroidissement,
  2. b) déterminer, en fonction de la température To acquise à l'étape a), une consigne de pilotage C1 de la vanne de régulation 35 dans l'une de ses positions stables, et
  3. c) piloter la vanne de régulation 35 selon cette consigne de pilotage C1.
According to a particularly advantageous characteristic of the invention, the computer 100 is adapted to implement a control method of the control valve 35 which comprises the following three steps:
  1. a) acquiring the temperature To of the coolant,
  2. b) determining, as a function of the temperature To, acquired in step a), a control setpoint C1 of the control valve 35 in one of its stable positions, and
  3. c) control the control valve 35 according to this control setpoint C1.

Grâce à l'invention, le débit de liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est régulé en fonction de la température To du liquide de refroidissement (et non en fonction de la température des gaz EGR), ce qui évite notamment tout risque d'ébullition ou de changement de température brusque du liquide de refroidissement, au bénéfice de la longévité du refroidisseur EGR 31.Thanks to the invention, the coolant flow circulating in the secondary cooling circuit 30 is regulated as a function of the temperature T 0 of the coolant (and not as a function of the temperature of the EGR gases), which in particular avoids any risk of boiling or sudden change in coolant temperature, benefiting the longevity of the EGR cooler 31.

On notera ici que plus le nombre de positions stables (dans lesquelles la vanne de régulation 35 pourra être piloté) sera grand, plus la régulation de la température des gaz EGR pourra être affinée, ce qui réduira en conséquence l'encrassement de la ligne EGR-HP 40, notamment lorsque la température ambiante Ta est faible.It will be noted here that the greater the number of stable positions (in which the regulation valve 35 can be controlled) will be greater, the more the regulation of the temperature of the EGR gases can be refined, which will consequently reduce the fouling of the EGR line. -HP 40, especially when the ambient temperature Ta is low.

Ainsi, si le nombre minimal de positions stables est de trois, on prévoira de préférence que la vanne de régulation 35 puisse présenter au moins cinq positions stables. On pourra bien entendu prévoir qu'elle puisse présenter plus de 10 positions stables.Thus, if the minimum number of stable positions is three, it will preferably be provided that the control valve 35 may have at least five stable positions. It can of course be expected that it can have more than 10 stable positions.

Dans l'exemple qui sera exposé dans la suite de cet exposé, la vanne de régulation 35 pourra prendre une infinité de positions stables.In the example which will be explained in the rest of this discussion, the control valve 35 can take an infinity of stable positions.

Lorsque le moteur à combustion interne 1 sera du type de celui représenté sur la figure 2, le procédé de pilotage de la vanne de régulation 35 sera mis en oeuvre de la manière représentée sur l'ordinogramme de la figure 3.When the internal combustion engine 1 is of the type shown on the figure 2 , the control method of the control valve 35 will be implemented as shown on the flowchart of the figure 3 .

Plus précisément, après le démarrage du moteur à combustion interne (opération 71), l'initialisation du calculateur 100 et le début de la circulation du liquide de refroidissement dans le circuit de refroidissement secondaire 30 (opération 72), le calculateur 100 met en oeuvre l'algorithme suivant.More precisely, after the start of the internal combustion engine (operation 71), the initialization of the computer 100 and the beginning of the circulation of the coolant in the secondary cooling circuit 30 (operation 72), the computer 100 implements the following algorithm.

Le calculateur 100 vérifie tout d'abord si un arrêt du moteur à combustion interne 1 est requis (opération 73).The computer 100 first checks whether a stopping of the internal combustion engine 1 is required (operation 73).

Si une commande d'arrêt du moteur à combustion interne 1 est détectée, le calculateur 100 pilote l'arrêt de la pompe de mise en pression du liquide de refroidissement (opération 74) puis l'arrêt de l'injection de carburant dans les cylindres 11 (opération 75).If a stop command of the internal combustion engine 1 is detected, the computer 100 controls the stopping of the coolant pressurizing pump (operation 74) and the stopping of the injection of fuel into the cylinders 11 (operation 75).

Dans le cas contraire, le calculateur 100 acquiert la température To du liquide de refroidissement en aval du refroidisseur EGR 31 (opération 76) ainsi que la température ambiante Ta (opération 77).In the opposite case, the computer 100 acquires the temperature To of the coolant downstream of the cooler EGR 31 (operation 76) as well as the ambient temperature Ta (operation 77).

Le calculateur 100 calcule alors une température cible Tc de liquide de refroidissement en fonction au moins de la température ambiante Ta mesurée (opération 78). Cette température cible Tc correspond à la température optimale du liquide de refroidissement, assurant un encrassement réduit de la ligne EGR-HP 40.The calculator 100 then calculates a target temperature Tc of coolant as a function of at least ambient temperature Ta measured (operation 78). This target temperature Tc corresponds to the optimum temperature coolant, resulting in reduced fouling of the EGR-HP 40 line.

Le calcul de cette température cible Tc est réalisé à l'aide d'une formule mathématique ou d'une cartographie mémorisée dans la mémoire morte (ROM) du calculateur 100 (cette cartographie faisant correspondre, à chaque température ambiante Ta, une température cible Tc).The calculation of this target temperature Tc is carried out using a mathematical formula or a map stored in the read-only memory (ROM) of the computer 100 (this map corresponding, at each ambient temperature Ta, a target temperature Tc ).

En variante, on pourrait utiliser des paramètres supplémentaires pour calculer cette température cible Tc, par exemple la charge C instantanée du moteur à combustion interne 1 et/ou le régime R instantané du moteur à combustion interne 1, et/ou le débit de carburant injecté dans les cylindres 11.As a variant, it would be possible to use additional parameters for calculating this target temperature Tc, for example the instantaneous load C of the internal combustion engine 1 and / or the instantaneous R speed of the internal combustion engine 1, and / or the injected fuel flow rate. in the cylinders 11.

Le calculateur 100 compare ensuite la température To du liquide de refroidissement mesurée avec la température cible Tc calculée (opération 79).The computer 100 then compares the measured coolant temperature To with the calculated target temperature Tc (operation 79).

Si la température To du liquide de refroidissement est inférieure à la température cible Tc, alors la vanne de régulation 35 est pilotée à l'ouverture (opération 84), de manière à augmenter le débit de liquide de refroidissement circulant dans le refroidisseur EGR 31.If the temperature To of the coolant is lower than the target temperature Tc, then the control valve 35 is controlled at the opening (operation 84), so as to increase the flow of coolant circulating in the EGR cooler 31.

La consigne de pilotage C1 étant ici formée par l'angle d'ouverture que la vanne de régulation 35 doit prendre (C1 étant égal à zéro en position extrême de fermeture), cette consigne de pilotage C1 est calculée de la manière suivante (opération 83) : C 1 t + Δt = C 1 t + k * ΔC 1 ,

Figure imgb0001
dans laquelle :

  • t est le temps,
  • k est une constante prédéterminée enregistrée dans la mémoire morte (ROM) du calculateur 100,
  • Δt est une différence de temps (en l'occurrence le pas de temps entre deux calculs successifs de la consigne de pilotage C1), et
  • ΔC1 = C1 (t) - C1 (t - Δt).
The control set point C1 being here formed by the opening angle that the regulation valve 35 must take (C1 being equal to zero in the extreme closed position), this control setpoint C1 is calculated in the following manner (operation 83). ): VS 1 t + .delta.t = VS 1 t + k * .DELTA.C 1 ,
Figure imgb0001
in which :
  • t is the time,
  • k is a predetermined constant stored in the read only memory (ROM) of the computer 100,
  • Δt is a time difference (in this case the time step between two successive calculations of the control setpoint C1), and
  • ΔC1 = C1 (t) - C1 (t - Δt).

Au contraire, si la température To du liquide de refroidissement est supérieure ou égale à la température cible Tc, alors la vanne de régulation 35 est pilotée à la fermeture (opération 82), de manière à réduire le débit de liquide de refroidissement circulant dans le refroidisseur EGR 31.On the other hand, if the temperature To of the coolant is greater than or equal to the target temperature Tc, then the regulation valve 35 is controlled at closing (operation 82), so as to reduce the flow rate of coolant circulating in the EGR cooler 31.

La consigne de pilotage C1 est alors calculée de la manière suivante (opération 81) : C 1 t + Δt = C 1 t + k * ΔC 1.

Figure imgb0002
The control setpoint C1 is then calculated in the following manner (operation 81): VS 1 t + .delta.t = VS 1 t + k * .DELTA.C 1.
Figure imgb0002

Cette consigne de pilotage C1 est ensuite transmise à la vanne de régulation 35, qui s'ouvre ou se ferme en conséquence (opérations 82 ou 84).This control setpoint C1 is then transmitted to the control valve 35, which opens or closes accordingly (operations 82 or 84).

Puis, le calculateur 100 revient au début de la boucle (opération 73).Then, the computer 100 returns to the beginning of the loop (operation 73).

La présente invention n'est nullement limitée au mode de réalisation décrit et représenté, mais l'homme du métier saura y apporter toute variante conforme à son esprit.The present invention is not limited to the embodiment described and shown, but the art can apply any variant within his mind.

On pourra par exemple prévoir de piloter la vanne de régulation du débit de liquide de refroidissement autrement, notamment lorsque la sonde de température sera située dans le refroidisseur EGR ou en aval du refroidisseur EGR.For example, it will be possible to control the valve for regulating the coolant flow otherwise, especially when the temperature probe is located in the EGR cooler or downstream of the EGR cooler.

Dans cette variante, on pourra prévoir d'évaluer, en fonction de la température mesurée et éventuellement d'autres paramètres (par exemple le débit et la température des gaz EGR), une température estimée du liquide de refroidissement en amont du refroidisseur EGR.In this variant, it will be possible to evaluate, as a function of the measured temperature and possibly other parameters (for example the flow rate and the temperature of the EGR gases), an estimated temperature of the coolant upstream of the EGR cooler.

Dans cette variante, le débit et la température des gaz EGR pourront être mesurés ou calculés en fonction du régime et du couple moteur.In this variant, the flow rate and the temperature of the EGR gases can be measured or calculated as a function of engine speed and torque.

Claims (8)

  1. Method for controlling a regulating valve (35) that regulates a flowrate of liquid coolant circulating in a cooling circuit (30) of a recirculation line (20) of an internal combustion engine (1), characterized in that it comprises steps consisting in:
    a) acquiring the temperature (To) of the said liquid coolant,
    b) determining, as a function of the temperature (To) acquired at step a), a control point (C1) for the said regulating valve (35) in a stable position chosen from at least three stable positions, and
    c) controlling the regulating valve (35) according to the control point (C1) determined in step b),
    characterized in that, in step b), the said control point (C1) is determined as a function of the acquired temperature (To) of the liquid coolant and of a liquid coolant target temperature (Tc) which is deduced from the ambient temperature (Ta) measured beforehand.
  2. Control method according to Claim 1, in which, with the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a) the temperature of the liquid coolant is measured inside the said heat exchanger.
  3. Control method according to Claim 1, in which, with the cooling circuit (30) comprising a heat exchanger (31) positioned on the recirculation line (20), in step a) the temperature (To) of the liquid coolant is measured some distance away from the said heat exchanger (31).
  4. Control method according to Claim 3, in which in step a) the temperature (To) of the liquid coolant is measured downstream of the said heat exchanger (31).
  5. Control method according to one of Claims 2 and 4, in which, in step b) a value for the temperature of the liquid coolant upstream of the said heat exchanger is estimated as a function of the measured liquid coolant temperature, of a flowrate of burnt gases in the said recirculation line, and of a temperature of burnt gases in the said recirculation line.
  6. Control method according to any one of Claims 1 to 5, in which the instantaneous load (C) on the internal combustion engine (1) and/or the instantaneous speed (R) of the internal combustion engine (1), and/or the flowrate of fuel injected into the cylinders (11) of the internal combustion engine (1) are used to calculate the target temperature (Tc).
  7. Cooling circuit (30) for cooling the burnt gases circulating in a recirculation line (20) of an internal combustion engine (1), comprising:
    - a heat exchanger (31) positioned on the said recirculation line (20),
    - two liquid-coolant circulation pipes (33, 34) connected respectively at the inlet and outlet of the said heat exchanger (31), and
    - a regulating valve (35) for regulating a flowrate of liquid coolant, which valve is arranged on one of the said circulation pipes (33, 34), characterized in that it comprises a control unit (40) for controlling the said regulating valve (35), which is able to implement a control method according to one of Claims 1 to 6.
  8. Internal combustion engine (1) comprising:
    - an engine block which internally defines cylinders,
    - an intake line admitting intake gas into the said cylinders,
    - an exhaust line exhausting burnt gases from the said cylinders,
    - an exhaust gas recirculation line (20) which starts in the said exhaust line and which opens into the said intake line, characterized in that it comprises a cooling circuit (30) according to Claim 7.
EP14705834.1A 2013-02-15 2014-01-22 Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine Active EP2956656B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1351334A FR3002276B1 (en) 2013-02-15 2013-02-15 METHOD FOR CONTROLLING A RECIRCULATING GAS FLOW CONTROL VALVE OF AN INTERNAL COMBUSTION ENGINE
PCT/FR2014/050117 WO2014125181A1 (en) 2013-02-15 2014-01-22 Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2956656A1 EP2956656A1 (en) 2015-12-23
EP2956656B1 true EP2956656B1 (en) 2017-03-22

Family

ID=48521192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14705834.1A Active EP2956656B1 (en) 2013-02-15 2014-01-22 Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine

Country Status (3)

Country Link
EP (1) EP2956656B1 (en)
FR (1) FR3002276B1 (en)
WO (1) WO2014125181A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131557A (en) * 1979-04-02 1980-10-13 Toyota Motor Corp Egr gas temperature controller
US8056544B2 (en) * 2008-08-27 2011-11-15 Ford Global Technologies, Llc Exhaust gas recirculation (EGR) system
KR101251526B1 (en) * 2011-06-13 2013-04-05 기아자동차주식회사 Low pressure egr system and examining method for efficeincy of low egr cooler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3002276B1 (en) 2016-05-27
WO2014125181A1 (en) 2014-08-21
FR3002276A1 (en) 2014-08-22
EP2956656A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2007148007A1 (en) Exhaust gas recirculation system for a combustion engine of the supercharged diesel type and method for controlling such an engine
EP2853723A1 (en) Method for determining the EGR rate in a heat engine
EP2699778B1 (en) Fault diagnosis method of supercharged motor and supercharged motor
EP2956656B1 (en) Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine
FR2921432A1 (en) Assembly i.e. exhaust gas recirculation device, function diagnosing method, involves comparing calculated difference with predetermined threshold value, diagnosing function of assembly based on comparison result
WO2010026340A1 (en) Method for determining the soot load of a particle filter
FR2910059A1 (en) Exhaust gas pressure estimating method for oil engine of motor vehicle, involves estimating pressure of exhaust gas in upstream of turbine by choosing one of two formulas comprising parameters e.g. pressure of gas in downstream of turbine
FR2923544A1 (en) Supercharged diesel internal combustion engine for motor vehicle, has control unit with calculating unit that calculates setpoint position values of valve and flaps from setpoint values of air flow and gas rates in engine
EP2844858B1 (en) Method of exhaust gas aftertreatment of a supercharged combustion engine with exhaust gas recirculation
FR2923538A3 (en) Turbine upstream pressure estimating system for supercharged oil engine of motor vehicle, has calculation units calculating expansion ratio of turbine from magnitude representing temperature variation to deduce upstream pressure of turbine
EP2262997A1 (en) System and method for diagnosing the operational condition of an exhaust gas inlet device for automobile internal combustion engine
FR2927368A1 (en) Fresh intake air flow rate estimating device for e.g. oil engine of motor vehicle, has electronic control unit for estimating fresh intake air flow rate from measured temperature and pressure
FR2923537A1 (en) Pressure estimation system for diesel engine of motor vehicle, has calculation unit calculating pressure drop ratio of turbine from magnitude representing variation relative to temperature between inlet and outlet of turbine
EP3353405B1 (en) Device for cooling an exhaust gas recirculation loop of a motor vehicle engine
FR3059719B1 (en) METHOD FOR CONTROLLING A SUPERIOR THERMAL MOTOR COMPRISING AN EXHAUST GAS RECIRCULATION CIRCUIT
FR3058471A1 (en) METHOD FOR CONTROLLING A SUPERIOR THERMAL MOTOR COMPRISING AN EXHAUST GAS RECIRCULATION LINE
FR2975134A1 (en) ESTIMATING THE EGR GAS RATE IN A VEHICLE HEAT ENGINE
EP2066892B1 (en) Control system for a motor vehicle internal combustion engine that comprises an engine exhaust gas recirculation circuit provided with a controlled recirculation valve
FR3028565A1 (en) METHOD FOR DIAGNOSING THE INHIBITION OF AN AIR FILTER EQUIPPED WITH A SUPERIOR INTERNAL COMBUSTION ENGINE
FR2858020A1 (en) Internal combustion engine controlling process for vehicle, involves regulating airflow in exchanger and bypass, such that temperature of air in collector approaches predetermined value
FR3048455A1 (en) METHOD FOR DIAGNOSING AN EGR VALVE
EP2354500A1 (en) Method of driving a bypass valve of a turbine in an engine
FR3069022A1 (en) METHOD FOR CONTROLLING A SUPERIOR INTERNAL COMBUSTION ENGINE.
FR3102216A1 (en) PROCESS FOR CHECKING THE AIR SUPPLY OF A COMBUSTION ENGINE
FR3076577A1 (en) METHOD OF ESTIMATING RECIRCULATED EXHAUST GAS FLOW IN AN INTAKE MANIFOLD OF A HEAT ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014007833

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0025070000

Ipc: F02M0026280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/12 20060101ALI20161010BHEP

Ipc: F02M 26/28 20160101AFI20161010BHEP

INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 878049

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014007833

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 878049

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014007833

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230119

Year of fee payment: 10

Ref country code: DE

Payment date: 20230123

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231228 AND 20240103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 11

Ref country code: GB

Payment date: 20240123

Year of fee payment: 11