EP2941092B1 - Method and household appliance - Google Patents
Method and household appliance Download PDFInfo
- Publication number
- EP2941092B1 EP2941092B1 EP15161072.2A EP15161072A EP2941092B1 EP 2941092 B1 EP2941092 B1 EP 2941092B1 EP 15161072 A EP15161072 A EP 15161072A EP 2941092 B1 EP2941092 B1 EP 2941092B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- treated
- frequency
- temperature
- radiation
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 34
- 230000005855 radiation Effects 0.000 claims description 107
- 238000012545 processing Methods 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 description 80
- 238000010438 heat treatment Methods 0.000 description 43
- 239000000463 material Substances 0.000 description 37
- 238000010411 cooking Methods 0.000 description 33
- 230000006870 function Effects 0.000 description 31
- 230000005540 biological transmission Effects 0.000 description 22
- 238000009826 distribution Methods 0.000 description 21
- 230000008901 benefit Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6447—Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
Definitions
- the present invention relates to a method for operating a domestic appliance according to the preamble of claim 1.
- the temperature of the items to be treated or its surroundings is often monitored.
- the treatment process is influenced or automatically controlled as a function of the determined temperature.
- it is therefore important to obtain reliable information about the temperatures prevailing in and on the material to be treated.
- the distribution of hot or cold zones or the temperature distribution over the volume of the item to be treated is particularly helpful information.
- WO 2013/078325 A1 a method for heating an object is known in which the object is exposed to RF energy and changes in the electromagnetic spectrum are evaluated which occur due to the interaction between the object and acoustic waves. The evaluation is used to control the heating of the object.
- the U.S. 5,237,141 A discloses a high-frequency heating device in which food is heated by microwave energy in a cooking space.
- a receiving antenna is provided with which a center frequency of the microwave energy is received, which is reflected back from the cooking space.
- the amount of radiation received by the receiving antenna is determined by means of an evaluation circuit and the functions of the heating device are controlled by means of a control circuit as a function of the radiation determined.
- the method according to the invention is used to operate a domestic appliance.
- At least one treatment device is provided for treating items to be treated in at least one treatment room.
- the treatment device is controlled as a function of the determined temperature.
- the measuring system generates electromagnetic measuring radiation at least at times.
- the measuring system brings the measuring radiation into the treatment room at least temporarily with at least one transmitting device.
- measurement radiation that is directly reflected and influenced by the item to be treated is received by at least one receiving device of the measurement system.
- the measurement radiation has a bandwidth with at least two distinguishable frequencies.
- the measuring system detects at least one characteristic variable for a wave property of the received measuring radiation, taking into account the frequency.
- the processing device determines at least one characteristic parameter on the basis of the change in the wave property of the received measurement radiation in relation to the transmitted measurement radiation.
- the processing device derives the temperature on the basis of the frequency dependence of the parameter.
- the method according to the invention has many advantages.
- a considerable advantage is that at least one parameter can be derived from the received measurement radiation in relation to the transmitted measurement radiation, the frequency of which can be used to determine the temperature.
- This allows z.
- Such a temperature determination is particularly advantageous when preparing food, for example, since the volume temperature usually correlates closely with the required cooking time. A distribution of hot or cold zones in the item to be treated can also be determined in this way. It is also advantageous that the treatment device can be optimally controlled with knowledge of the internal temperature conditions. For example, the finished cooking point of a roast can be recognized based on the volume temperature and the heating source can be regulated down accordingly or a grill heating source can be switched on for browning.
- the variable detected by the measuring system preferably describes a wave property such as, for. B. phase, amplitude, frequency, wavelength and / or polarization. Other variables that are customary in high-frequency technology or radar technology for recording signals are also possible.
- the variable detected by the measuring system is determined in particular as a function of frequency and / or as a function of time.
- the change in the received measuring radiation in relation to the transmitted measuring radiation is preferably determined by changing at least one of the at least one variable detected by the measuring system.
- the change relates in particular to the phase and / or the amplitude of the measurement radiation.
- the change in the received measurement radiation in relation to the transmitted measurement radiation relates to the frequency and / or the wavelength and / or the polarization and / or the angle of rotation or at least one other common variable in high-frequency technology.
- the change is preferably detected and / or described by at least one scattering parameter or S-parameter.
- the radiation power absorbed by the material to be treated and / or the corresponding scattering parameter is taken into account as a function of the frequency.
- the item to be treated is preferably an object which is essentially brought into the treatment room for treatment. This can be, for example, an object to be cleaned and / or dried and / or an item to be cooked or an object to be heated. However, it is also possible that the item to be treated is also and / or only introduced into the treatment room to determine the temperature.
- Items to be treated within the meaning of this application can also be any object in the treatment room which, in particular, has been brought into the treatment room together with the object to be treated, such as, for. B. a cooking vessel, a laundry protection bag or a solvent or the like. It is possible that the The temperature of the actual item to be treated is determined together with the item to be treated as an aid and / or separately from the item to be treated as an aid.
- the complex permittivity and / or its real part and / or its imaginary part is determined and viewed as a function of the frequency.
- the temperature is derived from the frequency dependence of a maximum value of the function. Several and / or other suitable functional characteristics can also be used to determine the temperature.
- the position of the maximum in the course of the frequency dependence of the imaginary part depends on the temperature of the object with which the measurement radiation has interacted.
- the maximum migrates to higher frequencies with increasing temperature.
- the real part of the complex permittivity is temperature-dependent at a frequency of 0 Hz.
- the real part as a function of the frequency, at which the corresponding imaginary part assumes a maximum is also temperature-dependent.
- the complex permittivity and / or its real part and / or its imaginary part are determined in particular using at least one scattering parameter.
- the scattering parameter is determined in particular by the change in the received measurement radiation in relation to the transmitted measurement radiation as a function of the frequency.
- the determined frequency dependency of the complex permittivity and / or its real part and / or its imaginary part is compared with at least one reference parameter stored in at least one storage device.
- the reference parameter describes in particular the frequency dependence of the complex permittivity and / or its real part and / or its imaginary part of at least one known substance and / or body and / or material at at least one defined temperature.
- the temperature of at least part of the material to be treated is determined on the basis of the comparison.
- at least one value for a temperature and / or a temperature range is preferably assigned to a reference parameter.
- Reference parameters with discrete values and / or averaged values and / or value ranges can be provided for comparison.
- At least one mathematical approximation method can be used for the comparison. It is also possible that the comparison is at least partially adapted dynamically and / or is subject to an artificial learning ability.
- the reference parameter preferably describes the frequency dependency of the complex permittivity and / or its real part and / or its imaginary part at least one Reference goods to be treated.
- the reference item to be treated has in particular a material and / or material composition that is comparable to the item to be treated.
- a reference parameter suitable for the comparison can also be assigned as a function of a temperature or other property that has already been determined for the item to be treated. It is also possible to assign a reference parameter based on a preset by the user, e.g. B. by selecting a category of items to be treated.
- the real part and the imaginary part of the complex permittivity are viewed as a locus in the Gaussian plane as a function of frequency and / or in a Cole-Cole diagram, so that the real part can describe an arc with a center point on the axis .
- the temperature is preferably determined on the basis of the center of the circle and / or the radius of the circle. Such a consideration has the advantage that the values of the real part and the imaginary part belonging to a common temperature range essentially lie on an arc of a circle. This enables an inexpensive and at the same time reliable assignment of temperature values. The observation can be done arithmetically and / or graphically.
- the description of the circular arc includes at least one mathematical approximation method, such as, for. B. an interpolation and / or an extrapolation.
- an arc of a circle can also be fitted into the values of the complex permittivity, with the center of the circle and the radius of the circle being calculated from the arc.
- the center of the circle is calculated by forming secants and / or perpendicular lines. It can be taken into account that the center of the circle lies on the axis for the real part.
- the radius of the circular arc is compared with at least one reference value stored in at least one storage device of at least one known substance and / or body at at least one defined temperature. It is also possible that the position of the center of the circle on the axis for the real part is compared with at least one reference value of at least one known substance and / or body at at least one defined temperature stored in at least one storage device.
- the reference value preferably describes the radius and / or the position of the center of the circle of at least one reference item to be treated which is comparable to the item to be treated.
- the adjustment is preferably carried out in a similar way to the adjustment with the reference parameter described above.
- the measuring radiation is preferably emitted repeatedly.
- the measurement radiation is emitted before the treatment and / or during the treatment and / or after the treatment of the item to be treated.
- the directly reflected measurement radiation influenced by the item to be treated is received again by the receiving device.
- the temperature of the item to be treated is preferably determined after the respective sending or receiving.
- the transmitting device preferably sends the measuring radiation to the item to be treated, so that the measuring radiation is applied to the item to be treated. This has the advantage that the treatment device can be optimally adjusted to the particular item to be treated by taking the temperature into account. It is also preferred that measuring radiation is repeatedly emitted during the treatment process and the temperature is determined. This is advantageous in that changes in temperature of the items to be treated are recognized during or due to the treatment and the treatment device can be adapted accordingly.
- the measuring radiation preferably comprises at least two frequencies between 10 megahertz and 1 terahertz which differ by at least 100 MHz. Preferably, several and in particular a large number of different frequencies are provided. In this case, frequencies and / or frequency intervals can also be provided which border one another and / or at least partially overlap.
- the measurement radiation can have a frequency width of at least 10% of the center frequency of the frequency band used.
- a frequency width of at least 10% of the arithmetic mean of the lower and upper limit frequency of the frequency band used is also possible.
- a frequency width of at least 20% of the corresponding arithmetic mean is preferred.
- the frequency width comprises in particular at least 250 megahertz and preferably at least 500 megahertz and / or at least one gigahertz and / or at least 5 gigahertz and particularly preferably more than 10 gigahertz. 20 gigahertz or more are also possible.
- the frequencies are preferably in a frequency band with a bandwidth that is wider than the ISM band of a conventional microwave oven (approx. 2.4 GHz - 2.5 GHz). Multiple bands are also possible. In particular, at least two bands are provided, the center frequencies of which are spaced apart by at least one gigahertz and in particular at least five gigahertz and preferably 10 or more gigahertz.
- the transmitting device and / or the receiving device can have at least one antenna device suitable for the respective frequency width for transmitting or receiving.
- the antenna device which is operated as a transmitting device and as a receiving device is also possible.
- the antenna device can comprise one or two or more antennas for transmitting and / or receiving.
- There can be at least one Antenna array can be provided, the individual antenna units covering individual bands or band areas and preferably being operated in parallel.
- the measuring system is designed as an ultra-broadband system which is designed to transmit and receive ultra-broadband signals and is operated as such.
- An ultra-wideband radar device is also possible.
- the advantages of such a broadband measuring system compared to narrowband technology are that very well resolved spectral information is available, by means of which the item to be treated can be characterized accordingly and precisely.
- the frequency width used or generated can be adjustable. The resolution of the determined temperature can thus be increased or reduced, depending on how detailed the information for the control of the treatment device should be.
- the transmission device transmits the measurement radiation at least temporarily as at least one pulse with a pulse duration shorter than one nanosecond.
- the pulse duration is preferably in the range of a hundred or less picoseconds. A pulse duration of a few picoseconds or less than one picosecond is also possible.
- the pulse duration is designed to be so short that the measurement radiation comprises as broad a frequency spectrum as possible in accordance with a corresponding Fourier transformation. In particular, one of the frequency ranges described above should be achieved. An actual pulse can be generated directly.
- the pulse can, however, also be formed by scanning a suitable frequency spectrum with a corresponding Fourier transformation.
- the measuring system is at least partially designed as a reflectometer or is operated as such.
- At least one transmitting device and / or at least one receiving device can be designed as a reflectometer or comprise such a device.
- the reflectometer can be designed as a one-port refectometer in which the transmitting device and the receiving device are combined in a common reflectometer antenna device.
- a two-port reflectometer or a multi-port reflectometer is also possible.
- the reflectometer can be used to measure the measurement radiation reflected from the item to be treated and / or to measure the measurement radiation transmitted by the item to be treated. In particular, corresponding further scatter parameters are determined as a function of the frequency. This has the advantage that diverse and well-resolved information about the item to be treated is obtained.
- the measurement radiation received by the receiving device is analyzed by the processing device and that the measurement radiation that is received during a defined time window is taken into account. It is in particular, the start of the time window is at least partially dependent on the time at which the measurement radiation is transmitted. For example, the receiving device is synchronized with the transmitting device. In particular, essentially only the measurement radiation that is received during a defined time window is taken into account.
- the variable detected by the measuring system is determined in particular as a function of time.
- the duration and / or the beginning of the time window can in particular be set.
- the time window is particularly preferably set in such a way that essentially only the measurement radiation reflected and / or transmitted by the item to be treated is detected.
- the setting is preferably made by the measuring system or the processing device.
- the time window can also be set as a function of the transmission time of the pulse and / or of the pulse duration.
- the setting can also be made depending on the measurement radiation that has already been received.
- the time window preferably begins after the pulse has been transmitted.
- the duration of the time window is selected in particular so that short or ultra-short pulses can also be used for the evaluation.
- the selection of the time window can determine from which spatial area or from which distance the received measurement radiation originates.
- the temperature determined from the measurement signal can be assigned to a specific area of the item to be treated.
- temperature values of the items to be treated are determined as a spatial distribution.
- the spatial distribution of the temperature can be displayed graphically and / or as an image.
- the measuring system can also determine spatially resolved and / or three-dimensional information about the item to be treated.
- Another advantage is that, with a correspondingly short time window, a spatially resolved analysis of the items to be treated is possible even in a correspondingly small treatment room.
- measurement radiation that is at least partially influenced and transmitted by the item to be treated is received.
- the use of measurement radiation transmitted and reflected by the item to be treated for determining the temperature enables a more detailed description of the item to be treated.
- at least one further receiving device and / or at least one further transmitting device is provided. Transmitting devices and receiving devices can also be operated in pairs, with measurement radiation transmitted and reflected by the material to be treated being recorded for at least one pair.
- one transmitting device and two receiving devices can be provided, the one receiving device essentially for the items to be treated reflected measuring radiation and the other receiving device is essentially provided for the measuring radiation transmitted by the material to be treated.
- two transmitting devices and one receiving device it is also possible for two transmitting devices and one receiving device to be provided.
- One of the transmitting devices is arranged in such a way that its measurement radiation hits the receiving device after being reflected from the material to be treated.
- the other transmitting device is arranged in particular in such a way that its measuring radiation hits the receiving device after transmission through the material to be treated.
- the Figure 1 shows a domestic appliance 1, which is designed here as a cooking appliance 100.
- the cooking appliance 100 has a treatment space 3 designed as a cooking space 13.
- a treatment device 2 is provided for treating the items to be treated 200.
- the treatment device 2 comprises a thermal heating source 103 and a heating device 12.
- the heating device 12 is provided for dielectric heating of the material to be treated 200 and is designed here as a microwave heating source.
- the cooking space 13 can be closed by a door 104.
- a safety device not shown here, is provided, which prevents operation of the heating device 12 when the door is open, so that an escape of microwave radiation is counteracted.
- further heating sources such as, for example, an upper heating element and a lower heating element or a steam heating source or the like, can be provided.
- the cooking appliance 100 can be operated via an operating device 6.
- the temperature in the cooking chamber 13 can be set during the treatment process.
- the domestic appliance 1 also has a measuring system 4, which is shown here in a highly schematic manner.
- the measuring system 4 is provided for the contactless determination of various characteristic parameters of the item 200 to be treated.
- the treatment device 2 is controlled as a function of the determined parameters.
- One parameter can be, for example, the internal temperature of the items to be treated 200.
- the measuring system 4 can, for. B. also determine the distribution of resonance modes at certain frequencies in the treatment room.
- the measuring system 4 comprises a transmitting device 14, a receiving device 24, a processing device 5 and a storage device 7.
- the transmitting device 14 is suitable and designed to generate electromagnetic measurement radiation and to send it into the treatment room. In this case, at least part of the measurement radiation interacts with the item to be treated 200, not shown here, and is reflected again by it. The reflected measurement radiation is received by the receiving device 24.
- At least one characteristic variable for a wave property of the received measuring radiation is detected by the measuring system 4. For example, the amplitude, frequency, phase or polarization or angle of rotation is recorded as a wave property.
- the processing device 5 determines the characteristic parameters of the material to be treated 200 from the change in the wave properties of the received measurement radiation in relation to the transmitted measurement radiation be.
- the determined parameters are taken into account in the treatment of the items 200 to be treated.
- the treatment device 2 is controlled as a function of the determined parameters.
- the treatment device 2 is with the Measuring system 4 actively connected. It is possible that further control devices, not shown here, are provided.
- the temperature in the interior of the items to be treated 200 can be determined as a parameter. Depending on this temperature, the heating power of the thermal heating source 103 can then be adjusted accordingly.
- the heating power of the heating source 103 is regulated in such a way that optimal temperature conditions prevail in the cooking space 13 for cooking the roast.
- target parameters specified by the user can also be taken into account.
- the user can e.g. B. pretend whether he wants a particularly crispy roast crust.
- the temperature of the thermal heating source 103 is increased or a grill heating source is switched on when the measuring system 4 determines a temperature in the interior of the roast which corresponds to a finished cooking point.
- a household appliance 1 is shown in a highly schematic, sectional side view.
- the domestic appliance 1 is here a cooking appliance 100 with a treatment space 3 designed as a cooking space 13.
- the treatment device 2 comprises a thermal heating source 103, the output of which is regulated by a control device 42.
- the control device 42 is also operatively connected to the measuring system 4.
- the measuring system 4 is designed as a reflectometer device 54, which is designed as a one-port reflectometer.
- the transmitting device 14 and the receiving device 24 are housed together in a reflectometer antenna, which thus simultaneously serves as a transmitter and receiver.
- the reflectometer device 54 is also designed here as a broadband radar reflectometer.
- electromagnetic measurement radiation is generated and sent, which preferably lies in a frequency band that is at least 10 gigahertz wide.
- the frequency band here is 15 gigahertz or 20 gigahertz or more wide.
- the measuring radiation comprises at least two frequencies and preferably a plurality of frequencies. At least two of the frequencies differ by at least 100 gigahertz or more.
- the measuring radiation can preferably also have a frequency width of 10% or more of the center frequency of the frequency band used.
- the measuring radiation is sent from the transmission device 14 into the treatment room 3.
- the measurement radiation interacts, among other things, with the item 200 to be treated and is reflected by it.
- the reflected measurement radiation is detected by the receiving device 24.
- Two independent variables are measured here, e.g. B. Amount and Phase.
- the processing device 5 uses the detected variables to determine the Frequency dependence of the ratio of the radiant power sent into the treatment room 3 to the reflected radiant power.
- the measured variables can be designated, for example, with the scatter parameter S11, as they are also known from vector network analyzers.
- the processing device 5 first calculates the real part components and the imaginary part components of the complex permittivity epsilon for each measurement frequency from the measured, frequency-dependent scattering parameter S11 (as complex numbers, contain two independent measured variables).
- the complex S11 can be converted into a complex epsilon.
- the permittivity describes the properties of the material in interaction with the measurement radiation for the item to be treated 200 on which the measurement radiation was reflected. This interaction is dependent, among other things, on the temperature of the material to be treated 200, which can advantageously be used to determine the temperature.
- the real part and the imaginary part of the complex permittivity are computationally considered by the processing device 5 in a Cole-Cole diagram.
- a circular arc with a center point on the axis can be described for the real part.
- the temperature of the item to be treated 200 results from the radius of the circle or the position of the center of the circle on the real part axis.
- the values for the radius or center of the circle are then compared by the processing device 5 with corresponding reference values which are stored in the memory device 7 of the measuring system 4.
- the reference value is, for example, a value for the radius of the circular arc or the position of the center of the circle on the real part axis of a known substance at defined temperatures. Reference values obtained by measuring defined items to be treated or by corresponding simulations are also possible. If the item to be treated 200 is a food, for example, reference values for water or objects containing water provide correspondingly comparable results for the temperature determination on the basis of the typical water content of food.
- the corresponding measurement points for the permittivity are as far away as possible on the circle radius.
- the methods presented here as well as the household appliances are particularly advantageous because a broadband radar reflectometer or ultra-broadband radars are used.
- the broadband measurement radiation used here enables the corresponding measurement points for the permittivity to be far apart in terms of frequency, so that a corresponding accuracy and reliability of the temperature determination is possible.
- the broadband measurement radiation is that a correspondingly few measurement points are sufficient for a reliable temperature determination.
- the measurement points are so far away on the circle radius that a reliable construction of the circle center z. B. is possible by secant formation and establishment of the vertical center line.
- the center of the circle lies at the intersection of the vertical line on the secant.
- the center of the circle can also result from the mean value of the points of intersection of all perpendicular lines on the secants with the axis for the real part of the permittivity.
- the additional information that the center point must lie on the real part axis is used here. It is also possible to fit a circle into all existing measuring points for the permittivity or to calculate approximately. The center point or circle radius is then calculated from this circle.
- the broadband measurement radiation enables measurement points to be recorded which are so far apart on the circle radius that the secants are as long as possible.
- Such methods have the advantage that the entire frequency band does not have to be scanned to map the semicircle, but only a few measuring points from which the circle can then be calculated.
- a frequency band of around 1000 gigahertz is required to image a complete semicircle at 0 ° C.
- measurements in such a broad frequency band require a very high level of technical effort.
- the previously presented method enables a considerably less complex temperature determination, since a narrower band with fewer frequencies to be scanned can be used.
- a reliable temperature determination of water or aqueous treatment items 200 is possible by means of measured values from a frequency band around only 10 gigahertz. Depending on the required accuracy, a lower or a higher frequency range is also possible. The method therefore requires only a correspondingly low level of technical effort, so that it can also be used economically in conventional household appliances.
- Another advantage of viewing in a Cole-Cole diagram is that it is relatively safe to infer the circle from a comparatively small partial circle segment, because it is known that it is a circle and not an ellipse or another indeterminate course of function.
- the reflectometer device 54 can also be designed as a two-port or multi-port reflectometer device 54.
- further transmitting devices 14 or receiving devices 24 can be provided.
- the principle of transmission measurement is also possible. This can be particularly advantageous in the case of certain geometric conditions in the treatment room 3.
- the transmission through the material to be treated 200 also accessible for measurement.
- the scattering parameters S11, the scattering parameters S12, S21 and S22 can also be determined.
- Two or more reflectometer antennas can also be provided for this purpose. If there are more than two antennas, a variant is to operate them in pairs and to determine reflection and transmission for each pair.
- the household appliance 1 shown here can, as an alternative to the reflectometer device 54, also be designed with an ultra-broadband radar device 44, as it is e.g. B. in the Fig. 3 is described.
- the transmitting device 24 is only opened for a specific time window.
- the processing device 5 only takes into account measurement radiation from a specific time window.
- the time window preferably only comprises the duration of the reflex from the material to be treated 200.
- the receiving device 24 or the processing device 5 is synchronized with the transmitting device 14 for generating the pulse.
- Such a method and the domestic appliance 1 designed for such a method enable a very reliable and contactless temperature determination of the item 200 to be treated.
- a particular advantage is that the temperature inside an object or item 200 can be measured without contact. With knowledge of the internal temperature or the volume temperature, the treatment process and the treatment device 2 can be influenced in a particularly targeted manner. For example, the heating source 103 is controlled in such a way that the material to be treated 200 has an optimal temperature for the respective treatment.
- the volume temperature generally correlates very closely with the required cooking time of a product to be cooked. This enables very reliable control of automatic functions.
- the Figure 3 time a household appliance 1 in a highly schematic side view.
- the domestic appliance 1 is designed here as a cooking appliance 100.
- the treatment space 3 is a cooking space 13 and can be heated by a treatment device 2 designed as a thermal heating source 103.
- the heating source 103 is operatively connected to a control device 42 and can through these are regulated.
- the measuring system 4 is provided for determining characteristic parameters of the material to be treated 200 and is designed as an ultra-broadband radar device 44.
- the ultra-wideband radar device 44 here has two antennas 440, 441 opposite one another.
- each antenna comprises a transmitting device 14, 140 and a receiving device 24, 240.
- the antenna 440, 441 can thus work as a transmitter and receiver.
- the bandwidth of the radar is preferably greater than 250 megahertz and preferably greater than 10% of the center frequency of the frequency band used.
- a frequency band which has been released for such ultra-broadband applications is particularly preferably used.
- a particularly preferred frequency range is, for example, from 100 megahertz to 30 gigahertz or even 100 gigahertz.
- the measuring system 4 generates measuring radiation and sends it out into the treatment room 3 and to the item 200 to be treated. A part of the measurement radiation is reflected by the material to be treated 200 and runs back to the antenna 440, 441 from which the measurement radiation was emitted. Another part of the measurement radiation is transmitted by the material to be treated 200 and passed through to the antenna 440, 441 opposite. It is thus possible to detect measurement radiation reflected and transmitted by the item 200 to be treated.
- the measuring system 4 detects at least one characteristic variable for a wave property of the received measuring radiation, such as. B. the amplitude, frequency, phase or polarization or angle of rotation.
- the characteristic parameter of the material to be treated 200 is determined on the basis of the change in the wave property of the received measurement radiation in relation to the transmitted measurement radiation. The change relates in particular to the phase and / or the amplitude and / or other characteristic parameters and can be described, for example, by corresponding scatter parameters.
- the processing device 5 calculates the real part and the imaginary part of the complex permittivity from the recorded wave properties.
- the processing device 5 takes into account the frequency of the transmitted or received measurement radiation, so that the complex permittivity or its real part or imaginary part can be determined as a function of the respective frequency or as a function of the frequency.
- the most varied of characteristic parameters for the material to be treated 200 can be calculated by the processing device 5.
- the outer contour of the item to be treated 200, the temperature distribution or the moisture distribution inside the item to be treated 200, the material composition, the density distribution and numerous other properties of the Items to be treated 200, which can interact with electromagnetic measurement radiation, are shown.
- a wide variety of parameters can be spatially resolved or determined or represented in an integrated manner over the volume of the items to be treated 200. So z. B. from the integral moisture content in the material to be treated 200 over the treatment time of the moisture loss of the material to be treated 200 and thus z. B. the cooking process can be determined.
- the transmission devices 14, 140 of the ultra-wideband radar device 44 are designed here to transmit ultra-short pulses.
- the duration of the pulses is in the picosecond range.
- the pulses have correspondingly steep edges.
- a correspondingly large bandwidth of typically a few GHz and z. B. of 10 or 20 GHz or more can be described.
- the receiving devices 24, 240 are designed to receive the broadband pulses. In this case, the receiving devices 24, 240 only detect the measurement radiation which lies in a specific time window.
- the time window begins at an adjustable time after the transmission pulse has been sent. Such a time window makes it possible to determine from which spatial area of the treatment room 3 or of the item 200 the received measurement signal originates.
- the impulse is influenced by the interaction with the material to be treated 200 in such a way that characteristic wave variables such as the phase or amplitude change.
- the changes are recorded by the measuring system 4 and evaluated by the processing device 5 as a function of time, so that the electrical properties of the item to be treated can be determined in precisely the spatial area from which the received measuring radiation originates.
- the spatial resolution is larger or smaller depending on the frequency bandwidth used for the measurement radiation. If, for example, the spatial resolution is to be less detailed, a lower frequency bandwidth can be used or the spatial information can be averaged.
- the Figure 4 shows a highly schematic representation of a further domestic appliance in a side view.
- the measuring system here has an ultra-wideband radar device 44, which has a pivotable transmitter device 14 and a pivotable receiver device 24.
- the pivoting enables a spatially resolved description of characteristic parameters of the material to be treated 200 with only one transmitting device 14 and one receiving device 24.
- the receiving device 24 is preferably pivoted in a spacing grid along the item 200 to be treated.
- the transmitting device 14 retains its position. At each pivot position of the receiving device 24, measurement radiation is recorded over the entire observed frequency band.
- the receiving device 24 has a time window for the reception of the measurement radiation reflected and transmitted on the item to be treated, which is preferably passed through completely once.
- the transmitting device 14 is then moved, the receiving device 24 being pivoted again along the spacing grid at this new position.
- FIG. 4 shows a further embodiment of a measuring system 4 with an ultra-wideband radar device 44.
- the measuring system presented here is equipped with movable receiving devices 24, 240.
- the transmitting device 14 is pivotable. During a measurement process, the transmitting device 14 assumes a specific pivot position, while the receiving devices 24, 240 are moved along the item 200 to be treated.
- the receiving devices 24, 240 are preferably moved along a predetermined spacing grid. Other combinations of stationary, movable and / or pivotable transmitting devices 14 or receiving devices are also possible.
- a domestic appliance 1 is shown with a measuring system 4 which enables the distribution of the radiation power in the treatment room 3 to be determined. For example, cavity resonances are determined as a function of frequency.
- the treatment space is designed as a cooking space 13.
- the electrical heating device 12 is provided for heating the cooking space 13.
- the heating device 12 has an oscillator device 52 and an amplifier device 62, which together generate and amplify electromagnetic radiation power for heating the cooking space 13.
- the heating device 12 is controlled by a control device 42.
- the measuring system 4 is designed here as an ultra-wideband radar device 44 and has a transmitting device 14, a receiving device 24 and a processing device 5.
- the measuring system 4 works essentially similarly to that in FIG Figure 3
- the measuring system 4 shown here determines a spatial power distribution of electromagnetic radiation on the basis of the change in the wave properties of the received measuring radiation in relation to the transmitted measuring radiation.
- the power of the measurement radiation absorbed by the treatment room 3 and / or by the item 200 to be treated is determined as a function of the frequency.
- the measuring system can also be a Have ultra-wideband radar device 44 or a reflectometer device 54, as previously described.
- the common cavity resonances of the treatment room 3 and the items to be treated 200 can be determined for this frequency.
- the ultrashort pulses emitted as measurement radiation range from picoseconds to nanoseconds or microseconds.
- the frequency bandwidths associated with the Fourier transformation are in particular in the range of a few 10MHz to 1 THz.
- the pulse duration is advantageously selected such that the reflected measuring radiation in the treatment room 3 is not superimposed with the incoming pulse on the way to the receiving device 24.
- the pulse length is selected to be so short that multiple reflections from different areas of the treatment room 3 can be discriminated against reflections on the treatment room 200.
- the time window is preferably set as described above.
- the frequency-dependent difference between the transmitted and received power of the measurement radiation results in cavity resonances at certain frequencies.
- a particularly large amount of radiation power is absorbed by the item 200 and the treatment space 3.
- the treatment room 3 which is usually lined with metal, shows an absorption that is negligible compared to the item 200 to be treated.
- the cavity resonances are interpreted in particular in such a way that they describe the field distribution or the spatial distribution of the electromagnetic power supply within the treatment room and in particular within the item 200 to be treated.
- the cavity resonances therefore decisively determine the temperature distribution in the material to be treated 200.
- the cavity resonances thus described by the measuring system 4 can essentially also be transferred to the radiant power supplied by the heating device 12 into the treatment room 3.
- a prediction can therefore be made as to which cavity resonances will occur when the heating device is active.
- Such a measurement method thus has the advantage that the spatial distribution of the radiant powers that can be supplied by the heating device 12 can be precisely described for a given item 200 in a treatment room 3.
- the power supply to the material to be treated 200 can be specifically influenced, e.g. B. by stirrer or alignment of the material to be treated 200.
- the complex permittivity is preferably determined for each measurement frequency in the frequency band of the ultra-wideband radar device 44.
- the absorption, reflection and transmission of electromagnetic radiation power of the respective frequency can thus be determined for the item 200 to be treated.
- the domestic appliance 1 shown here also has the advantage that the heating device 12 can be controlled in accordance with the previously determined spatial power distribution.
- the oscillator device 52 can be used to generate radiant power with the specific frequency or in a specific frequency range.
- the oscillator device 52 is operatively connected to the control device 42 and can be controlled by it.
- the frequency of the radiant power emitted by the heating device can be set as a function of the power distribution determined by the measuring system or the determined cavity resonances.
- a frequency is selected for which the item to be treated has previously shown a high or low absorption capacity in the measurement run. It is also possible that the heating device 12 emits radiant power at different frequencies over time, so that certain field distributions or cavity resonances can be superimposed one after the other in time. With knowledge of the spatial absorption capacity of the items to be treated 200, it is also possible to supply certain areas of the items to be treated 200 with a high radiation power and to administer a correspondingly low radiation power to other areas. For example, food to be cooked can be heated more intensely in an inner area than in an outer area.
- FIG. 3 shows a domestic appliance 1 embodied as a cooking appliance 100 with a measuring system 4.
- the measuring system 4 essentially corresponds to the measuring system 4, as shown in FIG Figure 6 has been described.
- the heating device 12 here has a transmission device 22.
- the transmission device 22 is connected to the heating device 12 via a waveguide device 72.
- the transmission device 22 is provided here to distribute the electromagnetic radiation power generated by the heating device 12 in the treatment room 3.
- the transmission device 22 can be designed, for example, as a stirrer or impeller or the like.
- metallic conductive sheets are provided, which are moved by a motor and lead to a deflection of the radiation power sent into the treatment room 3.
- different vibration modes or cavity resonances are achieved in the treatment room 3.
- the cooking appliance 100 also has a positioning device 32 here.
- the positioning is designed, for example, as a rotary plate and is used to position or move the items 200 in the treatment room 3.
- the transmission device 22 is operatively connected here to a control device 42, which in turn is operatively connected to the measuring system 4.
- the transmission device 22 can be controlled as a function of the information ascertained by the measuring system.
- the transmission device 22 is preferably aligned in such a way that a desired power supply to the material to be treated 200 is achieved.
- z. B. programs set by the user or other targets are taken into account.
- the change in the cavity resonances in the treatment room 3 after the position of the transmission device 22 has been changed can be monitored by the measuring system 4.
- the measuring system 4 transmits the cavity resonances again when the transmission device 22 has been changed.
- the positioning device 32 can be set as a function of the cavity resonances determined by the measuring system 4.
- different resonances in the treatment room 3 can be realized in a targeted manner in time.
- different spatial distributions for the input of power into the material to be treated 200 can also be implemented.
- the dwell times when approaching a specific cavity resonance are described in particular by a weighted sum. It is determined how long each resonance has to be approached for an optimal result. It can also be determined how the corresponding cavity resonance is to be realized, so z. B. by the positioning device 32 or by a corresponding setting of the transmission device 22.
- the desired cavity resonance can also be approached in that the heating device 12 emits radiant power at a certain frequency, as is the case, for example, for the cooking appliance 100 in FIG Figure 6 has been described.
- the information contained in the weighted sum can preferably have been determined in advance by a simulation or also by experiments.
- This information and other previously determined parameters of a power distribution are preferably stored as reference parameters in a memory device of the domestic appliance 1. When the user selects a corresponding automatic program or another target specification, the reference parameters can then be called up, adapted to the situation.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electric Ovens (AREA)
- Constitution Of High-Frequency Heating (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Hausgerätes nach dem Oberbegriff des Anspruchs 1.The present invention relates to a method for operating a domestic appliance according to the preamble of
Bei der Behandlung von Behandlungsgut in einem Hausgerät wird häufig die Temperatur des Behandlungsgutes oder dessen Umgebung überwacht. Beispielsweise wird in Abhängigkeit der ermittelten Temperatur der Behandlungsvorgang beeinflusst bzw. automatisch gesteuert. Für die Zuverlässigkeit und Funktionalität solcher Automatikfunktionen ist es daher wichtig, zuverlässige Informationen über die im und am Behandlungsgut vorherrschenden Temperaturen zu erhalten. Insbesondere die Verteilung von Wärme- oder Kältezonen bzw. die Temperaturverteilung über das Volumen des Behandlungsgutes stellt hierbei eine besonders hilfreiche Information dar.When treating items in a domestic appliance, the temperature of the items to be treated or its surroundings is often monitored. For example, the treatment process is influenced or automatically controlled as a function of the determined temperature. For the reliability and functionality of such automatic functions, it is therefore important to obtain reliable information about the temperatures prevailing in and on the material to be treated. In particular, the distribution of hot or cold zones or the temperature distribution over the volume of the item to be treated is particularly helpful information.
Im Stand der Technik sind beispielsweise Gargeräte bekannt geworden, bei denen während des Garvorgangs die Temperatur im Inneren des Garguts mit einer Einstechsonde bestimmt wird. Die Verwendung von solchen Einstechsonden ist für den Benutzer jedoch insgesamt unkomfortabel. Bekannt geworden ist auch eine Einstechsonde, die die gemessene Temperatur drahtlos über elektromagnetische Wellen an das Gargerät übermittelt. Die Temperaturbestimmung mit Einstechsonden hat allerdings im Allgemeinen den Nachteil, dass üblicherweise nur an der Stelle der Sonde und somit nur lokal sehr begrenzt gemessen wird. Es liegt daher z. B. keine Information über die Temperatur an der kältesten oder heißesten Stelle im Gargut vor.In the prior art, for example, cooking devices have become known in which the temperature inside the food is determined with a penetration probe during the cooking process. However, the use of such penetration probes is generally uncomfortable for the user. A penetration probe has also become known, which transmits the measured temperature wirelessly to the cooking appliance via electromagnetic waves. However, determining the temperature with penetration probes generally has the disadvantage that measurements are usually only carried out at the point of the probe and therefore only to a very limited extent locally. It is therefore z. B. no information about the temperature at the coldest or hottest point in the food.
Bekannt geworden sind auch Verfahren, bei denen die Temperatur berührungslos an der Oberfläche des Garguts gemessen wird. Solche Messverfahren sind für den Benutzer zwar komfortabler als beispielsweise das Messen mit Einstechsonden, allerdings wird hierbei nicht die Temperatur im Inneren des Garguts erfasst. Daher lässt sich zwar beispielsweise eine Aussage über den Bräunungszustand treffen, eine Aussage über den Garzustand insgesamt kann in der Regel jedoch nicht zuverlässig getroffen werden.Methods have also become known in which the temperature is measured without contact on the surface of the food to be cooked. Such measuring methods are more convenient for the user than, for example, measuring with penetration probes, but the temperature inside the food is not recorded. Therefore, although a statement can be made about the browning state, for example, a statement about the overall cooking state cannot be made reliably as a rule.
Aus der
Die
Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zum Betreiben eines Hausgerätes zur Verfügung zu stellen, welches eine verbesserte berührungslose Temperaturbestimmung insbesondere im Inneren des Behandlungsgutes ermöglicht.It is the object of the present invention to provide a method for operating a domestic appliance which enables an improved contactless temperature determination, in particular inside the item to be treated.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Bevorzugte Merkmale sind Gegenstand der Unteransprüche. Weitere Vorteile und Merkmale ergeben sich aus der allgemeinen Beschreibung der Erfindung und der Beschreibung der Ausführungsbeispiele.This object is achieved by a method having the features of
Das erfindungsgemäße Verfahren dient zum Betreiben eines Hausgerätes. Es ist wenigstens eine Behandlungseinrichtung zur Behandlung von Behandlungsgut in wenigstens einem Behandlungsraum vorgesehen. Es wird mit wenigstens einem Messsystem mit wenigstens einer Verarbeitungseinrichtung die Temperatur wenigstens eines Teils des Behandlungsgutes berührungslos ermittelt. Die Behandlungseinrichtung wird in Abhängigkeit der ermittelten Temperatur gesteuert. Dabei erzeugt das Messsystem wenigstens zeitweise elektromagnetische Messstrahlung. Das Messsystem bringt die Messstrahlung wenigstens zeitweise mit wenigstens einer Sendeeinrichtung in den Behandlungsraum ein. Wenigstens zeitweise wird vom Behandlungsgut beeinflusste und direkt reflektierte Messstrahlung von wenigstens einer Empfangseinrichtung des Messsystems empfangen. Die Messstrahlung weist eine Bandbreite mit wenigstens zwei unterscheidbaren Frequenzen auf. Das Messsystem erfasst wenigstens eine charakteristische Größe für eine Welleneigenschaft der empfangenen Messstrahlung unter Berücksichtigung der Frequenz. Dabei bestimmt die Verarbeitungseinrichtung anhand der Veränderung der Welleneigenschaft der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung wenigstens einen charakteristischen Parameter. Anhand der Frequenzabhängigkeit des Parameters leitet die Verarbeitungseinrichtung die Temperatur ab.The method according to the invention is used to operate a domestic appliance. At least one treatment device is provided for treating items to be treated in at least one treatment room. With at least one measuring system with at least one processing device, the temperature of at least part of the material to be treated is determined without contact. The treatment device is controlled as a function of the determined temperature. The measuring system generates electromagnetic measuring radiation at least at times. The measuring system brings the measuring radiation into the treatment room at least temporarily with at least one transmitting device. At least temporarily, measurement radiation that is directly reflected and influenced by the item to be treated is received by at least one receiving device of the measurement system. The measurement radiation has a bandwidth with at least two distinguishable frequencies. The measuring system detects at least one characteristic variable for a wave property of the received measuring radiation, taking into account the frequency. The processing device determines at least one characteristic parameter on the basis of the change in the wave property of the received measurement radiation in relation to the transmitted measurement radiation. The processing device derives the temperature on the basis of the frequency dependence of the parameter.
Das erfindungsgemäße Verfahren hat viele Vorteile. Ein erheblicher Vorteil ist, dass anhand der der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung wenigstens ein Parameter abgeleitet werden kann, dessen Frequenzabhängigkeit zur Temperaturbestimmung einsetzbar ist. Dadurch kann z. B. die Temperatur im Inneren bzw. über das Volumen des Behandlungsgutes berührungslos und zuverlässig bestimmt werden. Die Temperatur im Inneren ist für den Behandlungsvorgang in der Regel aussagekräftiger als nur die Oberflächentemperatur.The method according to the invention has many advantages. A considerable advantage is that at least one parameter can be derived from the received measurement radiation in relation to the transmitted measurement radiation, the frequency of which can be used to determine the temperature. This allows z. B. the temperature inside or over the volume of the Items to be treated can be determined contactlessly and reliably. The temperature inside is usually more meaningful for the treatment process than just the surface temperature.
Eine solche Temperaturbestimmung ist beispielsweise besonders vorteilhaft beim Zubereiten von Speisen, da die Volumentemperatur meistens eng mit der erforderlichen Garzeit korreliert. Auch eine Verteilung von Wärme- oder Kältezonen im Behandlungsgut kann so ermittelt werden. Vorteilhaft ist auch, dass in Kenntnis der inneren Temperaturbedingungen die Behandlungseinrichtung optimal gesteuert werden kann. Z. B. kann der Fertiggarpunkt eines Bratens anhand der Volumentemperatur erkannt und die Heizquelle entsprechend herunter geregelt oder eine Grillheizquelle zur Bräunung zugeschaltet werden.Such a temperature determination is particularly advantageous when preparing food, for example, since the volume temperature usually correlates closely with the required cooking time. A distribution of hot or cold zones in the item to be treated can also be determined in this way. It is also advantageous that the treatment device can be optimally controlled with knowledge of the internal temperature conditions. For example, the finished cooking point of a roast can be recognized based on the volume temperature and the heating source can be regulated down accordingly or a grill heating source can be switched on for browning.
Die vom Messsystem erfasste Größe beschreibt vorzugsweise eine Welleneigenschaft wie z. B. Phase, Amplitude, Frequenz, Wellenlänge und/oder Polarisation. Möglich sind auch andere in der Hochfrequenztechnik oder Radartechnik übliche Größen zur Erfassung von Signalen. Die vom Messsystem erfasste Größe wird insbesondere als Funktion der Frequenz und/oder als Funktion der Zeit bestimmt.The variable detected by the measuring system preferably describes a wave property such as, for. B. phase, amplitude, frequency, wavelength and / or polarization. Other variables that are customary in high-frequency technology or radar technology for recording signals are also possible. The variable detected by the measuring system is determined in particular as a function of frequency and / or as a function of time.
Die Veränderung der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung wird vorzugsweise durch die Veränderung wenigstens einer der wenigstens einen vom Messsystem erfassten Größe ermittelt. Die Veränderung betrifft insbesondere die Phase und/oder die Amplitude der Messstrahlung. Möglich ist aber auch, dass die Veränderung der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung die Frequenz und/oder die Wellenlänge und/oder die Polarisation und/oder den Drehwinkel oder wenigstens eine andere übliche Größe der Hochfrequenztechnik betrifft. Bevorzugt wird die Veränderung durch wenigstens einen Streuparameter bzw. S-Parameter erfasst und/oder beschrieben. Dabei wird insbesondere die vom Behandlungsgut absorbierte Strahlungsleistung und/oder der entsprechende Streuparameter als Funktion der Frequenz berücksichtigt.The change in the received measuring radiation in relation to the transmitted measuring radiation is preferably determined by changing at least one of the at least one variable detected by the measuring system. The change relates in particular to the phase and / or the amplitude of the measurement radiation. However, it is also possible that the change in the received measurement radiation in relation to the transmitted measurement radiation relates to the frequency and / or the wavelength and / or the polarization and / or the angle of rotation or at least one other common variable in high-frequency technology. The change is preferably detected and / or described by at least one scattering parameter or S-parameter. In particular, the radiation power absorbed by the material to be treated and / or the corresponding scattering parameter is taken into account as a function of the frequency.
Das Behandlungsgut ist vorzugsweise ein Objekt, welches im Wesentlichen zur Behandlung in den Behandlungsraum eingebracht wird. Das kann beispielsweise ein zu reinigendes und/oder zu trocknendes Objekt und/oder ein Gargut bzw. ein zu erwärmendes Objekt sein. Möglich ist aber auch, dass das Behandlungsgut auch und/oder nur zur Bestimmung der Temperatur in den Behandlungsraum eingebracht wird.The item to be treated is preferably an object which is essentially brought into the treatment room for treatment. This can be, for example, an object to be cleaned and / or dried and / or an item to be cooked or an object to be heated. However, it is also possible that the item to be treated is also and / or only introduced into the treatment room to determine the temperature.
Behandlungsgut im Sinne dieser Anmeldung kann auch ein beliebiges Objekt im Behandlungsraum sein, welches insbesondere hilfsweise zusammen mit dem zu behandelnden Objekt in den Behandlungsraum eingebracht wurde, wie z. B. ein Gargefäß, ein Wäscheschutzbeutel oder ein Lösemittel oder dergleichen. Dabei ist es möglich, dass die Temperatur des eigentlichen Behandlungsgutes zusammen mit dem hilfsweise eingebrachten Behandlungsgut und/oder separat von dem hilfsweise eingebrachten Behandlungsgut ermittelt wird.Items to be treated within the meaning of this application can also be any object in the treatment room which, in particular, has been brought into the treatment room together with the object to be treated, such as, for. B. a cooking vessel, a laundry protection bag or a solvent or the like. It is possible that the The temperature of the actual item to be treated is determined together with the item to be treated as an aid and / or separately from the item to be treated as an aid.
Es wird anhand der Veränderung der Welleneigenschaft die komplexe Permittivität und/oder deren Realteil und/oder deren Imaginärteil bestimmt und als Funktion der Frequenz betrachtet. Dabei wird die Temperatur anhand der Frequenzabhängigkeit eines Maximalwerts der Funktion abgeleitet. Es können auch mehrere und/oder andere geeignete Funktionscharakteristika zur Temperaturbestimmung herangezogen werden.Based on the change in the wave property, the complex permittivity and / or its real part and / or its imaginary part is determined and viewed as a function of the frequency. The temperature is derived from the frequency dependence of a maximum value of the function. Several and / or other suitable functional characteristics can also be used to determine the temperature.
Beispielsweise ist die Lage des Maximums im Verlauf der Frequenzabhängigkeit des Imaginärteils von der Temperatur des Objekts abhängig, mit dem die Messstrahlung in Wechselwirkung getreten ist. Insbesondere wandert das Maximum mit zunehmender Temperatur zu höheren Frequenzen. Als weiteres Beispiel ist der Realteil der komplexen Permittivität bei einer Frequenz von 0 Hz temperaturabhängig. Beispielsweise ist auch der Realteil als Funktion der Frequenz, bei dem der entsprechende Imaginärteil ein Maximum annimmt, temperaturabhängig.For example, the position of the maximum in the course of the frequency dependence of the imaginary part depends on the temperature of the object with which the measurement radiation has interacted. In particular, the maximum migrates to higher frequencies with increasing temperature. As a further example, the real part of the complex permittivity is temperature-dependent at a frequency of 0 Hz. For example, the real part as a function of the frequency, at which the corresponding imaginary part assumes a maximum, is also temperature-dependent.
Die komplexe Permittivität und/oder deren Realteil und/oder deren Imaginärteil werden insbesondere anhand wenigstens eines Streuparameters ermittelt. Der Streuparameter wird dabei insbesondere durch die Veränderung der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung als Funktion der Frequenz bestimmt.The complex permittivity and / or its real part and / or its imaginary part are determined in particular using at least one scattering parameter. The scattering parameter is determined in particular by the change in the received measurement radiation in relation to the transmitted measurement radiation as a function of the frequency.
Es ist möglich und bevorzugt, dass die ermittelte Frequenzabhängigkeit der komplexen Permittivität und/oder deren Realteil und/oder deren Imaginärteil mit wenigstens einem in wenigstens einer Speichereinrichtung abgelegten Referenzparameter abgeglichen wird. Dabei beschreibt der Referenzparameter insbesondere die Frequenzabhängigkeit der komplexen Permittivität und/oder deren Realteil und/oder deren Imaginärteil wenigstens eines bekannten Stoffes und/oder Körpers und/oder Materials bei wenigstens einer definierten Temperatur. Insbesondere wird anhand des Abgleichs die Temperatur wenigstens eines Teils des Behandlungsguts bestimmt wird. Dazu ist einem Referenzparameter vorzugsweise wenigstens ein Wert für eine Temperatur und/oder einen Temperaturbereich zugeordnet. Es können zum Abgleich Referenzparameter mit diskreten Werten und/oder gemittelten Werten und/oder Wertebereiche vorgesehen sein. Für den Abgleich kann wenigstens ein mathematisches Näherungsverfahren eingesetzt werden. Möglich ist auch, dass der Abgleich wenigstens teilweise dynamisch angepasst wird und/oder einer künstlichen Lernfähigkeit unterliegt.It is possible and preferred that the determined frequency dependency of the complex permittivity and / or its real part and / or its imaginary part is compared with at least one reference parameter stored in at least one storage device. The reference parameter describes in particular the frequency dependence of the complex permittivity and / or its real part and / or its imaginary part of at least one known substance and / or body and / or material at at least one defined temperature. In particular, the temperature of at least part of the material to be treated is determined on the basis of the comparison. For this purpose, at least one value for a temperature and / or a temperature range is preferably assigned to a reference parameter. Reference parameters with discrete values and / or averaged values and / or value ranges can be provided for comparison. At least one mathematical approximation method can be used for the comparison. It is also possible that the comparison is at least partially adapted dynamically and / or is subject to an artificial learning ability.
Vorzugsweise beschreibt der Referenzparameter die Frequenzabhängigkeit der komplexen Permittivität und/oder deren Realteil und/oder deren Imaginärteil wenigstens eines Referenzbehandlungsgutes. Das Referenzbehandlungsgut weist dabei insbesondere eine mit dem Behandlungsgut vergleichbare stoffliche und/oder materielle Zusammensetzung auf. Ein für den Abgleich geeigneter Referenzparameter kann auch in Abhängigkeit einer bereits für das Behandlungsgut ermittelten Temperatur oder sonstigen Eigenschaft zugeordnet werden. Möglich ist auch eine Zuordnung eines Referenzparameters anhand einer Voreinstellung des Benutzers, z. B. durch Auswahl einer Kategorie von Behandlungsgütern.The reference parameter preferably describes the frequency dependency of the complex permittivity and / or its real part and / or its imaginary part at least one Reference goods to be treated. The reference item to be treated has in particular a material and / or material composition that is comparable to the item to be treated. A reference parameter suitable for the comparison can also be assigned as a function of a temperature or other property that has already been determined for the item to be treated. It is also possible to assign a reference parameter based on a preset by the user, e.g. B. by selecting a category of items to be treated.
Bevorzugt ist auch, dass der Realteil und der Imaginärteil der komplexen Permittivität als Ortskurve in der gaußschen Zahlenebene als Funktion der Frequenz und/oder in einem Cole-Cole-Diagramm betrachtet werden, sodass ein Kreisbogen mit einem Mittelpunkt auf der Achse für den Realteil beschreibbar ist. Vorzugsweise wird dabei anhand des Kreismittelpunkts und/oder des Kreisradius die Temperatur ermittelt. Eine solche Betrachtung hat den Vorteil, dass die einem gemeinsamen Temperaturbereich zugehörigen Werte des Realteils und des Imaginärteils im Wesentlichen auf einem Kreisbogen liegen. Dadurch ist eine unaufwendige und zugleich zuverlässige Zuordnung von Temperaturwerten möglich. Die Betrachtung kann dabei rechnerisch und/oder grafisch erfolgen.It is also preferred that the real part and the imaginary part of the complex permittivity are viewed as a locus in the Gaussian plane as a function of frequency and / or in a Cole-Cole diagram, so that the real part can describe an arc with a center point on the axis . The temperature is preferably determined on the basis of the center of the circle and / or the radius of the circle. Such a consideration has the advantage that the values of the real part and the imaginary part belonging to a common temperature range essentially lie on an arc of a circle. This enables an inexpensive and at the same time reliable assignment of temperature values. The observation can be done arithmetically and / or graphically.
Dabei ist es möglich, dass die Beschreibung des Kreisbogens wenigstens ein mathematisches Näherungsverfahren umfasst, wie z. B. eine Interpolation und/oder eine Extrapolation. Beispielsweise kann auch ein Kreisbogen in die Werte der komplexen Permittivität gefittet werden, wobei aus dem Kreisbogen Kreismittelpunkt und Kreisradius berechnet werden. Möglich ist auch, dass der Kreismittelpunkt durch Bildung von Sekanten und/oder Mittelsenkrechten berechnet wird. Dabei kann berücksichtigt werden, dass der Kreismittelpunkt auf der Achse für den Realteil liegt.It is possible that the description of the circular arc includes at least one mathematical approximation method, such as, for. B. an interpolation and / or an extrapolation. For example, an arc of a circle can also be fitted into the values of the complex permittivity, with the center of the circle and the radius of the circle being calculated from the arc. It is also possible that the center of the circle is calculated by forming secants and / or perpendicular lines. It can be taken into account that the center of the circle lies on the axis for the real part.
Es ist ebenfalls bevorzugt, dass der Radius des Kreisbogens mit wenigstens einem in wenigstens einer Speichereinrichtung abgelegten Referenzwert wenigstens eines bekannten Stoffes und/oder Körpers bei wenigstens einer definierten Temperatur abgeglichen wird. Möglich ist auch, dass die Position der Kreismitte auf der Achse für den Realteil mit wenigstens einem in wenigstens einer Speichereinrichtung abgelegten Referenzwert wenigstens eines bekannten Stoffes und/oder Körpers bei wenigstens einer definierten Temperatur abgeglichen wird. Vorzugsweise beschreibt der Referenzwert den Radius und/oder die Position der Kreismitte wenigstens eines mit dem Behandlungsgut vergleichbaren Referenzbehandlungsgutes. Der Abgleich erfolgt vorzugsweise ähnlich wie der zuvor beschriebene Abgleich mit dem Referenzparameter.It is also preferred that the radius of the circular arc is compared with at least one reference value stored in at least one storage device of at least one known substance and / or body at at least one defined temperature. It is also possible that the position of the center of the circle on the axis for the real part is compared with at least one reference value of at least one known substance and / or body at at least one defined temperature stored in at least one storage device. The reference value preferably describes the radius and / or the position of the center of the circle of at least one reference item to be treated which is comparable to the item to be treated. The adjustment is preferably carried out in a similar way to the adjustment with the reference parameter described above.
Die Messstrahlung wird vorzugsweise wiederholt ausgesendet. Insbesondere wird die Messstrahlung vor der Behandlung und/oder während der Behandlung und/oder nach der Behandlung des Behandlungsgutes ausgesendet. Bevorzugt wird nach dem jeweiligen Aussenden der Messstrahlung die vom Behandlungsgut beeinflusste und direkt reflektierte Messstrahlung von der Empfangseinrichtung wieder empfangen. Zudem wird vorzugsweise nach dem jeweiligen Aussenden bzw. Empfangen die Temperatur des Behandlungsguts ermittelt. Bevorzugt sendet die Sendeeinrichtung die Messstrahlung zum Behandlungsgut, sodass das Behandlungsgut mit der Messstrahlung beaufschlagt wird. Das hat den Vorteil, dass die Behandlungseinrichtung durch Berücksichtigung der Temperatur auf das jeweilige Behandlungsgut optimal eingestellt werden kann. Bevorzugt ist auch, dass während des Behandlungsvorgangs wiederholt Messstrahlung ausgesendet und die Temperatur ermittelt werden. Daran ist vorteilhaft, dass Temperaturveränderungen des Behandlungsguts während bzw. aufgrund der Behandlung erkannt werden und die Behandlungseinrichtung entsprechend angepasst werden kann.The measuring radiation is preferably emitted repeatedly. In particular, the measurement radiation is emitted before the treatment and / or during the treatment and / or after the treatment of the item to be treated. Is preferred according to the respective Emission of the measurement radiation, the directly reflected measurement radiation influenced by the item to be treated is received again by the receiving device. In addition, the temperature of the item to be treated is preferably determined after the respective sending or receiving. The transmitting device preferably sends the measuring radiation to the item to be treated, so that the measuring radiation is applied to the item to be treated. This has the advantage that the treatment device can be optimally adjusted to the particular item to be treated by taking the temperature into account. It is also preferred that measuring radiation is repeatedly emitted during the treatment process and the temperature is determined. This is advantageous in that changes in temperature of the items to be treated are recognized during or due to the treatment and the treatment device can be adapted accordingly.
Bevorzugt umfasst die Messstrahlung wenigstens zwei sich um wenigstens 100 MHz unterscheidende Frequenzen zwischen 10 Megahertz und 1 Terahertz. Vorzugsweise sind mehrere und insbesondere eine Vielzahl von verschiedenen Frequenzen vorgesehen. Dabei können auch Frequenzen und/oder Frequenzintervalle vorgesehen sein, welche aneinandergrenzen und/oder sich wenigstens teilweise überlappen.The measuring radiation preferably comprises at least two frequencies between 10 megahertz and 1 terahertz which differ by at least 100 MHz. Preferably, several and in particular a large number of different frequencies are provided. In this case, frequencies and / or frequency intervals can also be provided which border one another and / or at least partially overlap.
Die Messstrahlung kann eine Frequenzbreite von wenigstens 10 % der Mittenfrequenz des eingesetzten Frequenzbandes aufweisen. Möglich ist auch eine Frequenzbreite von mindestens 10 % des arithmetischen Mittelwertes von unterer und oberer Grenzfrequenz des genutzten Frequenzbandes. Bevorzugt ist eine Frequenzbreite von mindestens 20 % des entsprechenden arithmetischen Mittelwertes. Die Frequenzbreite umfasst insbesondere wenigstens 250 Megahertz und vorzugsweise wenigstens 500 Megahertz und/oder wenigstens ein Gigahertz und/oder wenigstens 5 Gigahertz und besonders bevorzugt mehr als 10 Gigahertz. Möglich sind auch 20 Gigahertz oder mehr.The measurement radiation can have a frequency width of at least 10% of the center frequency of the frequency band used. A frequency width of at least 10% of the arithmetic mean of the lower and upper limit frequency of the frequency band used is also possible. A frequency width of at least 20% of the corresponding arithmetic mean is preferred. The frequency width comprises in particular at least 250 megahertz and preferably at least 500 megahertz and / or at least one gigahertz and / or at least 5 gigahertz and particularly preferably more than 10 gigahertz. 20 gigahertz or more are also possible.
Die Frequenzen liegen vorzugsweise in einem Frequenzband mit einer Bandbreite, die breiter ist als das ISM-Band eines üblichen Mikrowellengargerätes (ca. 2,4 GHz - 2,5 GHz). Möglich sind auch mehrere Bänder. Insbesondere sind dabei wenigstens zwei Bänder vorgesehen, deren Mittenfrequenzen einen Abstand von wenigstens einem Gigahertz und insbesondere wenigstens fünf Gigahertz und vorzugsweise 10 oder mehr Gigahertz aufweisen.The frequencies are preferably in a frequency band with a bandwidth that is wider than the ISM band of a conventional microwave oven (approx. 2.4 GHz - 2.5 GHz). Multiple bands are also possible. In particular, at least two bands are provided, the center frequencies of which are spaced apart by at least one gigahertz and in particular at least five gigahertz and preferably 10 or more gigahertz.
Die Sendeinrichtung und/oder die Empfangseinrichtung können zum Senden bzw. Empfangen wenigstens eine für die jeweilige Frequenzbreite geeignete Antenneneinrichtung aufweisen.The transmitting device and / or the receiving device can have at least one antenna device suitable for the respective frequency width for transmitting or receiving.
Möglich ist auch eine Antenneneinrichtung, welche als Sendeinrichtung und als Empfangseinrichtung betrieben wird. Die Antenneneinrichtung kann eine oder zwei oder mehrere Antennen zum Senden und/oder Empfangen umfassen. Es kann auch wenigstens ein Antennenarray vorgesehen sein, wobei die einzelnen Antenneneinheiten einzelne Bänder bzw. Bandbereiche abdecken und vorzugsweise parallel betrieben werden.An antenna device which is operated as a transmitting device and as a receiving device is also possible. The antenna device can comprise one or two or more antennas for transmitting and / or receiving. There can be at least one Antenna array can be provided, the individual antenna units covering individual bands or band areas and preferably being operated in parallel.
Erfindungsgemäß ist das Messsystem als ein Ultrabreitband-System ausgelegt, welches zum Senden und Empfangen von ultrabreitbandigen Signalen ausgebildet ist und als ein solches betrieben wird. Möglich ist auch eine Ultrabreitbandradareinrichtung. Die Vorteile eines solchen breitbandigen Messsystems gegenüber einer schmalbandigen Technik sind, dass eine sehr gut aufgelöste spektrale Information verfügbar ist, mittels der das Behandlungsgut entsprechend genau charakterisiert werden kann. Dabei kann die eingesetzte bzw. erzeugte Frequenzbreite einstellbar sein. So kann die Auflösung der ermittelten Temperatur erhöht oder reduziert werden, je nachdem, wie detailliert die Information für die Steuerung der Behandlungseinrichtung sein soll.According to the invention, the measuring system is designed as an ultra-broadband system which is designed to transmit and receive ultra-broadband signals and is operated as such. An ultra-wideband radar device is also possible. The advantages of such a broadband measuring system compared to narrowband technology are that very well resolved spectral information is available, by means of which the item to be treated can be characterized accordingly and precisely. The frequency width used or generated can be adjustable. The resolution of the determined temperature can thus be increased or reduced, depending on how detailed the information for the control of the treatment device should be.
Bevorzugt ist auch, dass die Sendeinrichtung die Messstrahlung wenigstens zeitweise als wenigstens einen Impuls mit einer Impulsdauer kürzer als eine Nanosekunde aussendet. Die Impulsdauer ist vorzugsweise im Bereich von hundert oder weniger Picosekunden. Möglich ist auch eine Impulsdauer von einigen Picosekunden oder weniger als eine Picosekunde. Insbesondere ist die Impulsdauer so kurz bemessen, dass die Messstrahlung ein möglichst breites Frequenzspektrum gemäß entsprechender Fouriertransformation umfasst. Dabei soll insbesondere eine der zuvor beschriebenen Frequenzbreiten erreicht werden. Es kann ein tatsächlicher Puls direkt erzeugt werden. Der Puls kann aber auch durch ein Abscannen eines geeigneten Frequenzspektrums mit entsprechender Fouriertransformation gebildet werden.It is also preferred that the transmission device transmits the measurement radiation at least temporarily as at least one pulse with a pulse duration shorter than one nanosecond. The pulse duration is preferably in the range of a hundred or less picoseconds. A pulse duration of a few picoseconds or less than one picosecond is also possible. In particular, the pulse duration is designed to be so short that the measurement radiation comprises as broad a frequency spectrum as possible in accordance with a corresponding Fourier transformation. In particular, one of the frequency ranges described above should be achieved. An actual pulse can be generated directly. The pulse can, however, also be formed by scanning a suitable frequency spectrum with a corresponding Fourier transformation.
Möglich ist auch, dass das Messsystem wenigstens teilweise als ein Reflektometer ausgebildet ist bzw. als ein solches betrieben wird. Dabei kann wenigstens eine Sendeeinrichtung und/oder wenigstens eine Empfangseinrichtung als Reflektometer ausgebildet sein oder ein solches umfassen. Das Reflektometer kann als ein Eintor-Refektometer ausgebildet sein, bei welchen die Sendeeinrichtung und die Empfangseinrichtung in einer gemeinsamen Reflektometer-Antenneneinrichtung zusammengefasst sind. Möglich ist auch ein Zweitor-Reflektometer oder ein Mehrtor-Reflektometer. Das Reflektometer kann zur Messung der vom Behandlungsgut reflektierten Messstrahlung und/oder zur Messung der vom Behandlungsgut transmittierten Messstrahlung eingesetzt werden. Dabei werden insbesondere entsprechende weitere Streuparameter als Funktion der Frequenz bestimmt. Das hat den Vorteil, dass vielfältige und gut aufgelöste Informationen über das Behandlungsgut erhalten werden.It is also possible that the measuring system is at least partially designed as a reflectometer or is operated as such. At least one transmitting device and / or at least one receiving device can be designed as a reflectometer or comprise such a device. The reflectometer can be designed as a one-port refectometer in which the transmitting device and the receiving device are combined in a common reflectometer antenna device. A two-port reflectometer or a multi-port reflectometer is also possible. The reflectometer can be used to measure the measurement radiation reflected from the item to be treated and / or to measure the measurement radiation transmitted by the item to be treated. In particular, corresponding further scatter parameters are determined as a function of the frequency. This has the advantage that diverse and well-resolved information about the item to be treated is obtained.
Besonders bevorzugt ist, dass die von der Empfangseinrichtung empfangene Messstrahlung durch die Verarbeitungseinrichtung analysiert wird und dass dabei die Messstrahlung berücksichtigt wird, welche während eines definierten Zeitfensters empfangen wird. Dabei ist insbesondere der Beginn des Zeitfensters wenigstens teilweise vom Zeitpunkt des Aussendens der Messstrahlung abhängig. Beispielsweise ist die Empfangseinrichtung mit der Sendeinrichtung synchronisiert. Insbesondere wird im Wesentlichen nur die Messstrahlung berücksichtigt wird, welche während eines definierten Zeitfensters empfangen wird. Die vom Messsystem erfasste Größe wird dabei insbesondere als Funktion der Zeit bestimmt.It is particularly preferred that the measurement radiation received by the receiving device is analyzed by the processing device and that the measurement radiation that is received during a defined time window is taken into account. It is in particular, the start of the time window is at least partially dependent on the time at which the measurement radiation is transmitted. For example, the receiving device is synchronized with the transmitting device. In particular, essentially only the measurement radiation that is received during a defined time window is taken into account. The variable detected by the measuring system is determined in particular as a function of time.
Die Dauer und/oder der Beginn des Zeitfensters sind insbesondere einstellbar. Besonders bevorzugt ist das Zeitfenster so eingestellt, dass im Wesentlichen nur die vom Behandlungsgut reflektierte und/oder transmittierte Messstrahlung detektiert wird. Die Einstellung erfolgt vorzugsweise durch das Messsystem bzw. die Verarbeitungseinrichtung. Das Zeitfenster kann auch in Abhängigkeit von dem Sendezeitpunkt des Impulses und/oder von der Impulsdauer eingestellt werden. Die Einstellung kann auch in Abhängigkeit bereits empfangener Messstrahlung erfolgen. Das Zeitfenster beginnt bevorzugt nach dem Aussenden des Impulses. Die Dauer des Zeitfensters ist insbesondere so gewählt, dass auch kurze oder ultrakurze Impulse zur Auswertung herangezogen werden können.The duration and / or the beginning of the time window can in particular be set. The time window is particularly preferably set in such a way that essentially only the measurement radiation reflected and / or transmitted by the item to be treated is detected. The setting is preferably made by the measuring system or the processing device. The time window can also be set as a function of the transmission time of the pulse and / or of the pulse duration. The setting can also be made depending on the measurement radiation that has already been received. The time window preferably begins after the pulse has been transmitted. The duration of the time window is selected in particular so that short or ultra-short pulses can also be used for the evaluation.
Eine solche Weiterbildung hat den Vorteil, dass durch die Wahl des Zeitfensters bestimmt werden kann, aus welchem räumlichen Gebiet bzw. aus welcher Entfernung die empfangene Messstrahlung stammt. So kann die aus dem Messsignal ermittelte Temperatur beispielsweise einem bestimmten Bereich des Behandlungsgutes zugeordnet werden. Möglich ist auch, dass Temperaturwerte des Behandlungsguts als eine räumliche Verteilung bestimmt werden. Dabei kann die räumliche Verteilung der Temperatur grafisch und/oder als Bild dargestellt werden. Dabei können durch das Messsystem auch ortsaufgelöste und/oder dreidimensionale Informationen des Behandlungsguts bestimmt werden. Ein weiterer Vorteil ist, dass mit einem entsprechend kurzen Zeitfenster eine ortsaufgelöste Analyse des Behandlungsguts auch in einem entsprechend kleinen Behandlungsraum möglich ist.Such a development has the advantage that the selection of the time window can determine from which spatial area or from which distance the received measurement radiation originates. For example, the temperature determined from the measurement signal can be assigned to a specific area of the item to be treated. It is also possible that temperature values of the items to be treated are determined as a spatial distribution. The spatial distribution of the temperature can be displayed graphically and / or as an image. The measuring system can also determine spatially resolved and / or three-dimensional information about the item to be treated. Another advantage is that, with a correspondingly short time window, a spatially resolved analysis of the items to be treated is possible even in a correspondingly small treatment room.
Möglich ist, dass wenigstens teilweise vom Behandlungsgut beeinflusste und transmittierte Messstrahlung empfangen wird. Die Verwendung von vom Behandlungsgut transmittierter und reflektierter Messstrahlung für die Ermittlung der Temperatur ermöglicht eine noch detaillierte Beschreibung des Behandlungsgutes. Dabei ist insbesondere wenigstens eine weitere Empfangseinrichtung und/oder wenigstens eine weitere Sendeeinrichtung vorgesehen. Es können auch Sendeeinrichtungen und Empfangseinrichtungen paarweise betrieben werden, wobei für wenigstens ein Paar vom Behandlungsgut transmittierte und reflektierte Messstrahlung erfasst wird.It is possible that measurement radiation that is at least partially influenced and transmitted by the item to be treated is received. The use of measurement radiation transmitted and reflected by the item to be treated for determining the temperature enables a more detailed description of the item to be treated. In particular, at least one further receiving device and / or at least one further transmitting device is provided. Transmitting devices and receiving devices can also be operated in pairs, with measurement radiation transmitted and reflected by the material to be treated being recorded for at least one pair.
Es können beispielsweise eine Sendeeinrichtung und zwei Empfangseinrichtungen vorgesehen sein, wobei die eine Empfangseinrichtung im Wesentlichen für die vom Behandlungsgut reflektierte Messstrahlung und die andere Empfangseinrichtung im Wesentlichen für die vom Behandlungsgut transmittierte Messstrahlung vorgesehen ist. Möglich ist aber auch, dass zwei Sendeeinrichtungen und eine Empfangseinrichtung vorgesehen sind. Dabei ist die eine Sendeeinrichtung insbesondere so angeordnet, dass ihre Messstrahlung nach Reflexion vom Behandlungsgut auf die Empfangseinrichtung trifft. Die andere Sendeeinrichtung ist insbesondere so angeordnet, dass ihre Messstrahlung nach Transmission durch das Behandlungsgut auf die Empfangseinrichtung trifft.For example, one transmitting device and two receiving devices can be provided, the one receiving device essentially for the items to be treated reflected measuring radiation and the other receiving device is essentially provided for the measuring radiation transmitted by the material to be treated. However, it is also possible for two transmitting devices and one receiving device to be provided. One of the transmitting devices is arranged in such a way that its measurement radiation hits the receiving device after being reflected from the material to be treated. The other transmitting device is arranged in particular in such a way that its measuring radiation hits the receiving device after transmission through the material to be treated.
In den Figuren zeigen:
Figur 1- eine stark schematisierte Darstellung eines Hausgeräts in einer perspektivischen Ansicht;
Figur 2- eine stark schematisierte Darstellung eines Hausgeräts mit einem Messsystem in einer geschnittenen Seitenansicht;
Figur 3- ein weiteres Hausgerät mit einem Messsystem in einer geschnittenen Seitenansicht;
Figur 4- ein anderes Hausgerät mit einem Messsystem in einer geschnittenen Seitenansicht;
Figur 5- noch ein weiteres Hausgerät mit einem Messsystem in einer geschnittenen Seitenansicht;
Figur 6- eine weitere Ausgestaltung eines Hausgeräts mit einem Messsystem in einer geschnittenen Seitenansicht; und
- Fig. 7
- noch eine weitere Ausgestaltung eines Hausgeräts mit einem Messsystem in einer geschnittenen Seitenansicht.
- Figure 1
- a highly schematic representation of a household appliance in a perspective view;
- Figure 2
- a highly schematic representation of a domestic appliance with a measuring system in a sectional side view;
- Figure 3
- a further domestic appliance with a measuring system in a sectional side view;
- Figure 4
- another household appliance with a measuring system in a sectional side view;
- Figure 5
- yet another household appliance with a measuring system in a sectional side view;
- Figure 6
- a further embodiment of a household appliance with a measuring system in a sectional side view; and
- Fig. 7
- yet another embodiment of a domestic appliance with a measuring system in a sectional side view.
Die
Die Heizeinrichtung 12 ist zur dielektrischen Erwärmung vom Behandlungsgut 200 vorgesehen und hier als eine Mikrowellenheizquelle ausgebildet. Der Garraum 13 ist durch eine Tür 104 verschließbar. Dabei ist eine hier nicht gezeigte Sicherheitseinrichtung vorgesehen, welche einen Betrieb der Heizeinrichtung 12 bei geöffneter Tür verhindert, sodass einem Austreten von Mikrowellenstrahlung entgegengewirkt wird. Zum Beheizen des Garraums 104 können weitere Heizquellen, wie beispielsweise ein Oberhitzeheizkörper und ein Unterhitzeheizkörper oder eine Dampfheizquelle oder dergleichen vorgesehen sein.The
Das Gargerät 100 ist über eine Bedieneinrichtung 6 bedienbar. Dabei kann beispielsweise die Temperatur im Garraum 13 während des Behandlungsvorgangs eingestellt werden.The
Vorzugsweise können auch verschiedene andere Programmbetriebsarten und Automatikfunktionen eingestellt werden. Möglich ist auch eine Bedienung über eine berührungsempfindliche Oberfläche oder über einen Touchscreen oder aus der Ferne über einen Computer, ein Smartphone oder dergleichen.Various other program operating modes and automatic functions can preferably also be set. Operation via a touch-sensitive surface or via a touchscreen or remotely via a computer, smartphone or the like is also possible.
Weiterhin weist das Hausgerät 1 ein hier stark schematisiert dargestelltes Messsystem 4 auf. Das Messsystem 4 ist zur berührungslosen Ermittlung verschiedener charakteristischer Kenngrößen des Behandlungsguts 200 vorgesehen. Dabei wird die Behandlungseinrichtung 2 in Abhängigkeit der ermittelten Kenngrößen gesteuert. Eine Kenngröße kann beispielsweise die Innentemperatur des Behandlungsguts 200 sein. Das Messsystem 4 kann z. B. auch die Verteilung von Resonanzmoden bei bestimmten Frequenzen im Behandlungsraum ermitteln.The
Das Messsystem 4 umfasst eine Sendeeinrichtung 14, eine Empfangseinrichtung 24, eine Verarbeitungseinrichtung 5 sowie eine Speichereinrichtung 7. Die Sendeeinrichtung 14 ist dazu geeignet und ausgebildet, elektromagnetische Messstrahlung zu erzeugen und in den Behandlungsraum zu senden. Dabei wechselwirkt wenigstens ein Teil der Messstrahlung mit dem hier nicht dargestellten Behandlungsgut 200 und wird von diesem wieder reflektiert. Die reflektierte Messstrahlung wird von der Empfangseinrichtung 24 empfangen.The measuring
Dabei wird von dem Messsystem 4 wenigstens eine charakteristische Größe für eine Welleneigenschaft der empfangenen Messstrahlung erfasst. Es wird beispielsweise die Amplitude, Frequenz, Phase oder Polarisation bzw. Drehwinkel als Welleneigenschaft erfasst. Die Verarbeitungseinrichtung 5 ermittelt anschließend aus der Veränderung der Welleneigenschaft der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung die charakteristischen Kenngrößen des Behandlungsguts 200. Die jeweiligen Welleneigenschaften der ausgesendeten Messstrahlung können dabei als entsprechende Referenzwerte in der Verarbeitungseinrichtung 5 abgelegt sein oder beim Aussenden vom Messsystem 4 erfasst worden sein.At least one characteristic variable for a wave property of the received measuring radiation is detected by the measuring
Die ermittelten Kenngrößen werden bei der Behandlung des Behandlungsguts 200 berücksichtigt. Dabei wird die Behandlungseinrichtung 2 in Abhängigkeit der ermittelten Kenngrößen gesteuert. Vorzugsweise ist die Behandlungseinrichtung 2 dabei mit dem Messsystem 4 wirkverbunden. Dabei ist möglich, dass weitere hier nicht gezeigte Steuereinrichtungen vorgesehen sind. Beispielsweise kann als Kenngröße die Temperatur im Inneren des Behandlungsguts 200 ermittelt werden. In Abhängigkeit dieser Temperatur kann dann die Heizleistung der thermischen Heizquelle 103 entsprechend eingestellt werden.The determined parameters are taken into account in the treatment of the
Ist das Behandlungsgut 200 beispielsweise ein Bratenstück, wird die Heizleistung der Heizquelle 103 so geregelt, dass im Garraum 13 optimale Temperaturbedingungen für das Garen des Bratenstücks vorherrschen. Bei der Steuerung des Behandlungsvorgangs unter Berücksichtigung der ermittelten Kenngrößen können zudem auch vom Benutzer vorgegebene Zielparameter berücksichtigt werden. Im Beispiel des Bratenstücks kann der Benutzer z. B. vorgeben, ob er eine besonders knusprige Bratenkruste wünscht. In diesem Fall wird die Temperatur der thermischen Heizquelle 103 hochgeregelt oder eine Grillheizquelle zugeschaltet, wenn das Messsystem 4 eine Temperatur im Inneren des Bratenstücks feststellt, die einem Fertiggarpunkt entspricht.If the item to be treated 200 is a roast, for example, the heating power of the
In der
Die Reflektometereinrichtung 54 ist hier zudem als ein Breitbandradarreflektometer ausgebildet. Dazu wird elektromagnetische Messstrahlung erzeugt und gesendet, die vorzugsweise in einem Frequenzband liegt, welches mindestens 10 Gigahertz breit ist. Beispielsweise ist das Frequenzband hier 15 Gigahertz oder 20 Gigahertz oder mehr breit. Dabei umfasst die Messstrahlung wenigstens zwei Frequenzen und vorzugsweise eine Vielzahl von Frequenzen. Wenigstens zwei der Frequenzen unterscheiden sich um wenigstens 100 Gigahertz oder mehr. Vorzugsweise kann die Messstrahlung auch eine Frequenzbreite von 10 % oder mehr der Mittelfrequenz des eingesetzten Frequenzbandes aufweisen.The
Die Messstrahlung wird von der Sendeeinrichtung 14 in den Behandlungsraum 3 gesendet. Im Behandlungsraum 3 wechselwirkt die Messstrahlung unter anderem mit dem Behandlungsgut 200 und wird von diesem reflektiert. Die reflektierte Messstrahlung wird von der Empfangseinrichtung 24 erfasst. Dabei werden hier zwei unabhängige Größen gemessen, z. B. Betrag und Phase. Die Verarbeitungseinrichtung 5 bestimmt anhand der erfassten Größen die Frequenzabhängigkeit des Verhältnisses von in den Behandlungsraum 3 gesendeter Strahlungsleistung zu reflektierter Strahlungsleistung. Die Messgrößen können beispielsweise mit dem Streuparameter S11 bezeichnet werden, wie sie auch bei Vektornetzwerkanalysatoren bekannt sind.The measuring radiation is sent from the
Die Verarbeitungseinrichtung 5 berechnet aus dem gemessenen, frequenzabhängigen Streuparameter S11 (als komplexe Zahlen, enthalten zwei unabhängige Messgrößen) für jede Messfrequenz zunächst die Realteil-Komponenten sowie die Imaginärteil-Komponenten der komplexen Permittivität Epsilon. Dabei lässt sich das komplexe S11 in komplexes Epsilon umrechnen. Die Permittivität beschreibt dabei die Eigenschaften des Materials in Wechselwirkung mit der Messstrahlung für das Behandlungsgut 200, an welchem die Messstrahlung reflektiert wurde. Diese Wechselwirkung ist unter anderen von der Temperatur des Behandlungsgutes 200 abhängig, was vorteilhaft zur Temperaturbestimmung einsetzbar ist.The
Zur Temperaturbestimmung des Behandlungsguts 200 werden der Realteil und der Imaginärteil der komplexen Permittivität von der Verarbeitungseinrichtung 5 rechnerisch in einem Cole-Cole-Diagramm betrachtet. Dadurch ist ein Kreisbogen mit einem Mittelpunkt auf der Achse für den Realteil beschreibbar. Die Temperatur des Behandlungsgutes 200 ergibt sich dabei aus dem Kreisradius oder der Position der Kreismitte auf der Realteilachse.To determine the temperature of the material to be treated 200, the real part and the imaginary part of the complex permittivity are computationally considered by the
Anschließend werden die Werte für Kreisradius oder Kreismitte von der Verarbeitungseinrichtung 5 mit entsprechenden Referenzwerten verglichen, welche in der Speichereinrichtung 7 des Messsystems 4 abgelegt sind. Der Referenzwert ist beispielsweise ein Wert für den Radius des Kreisbogens oder der Position der Kreismitte auf der Realteilachse eines bekannten Stoffes bei definierten Temperaturen. Möglich sind auch Referenzwerte, welche durch Messung von definierten Behandlungsgütern oder durch entsprechende Simulationen gewonnen worden sind. Ist das Behandlungsgut 200 beispielsweise ein Lebensmittel, liefern aufgrund des typischen Wassergehalts von Lebensmitteln Referenzwerte für Wasser oder wasserhaltige Objekte entsprechend vergleichbare Ergebnisse für die Temperaturbestimmung.The values for the radius or center of the circle are then compared by the
Für die Bestimmung des Kreisradius oder des Kreismittelpunktes ist es vorteilhaft, dass die entsprechenden Messpunkte für die Permittivität möglichst weit auf dem Kreisradius entfernt liegen. Die hier vorgestellten Verfahren sowie die Hausgeräte sind dabei besonders vorteilhaft, weil ein Breitbandradarreflektometer oder ultrabreitbandige Radare eingesetzt werden. Die dabei eingesetzte breitbandige Messstrahlung ermöglicht, dass die entsprechenden Messpunkte für die Permittivität frequenzmäßig weit auseinanderliegen, sodass eine entsprechende Genauigkeit und Zuverlässigkeit der Temperaturbestimmung möglich ist.For the determination of the circle radius or the circle center point it is advantageous that the corresponding measurement points for the permittivity are as far away as possible on the circle radius. The methods presented here as well as the household appliances are particularly advantageous because a broadband radar reflectometer or ultra-broadband radars are used. The broadband measurement radiation used here enables the corresponding measurement points for the permittivity to be far apart in terms of frequency, so that a corresponding accuracy and reliability of the temperature determination is possible.
Ein weiterer Vorteil der breitbandigen Messstrahlung ist, dass entsprechend wenige Messpunkte für eine zuverlässige Temperaturbestimmung ausreichen. Bei einer breitbandigen Messstrahlung liegen die Messpunkte auf dem Kreisradius soweit entfernt, dass eine zuverlässige Konstruktion des Kreismittelpunktes z. B. durch Sekantenbildung und Errichtung der Mittelsenkrechte möglich ist. Der Kreismittelpunkt liegt dabei im Schnittpunkt der Mittelsenkrechten auf der Sekante. Der Kreismittelpunkt kann sich auch aus dem Mittelwert der Schnittpunkte aller Mittelsenkrechten auf den Sekanten mit der Achse für den Realteil der Permittivität ergeben. Dabei wird die zusätzliche Information benutzt, dass der Mittelpunkt auf der Realteilachse liegen muss. Möglich ist auch, ein Kreis in alle vorhandenen Messpunkte für die Permittivität zu fitten bzw. näherungsweise zu berechnen. Aus diesem Kreis wird anschließend der Mittelpunkt bzw. Kreisradius berechnet.Another advantage of the broadband measurement radiation is that a correspondingly few measurement points are sufficient for a reliable temperature determination. In the case of a broadband measurement radiation, the measurement points are so far away on the circle radius that a reliable construction of the circle center z. B. is possible by secant formation and establishment of the vertical center line. The center of the circle lies at the intersection of the vertical line on the secant. The center of the circle can also result from the mean value of the points of intersection of all perpendicular lines on the secants with the axis for the real part of the permittivity. The additional information that the center point must lie on the real part axis is used here. It is also possible to fit a circle into all existing measuring points for the permittivity or to calculate approximately. The center point or circle radius is then calculated from this circle.
Durch die breitbandige Messstrahlung können Messpunkte erfasst werden, welche auf dem Kreisradius soweit auseinanderliegen, dass die Sekanten möglichst lang sind. Solche Verfahren haben den Vorteil, dass nicht das gesamte Frequenzband zur Abbildung des Halbkreises gescannt werden muss, sondern lediglich einige Messpunkte, aus denen anschließend der Kreis berechnet werden kann. Beispielsweise ist bei Wasser für die Abbildung eines vollständigen Halbkreises bei 0°C ein Frequenzband von etwa 1000 Gigahertz erforderlich. Messungen in einem derart breiten Frequenzband erfordern jedoch einen sehr hohen technischen Aufwand. Das zuvor vorgestellte Verfahren ermöglicht eine erheblich unaufwendigere Temperaturbestimmung, da ein schmaleres Band mit weniger zu scannenden Frequenzen eingesetzt werden kann.The broadband measurement radiation enables measurement points to be recorded which are so far apart on the circle radius that the secants are as long as possible. Such methods have the advantage that the entire frequency band does not have to be scanned to map the semicircle, but only a few measuring points from which the circle can then be calculated. For example, in the case of water, a frequency band of around 1000 gigahertz is required to image a complete semicircle at 0 ° C. However, measurements in such a broad frequency band require a very high level of technical effort. The previously presented method enables a considerably less complex temperature determination, since a narrower band with fewer frequencies to be scanned can be used.
So ist beispielsweise eine zuverlässige Temperaturbestimmung von Wasser bzw. wässrigen Behandlungsgütern 200 mittels Messwerten aus einem Frequenzband um lediglich 10 Gigahertz möglich. Je nach erforderlicher Genauigkeit sind auch eine geringere bzw. eine höhere Frequenzbreite möglich. Das Verfahren erfordert daher nur einen entsprechend geringen technischen Aufwand, sodass ein Einsatz auch in üblichen Hausgeräten wirtschaftlich möglich ist. Ein weiterer Vorteil der Betrachtung in einem Cole-Cole-Diagramm ist, dass aus einem vergleichsweise kleinen Teilkreisabschnitt relativ sicher auf den Kreis geschlossen werden kann, weil bekannt ist, dass es sich um einen Kreis handelt, und nicht etwa um eine Ellipse oder einen noch unbestimmteren Funktionsverlauf.For example, a reliable temperature determination of water or
Die Reflektometereinrichtung 54 kann auch als eine Zweitor- oder Mehrtor-Reflektometereinrichtung 54 ausgebildet sein. Dazu können weitere Sendeeinrichtungen 14 bzw. Empfangseinrichtungen 24 vorgesehen sein. So ist beispielsweise auch das Prinzip der Transmissionsmessung möglich. Das kann bei bestimmten geometrischen Verhältnissen im Behandlungsraum 3 besonders vorteilhaft sein. Dabei wird neben der Reflexion am Behandlungsgut 200 auch die Transmission durch das Behandlungsgut 200 der Messung zugänglich. So sind neben den Streuparameter S11 auch die Streuparameter S12, S21 und S22 bestimmbar. Dazu können auch zwei oder mehr Reflektometerantennen vorgesehen sein. Bei mehr als zwei Antennen ist eine Variante, diese paarweise zu betreiben und für jedes Paar Reflexion und Transmission zu bestimmen.The
Das hier gezeigte Hausgerät 1 kann alternativ zu der Reflektometereinrichtung 54 auch mit einer Ultrabreitbandradareinrichtung 44 ausgebildet sein, wie sie z. B. in der
Es kann erforderlich sein, dass für die Messung gegen andere Reflexionen diskriminiert werden muss, z. B. an den Wänden des Behandlungsraumes. Dabei wird im Zeitbereich kein kontinuierlicher Wellenzug verwendet, sondern nur ein sehr kurzer Puls ausgesendet. Das kann dadurch erfolgen, dass tatsächlich ein Puls direkt erzeugt wird oder dass sich der erforderliche Puls durch ein Abscannen eines geeigneten Frequenzspektrums gemäß Fouriertransformation bildet. Um lediglich die Reflexion am interessierenden Behandlungsgut 200 zu berücksichtigen, wird die Sendeeinrichtung 24 lediglich für ein bestimmtes Zeitfenster geöffnet. Möglich ist auch, dass die Verarbeitungseinrichtung 5 lediglich Messstrahlung aus einem bestimmten Zeitfenster berücksichtigt. Das Zeitfenster umfasst dabei vorzugsweise nur die Dauer des Reflexes vom Behandlungsgut 200. Dabei ist die Empfangseinrichtung 24 bzw. die Verarbeitungseinrichtung 5 mit der Sendeeinrichtung 14 zur Erzeugung des Pulses synchronisiert.It may be necessary to discriminate against other reflections for the measurement, e.g. B. on the walls of the treatment room. No continuous wave train is used in the time domain, only a very short pulse is emitted. This can be done by actually generating a pulse directly or by forming the required pulse by scanning a suitable frequency spectrum according to Fourier transformation. In order to only take into account the reflection on the material to be treated 200 of interest, the transmitting
Ein solches Verfahren und das für ein solches Verfahren ausgebildete Hausgerät 1 ermöglichen eine sehr zuverlässige und berührungslose Temperaturbestimmung vom Behandlungsgut 200. Ein besonderer Vorteil ist, dass die Temperatur im Inneren eines Objektes bzw. Behandlungsguts 200 berührungslos gemessen werden kann. Mit Kenntnis der inneren Temperatur bzw. der Volumentemperatur können der Behandlungsprozess und die Behandlungseinrichtung 2 besonders gezielt beeinflusst werden. Beispielsweise wird die Heizquelle 103 so gesteuert, dass im Behandlungsgut 200 eine für die jeweilige Behandlung optimale Temperatur vorliegt. Ein besonderer Vorteil ist auch, dass die Volumentemperatur in der Regel sehr eng mit der erforderlichen Garzeit eines Garguts korreliert. Dadurch ist eine sehr zuverlässige Steuerung von Automatikfunktionen möglich.Such a method and the
Die
Die Ultrabreitbandradareinrichtung 44 weist hier zwei gegenüberliegende Antennen 440, 441 auf. Dabei umfasst eine Antenne jeweils eine Sendeeinrichtung 14, 140 sowie eine Empfangseinrichtung 24, 240. Dadurch kann die Antenne 440, 441 als Sender und Empfänger arbeiten. Die Bandbreite des Radars ist hier vorzugsweise größer als 250 Megahertz und vorzugsweise größer als 10% der Mittenfrequenz des genutzten Frequenzbandes. Besonders bevorzugt wird ein Frequenzband benutzt, welches für derartige Ultrabreitbandanwendungen freigegeben ist. Ein besonders bevorzugter Frequenzbereich ist beispielsweise von 100 Megaherz bis 30 Gigahertz oder auch 100 Gigahertz.The
Das Messsystem 4 erzeugt Messstrahlung und sendet diese in den Behandlungsraum 3 und zum Behandlungsgut 200 aus. Dabei wird ein Teil der Messstrahlung vom Behandlungsgut 200 reflektiert und läuft zu der Antenne 440, 441 zurück, von der die Messstrahlung ausgesendet wurde. Ein anderer Teil der Messstrahlung wird vom Behandlungsgut 200 transmittiert und zu der gegenüberliegenden Antenne 440, 441 durchgelassen. So ist eine Erfassung von vom Behandlungsgut 200 reflektierter und transmittierter Messstrahlung möglich. Das Messsystem 4 erfasst dabei wenigstens eine charakteristische Größe für eine Welleneigenschaft der empfangenen Messstrahlung, wie z. B. die Amplitude, Frequenz, Phase oder Polarisation bzw. Drehwinkel. Anhand der Veränderung der Welleneigenschaft der empfangenen Messstrahlung in Bezug zur gesendeten Messstrahlung wird die charakteristische Kenngröße des Behandlungsguts 200 ermittelt. Die Veränderung betrifft dabei insbesondere die Phase und/oder die Amplitude und/oder weitere charakteristische Kenngrößen und kann beispielsweise durch entsprechende Streuparameter beschrieben werden.The measuring
Die Verarbeitungseinrichtung 5 berechnet dabei aus den erfassten Welleneigenschaften den Realteil und den Imaginärteil der komplexen Permittivität. Dabei berücksichtigt die Verarbeitungseinrichtung 5 die Frequenz der gesendeten bzw. empfangenen Messstrahlung, sodass die komplexe Permittivität bzw. deren Realteil oder Imaginärteil in Abhängigkeit der jeweiligen Frequenz bzw. als Funktion der Frequenz bestimmt werden können. Anhand der komplexen Permittivität sowie deren Frequenzabhängigkeit können verschiedenste charakteristische Kenngrößen für das Behandlungsgut 200 von der Verarbeitungseinrichtung 5 berechnet werden.The
Beispielsweise können die äußere Kontur des Behandlungsguts 200, die Temperaturverteilung oder die Feuchteverteilung im Inneren des Behandlungsguts 200, die Materialzusammensetzung, die Dichteverteilung sowie zahlreiche andere Eigenschaften des Behandlungsguts 200, die in Wechselwirkung mit elektromagnetischer Messstrahlung treten können, dargestellt werden. Dabei können verschiedenste Kenngrößen räumlich aufgelöst oder über das Volumen des Behandlungsguts 200 integriert bestimmt bzw. dargestellt werden. So kann z. B. aus dem integralen Feuchtegehalt im Behandlungsgut 200 über die Behandlungszeit der Feuchteverlust des Behandlungsguts 200 und somit z. B. der Garverlauf bestimmt werden.For example, the outer contour of the item to be treated 200, the temperature distribution or the moisture distribution inside the item to be treated 200, the material composition, the density distribution and numerous other properties of the Items to be treated 200, which can interact with electromagnetic measurement radiation, are shown. A wide variety of parameters can be spatially resolved or determined or represented in an integrated manner over the volume of the items to be treated 200. So z. B. from the integral moisture content in the material to be treated 200 over the treatment time of the moisture loss of the material to be treated 200 and thus z. B. the cooking process can be determined.
Die Sendeeinrichtungen 14, 140 der Ultrabreitbandradareinrichtung 44 sind hier zum Aussenden ultrakurzer Impulse ausgebildet. Beispielsweise liegt die Dauer der Pulse im Picosekundenbereich. Die Pulse weisen entsprechend steile Flanken auf. So kann in der Frequenzdarstellung eine entsprechend große Bandbreite von typisch einigen GHz und z. B. von 10 oder 20 GHz oder mehr beschrieben werden. Die Empfangseinrichtungen 24, 240 sind dazu ausgebildet, die breitbandigen Pulse zu empfangen. Dabei detektieren die Empfangseinrichtungen 24, 240 nur die Messstrahlung, welche in einem bestimmten Zeitfenster liegt. Das Zeitfenster beginnt in einer einstellbaren Zeit nach dem Aussenden des Sendepulses. Ein solches Zeitfenster ermöglicht die Bestimmung, aus welchem räumlichen Gebiet des Behandlungsraumes 3 bzw. des Behandlungsgutes 200 das empfangene Messsignal stammt.The
Der Impuls wird durch die Wechselwirkung mit dem Behandlungsgut 200 so beeinflusst, dass sich charakteristische Wellengrößen wie beispielsweise die Phase oder Amplitude ändern. Die Veränderungen werden vom Messsystem 4 erfasst und von der Verarbeitungseinrichtung 5 zeitabhängig ausgewertet, sodass die elektrischen Eigenschaften des Behandlungsgutes in genau dem räumlichen Gebiet ermittelt werden können, aus dem die empfangene Messstrahlung stammt. Je nach eingesetzter Frequenzbandbreite der Messstrahlung ist die räumliche Auflösung größer oder kleiner. Soll die räumliche Auflösung beispielsweise weniger detailreich sein, so kann mit geringerer Frequenzbandbreite gearbeitet werden oder die räumlichen Informationen werden gemittelt.The impulse is influenced by the interaction with the material to be treated 200 in such a way that characteristic wave variables such as the phase or amplitude change. The changes are recorded by the measuring
Die
Dabei wird die Empfangseinrichtung 24 vorzugsweise in einem Abstandraster entlang des Behandlungsgutes 200 verschwenkt. Dabei behält die Sendeeinrichtung 14 ihre Position. An jeder Schwenkposition der Empfangseinrichtung 24 wird Messstrahlung über das gesamte beobachtete Frequenzband erfasst. Die Empfangseinrichtung 24 hat dabei ein Zeitfenster für den Empfang der am Behandlungsgut reflektierten und transmittierten Messstrahlung, welches vorzugsweise einmal vollständig durchfahren wird. Anschließend wird die Sendeeinrichtung 14 verfahren, wobei an dieser neuen Position die Empfangseinrichtung 24 erneut entlang des Abstandsrasters verschwenkt wird.The receiving
Möglich ist auch, das mit einer Richtcharakteristik gearbeitet wird, sodass die Sendeeinrichtung 14 verschwenkt wird, wenn die Empfangseinrichtung 24 ein Signal mit entsprechender Phasenverschiebung erhält. Der zuvor beschriebene Messdurchlauf kann auch in einem gewünschten Zeitraster wiederholt werden, um das zeitliche Verhalten der Kenngröße des Behandlungsguts 200 zu beobachten.It is also possible to work with a directional characteristic so that the transmitting
Die
In der
Das Messsystem 4 ist hier als eine Ultrabreitbandradareinrichtung 44 ausgebildet und weist eine Sendeeinrichtung 14, eine Empfangseinrichtung 24 sowie eine Verarbeitungseinrichtung 5 auf. Das Messsystem 4 arbeitet im Wesentlichen ähnlich wie das in der
Je nachdem, welche Leistung der Messstrahlung einer bestimmten Frequenz bei der Empfangseinrichtung 24 ankommt, können die gemeinsamen Hohlraumresonanzen von Behandlungsraum 3 und Behandlungsgut 200 für diese Frequenz bestimmt werden. Die als Messstrahlung ausgesendeten ultrakurzen Impulse liegen im Bereich von Picosekunden bis Nanosekunden oder auch Mikrosekunden. Die nach Fouriertransformation zugehörigen Frequenzbandbreiten liegen insbesondere im Bereich einiger 10MHz bis 1 THz. Vorteilhafterweise ist die Impulsdauer so gewählt, dass die reflektierte Messstrahlung im Behandlungsraum 3 auf dem Weg zur Empfangseinrichtung 24 nicht mit dem einlaufenden Puls überlagert wird. Die Pulslänge wird insbesondere so kurz gewählt, dass Mehrfach-Reflexionen von unterschiedlichen Bereichen des Behandlungsraumes 3 von Reflexionen am Behandlungsraum 200 diskriminiert werden können. Vorzugsweise wird dazu das Zeitfenster wie zuvor beschrieben eingestellt.Depending on which power of the measurement radiation of a certain frequency arrives at the receiving
Durch den frequenzabhängigen Unterschied von gesendeter zu empfangener Leistung der Messstrahlung zeigen sich bei bestimmten Frequenzen Hohlraumresonanzen. Bei solchen Hohlraumresonanzen wird besonders viel Strahlungsleistung vom Behandlungsgut 200 und Behandlungsraum 3 aufgenommen. Dabei wird vorzugsweise angenommen, dass der in der Regel metallisch ausgekleidete Behandlungsraum 3 eine im Vergleich zum Behandlungsgut 200 vernachlässigbare Absorption zeigt. Die Hohlraumresonanzen werden insbesondere so interpretiert, dass sie die Feldverteilung bzw. die räumliche Verteilung elektromagnetischer Leistungszufuhr innerhalb des Behandlungsraumes und insbesondere innerhalb des Behandlungsguts 200 beschreiben.The frequency-dependent difference between the transmitted and received power of the measurement radiation results in cavity resonances at certain frequencies. With such cavity resonances, a particularly large amount of radiation power is absorbed by the
Die Hohlraumresonanzen bestimmten daher maßgeblich die Temperaturverteilung im Behandlungsgut 200. Die so durch das Messsystem 4 beschriebenen Hohlraumresonanzen lassen sich im Wesentlichen auch auf die von der Heizeinrichtung 12 zugeführte Strahlungsleistung in den Behandlungsraum 3 übertragen. Es kann also eine Vorhersage getroffen werden, welche Hohlraumresonanzen bei aktiver Heizeinrichtung auftreten werden. Ein solches Messverfahren hat somit den Vorteil, dass sich die räumliche Verteilung der durch die Heizeinrichtung 12 zuführbaren Strahlungsleistungen ein gegebenes Behandlungsgut 200 in einem Behandlungsraum 3 genau beschreiben lässt. Dadurch kann die Leistungszufuhr zum Behandlungsgut 200 gezielt beeinflusst werden, z. B. durch Stirrer oder Ausrichtung des Behandlungsguts 200.The cavity resonances therefore decisively determine the temperature distribution in the material to be treated 200. The cavity resonances thus described by the measuring
Dabei wird vorzugsweise die komplexe Permittivität für jede Messfrequenz in dem Frequenzband der Ultrabreitbandradareinrichtung 44 bestimmt. Somit lässt sich für das Behandlungsgut 200 die Absorption, die Reflexion und Transmission von elektromagnetischer Strahlungsleistung der jeweiligen Frequenz bestimmen.In this case, the complex permittivity is preferably determined for each measurement frequency in the frequency band of the
Das hier gezeigte Hausgerät 1 hat zudem den Vorteil, dass die Heizeinrichtung 12 entsprechend der zuvor bestimmten räumlichen Leistungsverteilung gesteuert werden kann. Dazu kann mittels der Oszillator-Einrichtung 52 Strahlungsleistung mit der bestimmten Frequenz bzw. in einem bestimmten Frequenzbereich erzeugt werden. Die Oszillator-Einrichtung 52 ist dazu mit der Steuereinrichtung 42 wirkverbunden und durch diese steuerbar. Dadurch kann die Frequenz der von der Heizeinrichtung ausgesendeten Strahlungsleistung in Abhängigkeit der vom Messsystem ermittelten Leistungsverteilung bzw. der ermittelten Hohlraumresonanzen eingestellt werden.The
Je nachdem, ob eine hohe oder niedrige Leistungszufuhr zum Behandlungsgut 200 gewünscht ist, wird eine Frequenz gewählt, für die das Behandlungsgut zuvor im Messdurchgang ein hohes oder niedriges Absorptionsvermögen gezeigt hat. Möglich ist auch, dass die Heizeinrichtung 12 über die Zeit Strahlungsleistung bei verschiedenen Frequenzen aussendet, sodass bestimmte Feldverteilungen bzw. Hohlraumresonanzen zeitlich aufeinander folgend überlagert werden können. In Kenntnis des räumlichen Absorptionsvermögens des Behandlungsguts 200 ist zudem möglich, bestimmten Bereichen des Behandlungsguts 200 eine hohe Strahlungsleistung zuzuführen und anderen Bereichen eine entsprechend niedrige Strahlungsleistung zu verabreichen. So kann beispielsweise Gargut in einem inneren Bereich stärker erwärmt werden als in einem äußeren Bereich.Depending on whether a high or low power supply to the item to be treated 200 is desired, a frequency is selected for which the item to be treated has previously shown a high or low absorption capacity in the measurement run. It is also possible that the
Die
Das Gargerät 100 verfügt hier zudem über eine Positioniereinrichtung 32. Die Positionierung ist beispielsweise als ein Drehteller ausgebildet und dient zur Positionierung bzw. Bewegung des Behandlungsguts 200 im Behandlungsraum 3.The
Die Übertragungseinrichtung 22 ist hier mit einer Steuereinrichtung 42 wirkverbunden, welche wiederum mit dem Messsystem 4 wirkverbunden ist. Dadurch ist die Übertragungseinrichtung 22 in Abhängigkeit der vom Messsystem ermittelten Information steuerbar. Dabei wird die Übertragungseinrichtung 22 vorzugsweise so ausgerichtet, dass eine gewünschte Leistungszufuhr zum Behandlungsgut 200 erreicht wird. Dabei werden z. B. vom Benutzer eingestellte Programme oder andere Zielvorgaben berücksichtigt. Die Veränderung der Hohlraumresonanzen im Behandlungsraum 3 nach Veränderung der Position der Übertragungseinrichtung 22 kann dabei vom Messsystem 4 überwacht werden. Beispielsweise übermittelt das Messsystem 4 erneut die Hohlraumresonanzen, wenn die Übertragungseinrichtung 22 verändert wurde. Möglich ist auch, dass die Positioniereinrichtung 32 in Abhängigkeit der vom Messsystem 4 ermittelten Hohlraumresonanzen eingestellt wird.The
Durch die Übertragungseinrichtung 22 und/oder durch die Positioniereinrichtung 32 und deren Steuerung in Abhängigkeit der ermittelten Leistungsverteilung können gezielt zeitlich hintereinander verschiedene Resonanzen im Behandlungsraum 3 realisiert werden. Somit sind auch verschiedene räumliche Verteilungen für den Leistungseintrag in das Behandlungsgut 200 realisierbar. Die Verweilzeiten beim Anfahren einer bestimmten Hohlraumresonanz sind insbesondere durch eine gewichtete Summe beschrieben. Dabei ist festgelegt, wie lange welche Resonanz jeweils für ein optimales Ergebnis anzufahren ist. Es kann auch festgelegt sein, wie die entsprechende Hohlraumresonanz zu realisieren ist, also z. B. durch die Positioniereinrichtung 32 oder durch eine entsprechende Einstellung der Übertragungseinrichtung 22.By means of the
Die gewünschte Hohlraumresonanz kann auch dadurch angefahren werden, dass die Heizeinrichtung 12 Strahlungsleistung bei einer bestimmten Frequenz aussendet, wie es beispielsweise für das Gargerät 100 in der
- 11
- HausgerätHome appliance
- 22
- BehandlungseinrichtungTreatment facility
- 33
- BehandlungsraumTreatment room
- 44th
- MesssystemMeasuring system
- 55
- VerarbeitungseinrichtungProcessing facility
- 66th
- BedieneinrichtungControl device
- 77th
- SpeichereinrichtungStorage facility
- 1212th
- HeizeinrichtungHeating device
- 1313th
- GarraumCooking space
- 1414th
- SendeeinrichtungSending facility
- 2222nd
- ÜbertragungseinrichtungTransmission facility
- 2424
- EmpfangseinrichtungReceiving device
- 3232
- PositioniereinrichtungPositioning device
- 4242
- SteuereinrichtungControl device
- 4444
- UltrabreitbandradareinrichtungUltra wideband radar device
- 5252
- OszillatoreinrichtungOscillator device
- 5454
- ReflektometereinrichtungReflectometer device
- 6262
- VerstärkereinrichtungAmplifier device
- 7272
- HohlleitereinrichtungWaveguide device
- 100100
- GargerätCooking appliance
- 103103
- HeizquelleHeating source
- 104104
- Türdoor
- 140140
- SendeeinrichtungSending facility
- 200200
- BehandlungsgutItem to be treated
- 240240
- EmpfangseinrichtungReceiving device
- 440440
- Antenneantenna
- 441441
- Antenneantenna
Claims (8)
- Method for operating a domestic appliance (1) comprising at least one treatment device (2) for treating items to be treated (200) in at least one treatment chamber (3), the temperature of at least part of the item to be treated (200) being determined contactlessly by means of at least one measuring system (4) comprising at least one processing device (5), and the treatment device (2) being controlled according to the determined temperature, the measuring system (4) generating electromagnetic measuring radiation, at least intermittently, and introducing said radiation into the treatment chamber (3) by means of at least one transmitting device (14), and directly reflected measuring radiation that interacts with the item to be treated (200) being received, at least intermittently, by at least one receiving device (24) of the measuring system (4), the measuring system being designed to transmit and receive ultra-broadband signals having a frequency width of at least 250 MHz and being operated as such, characterised in that the transmitting device (14) repeatedly emits the measuring radiation as at least one ultra-short pulse having a pulse duration shorter than one nanosecond, the measuring system detecting at least the phase and the amplitude as a wave property of the received measuring radiation, taking into account the frequency, the processing device (5) determining the complex permittivity on the basis of the change in the wave property of the received measuring radiation in relation to the transmitted measuring radiation and considering said complex permittivity as a function of the frequency, the temperature being derived on the basis of the frequency dependence of a maximum value of the function.
- Method according to the preceding claim, characterised in that the determined frequency dependence of the complex permittivity is compared with at least one reference parameter stored in at least one storage device (7), the reference parameter describing the frequency dependence of the complex permittivity of at least one known substance and/or body at at least one defined temperature.
- Method according to either of the two preceding claims, characterised in that the real part and the imaginary part of the complex permittivity are considered to be a locus in a Cole-Cole diagram such that an arc of a circle having a centre point on the axis can be described for the real part, the temperature being determined on the basis of the centre of the circle or the radius of the circle.
- Method according to the preceding claim, characterised in that the radius of the arc of the circle or the position of the centre of the circle on the axis for the real part is compared with at least one reference value stored in at least one storage device (7) for at least one known substance and/or body at at least one defined temperature.
- Method according to any of the preceding claims, characterised in that the measuring radiation is emitted repeatedly.
- Method according to any of the preceding claims, characterised in that the measuring radiation has at least two frequencies between 10 megahertz and 1 terahertz which differ from one another by at least 100 MHz.
- Method according to any of the preceding claims, characterised in that the measuring radiation has a frequency width of at least 10% of the centre frequency of the frequency band used.
- Method according to any of the preceding claims, characterised in that the measuring radiation received by the receiving device (24) is analysed by the processing device (5), and in that the measuring radiation which was received during a defined time frame is taken into account, the beginning of the time frame at least partially depending on the time at which the measuring radiation was emitted.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014105255.2A DE102014105255A1 (en) | 2014-04-14 | 2014-04-14 | Procedure and household appliance |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2941092A1 EP2941092A1 (en) | 2015-11-04 |
EP2941092B1 true EP2941092B1 (en) | 2021-05-12 |
Family
ID=52875471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15161072.2A Active EP2941092B1 (en) | 2014-04-14 | 2015-03-26 | Method and household appliance |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2941092B1 (en) |
DE (1) | DE102014105255A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016113216B3 (en) * | 2016-07-18 | 2017-11-09 | Hochschule Ruhr West | Method for contactless determination of the temperature of a food in a cooking appliance and cooking appliance |
DE102016122557A1 (en) | 2016-11-23 | 2018-05-24 | Miele & Cie. Kg | Process and cooking appliance |
EP3521787A1 (en) * | 2018-01-31 | 2019-08-07 | ETH Zurich | Ultra-thin thermal history coatings based on strong interference |
CA3138319A1 (en) * | 2019-04-30 | 2020-11-05 | Gea Food Solutions Bakel B.V. | Improved temperature measurement |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237141A (en) * | 1990-07-17 | 1993-08-17 | Matsushita Electric Industrial Co., Ltd. | High frequency heating apparatus and electromagnetic wave detector for use in high frequency heating apparatus |
WO2013078325A1 (en) * | 2011-11-22 | 2013-05-30 | Goji Ltd. | Control of rf energy application based on temperature |
JPWO2014103633A1 (en) * | 2012-12-26 | 2017-01-12 | 東京エレクトロン株式会社 | Electromagnetic wave heating apparatus and electromagnetic wave heating method |
-
2014
- 2014-04-14 DE DE102014105255.2A patent/DE102014105255A1/en not_active Withdrawn
-
2015
- 2015-03-26 EP EP15161072.2A patent/EP2941092B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DE102014105255A1 (en) | 2015-10-15 |
EP2941092A1 (en) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2983453A1 (en) | Method and household appliance | |
EP2941092B1 (en) | Method and household appliance | |
EP3153080A1 (en) | Kitchen appliance operated by electricity | |
DE102019119075A1 (en) | Method for operating a cooking appliance and cooking appliance | |
EP2938161A1 (en) | Method and household appliance | |
EP3258742B1 (en) | Method for operating a cooking device and cooking device | |
EP3324123B1 (en) | Method for heating a liquid with detection of the boiling point | |
DE102016202234B3 (en) | Method for selective heating of objects or groups of objects by high-frequency electromagnetic waves | |
EP3327356B1 (en) | Cooking device and method of operating cooking device | |
EP3451795B1 (en) | Method for cooking foods in the cooking area of a cooking device | |
DE102012013936B4 (en) | Cooking appliance with rack detection | |
DE102016116120B4 (en) | Method for operating a cooking appliance and cooking appliance | |
DE102018202519A1 (en) | Operating a home appliance with defrost function | |
DE10063692C2 (en) | Method and device for measuring and monitoring heating-related changes in substances in an oven | |
EP4260659A1 (en) | Operating a household microwave appliance | |
EP3405005B1 (en) | Method and cooking device for cooking cooked material | |
DE102019112517B4 (en) | Method for operating a device, in particular a cooking device, and device | |
EP2689699B1 (en) | Method for setting microwave power and cooking device | |
DE102019119071A1 (en) | Method for operating a device, in particular a cooking device or drying device, and device | |
DE102016113216B3 (en) | Method for contactless determination of the temperature of a food in a cooking appliance and cooking appliance | |
DE102017100074B4 (en) | Process for treating food and cooking appliance for carrying out such a process | |
EP3253179A1 (en) | Method for operating a cooking device and cooking device | |
EP3364719B1 (en) | Method for cooking foods and cooking assembly | |
DE102019125551B4 (en) | Method for analyzing the absorption behavior of an object, method for operating a cooking device and analysis device | |
EP4008962A1 (en) | Method for operating a cooking device and cooking device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160504 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180511 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210208 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502015014702 Country of ref document: DE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015014702 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1393049 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210813 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210913 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015014702 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220326 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220326 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220326 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220326 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1393049 Country of ref document: AT Kind code of ref document: T Effective date: 20220326 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240331 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |