EP2942673A1 - Oscillateur mécanique à diapason pour mouvement horloger - Google Patents

Oscillateur mécanique à diapason pour mouvement horloger Download PDF

Info

Publication number
EP2942673A1
EP2942673A1 EP14167078.6A EP14167078A EP2942673A1 EP 2942673 A1 EP2942673 A1 EP 2942673A1 EP 14167078 A EP14167078 A EP 14167078A EP 2942673 A1 EP2942673 A1 EP 2942673A1
Authority
EP
European Patent Office
Prior art keywords
oscillator
rod
blades
tuning fork
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14167078.6A
Other languages
German (de)
English (en)
Inventor
Ilan Vardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asgalium Unitec SA
Original Assignee
Asgalium Unitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asgalium Unitec SA filed Critical Asgalium Unitec SA
Priority to EP14167078.6A priority Critical patent/EP2942673A1/fr
Priority to PCT/EP2015/059624 priority patent/WO2015169708A2/fr
Priority to US15/309,342 priority patent/US10459405B2/en
Priority to EP15723856.9A priority patent/EP3140698B1/fr
Priority to CN201580036646.8A priority patent/CN106471429B/zh
Priority to CH01457/16A priority patent/CH711280B1/fr
Publication of EP2942673A1 publication Critical patent/EP2942673A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Definitions

  • the present invention relates to an oscillator of the tuning fork type, a watch movement comprising the oscillator and a timepiece comprising the oscillator.
  • the invention relates to a mechanical timepiece comprising the oscillator.
  • An object of the present invention is to improve the performance of the mechanical movement of a timepiece, in particular a mechanical timepiece.
  • the sprung balance long used as an oscillator in mechanical watches, has proven itself, but despite, or perhaps because of, centuries of research and development, it may be close to its limits .
  • the best balance springs achieve a quality factor Q of about 300.
  • the tuning fork is well known for its basic qualities of time, the tuning-fork wristwatches of the 1960s were the most accurate in the world until the advent of the quartz watch.
  • Max Hetzel is at the origin of a large number of patented inventions, relating to the implementation of a tuning fork as an oscillator, which led to the production of the Accutron wristwatch (registered trademark), marketed by the Bulova Swiss SA company.
  • the Accutron watch includes an electronic resonator as each branch of the tuning fork carries a permanent magnet associated with an electromagnet mounted fixed on the frame of the watch.
  • the operation of each electromagnet is slaved to the vibrations of the tuning fork by means of the magnets it carries, so that the vibrations of the tuning fork are maintained by the transmission of periodic magnetic pulses from the electromagnets to the permanent magnets.
  • One of the branches of the tuning fork actuates a pawl for rotating the mobile wheels of the finishing gear of the watch.
  • a general difference between mechanical wristwatches and acoustic tuning electronic watches is the fact that, in the latter, the oscillator as a time regulator also serves as a power distributor, that is to say that the oscillations are used to actuate the movement (Accutron) or to determine the activity of an electric motor which acts on the needles, for example (quartz electronic watch).
  • the oscillator as a time regulator also serves as a power distributor, that is to say that the oscillations are used to actuate the movement (Accutron) or to determine the activity of an electric motor which acts on the needles, for example (quartz electronic watch).
  • the oscillator as a time regulator also serves as a power distributor, that is to say that the oscillations are used to actuate the movement (Accutron) or to determine the activity of an electric motor which acts on the needles, for example (quartz electronic watch).
  • regulation is at the end of the chain of energy transmission.
  • the patent US 3,208,287 from a deposit dating from 1962, describes a resonator comprising a tuning fork coupled to an escape wheel by means of magnetic interactions. More specifically, the tuning fork carries permanent magnets cooperating with the escape wheel, the latter being made of a magnetic conductive material.
  • the escape wheel is kinematically connected to a source of energy which may be mechanical or take the form of a motor, while it comprises openings in its thickness such that it forms a magnetic circuit of variable reluctance when it is driven in rotation, in relation with the magnets carried by the tuning fork.
  • the present invention seeks to solve several technical problems.
  • it is desired to induce an antisymmetric oscillation by acting on a single blade of the tuning fork, therefore without imposing the antisymmetric oscillation by the simultaneous pulse of the two blades.
  • the use of magnets to distribute energy to an oscillator (exhaust pulse) or to regulate an energy is not strictly speaking "mechanical", for the simple reason that the energy is transmitted by magnetic forces and therefore associated with electromagnetic phenomena.
  • the present invention aims to provide a mechanical movement watch having a more accurate time base than that of the conventional sprung balance. It is an object of the present invention to provide an oscillator characterized by a higher quality factor than that of the sprung balance.
  • an object of the invention is to provide a fully mechanical movement wristwatch using a tuning fork oscillator as a timebase.
  • An object of the present invention is to avoid, in a tuning fork oscillator, the symmetrical oscillations. More particularly, the present invention aims to avoid symmetrical oscillations in an oscillator comprising a material characterized by a low internal friction, so as to make the oscillator capable of performing said symmetrical oscillations.
  • An object of the invention is to provide a tuning fork on the basis of a material having a low internal friction such as monocrystalline silicon.
  • a material having a low internal friction such as monocrystalline silicon.
  • An object of the present invention is to provide an oscillator in which the antisymmetric oscillations are favored, even if the pulses are given on only one of the two blades, in other words, in the absence of simultaneous pulses. with both blades.
  • the present invention seeks to solve the above problems and has other advantages which will become more apparent upon reading the description and the claims.
  • the present invention relates to a timepiece comprising a mechanical watch movement comprising: a tuning fork type oscillator, said oscillator comprising an assembly comprising two blades and a base connecting said blades, said oscillator comprising a rod connected to said base the oscillator being connected by its rod to a fastener connected to the movement, said assembly comprising or consisting of a material A, said material A being characterized by a weak internal friction, said movement comprising a mechanical pulse member capable of acting on one of the two blades so as to induce and maintain said oscillation oscillator, said oscillator being capable of oscillating in a desired antisymmetric mode as well as in an undesired symmetrical mode, characterized in that the factor quality Q 2 symmetrical oscillation mode of said oscillator is reduced compared to the factor of Q 1 quality of the antisymmetric oscillation mode.
  • the present invention relates to an oscillator of the tuning fork type, said oscillator comprising an assembly comprising two blades and a base connecting said blades, said oscillator comprising a rod connected to said base, the oscillator being connected by its rod to an organ fastener connected to a support, said assembly being formed of a material A, characterized by a weak internal friction, said oscillator being able to oscillate in a desired antisymmetric mode as well as in an undesired symmetrical mode, characterized in that the quality factor Q 2 of the symmetrical oscillation mode of said oscillator is reduced with respect to the quality factor Q 1 of the antisymmetric oscillation mode.
  • the present invention relates to an oscillator of the tuning fork type, said oscillator comprising two blades and a base connecting said blades, said oscillator comprising a rod connected to said base, characterized in that, in said oscillator, an oscillation mode symmetrical is damped or prevented by the presence of a selected material in or on said oscillator and / or in or on an attachment of the oscillator.
  • the present invention relates to an oscillator of the tuning fork type, said oscillator comprising two blades and a base connecting said blades, said oscillator comprising a rod connected to said base, the oscillator being connected by its rod to an attachment, said oscillator being made of one or more materials making said oscillator capable of performing symmetrical oscillations, and said oscillator or fixture further comprising another material capable of damping said symmetrical oscillations.
  • the present invention relates to an oscillator of the tuning fork type, said oscillator comprising two blades and a base connecting said blades, said oscillator comprising a rod connected to said base, the oscillator being connected by its rod to a fixation, said oscillator comprising or being made of several materials including a material A and a material A ', the material A' being characterized by a coefficient of thermal expansion of opposite sign to that of the material A.
  • the present invention relates to a movement for a timepiece comprising the oscillator and a timepiece comprising the oscillator.
  • the present invention relates to the use of a material having a comparatively high internal friction to avoid symmetrical oscillation in a tuning fork type oscillator.
  • the present invention relates to an oscillator of the tuning fork type as well as a timepiece comprising the oscillator and still a movement for a timepiece comprising the oscillator.
  • the timepiece according to the invention may be a watch, a pocket watch, a pendant watch, a clock, or a table clock, for example.
  • the timepiece according to the invention is a wristwatch.
  • the timepiece according to the invention may be entirely mechanical and / or may comprise a fully mechanical movement.
  • an entirely mechanical movement can operate in the absence of any electronic circuit, in particular in the absence of a source of electrical energy, such as a battery or a photovoltaic cell, for example.
  • the present invention also makes it possible to produce a timepiece that operates on the basis of mechanical interactions between all the parts and excludes magnetic interactions.
  • the pulses for inducing and maintaining the oscillation oscillator are performed by a piece which acts by direct physical contact on the tuning fork or on a piece integral with the tuning fork.
  • the present invention may constitute an improvement of the solutions proposed in patent documents EP 2 466 401 or US 3,208,287 , which disclose a resonator in which the oscillator and the escape wheel carry magnets, for example permanent magnets, so as to constitute a regulation and exhaust mechanism on the basis of magnetic interactions.
  • the movement of the invention comprises a mechanical pulse member which is connected and / or powered by a source of mechanical energy.
  • Source mechanical energy can be the same as in a conventional mechanical watch, for example, the energy can come from a barrel spring that can be remounted manually or automatically, for example.
  • the present invention makes it possible, for the first time, to make a movement of an entirely mechanical timepiece with an oscillator of the tuning fork type.
  • the proposed solution is applicable to any time base on the basis of a tuning fork resonator or oscillator.
  • the figure 1 shows the general shape of a watch tuning fork.
  • the tuning fork 1 comprises the two blades or branches 3 and 4, connected by the base 5 so as to form the general shape of a U.
  • the two blades 2 and 3 are preferably arranged in parallel in a single plane.
  • the two blades 3 and 4 preferably have the same length.
  • the ends of the blades 3 and 4 are free. They preferably each carry a mass 8, 9, respectively, which serves to reduce the frequency of oscillations of the tuning fork 1.
  • the tuning fork comprises a rod 6 through which the base 5 is connected to a fastener 7. One end of the rod 6 is connected to the base 5 while the other end is connected to the attachment 7.
  • the attachment 7 is preferably secured to the movement of the watch.
  • the fastener 7 is connected, for example by screwing, to the plate or to a bridge.
  • the attachment 7 can be attached to a support any.
  • the rod 6 is preferably located above the base 5. It could also be below the base 5, as shown in FIGS. Figures 2A and 2B which does not change the behavior of the tuning fork.
  • the interest of the tuning fork is mainly due to the fact that its quality factor Q is much higher than that of a simple vibrating blade.
  • the high quality factor Q of the tuning fork compared to that of a simple vibrating plate is related to the U-shaped configuration and the resulting oscillation modes. P. Ong, "Little known facts about the common tuning fork", Phys. Educ. 37 (2002), 540-542 .
  • the oscillator comprises or is preferably made of a material having low or very low internal friction.
  • a sophisticated model of the explanation of the quality factor takes into account the viscous internal friction of the branches and the base of the tuning fork, as described by Andres Castellanos-Gomez, Nicolas Agrait, Gabino Rubio-Bollinger, "Forcegradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy", Ultramicroscopy (2011) 111 (3), 186-190 .
  • Materials that meet the criterion of low internal friction are, for example, monocrystalline silicon or quartz. Of course, other materials having comparable internal friction and / or of the same order of magnitude can also be used. In general, other monocrystalline materials can be used in the manufacture of the oscillator 1 according to the invention.
  • oscillator 1 as a whole may comprise or be made of several materials.
  • the masses 8 and 9 are typically made of gold or other dense material, for example another heavy precious metal.
  • the masses 8 and 9 reduce the frequency of the oscillator if desired, which may be the case in a mechanical timepiece.
  • the present invention also covers the possibility that the masses 8 and 9 are zero or absent.
  • the masses 8, 9 can be placed or oriented in another way than shown in FIG. figure 1 as disclosed, for example, in US Patent US 3,447,311 .
  • the masses 8, 9 can be made in the form of layers deposited on the blades 3 and 4 and / or can be connected near or in the region of the ends and be oriented as shown in FIG. US 3,447,311 , for example.
  • the blades 3, 4 may be formed of several materials having low internal friction, as will be described later below.
  • the rod 6 and / or the fastener 7 preferably comprises a higher internal friction material, as will be described later.
  • the oscillator comprises a set 2 formed at least of the blades 3 and 4 and the base 5.
  • This set 2 preferably comprises an entity formed of a single continuous material. This should not prevent the presence of other materials as described in this specification.
  • the oscillator 1 comprises a set 2 formed of a material A characterized by a low internal friction.
  • the material A is chosen from the weak internal friction materials described above, such as, for example, monocrystalline silicon or quartz, or monocrystalline materials in general.
  • said oscillator 1, or at least said set 2 comprises or is formed of monocrystalline silicon and / or quartz.
  • the rod 6 comprises and / or is formed of the same material A. According to this embodiment, the rod 6 is part of the assembly 2. According to another embodiment, the rod 6 comprises and / or is formed of another material.
  • the quality factor Q of the oscillator is higher than in the case of a metal oscillator, for example. This increase in quality factor Q also applies to oscillation modes that may be designated as undesired in an oscillator serving as a timebase.
  • the figures 2 A and 2 B illustrate two oscillation modes of a tuning fork 1 following a pulse.
  • the dotted and continuous lines show, respectively, the two positions of the peak-to-peak amplitude of the oscillator, that is to say the two positions which define the maximum deviation from the rest position where the blades 3 and 4 are parallel.
  • the problems related to the symmetrical oscillation mode arise above all in the case where the oscillator is made of a low-friction material, such as quartz or monocrystalline silicon, for example.
  • the symmetrical oscillation mode ( Figure 2 B) is not observed in metal tuning forks, for example.
  • the choice of the low-friction material, for example material A makes the oscillator oscillable not only in the desired antisymmetric mode, but also in the undesired symmetrical mode.
  • the symmetrical oscillation mode is favored by mechanical excitation because of a slightly lower quality factor, thus easier to "find". This last point applies in particular to the pulse on only one of the two blades, whether this pulse is mechanical or otherwise.
  • a difference between the two modes of antisymmetric and symmetrical oscillations illustrated in Figures 2A and 2B relates to the rod 6.
  • the symmetrical mode induces a transverse oscillation of the rod 6, which corresponds to the oscillation of a simple vibrating blade. This transverse oscillation generally takes place in the plane defined by the two blades 3, 4.
  • the rod 6 performs longitudinal and / or axial oscillations, along the axis of the rod 6.
  • An object of the present invention is to implement alternative solutions to prevent the symmetric oscillation mode of a tuning fork type oscillator, preferably in a resonator used as a time base.
  • An impulse on only one of the two blades of a tuning fork represents the preferred solution in the case of a mechanical resonator, that is to say time bases in which oscillations of the tuning fork are mechanically induced and maintained, without the use of electricity, electronics or piezoelectricity.
  • the oscillations are induced and maintained without the use of magnetism.
  • the movement of the invention and / or the timepiece of the invention comprises a mechanical pulse mechanism or mechanism capable of acting on one of the two blades of a tuning fork so as to induce it and maintain it in oscillation.
  • a mechanical pulse mechanism or mechanism capable of acting on one of the two blades of a tuning fork so as to induce it and maintain it in oscillation.
  • WO2013 / 045573 discloses a tuning fork mechanical resonator for mechanical clock movement with free escapement.
  • a blade of this tuning fork carries at least one first pin associated with at least one first fork of an anchor, for pivoting said fork between first and second angular positions and alternately lock and release an escape wheel.
  • the resonator comprises a conversion member integral with the ankle, arranged to, on the one hand, to transform the oscillations of the blade into rotational movements of the anchor by the transmission of pulses from the blade to the anchor, and on the other hand, transmitting mechanical energy from said anchor to the oscillator blade in the form of pulses.
  • a support carrying pins is attached to the end of one of the two blades.
  • the dowels cooperate with teeth defining an anchor fork.
  • the anchor comprises a frame pivotally mounted on the movement and a pair of arms each of which carries a tooth to interact with the pegs on the support.
  • the anchor then comprises a second pair of additional arms, each of which carries a pallet arranged to cooperate with an escape wheel.
  • the resonator of the request WO2013 / 045573 operates in a similar way to conventional resonators because the oscillator carries two pins instead of a single pin and the special geometry of the anchor fork.
  • the anchor is intended to pivot between a first position in which one of the vanes locks the escape wheel in rotation and a second position in which the other pallet locks the escape wheel.
  • the pivoting of the anchor is also used to give a pulse on one of the two pins of the support to ensure the maintenance of oscillations of the blade and thus the tuning fork as a whole.
  • the conversion member comprises a rocker and operates according to the principle of the lever arm. A free end of the rocker is pivotally mounted on the free end of a blade and the other end is engaged between the teeth of the fork of the anchor to cooperate with it and rotate the anchor.
  • Requirement WO2013 / 045573 discloses a mechanical pulse member capable of acting on one of the two blades so as to induce and maintain said oscillation oscillator.
  • a mechanical pulse member is preferably used in the timepiece according to the present invention.
  • the quality factor Q 2 of the symmetrical oscillation mode of the oscillator of the invention is reduced actively and in a targeted manner with respect to the quality factor Q 1 of the antisymmetric oscillation mode.
  • the present invention aims at reducing the quality factor of the symmetrical oscillations so as to favor oscillation in the desired antisymmetric mode. This implies, in fact, that each mode of oscillation has not only its own frequency, but also its own quality factor.
  • Q 2 represents the quality factor of the undesired symmetric oscillation mode
  • Q 1 represents the quality factor of the desired antisymmetric oscillation mode.
  • the quality factor Q 2 is reduced in a targeted manner by the construction of the tuning fork and in particular by the choice of materials used in the construction of the tuning fork.
  • the quality factor Q 2 is reduced by the tuning fork geometry and / or the choice of the position of different materials having different characteristics.
  • the oscillator of the invention comprises at least one second material which makes it possible to reduce the quality factor Q 2 of the symmetrical oscillation mode.
  • This second material is generally designated as material B in the present specification.
  • the material B is preferably chosen from materials having a higher friction than the material A.
  • the material B is a material having a higher internal friction than that of quartz and / or monocrystalline silicon, by example.
  • the material B is selected from metals, alloys, polycrystalline materials, amorphous materials, for example.
  • the internal friction of a material is associated with the ability of a solid material to convert its mechanical vibration energy into an internal energy. This inevitable degradation or loss of energy is manifested in several ways, for example by a transformation of the vibration energy into heat.
  • the quality factor of an oscillator and the internal friction of the material depend on each other, as described in the publication of Clarence Zener, "Internal Friction in Solids," Proceedings of the Physical Society 52 (1940), pp.
  • the inverse of the quality factor 1 / Q is preferably used to determine whether a given material is characterized by low or high internal friction.
  • the quality factor Q of a material can be determined by those skilled in the art, as described in many publications from the past 50 years, see the references of the publication Ilan Vardi, "The quality factor in mechanical watchmaking", Bulletin of the Swiss Chronometry Society 75 (2014), pp. 53-61 .
  • the quality factor Q of a material can be determined on the basis of a single vibrating blade which is induced in free vibration.
  • the internal friction of a material A can be represented by 1 / Q A
  • the internal friction of a material B can be represented by 1 / Q B .
  • a material A having a low internal friction is a material whose value 1 / Q (1 / Q A ) is ⁇ 0.02, preferably ⁇ 0.01. According to a preferred embodiment, a material having a low internal friction is a material whose value 1 / Q (1 / Q A ) is ⁇ 0.001.
  • the material A In terms of internal friction, the material A 'fulfills the same conditions as the material A.
  • the values of 1 / Q for A' (1 / Q A ' ) are thus in the same ranges as the values 1 / Q for A (1 / Q A ).
  • a material B having a high friction or greater than the material A is a material whose value 1 / Q (1 / Q B ) is ⁇ 0.02, preferably ⁇ 0.05, for example ⁇ 0.1 or more great.
  • the materials A and A ' have an internal friction (1 / Q A ) ⁇ 0.01 and the material B an internal friction (1 / Q B )> 0.02.
  • materials A and B are generally selected such that 1 / Q A ⁇ 1 / Q B. Defining the materials A and B relative to one another ignores the particular conditions in which the respective Q quality factor (Q A , Q B ) has been measured to determine the value of the friction. internal material, provided that the conditions are the same for the determination of Q A and Q B (for example 25 ° C, and two rods, one of the material A and one of the material B, having identical dimensions).
  • Q B / Q A is ⁇ 0.1, preferably ⁇ 0.02, or even ⁇ 0.01.
  • materials A and B may be mixtures, for example composites comprising a plurality of materials or materials, selected to provide a material having internal friction in accordance with the preferred values or proportions indicated above.
  • the inventors have found that it is possible to prevent symmetrical oscillations by the geometrical configuration and / or the position of the material B in the tuning fork.
  • the material B is in contact with the material A of the oscillator.
  • the tuning fork of the invention comprises a material B which is arranged and / or located so as to prevent or dampen the symmetrical oscillations of the tuning fork.
  • the presence of the material B makes it possible to damp the transverse oscillations of the rod 6. Therefore, according to one embodiment of the invention, the material A is a first material and the said factor of quality Q 2 is reduced by the presence of a second material B, this material B being in contact with said material A so that a transverse oscillation of said rod 6 is damped.
  • said quality factor Q 2 of the symmetrical oscillation mode of said oscillator is reduced so that Q 1 / Q 2 is equal to or greater than 2.
  • Q 1 / Q 2 is equal to or greater than 5, equal to or greater than 10, equal to or greater than 20, equal to or greater than 50, or equal to or greater than 100, for example equal to or greater than 200.
  • the quality factor Q 1 is at least an order of magnitude higher than the quality factor Q 2 .
  • order of magnitude is meant a difference of about a factor of 10.
  • the quality factor Q 1 is at least 1 to 3 orders of magnitude higher than the quality factor Q 2 .
  • the quality factor Q is used both to describe the two modes of oscillation, antisymmetric and symmetrical, shown in FIGS. Figures 2A and 2B (Q 1 and Q 2 ), and as a parameter of the internal friction of a material.
  • the inverse of the quality factor (1 / Q) is used.
  • the state of the art describes several parameters which represent the internal friction of a material, such as the damping or loss factor tan ⁇ , or the loss modulus G ". of the present invention, the inverse of quality factor Q is chosen, as proposed by C. Zener (1940) and H.-P. Liu et al (1983), especially because the measurement of this parameter and well known to the skilled person in the field of watchmaking.
  • the second material or material B can be arranged in the rod 6 of the tuning fork.
  • said material A is a first material and the rod 6 comprises or consists of a second material B in contact with said first material.
  • the rod 6 is entirely made of the material B.
  • the rod 6 comprises such a material B or several materials which, on the whole, fulfill the characteristic of the higher internal friction. It is considered advantageous if the material B is in contact with the material A.
  • the material B is in contact with the base 5 of the tuning fork.
  • the material B is preferably at least at the interface of the material A with the rod 6.
  • FIG. 3 A This embodiment is illustrated by the figures 3 A to 3 C, wherein the rod 6 is made of a material B which is different from the material A, the assembly 2 is made.
  • the assembly 2 comprises in particular the two blades 3,4 and the base 5.
  • FIGS. 3A to 3C have the same meanings as described above for the figure 1 .
  • the figure 3A shows the tuning fork in the rest position, while the Figures 3B and 3C show the antisymmetrical and symmetrical oscillations, respectively, following a given pulse on one of the two blades (here on the blade 3) at the level of the arrow 11.
  • the assembly 2 is constructed entirely of type A materials, thus with low internal friction, but the rod 6 is composed of a material having a greater internal friction (material B), for example, the metal used for the tuning fork classic watchmaker.
  • the antisymmetric oscillations of the Figure 2A have no loss by the stem, due to its zero transverse movement, while the symmetrical oscillations of the tuning fork ( Figure 2 B) are damped due to the energy lost at the attachment or the connection between the rod 6 and the base 5, and between the rod 7 and the attachment 7 of the tuning fork, due to the stresses S1 and S2, see the figure 3C .
  • the quality factor (Q 2 ) of the symmetric oscillations would therefore be comparable to the quality factor of a single vibrating blade embedded at one end made of this material B, so very small (for example ⁇ 10).
  • Q 1 quality factor
  • the rod 6 preferably has a certain flexibility or elasticity as a whole, which makes it possible to remove or move the frequency away from the symmetrical oscillations of the frequency of the antisymmetric oscillations.
  • the rod 6 is arranged to retain sufficient flexibility and / or elasticity to separate the frequencies specific to the antisymmetrical and symmetrical mode.
  • This arrangement can be achieved by the geometry and / or shape of the rod 6 and the material of which it is made.
  • the natural frequency of the symmetrical and antisymmetric oscillations are different and / or remote.
  • natural frequency is meant the concept of resonant frequency, where the amplitude is maximum with respect to the pulse frequency.
  • the natural frequencies of symmetric and antisymmetric oscillations are at least 5 Hz, preferably at least 10 Hz, or even at least 20 Hz, and even at least 30 Hz.
  • the rod 6 is part of said assembly 2 comprising the blades 3, 4 and the base 5 and comprises or consists of said material A.
  • the rod 6, the base 5 and the blades 3, 4 may be manufactured in one piece, for example of a continuous material A, or may comprise a continuous material A.
  • the rod 6, the base 5 and the blades 3, 4 may comprise or be formed of a single crystal.
  • the attachment 7 comprises or consists of a material having an internal friction higher than that of the material A.
  • the rod 6 may or may not include a higher internal friction material (material B).
  • Figures 4A to 4C show in particular the possibility where the rod comprises and / or is made of the same material A as the base 5 and the blades 3, 4, and the attachment 7, illustrated by a dark square, is formed of the material B.
  • the rod comprises a material other than the material A of the base 5 and the blades 3, 4, this other material having a low internal friction, such as the material A, or a higher internal friction. , like material B.
  • said material A is a first material and said fixing member 7 comprises a second material B in contact with said rod 6.
  • the damping of the symmetrical oscillations is introduced to the fastener 7, replacing the material A of the fastener 7 with a material which dissipates the oscillations of the rod 6.
  • the rod 6 of material A is thus embedded in a base formed by the fastener 7 made of a material having a large internal friction, such as the watchmaking tuning fork metal, or another material such as a resin (material B).
  • the rod 6 of material A is bonded to the attachment 7 by an adhesive that could serve as damping, so a loss of energy in the symmetrical mode, and a reduction of the quality factor of the symmetrical mode.
  • the adhesive comprises and / or then constitutes the material B.
  • the fastener 7 could also be made of a material chosen from the type A materials. The antisymmetric oscillations are not damped by the fastening, since there are no transverse oscillations of the rod 6 in the dissipative embedding 7, see the Figure 4B .
  • the symmetrical oscillations are damped since the oscillations of the rod 6 are damped due to its fixation in the dissipative material 7, as indicated by the arrows D in the figure 4C .
  • the stress S1 'between the rod and the base of the tuning fork does not dissipate more energy than in the case where the tuning fork and its attachment are entirely of material A.
  • the constraint S1' does not therefore contribute to the reduction. symmetrical oscillations.
  • said fastener 7 fixes and / or encases said rod 6 so that a transverse oscillation of said rod is damped.
  • This embedding of the rod 6 is well illustrated at Figures 4A to 4C where the contact of the fastener 7 with the rod 6 causes the energy dissipation of the oscillations.
  • the material B is positioned and / or arranged to cause particularly a loss of energy symmetrical oscillations to reduce the quality factor Q 2 .
  • the material B is arranged so as to damp the transverse oscillations of the rod 6.
  • the present invention seeks to exploit the difference between the antisymmetric oscillations of the Figure 2A and the symmetrical oscillations of the Figure 2B , as it is manifested at the level of the movement of the rod 6. It will also be noted that the center of gravity of the tuning fork is almost immobile in the antisymmetric case but makes a sensible movement in the symmetrical case.
  • said blades 3, 4 of the tuning fork 1 according to the invention comprise a material A ', said material A' being arranged as a layer on at least a part of the two blades.
  • said material A ' is characterized by a weak internal friction similar to that of the material A.
  • the internal friction of the material A' is of the same order of magnitude as that of the material A.
  • the material A and the material A ' are distinguished with respect to the sign (positive or negative) of their respective coefficient of thermal expansion. Consequently, the coefficient of thermal expansion of said material A 'has a reverse sign with respect to the sign of the thermal coefficient of said material A. In other words, if the coefficient of thermal expansion of the material A is positive, for example +0.5, that of the material A 'is negative, for example -1.0.
  • An object of the choice of two materials, A and A 'with low internal friction is to cancel or at least partially compensate the effect of temperature on the frequency of oscillations.
  • the frequency of oscillations decreases following a deviation of the optimal temperature (generally 25 ° C) of a tuning fork because of the increase or the decrease of the volume of the material whose tuning fork is made up.
  • the material A ' preferably has a sign expansion coefficient opposite to that of the material A, the presence of A' reduces the change in the volume of the set A and A '.
  • the characteristic of the inverse sign does not imply that the absolute values of the thermal expansion coefficients of the materials A and A 'are identical (see the example of the values +0.5 and -1.0 given above).
  • the quantity of the material A ' is preferably chosen so that a change in volume of the assembly comprising at least the blades 3, 4 and the base 5, and possibly the rod 6 is reduced to the maximum, that is, the expansion or decrease in volume is essentially reduced or absent.
  • the material A ' is also a low-friction material.
  • the material A ' preferably does not have a significant effect on the quality factor Q 1 .
  • the person skilled in the art knows the materials with a coefficient of negative thermal expansion.
  • the material A ' is preferably present on at least the two blades 3, 4.
  • the material A' may also be present on the base 5.
  • the rod 6 comprises or consists of the material A, ( Figures 4A to 4C )
  • the material A ' may also be present on the rod.
  • the present invention is not limited to the way in which the material A 'is associated with the material A.
  • the material A' may be deposited as a layer on at least a portion of the material A or reverse.
  • Said layer may extend over an entire face of the blades 3, 4 and the base 5 and also on the rod 6, or may be present on only part of the assembly 2.
  • the material A ' is at least associated with and / or connected to a portion of the blades 3, 4.
  • the material A' is arranged equitably and / or symmetrically on the two blades 3, 4.
  • the present invention makes it possible to excite and / or maintain the antisymmetric pulses despite the pulses (mechanical or otherwise) on only one of the two branches makes it possible to facilitate the construction of the tuning fork in general, also in the case of a tuning fork induces oscillation by electronic means and / or by using the piezoelectric effect in the case of the quartz tuning fork, for example.

Abstract

Montre bracelet comportant un mouvement horloger mécanique avec un résonateur du type diapason. L'oscillateur comprend de préférence un matériau A à frottement interne faible. Dans l'oscillateur de l'invention, les oscillations symétriques non-souhaitées sont évitées, par exemple, par le choix des matériaux dont le diapason est fabriqué. Selon des modes de réalisations préférées, la tige et/ou la fixation de l'oscillateur comporte un matériau ayant un frottement interne plus important que celui dudit matériau A, de façon que le facteur de qualité Q2 des oscillations symétriques soit diminué, contrairement au facteur de qualité Q1 du mode d'oscillation antisymétrique.

Description

    Domaine technique
  • La présente invention concerne un oscillateur du type diapason, un mouvement horloger comportant l'oscillateur ainsi qu'une pièce d'horlogerie comportant l'oscillateur. En particulier, l'invention concerne une pièce d'horlogerie mécanique comportant l'oscillateur.
  • Etat de la technique et problèmes à l'origine de l'invention
  • Un but de la présente invention est d'améliorer les performances du mouvement mécanique d'une pièce d'horlogerie, en particulier d'une pièce d'horlogerie mécanique. Le balancier-spiral, utilisé depuis longtemps comme oscillateur dans les montres mécaniques, a fait ses preuves, mais en dépit, ou peut-être en raison, de siècles de recherche et de développement, il se peut qu'il soit proche de ses limites. Ainsi, les meilleurs balanciers-spiral parviennent à un facteur de qualité Q d'environ 300. Le facteur de qualité d'un oscillateur étant défini par la formule Q = 2π x (énergie stockée/énergie perdue à chaque période), il représente essentiellement le nombre d'oscillations après lequel l'oscillateur perd toute son énergie et s'arrête.
  • Le diapason est bien connu pour ses qualités de base de temps, les montres-bracelets à diapason des années 1960 étaient les plus précises du monde jusqu'à l'avènement de la montre à quartz. Max Hetzel est à l'origine d'un grand nombre d'inventions brevetées, relatives à la mise en oeuvre d'un diapason comme oscillateur, qui ont conduit à la production de la montre-bracelet Accutron (marque déposée), commercialisée par la société Bulova Swiss SA.
  • La montre Accutron comprend toutefois un résonateur électronique étant donné que chaque branche du diapason porte un aimant permanent associé à un électro-aimant monté fixe sur le bâti de la montre. Le fonctionnement de chaque électro-aimant est asservi aux vibrations du diapason par l'intermédiaire des aimants qu'il porte, de telle manière que les vibrations du diapason sont entretenues par la transmission d'impulsions magnétiques périodiques des électro-aimants aux aimants permanents. Une des branches du diapason actionne un cliquet permettant d'entraîner en rotation les mobiles du rouage de finissage de la montre.
  • Le brevet US 2,971,323 , par exemple, issu d'un dépôt datant de 1957, décrit un tel mécanisme qui ne peut toutefois convenir à la réalisation d'une montre purement mécanique, c'est-à-dire dépourvue de circuits électroniques. En effet, un besoin réel existe, en termes de marché, pour des pièces d'horlogerie purement mécaniques présentant une précision de marche accrue par rapport aux pièces connues.
  • Une différence générale entre les montres-bracelets mécaniques et les montres électroniques à diapason acoustique est le fait que, dans ces dernières, l'oscillateur en tant que régulateur du temps sert également comme distributeur d'énergie, c'est-à-dire que les oscillations sont utilisées pour actionner le mouvement (Accutron) ou pour déterminer l'activité d'un moteur électrique qui agit sur les aiguilles, par exemple (montre électronique à quartz). En revanche, dans les montres mécaniques, la régulation se trouve à la fin de la chaîne de la transmission de l'énergie.
  • Le brevet US 3,208,287 , issu d'un dépôt datant de 1962, décrit un résonateur comprenant un diapason couplé à une roue d'échappement par le biais d'interactions magnétiques. Plus précisément, le diapason porte des aimants permanents coopérant avec la roue d'échappement, cette dernière étant réalisée en un matériau conducteur magnétique. La roue d'échappement est reliée cinématiquement à une source d'énergie qui peut être mécanique ou prendre la forme d'un moteur, tandis qu'elle comprend des ouvertures dans son épaisseur telle qu'elle forme un circuit magnétique de reluctance variable lorsqu'elle est entraînée en rotation, en relation avec les aimants portés par le diapason. Ce brevet mentionne une "oscillation anormale", illustrée à la figure 9. Il s'agit en effet d'une oscillation symétrique qui, selon ce brevet, peut être évitée par le positionnement de la roue d'échappement de façon à agir, en même temps, sur les deux lames de l'oscillateur, comme montré aux figures 2 et 3. Cette solution ressemble à celle utilisée dans les montres à quartz électroniques (ainsi qu'à la montre Accutron mentionnée ci-dessus) dans ce sens que le mode d'oscillation symétrique est imposé par l'impulsion simultanée aux deux lames.
  • Par rapport au brevet US 3,208,287 , la présente invention cherche à résoudre plusieurs problèmes techniques. D'une part, il est souhaité d'induire une oscillation antisymétrique en agissant sur une seule lame du diapason, donc sans imposer l'oscillation antisymétrique par l'impulsion simultanée des deux lames. D'autre part, l'utilisation d'aimants pour distribuer de l'énergie à un oscillateur (impulsion par échappement) ou encore pour réguler une énergie n'est pas strictement parlé "mécanique", pour la simple raison que l'énergie est transmise par des forces magnétiques et donc associée à des phénomènes électromagnétiques.
  • Ce même raisonnement est valable pour l'enseignement de la demande de brevet européen EP 2 466 401 .
  • Au vu de ce qui précède, la présente invention vise à fournir une montre à mouvement mécanique comportant une base de temps plus précise que celle du balancier-spiral classique. Il est un objectif de la présente invention de proposer un oscillateur caractérisé par un facteur de qualité supérieur à celui du balancier-spiral.
  • En particulier, un objectif de l'invention est de fournir une montre-bracelet à mouvement entièrement mécanique utilisant un oscillateur du type diapason comme base de temps.
  • Un objectif de la présente invention est d'éviter, dans un oscillateur à diapason, les oscillations symétriques. Plus particulièrement, la présente invention vise à éviter les oscillations symétriques dans un oscillateur comportant un matériau caractérisé par un frottement interne faible, de façon à rendre l'oscillateur susceptible d'effectuer lesdites oscillations symétriques.
  • Un objectif de l'invention est de fournir un diapason sur la base d'un matériau ayant un frottement interne faible tel que le silicium monocristallin. L'emploi d'un tel matériau permet d'augmenter le facteur de qualité Q des oscillations, mais rend le diapason susceptible d'effectuer des oscillations symétriques non-souhaitées dans le contexte d'une base de temps.
  • Un but de la présente invention est de mettre à disposition un oscillateur dans lequel les oscillations antisymétriques sont favorisées, même si les impulsions sont données sur l'une des deux lames seulement, en d'autres termes, en l'absence d'impulsions simultanées aux deux lames.
  • La présente invention cherche à résoudre les problèmes ci-dessus et présente d'autres avantages qui apparaîtront plus clairement à la lecture de description et des revendications.
  • Résumé de l'Invention
  • Dans un aspect, la présente invention concerne une pièce d'horlogerie comportant un mouvement horloger mécanique comportant: un oscillateur du type diapason, ledit oscillateur comportant un ensemble comportant deux lames et une base reliant lesdites lames, ledit oscillateur comportant une tige liée à ladite base, l'oscillateur étant connecté par sa tige à un organe de fixation connecté au mouvement, ledit ensemble comportant ou étant constitué d'un matériau A, ledit matériau A étant caractérisé par un frottement interne faible, ledit mouvement comportant un organe d'impulsion mécanique susceptible d'agir sur l'une des deux lames de façon à induire et maintenir ledit oscillateur en oscillation, ledit oscillateur étant susceptible d'osciller dans un mode antisymétrique souhaité ainsi que dans un mode symétrique non-souhaité, caractérisé en ce que le facteur de qualité Q2 du mode d'oscillation symétrique dudit oscillateur est réduit par rapport au facteur de qualité Q1 du mode d'oscillation antisymétrique.
  • Dans un aspect, la présente invention concerne un oscillateur du type diapason, ledit oscillateur comportant un ensemble comportant deux lames et une base reliant lesdites lames, ledit oscillateur comportant une tige liée à ladite base, l'oscillateur étant connecté par sa tige à un organe de fixation connecté à un support, ledit ensemble étant formé d'un matériau A, caractérisé par un frottement interne faible, ledit oscillateur étant susceptible d'osciller dans un mode antisymétrique souhaité ainsi que dans un mode symétrique non-souhaité, caractérisé en ce que le facteur de qualité Q2 du mode d'oscillation symétrique dudit oscillateur est réduit par rapport au facteur de qualité Q1 du mode d'oscillation antisymétrique.
  • Dans un aspect, la présente invention concerne un oscillateur du type diapason, ledit oscillateur comportant deux lames et une base reliant lesdites lames, ledit oscillateur comportant une tige liée à ladite base, caractérisé en ce que, dans ledit oscillateur, un mode d'oscillation symétrique est amorti ou empêché par la présence d'un matériau sélectionné dans ou sur ledit oscillateur et/ou dans ou sur une fixation de l'oscillateur.
  • Dans un aspect, la présente invention concerne un oscillateur du type diapason, ledit oscillateur comportant deux lames et une base reliant lesdites lames, ledit oscillateur comportant une tige liée à ladite base, l'oscillateur étant connecté par sa tige à une fixation, ledit oscillateur étant fabriqué d'un ou plusieurs matériaux rendant ledit oscillateur susceptible d'effectuer des oscillations symétriques, et ledit oscillateur ou la fixation comportant en outre un autre matériau susceptible d'amortir lesdites oscillations symétriques.
  • Dans un aspect, la présente invention concerne oscillateur du type diapason, ledit oscillateur comportant deux lames et une base reliant lesdites lames, ledit oscillateur comportant une tige liée à ladite base, l'oscillateur étant connecté par sa tige à une fixation, ledit oscillateur comportant ou étant fabriqué de plusieurs matériaux dont un matériau A et un matériau A', le matériau A' étant caractérisé par un coefficient de dilation thermique de signe inverse à celui du matériau A.
  • Dans un aspect, la présente invention concerne un mouvement pour pièce d'horlogerie comportant l'oscillateur ainsi qu'une pièce d'horlogerie comportant l'oscillateur.
  • Dans un aspect, la présente invention concerne l'utilisation d'un matériau ayant un frottement interne comparativement élevé pour éviter une oscillation symétrique dans un oscillateur du type diapason.
  • Description des dessins
  • Les caractéristiques et les avantages de l'invention apparaîtront plus clairement à la lecture d'une description d'une forme d'exécution préférentielle, donnée uniquement à titre d'exemple, nullement limitative en se référant aux figures schématiques dans lesquelles:
    • La figure 1 représente une vue schématique d'un diapason horloger.
    • Les figures 2 A et 2 B illustrent l'oscillation antisymétrique et symétrique, respectivement, d'un diapason.
    • La figure 3 A représente une vue schématique d'un diapason selon un premier mode de réalisation de l'invention.
    • Les figures 3 B et 3 C représentent des vue schématiques des oscillations antisymétriques et symétriques, respectivement, de l'oscillateur de la figure 3A.
    • La figure 4 A représente une vue schématique d'un diapason selon un deuxième mode de réalisation de l'invention.
    • Les figures 4 B et 4 C représentent des vue schématiques des oscillations antisymétriques et symétriques, respectivement, de l'oscillateur de la figure 4A.
    Description détaillée des modes de réalisations préférés
  • La présente invention concerne un oscillateur du type diapason ainsi qu'une pièce d'horlogerie comportant l'oscillateur et encore un mouvement pour pièce d'horlogerie comportant l'oscillateur.
  • La pièce d'horlogerie selon l'invention peut être une montre, une montre de poche, une montre pendentif, une pendule, ou encore une horloge de table, par exemple. Selon un mode de réalisation préféré, la pièce d'horlogerie selon l'invention est une montre-bracelet.
  • La pièce d'horlogerie selon l'invention peut être entièrement mécanique et/ou peut comporter un mouvement entièrement mécanique. De préférence, un mouvement entièrement mécanique peut fonctionner en absence de tout circuit électronique, en particulier en l'absence d'une source d'énergie électrique, telle qu'une pile ou une cellule photovoltaïque, par exemple. La présente invention permet également de réaliser une pièce d'horlogerie qui fonctionne sur la base d'interactions mécaniques entre l'ensemble des pièces et qui exclut des interactions magnétiques. Dans un mouvement entièrement mécanique, les impulsions pour induire et maintenir l'oscillateur en oscillation sont effectuées par une pièce qui agit par contact physique direct sur le diapason ou sur une pièce solidaire du diapason. Par exemple, la présente invention peut constituer une amélioration des solutions proposées dans des documents brevets EP 2 466 401 ou encore US 3,208,287 , qui divulguent un résonateur dans lequel l'oscillateur et la roue d'échappement portent des aimants, par exemple des aimants permanents, de façon à constituer un mécanisme de régulation et d'échappement sur la base d'interactions magnétiques.
  • Selon un mode de réalisation, le mouvement de l'invention comprend un organe d'impulsion mécanique qui est relié et/ou alimenté par une source d'énergie mécanique. La source d'énergie mécanique peut être la même comme dans une montre mécanique classique, par exemple, l'énergie peut provenir d'un ressort de barillet qui peut être remonté manuellement ou automatiquement, par exemple.
  • Alors que la présente invention permet le fonctionnement d'un mouvement pour pièce d'horlogerie entièrement mécanique, l'homme du métier saura appliquer les solutions techniques divulguées dans le présent descriptif dans le cas d'une montre électronique ou encore dans une montre mécanique utilisant des interactions magnétiques.
  • En effet, la présente invention permet, pour la première fois, de réaliser un mouvement de pièce d'horlogerie entièrement mécanique avec un oscillateur du type diapason. Cependant, la solution proposée est applicable à toute base de temps sur la base d'un résonateur ou oscillateur du type diapason.
  • La figure 1 montre la forme générale d'un diapason horloger. Le diapason 1 comporte les deux lames ou branches 3 et 4, reliées par la base 5 de façon à constituer la forme générale d'un U. Les deux lames 2 et 3 sont de préférence disposées en parallèle dans un seul plan. Les deux lames 3 et 4 ont de préférence la même longueur. Du côté opposé à la base 5, les extrémités des lames 3 et 4 sont libres. Elles portent de préférence chacune une masse 8, 9, respectivement, qui sert à diminuer la fréquence des oscillations du diapason 1. Le diapason comporte une tige 6 par laquelle la base 5 est reliée à un organe de fixation 7. Une extrémité de la tige 6 est donc connectée à la base 5 alors que l'autre extrémité est connectée à la fixation 7.
  • Dans le cas d'une montre, la fixation 7 est de préférence rendue solidaire du mouvement de la montre. Par exemple, la fixation 7 est connectée, par exemple par vissage, à la platine ou à un pont. Dans le cas où la pièce d'horlogerie n'est pas une montre, ou dans le cas où l'oscillateur de l'invention, n'est pas associé à une pièce d'horlogerie, la fixation 7 peut être attachée à un support quelconque.
  • Pour minimiser l'encombrement, la tige 6 est située de préférence au-dessus la base 5. Elle pourrait également se trouver au-dessous de la base 5, comme montré aux figures 2A et 2B ce qui ne change rien au comportement du diapason.
  • L'intérêt du diapason est principalement dû au fait que son facteur de qualité Q est beaucoup plus élevé que celui d'une lame vibrante simple. Sans vouloir être lié par la théorie, le facteur de qualité Q élevé du diapason comparé à celui d'une lame vibrante simple est en rapport à la configuration en U et les modes d'oscillations qui en résultent. P. Ong, "Little known facts about the common tuning fork", Phys. Educ. 37 (2002), 540-542.
  • Dans le but d'augmenter davantage le facteur de qualité Q de l'oscillateur, ce dernier comprend ou est de préférence constitué d'un matériau ayant un frottement interne faible ou très faible. Un modèle sophistiqué de l'explication du facteur de qualité prend en compte le frottement interne visqueux des branches et de la base du diapason, comme décrit par Andres Castellanos-Gomez, Nicolas Agrait, Gabino Rubio-Bollinger, "Forcegradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy", Ultramicroscopy (2011) 111 (3), 186-190.
  • Des matériaux qui remplissent le critère d'un frottement interne faible sont, par exemple, le silicium monocristallin ou le quartz. Bien entendu, d'autres matériaux ayant des frottements internes comparables et/ou du même ordre de grandeur peuvent également être utilisés. De manière générale, d'autres matériaux monocristallins peuvent être utilisés dans la fabrication de l'oscillateur 1 selon l'invention.
  • Il convient de préciser que l'oscillateur 1 dans son ensemble peut comporter ou être fabriqué de plusieurs matériaux. Par exemple, les masses 8 et 9 sont typiquement en or ou en un autre matériau dense, par exemple en un autre métal précieux lourd. Les masses 8 et 9 permettent de réduire la fréquence de l'oscillateur si tel est souhaité, ce qui peut être le cas dans une pièce d'horlogerie mécanique. La présente invention couvre également la possibilité que les masses 8 et 9 soient nulles ou absentes. D'autre part, les masses 8, 9 peuvent être placées ou orientées d'une autre manière que montré à la figure 1, comme divulgué, par exemple, dans le brevet américain US 3,447,311 . Les masses 8, 9 peuvent être réalisées sous forme de couches déposées sur les lames 3 et 4 et/ou peuvent être connectées proches ou dans la région des extrémités et être orientées comme montré dans US 3,447,311 , par exemple.
  • D'autre part, les lames 3, 4 peuvent être formées de plusieurs matériaux ayant un frottement interne faible, comme sera décrit plus loin ci-dessous. Ensuite, la tige 6 et/ou la fixation 7 comporte de préférence un matériau au frottement interne plus élevé, comme sera décrit plus loin.
  • Cependant, il est préférable que l'oscillateur comporte un ensemble 2 formé au moins des lames 3 et 4 et de la base 5. Cet ensemble 2 comporte de préférence une entité formée d'un seul matériau continu. Ceci ne doit pas empêcher la présence d'autres matériaux, comme décrit dans ce descriptif. Selon la présente invention, l'oscillateur 1 comporte un ensemble 2 formé d'un matériau A caractérisé par un frottement interne faible. Par exemple, le matériau A est choisi parmi les matériaux à frottement interne faible décrits ci-dessus, comme par exemple le silicium monocristallin ou le quartz, ou des matériaux monocristallins en général. Selon un mode de réalisation, ledit oscillateur 1, ou au moins ledit ensemble 2, comprend ou est formé de silicium monocristallin et/ou de quartz.
  • Selon un mode de réalisation, la tige 6 comporte et/ou est formé du même matériau A. Selon ce mode de réalisation, la tige 6 fait partie de l'ensemble 2. Selon un autre mode de réalisation, la tige 6 comporte et/ou est formé d'un autre matériau.
  • Comme l'ensemble 2 comprend ou est formé de préférence d'un ou plusieurs matériaux à frottement interne faible (matériaux A et éventuellement matériau A' décrit plus loin ci-dessous), le facteur de qualité Q de l'oscillateur est plus élevé que dans le cas d'un oscillateur en métal, par exemple. Cette augmentation du facteur de qualité Q s'applique également à des modes d'oscillation que l'on peut désigner comme non-souhaités dans un oscillateur servant comme base de temps.
  • Les figures 2 A et 2 B illustrent deux modes d'oscillations d'un diapason 1 suite à une impulsion. Les lignes pointillées et continues montrent, respectivement, les deux positions de l'amplitude crête-à-crête de l'oscillateur, c'est à dire les deux positions qui définissent l'écart maximal par rapport à la position de repos où les lames 3 et 4 sont parallèles.
  • Dans le mode d'oscillation montré à la figure 2A, les lames 3 et 4 se rapprochent et s'éloignent l'une par rapport à l'autre lors des oscillations. La ligne continue montre le moment et la position de l'oscillation où les extrémités des deux lames sont rapprochées et la ligne pointillée montre la position où les deux lames sont écartées l'une par rapport à l'autre. C'est le mode d'oscillation antisymétrique qui est caractérisé par un facteur de qualité très élevé est qui représente le mode d'oscillation que l'on souhaite obtenir dans une base de temps à diapason.
  • En revanche, dans le mode d'oscillation montré à la figure 2B, les lames 3, 4 bougent en phase, c'est-à-dire oscillent parallèlement et simultanément d'un côté à l'autre dans le même plan. L'oscillation illustrée à la figure 2B et celle du mode d'oscillation symétrique.
  • Les deux modes d'oscillation, antisymétriques et symétriques, respectivement, sont également illustrés dans le brevet américain US 3,208,287 , dans lequel le mode symétrique non-souhaité (figure 2 A) est considéré comme "oscillation anormale".
  • Dans les deux cas des figures 2A et 2B, les oscillations ont lieu dans le plan de l'oscillateur lui-même, c'est-à-dire dans le plan qui correspond à celui sur lequel le dessin des figures 2 A et 2 B est représenté. Les autres modes d'oscillation qui pourraient exister n'ont pas la même implication dans le contexte de la présente invention.
  • Il convient d'ajouter que les problèmes liés au mode d'oscillation symétrique se posent avant tout dans le cas où l'oscillateur est réalisé en un matériau à faible frottement interne, comme le quartz ou le silicium monocristallin, par exemple. En effet, le mode d'oscillation symétrique (figure 2 B) n'est pas observé dans les diapasons métalliques, par exemple. En d'autres termes, le choix du matériau à faible frottement interne, par exemple le matériau A, rend ledit oscillateur susceptible d'osciller non seulement dans le mode antisymétrique souhaité, mais également dans le mode symétrique non-souhaité.
  • En général, le mode d'oscillation symétrique est favorisé par une excitation mécanique en raison d'un facteur de qualité légèrement plus faible, donc plus facile à "trouver". Ce dernier point s'applique en particulier à l'impulsion sur une seule des deux lames, que cette impulsion soit mécanique ou autre.
  • Une différence entre les deux modes d'oscillations antisymétriques et symétriques illustrés aux figures 2A et 2B concerne la tige 6. Comme on peut le comprendre en comparant les lignes pointillées et continues de la tige 6 à la figure 2B, le mode symétrique induit une oscillation transversale de la tige 6, qui correspond à l'oscillation d'une lame vibrante simple. Cette oscillation transversale a généralement lieu dans le plan défini par les deux lames 3, 4. En revanche, dans le cas de l'oscillation antisymétrique (figure 2 A), la tige 6 effectue des oscillations longitudinales et/ou axiales, le long de l'axe de la tige 6.
  • Dans le cas des montres à quartz électriques, les oscillations symétriques (figure 2 B) sont généralement évitées par l'excitation simultanée des deux lames 3 et 4, exploitant les propriétés piézoélectriques du quartz. L'impulsion simultanée (en même temps) des deux lames 3, 4 est illustrée par les deux flèches 10 à direction opposées dans la figure 1. Généralement, dans une montre électronique, des électrodes sont placées sur ou à proximités des lames pour pouvoir induire une l'oscillation antisymétriques. En général, des méthodes électroniques ou des algorithmes sont mis en place pour empêcher une oscillation symétrique dans les montres électroniques.
  • Une impulsion simultanée des deux branches est également divulguée dans le document US 3,208,287 . Enfin, dans la montre Accutron mentionnée ci-dessus, l'impulsion du diapason métallique a également lieu sur les deux lames simultanément.
  • Un objectif de la présente invention est de mettre en oeuvre des solutions alternatives pour empêcher le mode d'oscillation symétrique d'un oscillateur du type diapason, de préférence dans un résonateur utilisé comme base de temps.
  • Il est en particulier un objectif de la présente invention de mettre en oeuvre un oscillateur du type diapason qui peut être induit en oscillations antisymétriques suite à une impulsion sur une seule lame, donc en l'absence d'une impulsion simultanée sur les deux lames.
  • Une impulsion sur l'une seule des deux lames d'un diapason représente la solution préférée dans le cas d'un résonateur mécanique, c'est-à-dire des bases de temps dans lesquels les oscillations du diapason sont induites et entretenues mécaniquement, sans utilisation d'électricité, électronique ou piézoélectricité. Selon un mode de réalisation préféré d'un mouvement mécanique et/ou d'une pièce d'horlogerie mécanique de l'invention, les oscillations sont induites et entretenues sans utilisation de magnétisme.
  • Dans un mode de réalisation préféré, le mouvement de l'invention et/ou la pièce d'horlogerie de l'invention comporte un organe ou un mécanisme d'impulsion mécanique susceptible d'agir sur l'une des deux lames d'un diapason de façon à l'induire et le maintenir en oscillation. Un tel organe ou mécanisme est divulgué, par exemple, dans la demande internationale WO2013/045573, déposée le 27 septembre 2012 au nom d'ASGALIUM UNITEC SA sous le numéro de dépôt PCT/EP2012/069122 . Le contenu de cette demande de brevet est explicitement incorporé par référence.
  • La demande WO2013/045573 divulgue un résonateur mécanique à diapason pour mouvement horloger mécanique à échappement libre. Une lame de ce diapason porte au moins une première cheville associée à au moins une première dent de fourchette d'une ancre, pour faire pivoter ladite fourchette entre des première et seconde positions angulaires et alternativement verrouiller et libérer une roue d'échappement. Le résonateur comporte un organe de conversion solidaire de la cheville, agencé pour, d'une part, transformer les oscillations de la lame en des mouvements de rotation de l'ancre par la transmission d'impulsions de la lame à l'ancre, et d'autre part, transmettre de l'énergie mécanique depuis ladite ancre vers la lame de l'oscillateur sous la forme d'impulsions. Selon un mode de réalisation de l'organe d'impulsion mécanique et/ou de régulation, un support portant des chevilles est attaché à l'extrémité d'une des deux lames. Les chevilles coopèrent avec des dents définissant une fourchette d'ancre. L'ancre comporte un bâti monté pivotant sur le mouvement ainsi qu'une paire de bras dont chacun porte une dent pour interagir avec les chevilles sur le support. L'ancre comporte ensuite une deuxième paire de bras supplémentaires, dont chacun porte une palette agencées pour coopérer avec une roue d'échappement. Le résonateur de la demande WO2013/045573 fonctionne de manière similaire à celui des résonateurs conventionnels grâce au fait que l'oscillateur porte deux chevilles au lieu d'une cheville unique ainsi que par la géométrie particulière de la fourchette d'ancre. Ainsi, l'ancre est destinée à pivoter entre une première position dans laquelle l'une des palettes verrouille la roue d'échappement en rotation et une seconde position dans laquelle l'autre palette verrouille la roue d'échappement. Lorsque l'ancre pivote entre l'une et l'autre position, la roue d'échappement est libérée pour tourner. Le pivotement de l'ancre est également utilisé pour donner une impulsion sur une des deux chevilles du support pour assurer l'entretien des oscillations de la lame et ainsi du diapason dans son ensemble. Dans un autre mode de réalisation, l'organe de conversion comprend une bascule et fonctionne selon le principe du bras de levier. Une extrémité libre de la bascule est montée pivotante sur l'extrémité libre d'une lame et l'autre extrémité est engagée entre les dents de la fourchette de l'ancre pour coopérer avec elle et faire pivoter l'ancre.
  • L'homme du métier comprendra que le dispositif divulgué dans la demande WO 2013/045573 sert à la fois à la distribution de l'énergie au diapason et à la régulation du temps sur la base des oscillations.
  • La demande WO2013/045573 divulgue ainsi un organe d'impulsion mécanique susceptible d'agir sur l'une des deux lames de façon à induire et maintenir ledit oscillateur en oscillation. Un organe d'impulsion mécanique est de préférence utilisé dans la pièce d'horlogerie selon la présente invention.
  • Selon un mode de réalisation préféré, le facteur de qualité Q2 du mode d'oscillation symétrique de l'oscillateur de l'invention est réduit activement et de manière ciblée par rapport au facteur de qualité Q1 du mode d'oscillation antisymétrique. Selon ce mode de réalisation, la présente invention vise à diminuer le facteur de qualité des oscillations symétriques pour ainsi favoriser l'oscillation en mode antisymétrique souhaité. Ceci implique, en effet, que chaque mode d'oscillation a non seulement sa propre fréquence, mais également son propre facteur de qualité. Dans le contexte de la présente descriptif, Q2 représente le facteur de qualité du mode d'oscillation symétrique non-souhaité, alors que Q1 représente le facteur de qualité du mode d'oscillation antisymétrique souhaité. En général, le facteur de qualité est défini par la formule Q = 2π x (énergie stockée/énergie perdue à chaque période).
  • Selon les modes préférés de l'invention, le facteur de qualité Q2 est réduit de manière ciblée par la construction du diapason et en particulier par le choix des matériaux utilisés dans la construction du diapason. De préférence, le facteur de qualité Q2 est réduit par la géométrie du diapason et/ou le choix de la position de différents matériaux ayant des caractéristiques différentes.
  • Selon un mode de réalisation préféré, l'oscillateur de l'invention comprend au moins un deuxième matériau qui permet de réduire le facteur de qualité Q2 du mode d'oscillation symétrique. Ce deuxième matériau est généralement désigné comme matériau B dans le présent descriptif. Le matériau B est de préférence choisi parmi les matériaux ayant un frottement plus élevé que le matériau A. De préférence, le matériau B est un matériau ayant un frottement interne plus élevé que celui du quartz et/ou du silicium monocristallin, par exemple. Selon un mode de réalisation, le matériau B est choisi parmi les métaux, les alliages, les matériaux polycristallins, les matériaux amorphes, par exemple.
  • Le frottement interne d'un matériau est associé à la capacité d'un matériau solide de convertir son énergie de vibration mécanique en une énergie interne. Cette dégradation ou perte d'énergie inévitable se manifeste de plusieurs manières, par exemple par une transformation de l'énergie de vibration en chaleur. Le facteur de qualité d'un oscillateur et le frottement interne du matériau dépendent l'un de l'autre, comme cela a été décrit dans la publication de Clarence Zener, "Internal Friction in Solids," Proceedings of the Physical Society 52 (1940), pp. 152-166, et également dans la publication plus récente de Hsi-Ping Liu and Louis Peselnick, "Internal Friction in Fused Quartz, Steel, Plexiglass, and Westerley Granite From 0.01 to 1.00 Hertz at 10-8 to 10-7 Strain Amplitude", Journal of Geophysical Research 88 (March 10, 1983), pp. 2367-2379. Dans ces publications, l'inverse du facteur de qualité Q (c'est-à-dire 1/Q) est utilisé comme mesure du frottement interne.
  • Dans le contexte de la présente invention, l'inverse du facteur de qualité 1/Q est de préférence utilisé pour déterminer si un matériau donné est caractérisé par un frottement interne faible ou élevé. Le facteur de qualité Q d'un matériau peut être déterminé par l'homme du métier, comme décrit dans de nombreuses publications datant des dernières 50 années, voir les références de la publication Ilan Vardi, « Le facteur de qualité en horlogerie mécanique », Bulletin de la Société Suisse de Chronométrie 75 (2014), pp. 53-61.
  • Selon une méthode préférée, le facteur de qualité Q d'un matériau peut être déterminé sur la base d'une lame vibrante simple qui est induite en vibration libre.
  • Dans la présente description, de manière cohérente avec les articles cités ci-dessus, le frottement interne d'un matériau A peut être représenté par 1/QA, et le frottement interne d'un matériau B peut être représenté par 1/QB.
  • Selon un mode de réalisation, un matériau A ayant un frottement interne faible est un matériau dont la valeur 1/Q (1/QA) est < 0.02, de préférence < 0.01. Selon un mode de réalisation préféré, un matériau ayant un frottement interne faible est un matériau dont la valeur 1/Q (1/QA) est < 0.001.
  • En termes de friction interne, le matériau A' remplit les mêmes conditions que le matériau A. Les valeurs de 1/Q pour A' (1/QA') se trouvent donc dans les mêmes fourchettes que les valeurs 1/Q pour A (1/QA).
  • Selon un mode de réalisation, un matériau B ayant un frottement élevé ou plus élevé que le matériau A est un matériau dont la valeur 1/Q (1/QB) est ≥ 0.02, de préférence ≥ 0.05, par exemple ≥ 0.1 ou plus grand.
  • Selon un mode de réalisation préféré, les matériaux A et A' ont une friction interne (1/QA)≤0.01 et le matériau B une friction interne (1/QB) > 0.02. De préférence, 1/QA < 0.005 et 1/QB ≥ 0.015.
  • Dans le contexte de la présente invention, les matériaux A et B sont généralement choisies de façon que 1/QA < 1/QB. Le fait de définir les matériaux A et B l'une par rapport à l'autre permet d'ignorer les conditions particulières dans lesquelles le facteur de qualité Q respectif (QA, QB) a été mesuré pour déterminer la valeur de la friction interne du matériau, pour autant que les conditions sont les mêmes pour la détermination de QA et QB (par exemple 25°C, et deux tiges, une du matériau A et une du matériau B, ayant des dimensions identiques).
  • Selon un mode de réalisation préféré, (1/QA) /(1/QB) (= QB/QA) est ≤ 0.5, de préférence ≤ 0.2. Selon un mode de réalisation préféré, QB/QA est ≤ 0.1, de préférence ≤ 0.02, ou même ≤ 0.01.
  • Il convient encore de mentionner que la présente invention envisage l'ajustement du frottement interne d'un matériau (1/QA et/ou 1/QB) pour obtenir un matériau ayant les caractéristiques souhaitées. Par exemple, les matériaux A et B peuvent être des mélanges, par exemple des composites comportant plusieurs matières ou matériaux, choisi de façon à obtenir un matériau ayant un frottement interne conformément aux valeurs ou proportions préférées indiquées ci-dessus.
  • De manière surprenante, les inventeurs ont constaté qu'il est possible d'empêcher les oscillations symétriques par la configuration géométrique et/ou la position du matériau B dans le diapason. De préférence, le matériau B est en contact avec le matériau A de l'oscillateur.
  • Selon un mode de réalisation, le diapason de l'invention comporte un matériau B qui est agencé et/ou situé de façon à empêcher ou amortir les oscillations symétriques du diapason.
  • Selon un mode de réalisation de l'invention, la présence du matériau B permet d'amortir les oscillations transversales de la tige 6. Par conséquent, selon un mode de réalisation de l'invention, le matériau A est un premier matériau et ledit facteur de qualité Q2 est réduit par la présence d'un deuxième matériau B, ce matériau B étant en contact avec ledit matériau A de façon qu'une oscillation transversale de ladite tige 6 est amortie.
  • Selon un mode de réalisation, ledit facteur de qualité Q2 du mode d'oscillation symétrique dudit oscillateur est réduit de façon que Q1 / Q2 est égal ou supérieur à 2. De préférence, Q1/Q2 est égal ou supérieur à 5, voire égal ou supérieur à 10, égal ou supérieur à 20, égal ou supérieur à 50, ou encore égal ou supérieur à 100, par exemple, égal ou supérieur à 200.
  • Selon un mode de réalisation du diapason selon l'invention, le facteur de qualité Q1 est au moins un ordre de grandeur plus élevé que le facteur de qualité Q2. On entend par "ordre de grandeur" une différence d'environ un facteur de 10. De préférence, le facteur de qualité Q1 est d'au moins 1 à 3 ordres de grandeur plus élevé que le facteur de qualité Q2.
  • L'homme du métier notera que, dans le contexte de la présente invention, le facteur de qualité Q est utilisé à la fois pour qualifier les deux modes d'oscillations, antisymétrique et symétrique, montrés dans les figures 2A et 2B (Q1 et Q2), et comme paramètre de la friction interne d'un matériau. Dans ce dernier cas, l'inverse du facteur de qualité (1/Q) est utilisé. Il convient de mentionner que l'état de la technique décrit plusieurs paramètres qui représentent le frottement interne d'un matériau, tel que le facteur d'amortissement ou de perte tan δ, ou le module de perte G". Cependant, dans le contexte de la présente invention, l'inverse du facteur de qualité Q est choisi, comme proposé par C. Zener (1940) et H.-P. Liu et al (1983), notamment parce que la mesure de ce paramètre et bien connu à l'homme du métier dans le domaine de l'horlogerie.
  • Le deuxième matériau ou matériau B peut être disposé dans la tige 6 du diapason. Selon un mode de réalisation de l'invention, ledit matériau A est un premier matériau et la tige 6 comprend ou est constituée d'un deuxième matériau B en contact avec ledit premier matériau.
  • Selon un mode de réalisation, la tige 6 est entièrement fabriquée du matériau B. Alternativement, la tige 6 comporte un tel matériau B ou plusieurs matériaux qui, dans l'ensemble, remplissent la caractéristique du frottement interne plus élevé. Il est considéré comme avantageux si le matériau B est en contact avec le matériau A. Par exemple, le matériau B est en contact avec la base 5 du diapason. Selon ce mode de réalisation, le matériau B se trouve de préférence au moins à l'interface du matériau A avec la tige 6.
  • Ce mode de réalisation est illustré par les figures 3 A à 3 C, dans lesquels la tige 6 est constituée d'un matériau B qui est différent du matériau A dont l'ensemble 2 est réalisé. L'ensemble 2 comporte en particulier les deux lames 3,4 et la base 5.
  • Les numéros de références des figures 3A à 3C ont les mêmes significations comme décrit ci-dessus pour la figure 1. La figure 3A montre le diapason en position de repos, alors que les figures 3B et 3C montrent les oscillations antisymétrique et symétriques, respectivement, suite à une impulsion donnée sur l'une des deux lames (ici sur la lame 3) au niveau de la flèche 11.
  • Dans le mode de réalisation illustré aux figures 3A à 3C, l'ensemble 2 est construit entièrement de matériaux du type A, donc à frottement interne faible, mais la tige 6 est composé d'un matériau ayant un frottement interne plus important (matériau B), par exemple, le métal utilisé pour le diapason horloger classique. Dans ce mode de réalisation, les oscillations antisymétriques de la figure 2A n'ont pas de perte par la tige, en raison de son mouvement transversal nul, tandis que les oscillations symétriques du diapason (figure 2 B) sont amorties en raison de l'énergie perdue au niveau de l'attachement ou la connexion entre la tige 6 et la base 5, et entre la tige 7 et la fixation 7 du diapason, due aux contraintes S1 et S2, voir la figure 3C. Le facteur de qualité (Q2) des oscillations symétriques serait donc comparable au facteur de qualité d'une lame vibrante simple encastrée à une extrémité faite de ce matériau B, donc très petite (par exemple < 10).
  • La tige 6, fabriquée en matériau B ayant un frottement interne plus élevé que le matériau A dont est fabriqué l'ensemble 2, n'amortit pas et ne réduit pas le facteur de qualité (Q1) des oscillations antisymétriques illustrées à la figure 3B. Ceci s'applique également au cas où le diapason 1 est induit en oscillation par une impulsion sur une lame seulement, illustré par la flèche 11.
  • Il a été indiqué dans le brevet américain US 3,447,311 que la tige présente, de préférence, une certaine souplesse ou élasticité dans son ensemble, ce qui permet d'écarter ou éloigner la fréquence des oscillations symétriques de la fréquence des oscillations antisymétriques. Selon un mode de réalisation, la tige 6 est agencée de façon à retenir suffisamment de souplesse et/ou d'élasticité pour écarter les fréquences propres au mode antisymétrique et symétrique. Cet agencement peut être réalisé par la géométrique et/ou forme de la tige 6 et par le matériau dont elle est fabriquée. En variant la géométrie de la tige, par exemple, en diminuant sa largeur et/ou en augmentant sa longueur, on peut augmenter sa flexibilité et ainsi retenir l'élasticité requise. De préférence, la fréquence propre des oscillations symétriques et antisymétriques sont différentes et/ou éloignées. On entend par " fréquence propre" le concept de fréquence de résonance, où l'amplitude est maximale par rapport à la fréquence d'impulsion.
  • Par exemple, les fréquences propres des oscillations symétriques et antisymétriques sont éloignées d'au moins 5 Hz, de préférence d'au moins 10 Hz, voire d'au moins 20 Hz, et même d'au moins 30 Hz.
  • Selon un mode de réalisation de l'invention, la tige 6 fait partie dudit ensemble 2 comportant les lames 3, 4 et la base 5 et comprend ou est constituée par ledit matériau A. Selon ce mode de réalisation, illustré aux figures 4A à 4C, la tige 6, la base 5 et les lames 3, 4 peuvent être fabriquées en une pièce, par exemple d'un matériau A continu, ou peuvent comporter un matériau A continu. Dans le cas d'un matériau monocristallin, la tige 6, la base 5 et les lames 3, 4 peuvent comporter ou être formé d'un seul cristal.
  • Comme montré à la figure 4A, la fixation 7 comprend ou est constituée d'un matériau ayant un frottement interne plus élevé que celui du matériau A. Dans ce cas, la tige 6 peut comporter ou non un matériau à frottement interne plus élevé (matériau B). Comme indiqué, les figures 4A à 4C montrent en particulier la possibilité où la tige comporte et/ou est fabriquée du même matériau A que la base 5 et les lames 3, 4, et la fixation 7, illustrée par une carré foncé, est formée du matériau B. Bien entendu, la présente invention n'exclut pas la possibilité que la tige comprend un autre matériau que le matériau A de la base 5 et des lames 3, 4, cet autre matériau ayant un frottement interne faible, comme le matériau A, ou un frottement interne plus élevé, comme le matériau B.
  • Selon un mode de réalisation de l'invention, ledit matériau A est un premier matériau et ledit organe de fixation 7 comprend un deuxième matériau B en contact avec ladite tige 6.
  • Dans le mode de réalisation montré aux figures 4A à 4C, l'amortissement des oscillations symétriques est introduit à la fixation 7, en remplaçant le matériau A de la fixation 7 par un matériau qui dissipe les oscillations de la tige 6. La tige 6 en matériau A est donc encastrée dans une base formée par la fixation 7 faite d'un matériau ayant un frottement interne important, comme le métal du diapason horloger, ou un autre matériau comme une résine (matériau B).
  • On peut aussi imaginer que la tige 6 en matériau A est collée à la fixation 7 par une colle qui pourrait servir d'amortissement, donc une perte d'énergie dans le mode symétrique, et une réduction du facteur de qualité du mode symétrique. La colle comporte et/ou constitue alors le matériau B. Dans ce cas, la fixation 7 pourrait également être fabriqué d'un matériau choisi parmi les matériaux du type A. Les oscillations antisymétriques ne sont pas amorties par la fixation, puisqu'il n'y a pas d'oscillations transversales de la tige 6 dans l'encastrement dissipatif 7, voir la figure 4B. En revanche, les oscillations symétriques sont amorties puisque les oscillations de la tige 6 sont amorties en raison sa fixation dans le matériau dissipatif 7, ainsi qu'indiqué par les flèches D dans la figure 4C. Dans ce cas, la contrainte S1' entre la tige et la base du diapason ne dissipe pas plus d'énergie que dans le cas où le diapason et sa fixation sont entièrement en matériau A. La contrainte S1' ne contribue donc pas à la réduction des oscillations symétriques.
  • Dans un mode de réalisation, ledit organe de fixation 7 fixe et/ou encastre ladite tige 6 de façon qu'une oscillation transversale de ladite tige est amortie. Cet encastrement de la tige 6 est bien illustré aux figures 4A à 4C, où le contact de la fixation 7 avec la tige 6 occasionne la dissipation d'énergie des oscillations.
  • Il convient d'ajouter que la dissipation d'énergie provenant de l'amortissement des oscillations symétriques comme illustré aux figures 3C et 4C peut conduire à un échauffement, c'est-à-dire, l'énergie des oscillations est transformée en chaleur. La perte d'énergie associée à un mode d'oscillation (ici le mode d'oscillation symétrique) explique la réduction du facteur de qualité de ce type d'oscillation. Selon la présente invention, le matériau B est positionné et/ou agencé de façon à occasionner particulièrement une perte d'énergie des oscillations symétriques pour réduire le facteur de qualité Q2. De préférence, le matériau B est agencé de façon à amortir les oscillations transversales de la tige 6. Comme l'homme du métier comprendra, la présente invention cherche à exploiter la différence entre les oscillations antisymétriques de la figure 2A et les oscillations symétriques de la figure 2B, telle qu'elle se manifeste au niveau du mouvement de la tige 6. On notera également que le centre de gravité du diapason est presque immobile dans le cas antisymétrique mais effectue un mouvement sensible dans le cas symétrique.
  • Selon un mode de réalisation, lesdites lames 3, 4 du diapason 1 selon l'invention comprennent un matériau A', ledit matériau A' étant disposé sous forme de couche sur au moins une partie des deux lames. Selon un mode de réalisation, ledit matériau A' est caractérisé par un frottement interne faible similaire à celui du matériau A. De préférence, le frottement interne du matériau A' est du même ordre de grandeur que celui du matériau A.
  • Selon un mode de réalisation, le matériau A et le matériau A' se distinguent par rapport au signe (positif ou négatif) de leur coefficient de dilation thermique respectif. Par conséquent, le coefficient de dilatation thermique dudit matériau A' a un signe inverse par rapport au signe du coefficient thermique dudit matériau A. En d'autres termes, si le coefficient de dilation thermique du matériau A est positif, par exemple +0.5, celui du matériau A' est négatif, par exemple -1.0.
  • Un but du choix de deux matériaux, A et A' à faible frottement interne est d'annuler ou au moins compenser partiellement l'effet de la température sur la fréquence des oscillations. Généralement, la fréquence des oscillations baisse suite à une déviation de la température optimale (généralement 25°C) d'un diapason à cause de l'augmentation ou la diminution du volume du matériau dont le diapason est constitué. Comme le matériau A' a de préférence un coefficient de dilatation de signe inverse à celui du matériau A, la présence de A' réduit le changement du volume de l'ensemble A et A'.
  • La caractéristique du signe inverse n'implique pas que les valeurs absolues des coefficients de dilatation thermiques des matériaux A et A' soient identiques (voir l'exemple des valeurs +0.5 et -1.0 donné ci-dessus). Pour cette raison, la quantité du matériau A' est de préférence choisie de façon à ce que un changement de volume de l'ensemble comportant au moins les lames 3, 4 et la base 5, et éventuellement la tige 6 est réduite au maximum, c'est-à-dire, la dilatation ou la diminution du volume sont essentiellement réduites ou absentes.
  • De préférence, le matériau A' est également un matériau à faible frottement interne. Ainsi, le matériau A' n'a de préférence pas d'effet significatif sur le facteur de qualité Q1. L'homme du métier connait les matériaux au coefficient de dilatation thermique négatif.
  • Le matériau A' est de préférence présent sur au moins les deux lames 3, 4. Le matériau A' peut également être présent sur la base 5. Si la tige 6 comprend ou est constituée du matériau A, (figures 4A à 4C), le matériau A' peut également être présent sur la tige. Il est entendu que la présente invention n'est pas limitée à la manière dont le matériau A' est associé au matériau A. Par exemple, le matériau A' peut être déposé sous forme de couche sur au moins une partie du matériau A ou l'inverse. L'homme du métier peut envisager d'autre manières d'associer le matériau A' au diapason selon l'invention. Ladite couche peut s'étendre sur l'ensemble d'une face des lames 3, 4 et de la base 5 et également sur la tige 6, ou peut-être présent sur une partie de l'ensemble 2 seulement. De préférence, le matériau A' est au moins associé avec et/ou connecté à une partie des lames 3, 4. De préférence, le matériau A' est disposé de manière équitable et/ou symétrique sur les deux lames 3, 4.
  • L'homme du métier ne rencontrera pas de difficulté particulière pour adapter le contenu de la présente divulgation à ses propres besoins et mettre en oeuvre un oscillateur différent de celui selon les modes de réalisation décrit ici, mais dans lequel le facteur de qualité des oscillations symétriques est réduit par rapport au facteur de qualité des oscillations antisymétriques, sans sortir du cadre de la présente invention. Par exemple, l'homme du métier saura utiliser l'oscillateur selon l'invention dans une pièce d'horlogerie qui n'est pas entièrement mécanique et/ou dans une pièce d'horlogerie électronique, ou encore dans une base de temps électronique quelconque. Par exemple, la présente invention peut être facilement implémentée dans une application qui nécessite une base de temps, tel qu'un ordinateur ou encore un téléphone portable. En particulier, le fait que la présente invention permet d'exciter et/ou de maintenir les impulsions antisymétriques malgré les impulsions (mécaniques ou autres) sur une seule des deux branches permet de faciliter la construction du diapason en général, aussi dans le cas d'un diapason induit en oscillation par moyens électroniques et/ou en utilisant l'effet piézoélectrique dans le cas du diapason en quartz, par exemple.

Claims (16)

  1. Une pièce d'horlogerie comportant un mouvement horloger mécanique comportant: un oscillateur du type diapason (1), ledit oscillateur comportant un ensemble (2) comportant deux lames (3, 4) et une base (5) reliant lesdites lames, ledit oscillateur (1) comportant une tige (6) liée à ladite base (5), l'oscillateur étant connecté par sa tige (6) à un organe de fixation (7) connecté au mouvement, ledit ensemble (2) comportant ou étant constitué d'un matériau A, ledit matériau A étant caractérisé par un frottement interne faible, ledit mouvement comportant un organe d'impulsion mécanique susceptible d'agir sur l'une des deux lames de façon à induire et maintenir ledit oscillateur en oscillation, ledit oscillateur étant susceptible d'osciller dans un mode antisymétrique souhaité ainsi que dans un mode symétrique non-souhaité, caractérisé en ce que le facteur de qualité Q2 du mode d'oscillation symétrique dudit oscillateur est réduit par rapport au facteur de qualité Q1 du mode d'oscillation antisymétrique.
  2. La pièce d'horlogerie selon la revendication 1, caractérisé en ce que ledit matériau A est un premier matériau et en ce que ledit facteur de qualité Q2 est réduit par la présence d'un deuxième matériau B, ce matériau B étant en contact avec ledit matériau A de façon qu'une oscillation transversale de ladite tige (6) est amortie.
  3. La pièce d'horlogerie selon la revendication 2, dans laquelle ledit matériau B est caractérisé par un frottement interne plus élevé que celui dudit premier matériau.
  4. La pièce d'horlogerie selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit matériau A est un premier matériau et en ce que la tige (6) comprend ou est constituée d'un deuxième matériau B en contact avec ledit premier matériau.
  5. La pièce d'horlogerie selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la tige (6) fait partie dudit ensemble (2) comportant les lames (3, 4) et la base (5) et comprend ou est constituée par ledit matériau A.
  6. La pièce d'horlogerie selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ledit matériau A est un premier matériau et en ce que ledit organe de fixation (7) comprend un deuxième matériau B en contact avec ladite tige (6).
  7. La pièce d'horlogerie selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ledit organe de fixation (7) fixe et/ou encastre ladite tige (6) de façon qu'une oscillation transversale de ladite tige est amortie.
  8. La pièce d'horlogerie selon l'une quelconque des revendications 2 à 7, caractérisée en ce que ledit deuxième matériau est choisi parmi les métaux, les alliages, les matériaux polycristallins, et/ou les matériaux amorphes.
  9. La pièce d'horlogerie selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit oscillateur (1), ou au moins ledit ensemble (2), comprend ou est formé de silicium monocristallin et/ou de quartz.
  10. La pièce d'horlogerie selon l'une quelconque des revendications précédentes, caractérisée en ce que lesdites lames (3, 4) comprennent un matériau A', ledit matériau A' étant disposée en forme de couche sur au moins une partie des deux lames.
  11. La pièce d'horlogerie selon la revendication précédente, dans laquelle ledit matériau A' est caractérisé par un frottement interne faible similaire à celui du matériau A.
  12. La pièce d'horlogerie selon la revendication 10 et/ou 11, dans laquelle le coefficient de dilatation thermique dudit matériau A' a un signe (+/-) inverse par rapport au signe du coefficient thermique dudit matériau A.
  13. Un oscillateur du type diapason (1), ledit oscillateur comportant un ensemble (2) comportant deux lames (3, 4) et une base (5) reliant lesdites lames, ledit oscillateur (1) comportant une tige (6) liée à ladite base (5), l'oscillateur étant connecté par sa tige (6) à un organe de fixation (7) connecté à un support, ledit ensemble (2) étant formé d'un matériau A, caractérisé par un frottement interne faible, caractérisé en ce que ledit matériau A est un premier matériau et en ce que ledit oscillateur comporte un deuxième matériau B, ce matériau B étant en contact avec ledit matériau A de façon qu'une oscillation transversale de ladite tige (6) est amortie.
  14. L'oscillateur selon la revendication 13, caractérisé en ce que ledit matériau B a un frottement interne (1/QB) plus élevé que le frottement interne (1/QA) du matériau A, de façon que QB/QA est ≤ 0.1.
  15. Un mouvement horloger comportant l'oscillateur de la revendication précédente, ledit mouvement comportant un organe d'impulsion mécanique susceptible d'agir sur l'une des deux lames de façon à induire et de maintenir ledit oscillateur en oscillation.
  16. Le mouvement horloger selon la revendication précédente caractérisé en ce que ledit organe d'impulsion mécanique est relié et/ou alimenté par une source d'énergie mécanique.
EP14167078.6A 2014-05-05 2014-05-05 Oscillateur mécanique à diapason pour mouvement horloger Withdrawn EP2942673A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14167078.6A EP2942673A1 (fr) 2014-05-05 2014-05-05 Oscillateur mécanique à diapason pour mouvement horloger
PCT/EP2015/059624 WO2015169708A2 (fr) 2014-05-05 2015-05-01 Oscillateur mecanique a diapason pour mouvement horloger
US15/309,342 US10459405B2 (en) 2014-05-05 2015-05-01 Tuning fork mechanical oscillator for clock movement
EP15723856.9A EP3140698B1 (fr) 2014-05-05 2015-05-01 Oscillateur mecanique a diapason pour mouvement horloger
CN201580036646.8A CN106471429B (zh) 2014-05-05 2015-05-01 用于钟表机芯的音叉机械振荡器
CH01457/16A CH711280B1 (fr) 2014-05-05 2015-05-01 Pièce d'horlogerie comportant un mouvement horloger mécanique avec oscillateur à diapason.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14167078.6A EP2942673A1 (fr) 2014-05-05 2014-05-05 Oscillateur mécanique à diapason pour mouvement horloger

Publications (1)

Publication Number Publication Date
EP2942673A1 true EP2942673A1 (fr) 2015-11-11

Family

ID=50639330

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14167078.6A Withdrawn EP2942673A1 (fr) 2014-05-05 2014-05-05 Oscillateur mécanique à diapason pour mouvement horloger
EP15723856.9A Active EP3140698B1 (fr) 2014-05-05 2015-05-01 Oscillateur mecanique a diapason pour mouvement horloger

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15723856.9A Active EP3140698B1 (fr) 2014-05-05 2015-05-01 Oscillateur mecanique a diapason pour mouvement horloger

Country Status (5)

Country Link
US (1) US10459405B2 (fr)
EP (2) EP2942673A1 (fr)
CN (1) CN106471429B (fr)
CH (1) CH711280B1 (fr)
WO (1) WO2015169708A2 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971323A (en) 1953-06-19 1961-02-14 Bulova Watch Co Inc Electronically-controlled timepiece
US3208287A (en) 1961-10-21 1965-09-28 Jeco Kk Magnetic escapement
FR1421123A (fr) * 1964-01-20 1965-12-10 Centre Electron Horloger Résonateur mécanique pour oscillateurs à fréquence normale dans des appareils demesure du temps
CH435122A (fr) * 1965-03-10 1966-12-15 Longines Montres Comp D Diapason pour pièce d'horlogerie
US3447311A (en) 1966-03-29 1969-06-03 Ebauches Sa Electronic timepiece
FR2106507A1 (fr) * 1970-09-14 1972-05-05 Suwa Seikosha Kk
EP2466401A1 (fr) 2010-12-15 2012-06-20 Asgalium Unitec SA Resonateur magnetique pour piece d'horlogerie mecanique
WO2013045573A1 (fr) 2011-09-29 2013-04-04 Asgalium Unitec Sa Resonateur a diapason pour mouvement horloger mecanique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760482A (en) * 1972-05-18 1973-09-25 Suwa Seikosha Kk Method of adjusting frequency of tuning fork type vibrator
CH599604B5 (fr) * 1974-12-03 1978-05-31 Bulova Watch Co Inc
EP0964319A1 (fr) * 1998-06-08 1999-12-15 Manufacture des Montres Rolex S.A. Procédé pour transmettre des impulsions d'énergie mécanique d'une source motrice à un régulateur oscillant
FR2842313B1 (fr) * 2002-07-12 2004-10-22 Gideon Levingston Oscilliateur mecanique (systeme balancier et ressort spiral) en materiaux permettant d'atteindre un niveau superieur de precision, applique a un mouvement d'horlogerie ou autre instrument de precision
HK1146455A2 (en) * 2010-03-12 2011-06-03 Microtechne Res & Dev Ct Ltd An oscillator system
CH707554A2 (fr) * 2013-02-07 2014-08-15 Swatch Group Res & Dev Ltd Résonateur thermocompensé par un métal à mémoire de forme.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971323A (en) 1953-06-19 1961-02-14 Bulova Watch Co Inc Electronically-controlled timepiece
US3208287A (en) 1961-10-21 1965-09-28 Jeco Kk Magnetic escapement
FR1421123A (fr) * 1964-01-20 1965-12-10 Centre Electron Horloger Résonateur mécanique pour oscillateurs à fréquence normale dans des appareils demesure du temps
CH435122A (fr) * 1965-03-10 1966-12-15 Longines Montres Comp D Diapason pour pièce d'horlogerie
US3447311A (en) 1966-03-29 1969-06-03 Ebauches Sa Electronic timepiece
FR2106507A1 (fr) * 1970-09-14 1972-05-05 Suwa Seikosha Kk
EP2466401A1 (fr) 2010-12-15 2012-06-20 Asgalium Unitec SA Resonateur magnetique pour piece d'horlogerie mecanique
WO2013045573A1 (fr) 2011-09-29 2013-04-04 Asgalium Unitec Sa Resonateur a diapason pour mouvement horloger mecanique

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDRES CASTELLANOS-GOMEZ; NICOLAS AGRAIT; GABINO RUBIO-BOLLINGER: "Forcegradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy", ULTRAMICROSCOPY, vol. 111, no. 3, 2011, pages 186 - 190, XP028144940, DOI: doi:10.1016/j.ultramic.2010.11.032
CLARENCE ZENER: "Internal Friction in Solids", PROCEEDINGS OF THE PHYSICAL SOCIETY, vol. 52, 1940, pages 152 - 166
HSI-PING LIU; LOUIS PESELNICK: "Intemal Friction in Fused Quartz, Steel, Plexiglass, and Westerley Granite From 0.01 to 1.00 Hertz at 10-8 to 10-7 Strain Amplitude", JOURNAL OF GEOPHYSICAL RESEARCH, vol. 88, 10 March 1983 (1983-03-10), pages 2367 - 2379
ILAN VARDI: "Le facteur de qualité en horlogerie mécanique", BULLETIN DE LA SOCIÉTÉ SUISSE DE CHRONOMÉTRIE, vol. 75, 2014, pages 53 - 61
P. ONG: "Little known facts about the common tuning fork", PHYS. EDUC., vol. 37, 2002, pages 540 - 542

Also Published As

Publication number Publication date
US20180004160A9 (en) 2018-01-04
WO2015169708A2 (fr) 2015-11-12
WO2015169708A3 (fr) 2016-03-10
EP3140698A2 (fr) 2017-03-15
CN106471429B (zh) 2019-05-14
US20170108830A1 (en) 2017-04-20
CH711280B1 (fr) 2022-11-15
EP3140698B1 (fr) 2020-03-25
CN106471429A (zh) 2017-03-01
US10459405B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
EP2761378B1 (fr) Oscillateur a diapason pour mouvement horloger mecanique
EP2466401B1 (fr) Résonateur magnétique pour pièce d&#39;horlogerie mécanique
EP2908188B1 (fr) Régulation d&#39;un résonateur d&#39;horlogerie par action sur la rigidité d&#39;un moyen de rappel élastique
EP3365734B1 (fr) Oscillateur pour un mouvement horloger mécanique
EP2908185B1 (fr) Dispositif d&#39;entretien et de régulation d&#39;un résonateur d&#39;horlogerie
EP3108305B1 (fr) Procede d&#39;entretien et de regulation d&#39;un resonateur d&#39;horlogerie
EP3030938B1 (fr) Système régulateur pour montre mécanique
CH710278B1 (fr) Organe réglant pour un mouvement horloger mécanique.
EP3273309B1 (fr) Oscillateur hybride d&#39;horlogerie
EP3140698B1 (fr) Oscillateur mecanique a diapason pour mouvement horloger
CH709279B1 (fr) Régulation en fréquence d&#39;un résonateur d&#39;horlogerie par action sur la raideur d&#39;un moyen de rappel élastique.
CH701155B1 (fr) Oscillateur pour pièce d&#39;horlogerie.
EP2908186B1 (fr) Régulation de fréquence d&#39;un résonateur d&#39;horlogerie avec déplacement du spiral
CH707990A1 (fr) Mouvement de montre mécanique.
EP2802941B1 (fr) Organe réglant pour chronographe mécanique
CH710679B1 (fr) Résonateur de mouvement d&#39;horlogerie et ensemble comprenant un tel résonateur et un mécanisme d&#39;échappement.
FR2962614A1 (fr) Module de decouplage mecanique d&#39;un resonateur a grand coefficient de qualite
CH714143A2 (fr) Elément piézoélectrique pour un circuit d&#39;autorégulation de fréquence, et système mécanique oscillant et dispositif le comprenant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160512