EP2947063A1 - Method for increasing pressure of a composite charge - Google Patents

Method for increasing pressure of a composite charge Download PDF

Info

Publication number
EP2947063A1
EP2947063A1 EP15001307.6A EP15001307A EP2947063A1 EP 2947063 A1 EP2947063 A1 EP 2947063A1 EP 15001307 A EP15001307 A EP 15001307A EP 2947063 A1 EP2947063 A1 EP 2947063A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
charge
metal
explosive
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15001307.6A
Other languages
German (de)
French (fr)
Other versions
EP2947063B1 (en
Inventor
Werner Arnold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Publication of EP2947063A1 publication Critical patent/EP2947063A1/en
Application granted granted Critical
Publication of EP2947063B1 publication Critical patent/EP2947063B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/08Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide with a nitrated organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Definitions

  • the invention relates to a method for increasing the pressure of a composite charge containing at least one explosive, an inert or energetic binder and a reactive metal powder.
  • Modern conventional and insensitive explosive charges contain mainly explosives such as RDX (hexogen) or HMX (octogen), mixed with plastic binders such as HTPB (hydroxyl-terminated polybutadiene).
  • RDX is less sensitive than HMX and is often used for pressure-boosted explosive charges, for example, if high shock-wave immunity is required.
  • HMX is somewhat more powerful in terms of accelerating metal builds or sheaths, and is more likely to be used when the focus is on splitter performance rather than sensitivity.
  • blast enhancement can be achieved by admixing reactive metal powders (e.g., aluminum, boron, silicon, magnesium, etc.).
  • reactive metal powders e.g., aluminum, boron, silicon, magnesium, etc.
  • the shape and size of the metal particles play an important role in the blast increase.
  • Such charges are then referred to as “composite charge”.
  • Other ingredients such as plasticizers, adhesion promoters, etc. are added as needed.
  • formulation of the charge is then referred to as formulation of the charge.
  • the procedure for the above-mentioned optimization of the blast performance is such that formulations are produced (eg RDX / Al / HTPB) by varying the amount of ingredients in different proportions and then testing these cargoes for their performance in mostly large series of experiments. This procedure is time-consuming and cost-intensive.
  • the DE 40 02 157 A1 describes various examples of polymer-bound explosives, aiming at optimizing the mechanical properties.
  • this invention has for its object to provide a method for maximizing the blast performance of a charge, in particular for bunker control, which has the formulation of an explosive charge with optimized blast performance in a short time to result.
  • This object is achieved by first determining the proportion by weight of the explosive depending on the intended application, then the proportion by weight of the metal powder used as fuel according to the proviso is determined, and that each individual metal particle is completely oxidized with the entrained oxygen, wherein the minimum size of the metal particles is determined depending on the minimum time within which each metal particle is oxidized.
  • phase I and II so the oxidation and thus the energy can be accomplished only by the entrained oxygen. Only in the third phase III it comes to mixing with atmospheric oxygen and thus to afterburning. Almost all military explosive charges have an oxygen sub-balance, that is to complete conversion (post-combustion) they need oxygen from the air. This is especially the case if you add in addition Adds fuels such as reactive metal powder. This is exactly the method to increase the degree of reaction and thus the blast performance.
  • RDX- and HMX-containing explosive charges for example, the C and H atoms are oxidized to CO 2 and H 2 O.
  • the N atoms usually behave "neutrally” and combine to form N 2 .
  • Addition of additional metal powder (such as Al) leads to further oxidation, such as Al 2 O 3 .
  • the method according to the invention for maximizing blast performance now proceeds as follows. For a given explosive charge formulation, add stoichiometrically the same amount of fuel powder that all metal ions can be oxidized with the entrained oxygen of the charge (without atmospheric oxygen). The C atoms, H atoms, etc. are later further oxidized by atmospheric oxygen. This maximizes blast performance.
  • the aim is to optimize the blast performance of any explosive charge formulation of the above-mentioned compositions by this procedure, ie to find the local maximum in a multi-dimensional parameter space on without to have to fall back on a purely statistical, time / cost consuming procedure and at the same time be able to do without extensive test series.
  • the first step of the method involves assembling the necessary explosive charge components. Emphasis will be placed on the suitability of the optimized charge for a particular application. For example, this relates to shockwave immunity in a planned bunker fight.
  • RDX is an explosive.
  • For the other components is usually similar.
  • the second step is to optimize the blast performance.
  • you add more fuel usually in the form of reactive metal powders, such as aluminum powder.
  • the key point of the maximization method according to the invention comes into play.
  • the intrinsic oxygen balance must always be taken into account for any mixture of components.
  • the oxygen content must be stoichiometrically sized so that each metal particle is saturated during the detonation with oxygen, so it can be completely oxidized.
  • the selection of the type and condition of the metal particles takes place.
  • certain conditions must be observed by the specialist.
  • the size and shape of the particles are crucial. Rapid oxidation of all powder particles during the anaerobic phase must be possible, otherwise the maximum will not be reached. If the particles are too large, the entire particles can not burn during the detonation phase. If they are too small, the relative proportion of the surface oxide layer which is usually present is too large and energy is lost again. The minimum size thus results from the available time (in the detonation phase) within which the metal particles must be completely oxidized. In addition, too small particles would be difficult to process because of increasing viscosity due to the rapidly increasing cumulative surfaces with decreasing radius, all of which must be wetted by the binder.
  • the possible inertia of the oxidation reaction is another parameter that has to be taken into account: boron, for example, is relatively inert and requires a reaction catalyst, which can be accomplished, for example, by admixing Al powder.
  • the size of the metal particles can not be chosen arbitrarily.
  • Known charges contain aluminum particles with an average grain size of 35 ⁇ m. This has been reduced to an average value of 4 ⁇ m in the context of the preparatory work for this invention, which has proven to be particularly advantageous.
  • a further reduction in the size of the particles brings no further increase, since the combustion of the micron particles is already fast enough to be completed in the above-mentioned phase II. On the contrary, a reduction to the nanometer range causes numerous disadvantages.
  • the shock wave dissolves in the detonative phase (I and II) of the fireball, any aerobic post-reactions come too late for an increase in energy of the shock wave. If all metal powder is oxidized during this phase, maximum energy release is achieved, the maximum blast effect. If one had less metal powder in the formulation, one would "give away” oxygen to the C and H atoms and thus lose energy, since the oxidation of these atoms supplies less combustion energy. If too much metal powder had been added, these "superstoichiometric" metal ions would not be oxidized and one would not have reached the optimum point either. So there is a stoichiometric optimal mixture, in which all metal ions get their oxygen content, then the blast performance is maximum.
  • Existing metal shells of the charge can be more of a hindrance, since they must first expand radially and depending on the ductility and further nature of the metal shell more or less late tear and only then release the detonation products and bring into contact with the air. During this expansion phase However, the gases cool down. If the temperature falls below a critical temperature (for example, about 2000 K for aluminum), the chemical reactions are prevented and the afterburning stops or does not even begin.
  • a critical temperature for example, about 2000 K for aluminum
  • the procedure according to the invention for maximizing the blast power is to be applied by way of example to a charge with aluminum powder.
  • the maximum obtained was validated by a conventional statistical approach, in which long and extensive series of tests were performed which confirmed the forecast maximum for both free-field and indoor detonations.

Abstract

Das erfindungsgemäße Verfahren zur Maximierung der Blast-Leistung läuft wie folgt ab. Bei einer bestimmten Sprengladungs-Formulierung fügt man stöchiometrisch genau so viel Brennstoff-Pulver hinzu, dass alle Metall-Ionen mit dem mitgeführten Sauerstoff der Ladung (ohne Luftsauerstoff) oxidiert werden können. Die C- Atome, H-Atome etc. werden später durch den Luftsauerstoff weiter oxidiert. Auf diese Weise erreicht man eine Maximierung der Blast-Leistung.The inventive method for maximizing blast performance proceeds as follows. For a given explosive charge formulation, add stoichiometrically the same amount of fuel powder that all metal ions can be oxidized with the entrained oxygen of the charge (without atmospheric oxygen). The C atoms, H atoms, etc. are later further oxidized by atmospheric oxygen. This maximizes blast performance.

Description

Die Erfindung betrifft ein Verfahren zur Drucksteigerung einer Komposit-Ladung enthaltend wenigstens einen Sprengstoff, einen inerten oder energetischen Binder und ein reaktives Metallpulver.The invention relates to a method for increasing the pressure of a composite charge containing at least one explosive, an inert or energetic binder and a reactive metal powder.

Moderne konventionelle und unempfindliche Sprengladungen enthalten überwiegend Sprengstoffe wie RDX (Hexogen) oder HMX (Oktogen), vermischt mit Kunststoffbindern wie HTPB (Hydroxyl-Terminiertes Polybutadien). RDX ist unempfindlicher als HMX und wird beispielsweise gerne für druck-gesteigerte Sprengladungen verwendet, falls eine hohe Stoßwellenunempfindlichkeit gefordert ist. HMX hingegen ist etwas leistungsstärker hinsichtlich der Beschleunigung von Metall-Belegungen oder -Hüllen und wird eher dann eingesetzt, wenn der Schwerpunkt auf Splitterleistung und weniger auf Empfindlichkeit liegt.Modern conventional and insensitive explosive charges contain mainly explosives such as RDX (hexogen) or HMX (octogen), mixed with plastic binders such as HTPB (hydroxyl-terminated polybutadiene). RDX is less sensitive than HMX and is often used for pressure-boosted explosive charges, for example, if high shock-wave immunity is required. HMX, on the other hand, is somewhat more powerful in terms of accelerating metal builds or sheaths, and is more likely to be used when the focus is on splitter performance rather than sensitivity.

In jüngerer Zeit gewinnen weitere neue Sprengstoffe wie CL20, Fox 7, ... Fox 12 etc. an Bedeutung. Zudem werden anstelle inerter Kunststoffbinder (wie das erwähnte HTPB) auch energetische Binder (beispielsweise GAP) eingesetzt.Recently, other new explosives such as CL20, Fox 7, ... Fox 12 etc. gain in importance. In addition, instead of inert plastic binders (such as the mentioned HTPB), energetic binders (for example GAP) are used.

Eine Erhöhung der Druckwirkung, geläufiger als "Blast-Steigerung" bekannt, kann durch Zumischung von reaktiven Metallpulvern (z.B. Aluminium , Bor, Silizium, Magnesium usw.) erzielt werden. Form und Größe der Metallpartikel spielen für die Blast-Steigerung eine wichtige Rolle. Derartige Ladungen werden dann als "Komposit-Ladung" bezeichnet. Weitere Bestandteile wie Weichmacher, Haftvermittler etc. werden bei Bedarf zugemischt. Eine derartige Kombination wird dann als Formulierung der Ladung bezeichnet.Increasing the pressure effect, more commonly known as "blast enhancement", can be achieved by admixing reactive metal powders (e.g., aluminum, boron, silicon, magnesium, etc.). The shape and size of the metal particles play an important role in the blast increase. Such charges are then referred to as "composite charge". Other ingredients such as plasticizers, adhesion promoters, etc. are added as needed. Such a combination is then referred to as formulation of the charge.

Bisher ist die Vorgehensweise bei der oben erwähnten Optimierung der Blast-Leistung dergestalt, dass Formulierungen hergestellt werden (z.B. RDX / Al / HTPB), indem die Menge der Zutaten in verschiedenen Mengenverhältnissen variiert wird und dann diese Ladungen in zumeist großen Versuchsserien auf ihre Leistungsfähigkeit hin getestet werden. Dieses Vorgehen ist zeit- und kostenintensiv.So far, the procedure for the above-mentioned optimization of the blast performance is such that formulations are produced (eg RDX / Al / HTPB) by varying the amount of ingredients in different proportions and then testing these cargoes for their performance in mostly large series of experiments. This procedure is time-consuming and cost-intensive.

Die DE 40 02 157 A1 beschreibt verschiedene Beispiele Polymergebundener Sprengstoffe beschrieben, wobei eine Optimierung der mechanischen Eigenschaften angestrebt werden soll.The DE 40 02 157 A1 describes various examples of polymer-bound explosives, aiming at optimizing the mechanical properties.

In " Performance of High Explosives in Underwater Applikations. Part 2: Aluminized Explosives", E. Strømsøe and S. W. Eriksen, Propellants, Explosives, Pyrotechnics 15, 52-53 (1990 ) sind verschiedene RDX / Al - Mischungen beschrieben und werden im Hinblick auf Eignung für Unterwasserladungen miteinander verglichen.In " Performance of High Explosives in Underwater Application. Part 2: Aluminized Explosives ", E. Strømsøe and SW Eriksen, Propellants, Explosives, Pyrotechnics 15, 52-53 (1990 ), various RDX / Al blends are described and compared for suitability to underwater loads.

Aus der DE 10 2005 011 535 A1 ist ein Sprengstoff bekannt geworden, der über und unter Wasser ein verbessertes Blastverhalten aufgrund der Mischung mit wasserstoffterminiertem Silizium-Einkristallpulver besitzt, welches mindestens einen Korngrößenbereich aufweist.From the DE 10 2005 011 535 A1 An explosive has become known which has an improved blast behavior above and below water due to the mixture with hydrogen-terminated silicon single crystal powder which has at least one particle size range.

Dass ein Kompositsprengstoff in einem nahezu stöchiometrischen Verhältnis zusammengestellt werden kann, ist aus der US 2004/0256038 A1 bekannt geworden, wobei offen bleibt, auf welche Reaktionsgleichung sich diese Angabe bezieht.That a composite explosive can be put together in a nearly stoichiometric ratio, is from the US 2004/0256038 A1 remains open, to which reaction equation refers to this statement.

Zur Vermeidung des oben genannten Nachteils liegt dieser Erfindung die Aufgabe zugrunde, ein Verfahren zur Maximierung der Blast-Leistung einer Ladung insbesondere zur Bunkerbekämpfung anzugeben, welches in kurzer Zeit die Formulierung einer Sprengladung mit optimierter Blast-Leistung zum Ergebnis hat.To avoid the above drawback, this invention has for its object to provide a method for maximizing the blast performance of a charge, in particular for bunker control, which has the formulation of an explosive charge with optimized blast performance in a short time to result.

Diese Aufgabe wird dadurch gelöst, dass zuerst in Abhängigkeit von der geplanten Anwendung der Gewichtsanteil des Sprengstoffes festgelegt wird, anschließend der Gewichtsanteil des als Brennstoff verwendeten Metallpulvers nach der Maßgabe bestimmt wird, und dass jeder einzelne Metallpartikel mit dem mitgeführten Sauerstoff vollständig oxidiert wird, wobei die minimale Größe der Metallpartikel in Abhängigkeit von der minimalen Zeit bestimmt wird, innerhalb der jeder Metallpartikel oxidiert wird.This object is achieved by first determining the proportion by weight of the explosive depending on the intended application, then the proportion by weight of the metal powder used as fuel according to the proviso is determined, and that each individual metal particle is completely oxidized with the entrained oxygen, wherein the minimum size of the metal particles is determined depending on the minimum time within which each metal particle is oxidized.

Weitere kennzeichnende Merkmale des Verfahrens sind dem nachgeordneten Anspruch zu entnehmen.Further characteristic features of the method can be found in the subordinate claim.

Zum Verständnis des Verfahrens ist ein gewisses Maß an Detailwissen über den Ablauf einer Detonation einer Sprengladung hilfreich. Dieses Wissen, das auch den Kernpunkt des Maximierungsverfahrens einschließt, ist neuartig und wurde in umfangreichen Testserien erarbeitet.To understand the process, a certain amount of detailed knowledge about the course of a detonation of an explosive charge is helpful. This knowledge, which also includes the core of the maximization process, is novel and has been developed in extensive test series.

Eine Detonation läuft in drei Phasen ab:

  • Phase I:
    • detonative Phase: Durchdetonation der Ladung (Zeitrahmen: 10 - 20 µsec);
  • Phase II:
    • anaerobe Phase: Expansion der Detonationsschwaden ohne Zugabe / Vermischung mit Luftsauerstoff (Zeitrahmen: einige msec);
  • Phase III:
    • aerobe Phase: Nachverbrennung unter Zusatz von Luftsauerstoff, durch Verwirbelung der Schwaden mit Luft (Zeitrahmen: 50-100 msec)
A detonation takes place in three phases:
  • Phase I:
    • detonative phase: detonation of the charge (time frame: 10 - 20 μsec);
  • Phase II:
    • anaerobic phase: expansion of the detonation swaths without addition / mixing with atmospheric oxygen (time frame: a few msec);
  • Phase III:
    • aerobic phase: afterburning with the addition of atmospheric oxygen, by swirling the swaths with air (time frame: 50-100 msec)

In Phase I und II kann also die Oxidation und damit die Energiegewinnung nur durch den mitgeführten Sauerstoff bewerkstelligt werden. Erst in der dritten Phase III kommt es zur Vermischung mit Luftsauerstoff und damit zu Nachverbrennungen. Fast alle militärischen Sprengladungen weisen eine Sauerstoff-Unterbilanz auf, sprich zur vollständigen Umsetzung (Nachverbrennung) benötigen sie Sauerstoff aus der Luft. Dies ist insbesondere dann der Fall, wenn man zusätzlich Brennstoffe wie reaktive Metallpulver hinzufügt. Das ist genau die Methode, den Reaktionsgrad und damit die Blast-Leistung zu erhöhen.In phase I and II so the oxidation and thus the energy can be accomplished only by the entrained oxygen. Only in the third phase III it comes to mixing with atmospheric oxygen and thus to afterburning. Almost all military explosive charges have an oxygen sub-balance, that is to complete conversion (post-combustion) they need oxygen from the air. This is especially the case if you add in addition Adds fuels such as reactive metal powder. This is exactly the method to increase the degree of reaction and thus the blast performance.

Beispielsweise werden in RDX- und HMX-haltigen Sprengladungen (so genannte CHNO-Sprengladungen) die C- und H-Atome zu CO2 und H2O oxidiert. Die N-Atome verhalten sich zumeist "neutral" und vereinigen sich zu N2. Durch Zugabe von zusätzlichem Metallpulver (etwa Al) kommt es zu weiteren Oxidationen, wie beispielsweise Al2O3.For example, in RDX- and HMX-containing explosive charges (so-called CHNO explosive charges), the C and H atoms are oxidized to CO 2 and H 2 O. The N atoms usually behave "neutrally" and combine to form N 2 . Addition of additional metal powder (such as Al) leads to further oxidation, such as Al 2 O 3 .

Aufgrund der angeführten Sauerstoff-Unterbilanz kommt es während der Detonation (in Phase I und II) zu einem "Wettbewerb" zwischen den einzelnen Brennstoffen (z.B. C, H, Al) um den Sauerstoff und es können nicht alle Atome / Moleküle mit Sauerstoff abgesättigt werden. Das Metall-Pulver (z.B. Al) liefert bei der Oxidation aber die meiste Verbrennungsenergie, außerdem ist es in der Regel sehr affin gegenüber Sauerstoff, d.h. es oxidiert sehr leicht und schnell (abhängig von Korngröße und -form). Allerdings ist hierzu eine gewisse Mindesttemperatur notwendig (für Al2O3 in der Größenordnung von 2000 K), die nicht unterschritten werden darf. In der anaeroben Phase ist die Temperatur innerhalb des Gasballes ausreichend hoch und es bleibt genügend Zeit, alles Metallpulver zu oxidieren.Due to the above-mentioned oxygen sub-balance, during the detonation (in phases I and II) there is a "competition" between the individual fuels (eg C, H, Al) for the oxygen and not all atoms / molecules can be saturated with oxygen , However, the metal powder (eg Al) gives most of the combustion energy in oxidation, and it is usually very affine to oxygen, ie it oxidizes very easily and quickly (depending on grain size and shape). However, this requires a certain minimum temperature (for Al 2 O 3 in the order of 2000 K), which must not be undercut. In the anaerobic phase, the temperature within the gas ball is sufficiently high and there is enough time to oxidize all metal powder.

Das erfindungsgemäße Verfahren zur Maximierung der Blast-Leistung läuft nun wie folgt ab. Bei einer bestimmten Sprengladungs-Formulierung fügt man stöchiometrisch genau so viel Brennstoff-Pulver hinzu, dass alle Metall-Ionen mit dem mitgeführten Sauerstoff der Ladung (ohne Luftsauerstoff) oxidiert werden können. Die C- Atome, H-Atome etc. werden später durch den Luftsauerstoff weiter oxidiert. Auf diese Weise erreicht man eine Maximierung der Blast-Leistung.The method according to the invention for maximizing blast performance now proceeds as follows. For a given explosive charge formulation, add stoichiometrically the same amount of fuel powder that all metal ions can be oxidized with the entrained oxygen of the charge (without atmospheric oxygen). The C atoms, H atoms, etc. are later further oxidized by atmospheric oxygen. This maximizes blast performance.

Ziel ist es, die Blast-Leistung einer beliebigen Sprengladungs-Formulierung oben genannter Zusammensetzungen durch dieses Vorgehen zu optimieren, d.h. das lokale Maximum in einem mehrdimensionalen Parameterraum zu finden ohne auf ein rein statistisches, zeit-/kostenaufwändiges Verfahren zurückgreifen zu müssen und gleichzeitig auf umfangreiche Versuchsserien verzichten zu können.The aim is to optimize the blast performance of any explosive charge formulation of the above-mentioned compositions by this procedure, ie to find the local maximum in a multi-dimensional parameter space on without to have to fall back on a purely statistical, time / cost consuming procedure and at the same time be able to do without extensive test series.

Der erste Schritt des Verfahrens umfasst das Zusammenstellen der notwendigen Sprengladungs-Komponenten. Hierbei wird der Schwerpunkt auf die Eignung der optimierten Ladung für eine spezielle Anwendung gelegt. Beispielsweise betrifft dies die Stoßwellenunempfindlichkeit bei einer geplanten Bunkerbekämpfung. Hierbei bietet sich RDX als Sprengstoff an. Für die weiteren Komponenten gilt zumeist ähnliches.The first step of the method involves assembling the necessary explosive charge components. Emphasis will be placed on the suitability of the optimized charge for a particular application. For example, this relates to shockwave immunity in a planned bunker fight. Here, RDX is an explosive. For the other components is usually similar.

Im zweiten Schritt wird die Optimierung der Blast-Leistung angestrebt. Hierzu fügt man weiteren Brennstoff zumeist in Form von reaktiven Metallpulvern hinzu, wie etwa Aluminium-Pulver. Hierbei kommt nun der Kernpunkt des erfindungsgemäßen Maximierungsverfahrens zum Tragen. Es muss für eine beliebige Mischung der Komponenten immer die intrinsische Sauerstoffbilanz beachtet werden. Der Sauerstoffanteil muss stöchiometrisch exakt so bemessen sein, dass jedes Metallpartikel während der Detonation mit Sauerstoff abgesättigt, also vollkommen oxidiert werden kann.The second step is to optimize the blast performance. For this purpose, you add more fuel usually in the form of reactive metal powders, such as aluminum powder. Here, the key point of the maximization method according to the invention comes into play. The intrinsic oxygen balance must always be taken into account for any mixture of components. The oxygen content must be stoichiometrically sized so that each metal particle is saturated during the detonation with oxygen, so it can be completely oxidized.

Im dritten Schritt findet die Auswahl von Art und Zustand der Metallpartikeln statt. Damit dieser Punkt erfüllt werden kann, müssen vom Fachmann bestimmte Voraussetzungen beachtet werden. Insbesondere sind Größe und Form der Partikeln ausschlaggebend. Eine schnelle Oxidation aller Pulverpartikeln während der anaeroben Phase muss möglich sein, sonst wird das Maximum nicht erreicht. Sind die Partikeln zu groß, können während der Detonationsphase nicht die gesamten Partikeln verbrennen. Sind sie zu klein, ist der relative Anteil der zumeist vorhandenen Oberflächen-Oxidschicht zu groß, und man verliert erneut Energie. Die minimale Größe ergibt sich also aus der zur Verfügung stehenden Zeit (in der Detonationsphase), innerhalb der die Metallpartikel komplett oxidiert werden muss. Außerdem wären zu kleine Partikeln wegen zunehmender Viskosität schlecht zu verarbeiten aufgrund der mit abnehmendem Radius rasant ansteigenden kumulierten Oberflächen, die alle vom Binder benetzt werden müssen.In the third step, the selection of the type and condition of the metal particles takes place. In order for this point to be met, certain conditions must be observed by the specialist. In particular, the size and shape of the particles are crucial. Rapid oxidation of all powder particles during the anaerobic phase must be possible, otherwise the maximum will not be reached. If the particles are too large, the entire particles can not burn during the detonation phase. If they are too small, the relative proportion of the surface oxide layer which is usually present is too large and energy is lost again. The minimum size thus results from the available time (in the detonation phase) within which the metal particles must be completely oxidized. In addition, too small particles would be difficult to process because of increasing viscosity due to the rapidly increasing cumulative surfaces with decreasing radius, all of which must be wetted by the binder.

Die mögliche Trägheit der Oxidations-Reaktion ist ein weiterer Parameter, der beachtet werden muss: Bor etwa ist relativ reaktionsträge und bedarf eines Reaktionskatalysators, was beispielsweise durch Zumischen von Al-Pulver bewerkstelligt werden kann.The possible inertia of the oxidation reaction is another parameter that has to be taken into account: boron, for example, is relatively inert and requires a reaction catalyst, which can be accomplished, for example, by admixing Al powder.

Die Größe der Metallpartikeln kann nicht beliebig gewählt werden. Bekannte Ladungen enthalten Aluminiumpartikeln mit einer Korngröße von durchschnittlich 35 µm. Dies wurde im Rahmen der Vorarbeiten zu dieser Erfindung auf einen Mittelwert von 4 µm reduziert, der sich als besonders vorteilhaft erwiesen hat. Eine weitere Reduzierung der Größe der Partikeln bringt keine weitere Steigerung, da die Verbrennung der µm-Partikeln schon schnell genug ist, um in der oben genannten Phase II abgeschlossen zu werden. Eine Reduzierung in den Nanometer-Bereich ruft vielmehr zahlreiche Nachteile hervor.The size of the metal particles can not be chosen arbitrarily. Known charges contain aluminum particles with an average grain size of 35 μm. This has been reduced to an average value of 4 μm in the context of the preparatory work for this invention, which has proven to be particularly advantageous. A further reduction in the size of the particles brings no further increase, since the combustion of the micron particles is already fast enough to be completed in the above-mentioned phase II. On the contrary, a reduction to the nanometer range causes numerous disadvantages.

Eine weitere Möglichkeit zur Verbesserung der Verbrennungsreaktion wäre das so genannte "Coating" (also die Beschichtung) von kleinen Metall-Partikeln mit beispielsweise RDX oder HMX oder dergleichen, bzw. durch passivierende Maßnahmen. Dies ist derzeit technisch möglich, muss allerdings unter Kostenaspekten von Fall zu Fall entschieden werden. Dadurch könnte die störende Oxidierung der Partikeloberfläche vermieden werden.Another possibility for improving the combustion reaction would be the so-called "coating" (ie the coating) of small metal particles with, for example, RDX or HMX or the like, or by passivating measures. This is technically possible at the moment but has to be decided on a case by case basis. As a result, the disturbing oxidation of the particle surface could be avoided.

Eine auf die beschriebene Weise für Außenraum-Detonationen optimierte Ladung, bei der insbesondere die komplette Oxidation des zugefügten Brennstoffes / Metallpulvers berücksichtigt und realisierbar gemacht wurde, erzielt eine maximale Stoßwelle, dies allein aufgrund der Vorgehensweise und ohne lange Versuchsreihen durchführen zu müssen.A charge optimized in the manner described for outdoor detonations, in which, in particular, the complete oxidation of the added fuel / metal powder has been taken into account and made feasible, achieves a maximum shock wave solely on the basis of the procedure and without having to carry out a long series of experiments.

Die Stoßwelle löst sich in der detonativen Phase (I und II) vom Feuerball, jegliche aerobe Nachreaktionen kommen zu spät für eine Energieerhöhung der Stoßwelle. Wenn alles Metallpulver während dieser Phase oxidiert wird, erreicht man eine maximale Energiefreisetzung, den maximalen Blast-Effekt. Hätte man weniger Metallpulver in der Formulierung, würde man Sauerstoff an die C- und H-Atome "verschenken" und damit Energie verlieren, da die Oxidation dieser Atome weniger Verbrennungsenergie liefert. Hätte man zu viel Metallpulver dazu gegeben, würden diese "überstöchiometrischen" Metall-Ionen nicht oxidiert werden, man hätte ebenfalls nicht den optimalen Punkt erreicht. Es gibt also eine stöchiometrisch optimale Mischung, bei der alle Metall-Ionen ihren Sauerstoffanteil bekommen, dann ist auch die Blast-Leistung maximal.The shock wave dissolves in the detonative phase (I and II) of the fireball, any aerobic post-reactions come too late for an increase in energy of the shock wave. If all metal powder is oxidized during this phase, maximum energy release is achieved, the maximum blast effect. If one had less metal powder in the formulation, one would "give away" oxygen to the C and H atoms and thus lose energy, since the oxidation of these atoms supplies less combustion energy. If too much metal powder had been added, these "superstoichiometric" metal ions would not be oxidized and one would not have reached the optimum point either. So there is a stoichiometric optimal mixture, in which all metal ions get their oxygen content, then the blast performance is maximum.

Die Optimierung der Ladung für Innenraum-Detonationen unterscheidet sich von der Ladung für Außenraum-Detonationen. Üblicherweise haben derartige Sprengladungen Metallhüllen (z.B. Stahlhüllen) zur Strukturfestigkeit, zur Integration in einen Flugkörper und dergleichen mehr. Bei Innenraum-Detonationen trifft dies insbesondere deshalb zu, da die Sprengladung vor der Detonation in den Innenraum verbracht werden muss, d.h. die Ladung muss an Bord eines Penetrators auch Mauern perforieren.The optimization of the charge for indoor detonations differs from the charge for outdoor detonations. Typically, such explosive charges have metal sheaths (e.g., steel sheaths) for structural integrity, integration with a missile, and the like. In indoor detonations this is especially true because the explosive charge must be spent in the interior before detonation, i. The cargo must also perforate walls on board a penetrator.

Neben der oben angesprochenen Oxidation allen Brennstoffes/ Metallpulvers muss nun gewährleistet sein, dass auch alle anderen Verbrennungsprodukte (wie beispielsweise C, CO, OH ...), die noch nicht mit Sauerstoff gesättigt sind, nun vollständig nachoxidiert werden (Nachverbrennungs-Reaktionen). Der hierzu benötigte Sauerstoff muss der Luft entnommen werden, wozu eine gute Durchmischung der Verbrennungsprodukte mit der Luft notwendig ist.In addition to the above-mentioned oxidation of all fuel / metal powder must now be ensured that all other combustion products (such as C, CO, OH ...), which are not yet saturated with oxygen, now fully oxidized (post-combustion reactions). The oxygen required for this purpose must be taken from the air, for which a thorough mixing of the combustion products with the air is necessary.

Vorhandene Metallhüllen der Ladung können dabei eher hinderlich sein, da sie erst radial expandieren müssen und je nach Duktilität und weiterer Beschaffenheit der Metallhülle mehr oder weniger spät aufreißen und erst dann die Detonations-Produkte freigeben und mit der Luft in Berührung bringen. Während dieser Expansionsphase kühlen sich die Gase allerdings ab. Unterschreitet man eine kritische Temperatur (für Aluminium beispielsweise ca. 2000 K), so werden die chemischen Reaktionen unterbunden und die Nachverbrennung bricht ab, bzw. setzt gar nicht erst ein.Existing metal shells of the charge can be more of a hindrance, since they must first expand radially and depending on the ductility and further nature of the metal shell more or less late tear and only then release the detonation products and bring into contact with the air. During this expansion phase However, the gases cool down. If the temperature falls below a critical temperature (for example, about 2000 K for aluminum), the chemical reactions are prevented and the afterburning stops or does not even begin.

Um dies zu verhindern, müssen Vorkehrungen getroffen werden. Dies kann durch vielfältige Weise geschehen. Genannt werden sollen etwa beispielhaft: Materialeigenschaften wie Duktilität bzw. Sprödigkeit, Auslegung / Geometrie der Ladung wie Wandstärken und schließlich Sollbruchstellen.To prevent this, precautions must be taken. This can be done in many ways. For example, material properties such as ductility or brittleness, design / geometry of the load such as wall thickness and finally predetermined breaking points are to be mentioned.

Diese Maßnahmen oder Kombination von Maßnahmen müssen sicherstellen, dass alle Verbrennungsprodukte vollständig oxidiert werden und es zu keinem Abbruch der Reaktionen kommt. Auf diese Weise ist wiederum das Maximum der Blast-Leistung gegeben.These measures or combinations of measures must ensure that all combustion products are completely oxidized and that the reactions are not stopped. In this way, in turn, the maximum of the blast power is given.

Bei einer reellen Innenraumdetonation wird die Wirkung mittels quasistationären Druckes (Impuls) umgesetzt. Hierbei können zwar alle Moleküle nachreagieren, die nicht mit Sauerstoff gesättigt sind. In der Praxis gelingt dies nicht immer, was auf die notwendige hohe Reaktionstemperatur zurückzuführen ist.In a real interior detonation, the effect is implemented by means of quasi-stationary pressure (momentum). Although all molecules that are not saturated with oxygen can react afterwards. In practice, this does not always succeed, which is due to the necessary high reaction temperature.

Im Folgenden soll die erfindungsgemäße Vorgehensweise zur Maximierung der Blast-Leistung exemplarisch auf eine Ladung mit Aluminium-Pulver angewandt werden. Bei dieser Ladung wurde das erzielte Maximum durch eine konventionelle statistische Vorgehensweise validiert, bei der lange und umfangreiche Versuchsreihen durchgeführt wurden, die das prognostizierte Maximum sowohl für Freifeldals auch Innenraum-Detonationen bestätigten.In the following, the procedure according to the invention for maximizing the blast power is to be applied by way of example to a charge with aluminum powder. For this charge, the maximum obtained was validated by a conventional statistical approach, in which long and extensive series of tests were performed which confirmed the forecast maximum for both free-field and indoor detonations.

Eine bereits bestehende Sprengladung mit Al-Pulver ist als KS22 bekannt, mit der Formulierung:

  • RDX / Al / HTPB mit den Massenprozenten 67/18/15.
An existing explosive charge with Al powder is known as KS22, with the formulation:
  • RDX / Al / HTPB with mass percentages 67/18/15.

Diese Sprengladung ist hinsichtlich des Blast-Effektes nicht optimiert. Fügt man weiteres Aluminium-Pulver hinzu, bis man den (entsprechend des MaximierungsVerfahrens) stöchiometrischen Sättigungspunkt erreicht, so erhält man folgende Formulierung:

  • RDX / Al / HTPB mit den Massenprozenten 58/27/15
die in Analogie zu KS22 als KS23 bezeichnet werden soll.This explosive charge is not optimized with regard to the blast effect. Adding further aluminum powder until reaching the stoichiometric saturation point (according to the maximization procedure) gives the following formulation:
  • RDX / Al / HTPB with the mass percentages 58/27/15
which should be referred to as KS23 in analogy to KS22.

Umfangreiche Versuche sowohl im Freifeld wie in Bunkersystemen (abgeschlossener Raum und offene Räume mit Fenster und Türen) bestätigten die Maximierung der Blast-Leistung. Die Formulierung ist chemisch unterschiedlich zu KS22, vom verfahrenstechnischen Gesichtspunkt jedoch ziemlich ähnlich, so dass auch ähnliche Herstellprozesse angewendet und so die Reproduzierbarkeit etc. gewährleistet werden kann.Extensive trials in both open air and bunker systems (enclosed space and open spaces with windows and doors) confirmed the maximization of blast performance. The formulation is chemically different from KS22, but quite similar from the procedural point of view, so that similar manufacturing processes can be applied and thus the reproducibility etc. can be guaranteed.

Claims (2)

Verfahren zur Drucksteigerung einer Komposit-Ladung enthaltend wenigstens einen Sprengstoff, einen inerten oder energetischen Binder und ein reaktives Metallpulver,
dadurch gekennzeichnet, dass - als Sprengstoff RDX mit einem Gewichtsanteil von etwa 58 % verwendet wird, - der Gewichtsanteil des als Brennstoff verwendeten Metallpulvers nach der Maßgabe bestimmt wird, dass jedes einzelne Metallpartikel mit dem mitgeführten Sauerstoff vollständig oxidiert wird, - dass die dass die Korngröße der Partikeln des Metallpulvers in Abhängigkeit von der Partikelform und in Abhängigkeit von der minimalen Zeit, innerhalb der jeder Metallpartikel oxidiert wird, im Bereich von 1µm bis 10 µm gewählt wird.
Process for increasing the pressure of a composite charge containing at least one explosive, an inert or energetic binder and a reactive metal powder,
characterized in that is used as an explosive RDX with a weight fraction of about 58%, the proportion by weight of the metal powder used as fuel is determined according to the proviso that each individual metal particle is completely oxidized with the entrained oxygen, - That that the grain size of the particles of the metal powder, depending on the particle shape and depending on the minimum time within which each metal particle is oxidized, is selected in the range of 1 .mu.m to 10 .mu.m.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Korngröße der Partikel des Metallpulvers in einer durchschnittlichen Größe von 4 µm gewählt wird.A method according to claim 1, characterized in that the grain size of the particles of the metal powder is selected in an average size of 4 microns.
EP15001307.6A 2014-05-21 2015-05-02 Method for increasing pressure of a composite charge Active EP2947063B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014007455.2A DE102014007455A1 (en) 2014-05-21 2014-05-21 Method for increasing the pressure of a composite charge

Publications (2)

Publication Number Publication Date
EP2947063A1 true EP2947063A1 (en) 2015-11-25
EP2947063B1 EP2947063B1 (en) 2019-11-27

Family

ID=53054833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15001307.6A Active EP2947063B1 (en) 2014-05-21 2015-05-02 Method for increasing pressure of a composite charge

Country Status (2)

Country Link
EP (1) EP2947063B1 (en)
DE (1) DE102014007455A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058705C1 (en) * 2000-11-25 2002-02-28 Rheinmetall W & M Gmbh Pourable bursting charge consisting of crystalline explosive embedded in a polymer matrix, containing finely divided metal powder, e.g. vanadium, as solid lubricant to provide low viscosity at high solids content
US20040256038A1 (en) 2001-11-14 2004-12-23 The Regents Of The University Of California Light metal explosives and propellants
DE4002157A1 (en) 1989-01-25 2005-05-19 Bae Systems Plc Thermoplastic bonded energetic material, used in e.g. explosive welding, comprises polymeric binder comprising intimate mixture of copolymer(s) of ethylene and vinyl acetate and copolymer(s) of butadiene and acrylonitrile
DE102005011535A1 (en) 2004-03-10 2005-09-29 Diehl Bgt Defence Gmbh & Co. Kg Explosive for blasting comprises powder additive made from water-terminated silicon single crystal powder having one or more grain size regions of explosive
EP1584610A2 (en) * 2004-04-07 2005-10-12 Giat Industries Explosive composition
WO2005108329A1 (en) * 2004-05-06 2005-11-17 Dyno Nobel Asa Pressable explosive composition
US7393423B2 (en) * 2001-08-08 2008-07-01 Geodynamics, Inc. Use of aluminum in perforating and stimulating a subterranean formation and other engineering applications
US7727347B1 (en) * 2003-12-03 2010-06-01 The United States Of America As Represented By The Secretary Of The Navy Thermobaric explosives and compositions, and articles of manufacture and methods regarding the same
US8168016B1 (en) * 2004-04-07 2012-05-01 The United States Of America As Represented By The Secretary Of The Army High-blast explosive compositions containing particulate metal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002157A1 (en) 1989-01-25 2005-05-19 Bae Systems Plc Thermoplastic bonded energetic material, used in e.g. explosive welding, comprises polymeric binder comprising intimate mixture of copolymer(s) of ethylene and vinyl acetate and copolymer(s) of butadiene and acrylonitrile
DE10058705C1 (en) * 2000-11-25 2002-02-28 Rheinmetall W & M Gmbh Pourable bursting charge consisting of crystalline explosive embedded in a polymer matrix, containing finely divided metal powder, e.g. vanadium, as solid lubricant to provide low viscosity at high solids content
US7393423B2 (en) * 2001-08-08 2008-07-01 Geodynamics, Inc. Use of aluminum in perforating and stimulating a subterranean formation and other engineering applications
US20040256038A1 (en) 2001-11-14 2004-12-23 The Regents Of The University Of California Light metal explosives and propellants
US7727347B1 (en) * 2003-12-03 2010-06-01 The United States Of America As Represented By The Secretary Of The Navy Thermobaric explosives and compositions, and articles of manufacture and methods regarding the same
DE102005011535A1 (en) 2004-03-10 2005-09-29 Diehl Bgt Defence Gmbh & Co. Kg Explosive for blasting comprises powder additive made from water-terminated silicon single crystal powder having one or more grain size regions of explosive
EP1584610A2 (en) * 2004-04-07 2005-10-12 Giat Industries Explosive composition
US8168016B1 (en) * 2004-04-07 2012-05-01 The United States Of America As Represented By The Secretary Of The Army High-blast explosive compositions containing particulate metal
WO2005108329A1 (en) * 2004-05-06 2005-11-17 Dyno Nobel Asa Pressable explosive composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
E. STROMSOE; S. W. ERIKSEN: "Performance of High Explosives in Underwater Applikations. Part 2: Aluminized Explosives", PROPELLANTS, EXPLOSIVES, PYROTECHNICS, vol. 15, 1990, pages 52 - 53
GILEV S D ET AL: "Interaction of aluminum with detonation products", COMBUSTION, EXPLOSION AND SHOCK WAVES JANUARY 2006 SPRINGER SCIENCE AND BUSINESS MEDIA DEUTSCHLAND GMBH US, vol. 42, no. 1, January 2006 (2006-01-01), pages 107 - 115, XP002747348, DOI: 10.1007/S10573-006-0013-Y *
KUMAR A S ET AL: "Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications", PROPELLANTS, EXPLOSIVES, PYROTECHNICS JULY 2010 WILEY-VCH VERLAG DEU, vol. 35, no. 4, July 2010 (2010-07-01), pages 359 - 364, XP002747349, DOI: 10.1002/PREP.200800048 *
ZHOU Z Q ET AL: "Effects of the aluminum content on the shock wave pressure and the acceleration ability of RDX-based aluminized explosives", JOURNAL OF APPLIED PHYSICS 20141014 AMERICAN INSTITUTE OF PHYSICS INC. USA, vol. 116, no. 14, 14 October 2014 (2014-10-14), XP002747350, DOI: 10.1063/1.4897658 *

Also Published As

Publication number Publication date
DE102014007455A1 (en) 2015-11-26
EP2947063B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
DE60126644T2 (en) PYROTECHNICAL AEROSOLIZING FIRE-EXTINGUISHING MIXTURE AND METHOD FOR THE PRODUCTION THEREOF
DE3326884A1 (en) METHOD FOR HIDDEN VISIBLE AND INFRARED RADIATION AND FOG AMMUNITION FOR CARRYING OUT THIS METHOD
DE2048583A1 (en) Pourable white smoke mixture
EP1876160B1 (en) Active blasting charge
US5472531A (en) Insensitive explosive composition
EP2947063B1 (en) Method for increasing pressure of a composite charge
DE4002157A1 (en) Thermoplastic bonded energetic material, used in e.g. explosive welding, comprises polymeric binder comprising intimate mixture of copolymer(s) of ethylene and vinyl acetate and copolymer(s) of butadiene and acrylonitrile
DE19606237A1 (en) Non-toxic detonator compsn. for light weapon munitions free of lead@ and barium@
DE2820783C1 (en) Solid composite fuel with stable combustion
WO2012072198A2 (en) Perchlorate-free pyrotechnic mixture
EP0323828B1 (en) Explosive for war heads and solid propellants
EP3939952A1 (en) Fast burning solid propellant comprising an oxidizer, an energetic binder and a metallic burn-off modifier and method for its preparation
EP2792661B1 (en) Improved performance cylindrical explosive charge
EP2580175B1 (en) Method for producing and using an explosive substance mixture containing fuel
DE19912622A1 (en) Electrically ignited initiating explosive for igniting boosters or propellant charges or for generating compressed gas
DE10164381B4 (en) Low-signature and low-emission, pyrotechnic presentation body
DE102007019968A1 (en) Pyrotechnic kit comprises one or multiple components as bonding agent, which are selected from trinitrotoluene, trinitroanisol or dinitroanisol, and oxidant is also provided
DE2633168C3 (en) Delay detonator
DE1646269A1 (en) explosive
EP2592060B1 (en) Use of zirconium or a mixture containing zirconium
EP1541539B1 (en) Pyrotechnical charge for generating infrared radiation
DE102019003432B4 (en) warhead
DE10138745A1 (en) Surface flare, useful to generate an artificial target for the defense of infrared controlled steering flight body, comprises a carrier foil and a pyrotechnical active mass, where a part of the foil is formed from a propellant powder
DE2644211B2 (en) Composite solid propellant
EP1616845B1 (en) Pourable propellant powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160517

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20191017

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1206507

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011033

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191127

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011033

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015011033

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200503

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1206507

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127